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A NOTE ON IMPLEMENTATIONS OF THE BOOSTING

ALGORITHM AND HETEROGENEOUS MULTISCALE METHODS

JOHN MACLEAN∗

Abstract. We present improved convergence results for the Boosting Algorithm (BA), and
demonstrate that an existing formulation of the Heterogeneous Multiscale Methods (HMM) is ac-
curate to first order only in the macro time step, regardless of the order of the numerical solvers
employed. These results are obtained by considering the BA and two other formulations of HMM
as special cases of a general formulation of HMM applied to dissipative stiff ordinary differential
equations.
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Introduction. Many problems in the natural sciences are modelled by time-scale
separated differential equations in which the dynamics of interest takes place on a slow
time scale. The Heterogeneous Multiscale Methods (HMM) introduced in [5] provide
the conceptual framework of micro and macro solvers to resolve the behaviour of the
dynamics of interest without requiring a small integration time step. The micro solver
performs short, fine-scale computations in the fast variables with micro time steps.
The output from the micro solver is used to propagate the slow variables for macro
time steps in the macro solver.
These methods have been applied to dissipative and to highly oscillatory problems
[4, 3], as well as multi-scale stochastic problems and partial differential equations
[21, 1], and to problems exhibiting spatial-scale separation; see [6] for a review.

There are some differences in the literature on the exact manner in which the HMM
macro and micro solver interact. In the formulation [6, 21, 22] the micro solver is
applied during the macro solver whenever a vector field evaluation is required; for
example, each time step of a fourth order Runge-Kutta macro solver would require
four applications of the micro solver. We denote this approach by HMM1.
A different approach to HMM is described in the more recent papers [7, 23, 2], and
employed in, for instance, [16]. HMM in these papers uses the micro and macro solver
sequentially; for example, each time step of a fourth order Runge-Kutta macro solver
would be preceded by an application of the micro solver, and would involve no addi-
tional applications of the micro solver. We denote this approach by HMM2.
We remark that one cannot distinguish between HMM1 and HMM2 in some of the
literature on HMM, as the two formulations are identical for the most common choice
of macro solver, the forward Euler method. In this paper we will implement and
analyse HMM1 and HMM2 with a Runge-Kutta macro solver in order to establish
the important difference between them.

In practice, the large macro time steps of HMM may require that the fast variables
be re-initialised in a manner consistent with the slow variables after each application
of the macro solver. To mitigate this problem, the Boosting Algorithm (BA) was
proposed in [7] as an extension of the similarly motivated scheme in [18]. The BA
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2 A note on implementations of the BA and HMM

alternates between single applications of the micro and macro solvers, with a smaller
macro step than HMM. This method was developed in [18, 7] for multi-scale ordinary,
stochastic and partial differential equations, and extended to highly oscillatory sys-
tems in [15]. In the context of dissipative multi-scale systems, the underlying assump-
tion of the BA is that the slow manifold does not change too much over the smaller
macro steps, so that the fast variables do not have to be expensively re-initialised or
re-equilibrated by longer applications of the micro solver as done in HMM.

A related class of methods called projective methods, proposed in [9], has also been
applied to time-scale separated ordinary, stochastic and partial differential equations,
and to bifurcation analysis [12, 10]. Formulations of these methods exist that resem-
ble HMM2 [9, 20, 19] and HMM1 [14, 13, 17]. Unlike HMM, in projective methods
the micro and macro solvers typically propagate both fast and slow variables. This
allows projective methods to numerically integrate systems in which the slow and fast
variables are not known; for a discussion of the benefits of this approach, see [22].

There is an existing body of work on the convergence of HMM and the BA for or-
dinary differential equations. Of relevance are [4], in which convergence results are
given for HMM with an arbitrary order macro solver, albeit without proof or explicit
formulation of the numerical scheme, and [7], in which convergence results are given
for the BA.
In this paper we provide rigorous convergence results for HMM1, HMM2 and the BA
applied to stiff dissipative systems. We confirm for the HMM1 formulation the bound
stated in [4], and show that the HMM2 formulation incurs linear error in the macro
step regardless of the order of the macro solver. The bound we derive for the BA is
tighter than the existing bound in [7]; in particular, our bound removes a term that
implies a restrictive condition should be satisfied by the micro solver.

The paper is organised as follows. In Section 1 we consider a simple dissipative
system. In Section 2 we present a general formulation of HMM, with Runge-Kutta
macro and micro solvers and a variable number of micro steps per application of
the micro solver. We then consider the BA, HMM1 and HMM2 as special cases of
this general formulation. In Section 3 we establish the convergence of the general
formulation of HMM to the continuous solution of the slow processes in a multiscale
system of deterministic ordinary differential equations by a simple extension of the
convergence proof in [4]. We then apply this bound to the BA, HMM1 and HMM2. In
Section 4 we present results from numerical simulations corroborating our analytical
findings. We conclude with a discussion in Section 5.

1. Model. For simplicity of exposition, we restrict our attention to systems with
one slow variable xε and one fast variable yε. We consider the deterministic multiscale
system

ẋε = f(xε, yε) , (1.1)

ẏε =
1

ε
(− yε + h0(xε)) . (1.2)

We assume that there exists a slow manifold x = hε(y) = h0(y) + O(ε), towards
which initial conditions are attracted exponentially fast. On the slow manifold, the
dynamics slows down and is approximately determined by

Ẋ = F (X) , (1.3)
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with reduced dynamics X = xε +O(ε). The reduced slow vector field is given by

F (x) = f(x, hε(x))

= f(x, h0(x)) +O(ε) , (1.4)

where we identify the zeroth order approximation of the reduced vector field in (1.4)
because, as we shall see, the HMM and BA approximate f(x, h0(x)) rather than F (x).

2. Methods. We consider three numerical multiscale methods. Each method
intermittently resolves the fast dynamics with a micro solver for micro time steps δt
to relax the fast variable to the slow manifold, enabling the macro solver to resolve
the slow dynamics with larger time steps. We select as the micro solver an explicit
numerical method of order p. The three methods are conceptually described as follows:

1. BA: The macro solver is a numerical method of order P with macro step
∆̃t ≫ δt. In this approach the micro solver is applied for a single micro step before
each time step of the macro solver. As explained in [7], one way to think of the BA
is as a rescaling of time. In particular, it is equivalent to replacing ε in (1.2) with

∆̃tε/δt and then solving the new system of ordinary differential equations by standard

numerical methods with time step ∆̃t. Since ∆̃tε/δt ≫ ε, the new system is much
less stiff and the BA presents a large computational advantage over solving (1.1)–(1.2)
directly.

2. HMM1: The macro solver is constructed by modifying a numerical method
of order P to include an application of the micro solver before every vector field
evaluation of (1.1). The macro step is ∆t ≫ ∆̃t, and the micro solver is applied for
sufficiently many steps to relax the fast variable.

3. HMM2: The macro solver is given by a numerical method of order P with
macro step ∆t ≫ ∆̃t. The micro solver is applied for sufficiently many steps to relax
the fast variable between each application of the macro solver.
We will compare the three methods, focussing on a detailed analysis of the BA and the
differences between HMM1 and HMM2. To do so, we consider a general formulation
of HMM which allows for the construction of the BA, HMM1 and HMM2 formulations
with particular parameter choices.
Throughout the paper, we use superscripts to denote elements of the macro solver
and subscripts to denote elements of the micro solver.

2.1. General formulation of HMM. We describe an HMM scheme in which
the macro solver is given by a Runge-Kutta method of order P, except that the micro
solver is applied for a variable number of steps before each vector field evaluation of
the slow dynamics. Denote by ϕm,δt the flow map for the micro solver applied to
the fast dynamics (1.2) with fixed slow variable for m micro steps with time step δt.
Denote by xn and yn the approximations to the slow and fast variables at macro time
tn. The macro solver is then given by a weighted sum of increments, each of which
cover a time step ∆t. The increments are generated recursively by

k(j)(xn, yn) = ∆t f(xn + a(j)k(j−1), yn,jMj
) , (2.1)

for j = 1, 2, . . . , P , where we define yn,jm for j = 1, 2, . . . , P , m = 1, 2, . . . ,Mj , as the
output of the micro solver

yn,jm = ϕm,δt

(
xn + a(j)k(j−1), yn,j0

)
, (2.2)
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with initial condition at j = 1

yn,10 = yn , (2.3)

and at j > 1

yn,j0 = yn,1M1
. (2.4)

The nodes a(j) in (2.1), (2.2) are those used in the increments of a Runge-Kutta
solver of order P; in particular 0 ≤ a(j) ≤ 1, and a(1) = 0 always so that k(1) is
defined explicitly.
The macro solver is then given by the weighted sum

xn+1 = xn +
P∑

j=1

b(j)k(j)(xn, yn) , (2.5)

where the weights b(j) are appropriate to a Runge-Kutta solver of order P; in particular
0 < b(j) < 1, and

∑P

j=1 b
(j) = 1. We must estimate yn+1 on an ad hoc basis; in this

scheme we choose

yn+1 = yn,1M1
. (2.6)

The three numerical methods described above can now be considered as special cases
of the HMM formulation (2.1)–(2.6), and are illustrated in Figure 2.1.

1. BA: Choose M1 = 1 and all other Mj = 0. As described above, the BA takes
smaller time steps in the slow variable than the HMM methods; we choose
the macro step to be ∆̃t. We choose the number of iterations of the method
ñ, so that the time elapsed over an application of the BA is tñ = ñ∆̃t. The
BA is illustrated in Figure 2.1a.

2. HMM1: Fix Mj = M > 0 for all j, so that the micro solver is employed
before each increment is estimated during the application of the macro solver.
Choose the macro step ∆t = M∆̃t and number of iterations n = ñ/M , so

that the time elapsed over an application of HMM1 is tn = n∆t = ñ∆̃t = tñ

in the BA. The formulation HMM1 is illustrated in Figure 2.1b.

3. HMM2: Choose M1 = M as above, and all other Mj = 0, so that the micro
solver is employed before the first increment is estimated in the macro solver,
and held fixed during the macro solver. As in HMM1, choose macro step ∆t
and n iterations so that tn = tñ. The formulation HMM2 is illustrated in
Figure 2.1c.

3. Error Analysis. We will establish bounds on the error between the slow
variables xn given by the general formulation of HMM (2.1)–(2.6) and the true value
of the reduced slow dynamics X(tn). This provides error bounds for the Boosting
Algorithm that improve on the bounds obtained in [7], and furthermore establishes
the distinction between the HMM1 and HMM2 formulations.

We assume that the slow dynamics (1.1) is Lipshitz continuous in the local region in
which the slow manifold exists, so that there exist constants Lf and Cf satisfying

|f(x1, y1)− f(x2, y2)| ≤Lf(|x1 − x2|+ |y1 − y2|) ,

|f(x, y)| ≤Cf .
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Fig. 2.1: Sketch of the numerical methods for a second order Runge-Kutta macro
solver. For this scheme a(2) = 1 and b(1) = b(2) = 1/2. Initial conditions are (xn, yn) at
the top right; applications of the micro solver are given by crosses while the increments
are displayed as vectors. To focus on the different ways the increments k(j) are defined
in the three formulations, we omit the final step of the macro solver, which is the
weighted sum xn+1 = xn + (k(1) + k(2))/2.

Furthermore we assume that the approximate slow manifold h0(x) is Lipshitz contin-
uous, so that there exists a constant Lh satisfying

|h0(x1)− h0(x2)| ≤ Lh|x1 − x2| .

Combining the previous two assumptions, the reduced dynamics (1.4) is Lipshitz
continuous, so that there exists a constant LF satisfying

|F (X1)− F (X2)| ≤ LF |X1 −X2| ,

with LF ≤ Lf (1+Lh). Under these assumptions, we formulate the following Theorem.

Theorem 3.1. For the general formulation of HMM described by (2.1)–(2.6),
with Runge-Kutta macro solver of order P > 1 and micro solver of order p ≥ 1, and
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for any T ≥ 0, there exists a constant C > 0 such that the error |xn − X(tn)| is
bounded for t ≤ T by

|xn −X(tn)| ≤ C

(
∆tP + ρmin(Mj)

(
−
δt

ε

)
|dn,max|+ ε

)
,

where ρ(−δt/ε) is the linear amplification factor for the micro solver and is derived

in the proof on p. 9, and |dn,max| measures the maximal deviation of the fast vari-

able from the slow manifold over all macro steps. Here 0 ≤ ρ(−δt/ε) < 1, and

ρmin(Mj)(−δt/ε)= [ρ(−δt/ǫ)]min(Mj) signifies the exponential attraction of the fast dy-

namics towards the slow manifold over the microsteps.

In order to apply this result to the formulations BA, HMM1 and HMM2, we employ
the following practical assumptions.
We assume the parameters δt, M, ∆t of the HMM and BA solvers satisfy

δt ≤ ε ≤ Mδt < ∆̃t < ∆t < 1 .

We assume the micro solver accurately resolves the fast variable compared to the drift
in the slow manifold over an increment or macro step, with

ρM
(
−
δt

ε

)
|yn − h0(x

n)| <LhCf∆t (3.1)

in HMM1 and HMM2, and

ρñ
(
−
δt

ε

) ∣∣y0 − h0(x
0)
∣∣ <LhCf ∆̃t ε

δt
(3.2)

in the BA.

Theorem 3.1 then has the following implications for the three specific implementations
of HMM described in Section 2:

Corollary 3.2. For the Boosting Algorithm,

|xñ −X(tñ)| ≤ C
(
∆̃tP + ∆̃t

ε

δt
+ ε
)

.

In particular, the predicted error is |xn −X(tn)| ∼ ∆̃t regardless of the order of the

macro solver.

The interpretation of the BA as a rescaling of time, described in Section 2, was used
in [7] to derive an error bound for the BA. In this interpretation, the BA is thought
of as a numerical scheme applied to (1.1)–(1.2) with a larger value of ε. Consequently
the error incurred by the BA ”consists of two parts: The error due to boosting the
parameter ε and the error due to numerical solution of the boosted model” ([7],
p.5444). This bound can be written as

|xñ −X(tñ)| ≤ C
(
∆̃tε/δt+ ∆̃tP + (δt/ε)

p
)

.

That is, the error bound presented in [7] predicts the linear scaling of the error with

∆̃t, but also contains an additional term proportional to (δt/ε)p. This term would
restrict the microstep to δt ≪ ε and suggest that a higher order micro solver might
be employed with p > 1, otherwise the BA would incur O(1) error stemming from the
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micro solver. Our bound does not have this limitation. In particular, one can choose
larger δt to rapidly propagate the fast variable towards the slow manifold, and a first
order micro solver with p = 1 to lessen the computational cost, without increasing
the predicted error.

Corollary 3.3. For the Heterogeneous Multiscale Methods in the formulation

HMM1,

|xn −X(tn)| ≤ C

(
∆tP +∆t ρM

(
−
δt

ε

)
+ ε

)
.

Corollary 3.4. For the Heterogeneous Multiscale Methods in the formulation

HMM2,

|xn −X(tn)| ≤ C
(
∆tP +∆t+ ε

)
.

In Corollary 3.3, the error bound may be dominated by any of the three terms.
However, if ε ≪ ∆tP and ∆t ρM (−δt/ε) ≪ ∆tP , the error bound for the HMM1
formulation is identical to the bound for a Runge-Kutta solver applied to the reduced
system. In Corollary 3.4, employing the practical assumption ε < ∆t < 1, the error
bound is dominated by the linear term in ∆t regardless of the order of the macro
solver.
Some descriptions of HMM appear to recommend the HMM2 formulation by describ-
ing the application of the micro and macro solvers separately, as discussed earlier.
However, Corollaries 3.3 and 3.4 outline the clear advantages of HMM1 over HMM2
for higher-order macro solvers.

We now prove Theorem 3.1.
Proof. We follow the procedure established in [5] for bounding the error in HMM

methods, and in particular we make use of the convergence proof for our system (1.1)–
(1.2) in [4].
Let us consider the numerical approximation of X(tn), the solution to the reduced
slow system (1.4) at time tn, by a single step of a Runge-Kutta method of order P
with initial condition X(tn−1). The increments are given by

K(j)
(
(X(tn−1)

)
= ∆t F

(
X(tn−1) + a(j)K(j−1)

)
, (3.3)

and the solver is then given by the weighted sum

Xn = X(tn−1) +

P∑

j=1

b(j)K(j)
(
X(tn−1)

)
. (3.4)

The Runge-Kutta solver approximates the reduced dynamics to order P + 1 over a
single step (see for instance [11]), so that

X(tn) = X(tn−1) + ∆tF̂
(
X(tn−1)

)
+O(∆tP+1) , (3.5)

where we write the vector field of the solver as

F̂
(
X(tn−1)

)
=

P∑

j=1

b(j)
K(j)

(
X(tn−1)

)

∆t
. (3.6)
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Similarly for the HMM formulation (2.1)–(2.6) we write the vector field of the macro
solver as

f̂(xn) =

P∑

j=1

b(j)
k(j)(xn, yn)

∆t
, (3.7)

so that

xn+1 = xn +∆tf̂(xn) . (3.8)

We expand xn −X(tn) by substituting (3.5) and (3.8), obtaining

xn −X(tn) =xn−1 −X(tn−1) + ∆t
(
f̂(xn−1, yn−1)− F̂

(
X(tn−1)

))
+O(∆tP+1)

=xn−1 −X(tn−1) + ∆t
(
F̂ (xn−1)− F̂

(
X(tn−1)

))

+∆t
(
f̂(xn−1, yn−1)− F̂ (xn−1)

)
+O(∆tP+1)

=
(
xn−1 −X(tn−1)

) [
1 + ∆tF̂

(
X(tn−1) + θ(xn−1 −X(tn−1))

)]

+∆t
(
f̂(xn−1, yn−1)− F̂ (xn−1)

)
+O(∆tP+1) ,

where we have applied the Mean Value Theorem with 0 ≤ θ ≤ 1. Applying absolute
values and employing the Lipshitz continuity of the reduced dynamics, we obtain

|xn −X(tn)| ≤ (1 + LF∆t)
∣∣xn−1 −X(tn−1)

∣∣+∆t
∣∣∣f̂(xn−1, yn−1)− F̂ (xn−1)

∣∣∣

+ C∆tP+1 .

Iterating with initial condition X(0) = x0 and tn ≤ T yields

|xn −X(tn)| ≤
eLFT

LF

(
C∆tP + max

1≤i<n

∣∣∣f̂(xi, yi)− F̂ (xi)
∣∣∣
)

. (3.9)

This is the standard bound for HMM methods, established for very general systems
in [5]. The first term is the error associated with a Runge-Kutta solver applied to the
reduced system. The second term measures how well the HMM method approximates
this Runge-Kutta solver, and is labelled e(HMM).

We now bound |f̂(xn, yn)− F̂ (xn)|. Substituing (3.6) and (3.7) we obtain

∣∣∣f̂(xn, yn)− F̂ (xn)
∣∣∣ ≤

P∑

j=1

b(j)

∆t

∣∣∣k(j)(xn, yn)−K(j)(xn)
∣∣∣

≤
1

∆t
max

1≤j≤P

∣∣∣k(j)(xn, yn)−K(j)(xn)
∣∣∣ , (3.10)

on employing the weighting condition
∑P

j=1 b
(j) = 1.

We bound
∣∣k(j)(xn, yn)−K(j)(xn)

∣∣, substituting (2.1) and (3.3) for the increments
with
∣∣∣k(j)(xn, yn)−K(j)(xn)

∣∣∣ =∆t
∣∣∣f(xn + a(j)k(j−1), yn,jMj

)− F (xn + a(j)K(j−1))
∣∣∣
(3.11)
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=∆t
∣∣f(xn + a(j)k(j−1), yn,jMj

)

− f(xn + a(j)K(j−1), h0(x
n + a(j)K(j−1))) +O(ε)

∣∣ ,

where we used the zeroth order approximation of the slow reduced vector field (1.4).
Employing the Lipshitz continuity of the slow dynamics and slow manifold yields
∣∣∣k(j)(xn, yn)−K(j)(xn)

∣∣∣ ≤Lf∆t
( ∣∣∣a(j)k(j−1) − a(j)K(j−1)

∣∣∣

+
∣∣∣yn,jMj

− h0(x
n + a(j)K(j−1))

∣∣∣
)
+ C∆tε

≤Lf∆t
(
a(j)
∣∣∣k(j−1) −K(j−1)

∣∣∣+
∣∣∣yn,jMj

− h0(x
n + a(j)k(j−1))

∣∣∣

+
∣∣∣h0(x

n + a(j)k(j−1))− h0(x
n + a(j)K(j−1))

∣∣∣
)
+ C∆tε

≤Lf(1 + Lh)∆ta(j)
∣∣∣k(j−1) −K(j−1)

∣∣∣

+ Lf∆t
∣∣∣yn,jMj

− h0(x
n + a(j)k(j−1))

∣∣∣ + C∆tε . (3.12)

Defining the distance between the fast variable yn,jm and the approximate slow manifold
h0(x

n + a(j)k(j−1)) by

dn,jm = yn,jm − h0(x
n + a(j)k(j−1)) ,

we write (3.12) with j = 1 as
∣∣∣k(1)(xn, yn)−K(1)(xn)

∣∣∣ ≤Lf∆t|dn,1M1
|+ C∆tε . (3.13)

Iterating (3.12), seeded with (3.13), we obtain
∣∣∣k(j)(xn, yn)−K(j)(xn)

∣∣∣ ≤Lf∆t max
1≤j≤P

|dn,jMj
|+ C∆tε+O(∆t2 max

1≤j≤P
|dn,jMj

|,∆t2ε) .

On substitution into (3.10) we obtain
∣∣∣f̂(xn, yn)− F̂ (xn)

∣∣∣ ≤ Lf max
1≤j≤P

|dn,jMj
|+ Cε+O(∆t max

1≤j≤P
|dn,jMj

|) . (3.14)

We have expressed our bound over the vector fields f̂ and F̂ as a bound over the micro
steps. The terms Lf max1≤j≤P |dn,jMj

|+Cε measure via (3.11) the mismatch between
the slow vector field f after an applicaton of the micro solver and the reduced vector
field F . We now bound |dn,jMj

|.

Recall that yn,jMj
is produced by the micro solver, which resolves the fast dynamics

(1.2) with the slow variable held fixed. At any fixed x, define dε = yε − h0(x), with
linear dynamics given by

ḋε = ẏε

= −
1

ε
dε , (3.15)

so that

dr (dε)

dtr
=

(
−
1

ε

)r

dε . (3.16)
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By construction, dn,jMj
is the output of the micro solver applied to (3.15) with initial

condition dε(0) = yn,j0 − h0(x
n + a(j)k(j−1)). We now use this interpretation of dn,jm

to establish the rate at which various micro solvers propagate the fast variable to the
slow manifold.
It is well known that a single step in a Runge-Kutta solver of order p, when Taylor
expanded term by term, matches the Taylor series around the previous step to order
p in δt. That is,

dn,jm+1 = dn,jm + δt ḋε

∣∣∣
d
n,j
m

+
δt2

2!
d̈ε

∣∣∣
d
n,j
m

+ · · ·+
δtp

p!

dp(dε)

dtp

∣∣∣∣
d
n,j
m

+O(δtp+1) .

With the linear dynamics of (3.16), the Taylor expansion is unnecessary: every incre-
ment in the Runge-Kutta step from dn,jm to dn,jm+1 can be rewritten in terms of dn,jm

directly. Consequently there is no error term in the above equation, and

dn,jm+1 = dn,jm + δt ḋε

∣∣∣
d
n,j
m

+
δt2

2!
d̈ε

∣∣∣
d
n,j
m

+ · · ·+
δtp

p!

dp(dε)

dtp

∣∣∣∣
d
n,j
m

.

Employing (3.16) we obtain the bound on dn,jm as stated in [4],

dn,jm+1 = ρ

(
−
δt

ε

)
dn,jm , (3.17)

where

ρ

(
−
δt

ε

)
=

p∑

j=0

(− δt
ε
)j

j!
.

For the fast variable to converge to the (approximate) slow manifold, we require
|ρ(−δt/ε)| < 1, which is assured for any 0 < δt ≤ ε. Note that that from (3.17) we have
limm→∞ dn,jm = 0, implying that the fast variable converges to the approximate slow
manifold h0 over the micro solver, rather than converging to the true slow manifold
hε. Consequently, (3.14) assures that the HMM vector field f̂ converges to the zeroth
order approximation of the reduced dynamics.
Substituting (3.17) into (3.14), and (3.14) into (3.9), we obtain the main result of
Theorem 3.1, that

|xn −X(tn)| ≤ C

(
∆tP + ρmin(Mj)

(
−
δt

ε

)
|dn,max|+ ε

)
, (3.18)

where we defined the maximal deviation |dn,max| of the fast variable from the slow
manifold over the applications of the macro solver,

|dn,max| = max
0≤i<n
1≤j≤P

|di,j0 | .

Equation (3.18) already contains the term that differentiates HMM1 from HMM2: in
HMM1, min(Mj) = M , while in HMM2 (and in BA), min(Mj) = 0.

We now prove Corollary 3.2, 3.3 and 3.4 by bounding |dn,max| in each of the three
formulations.
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Proof. First fix n and consider |dn,j0 | over the increments. For j > 1 we employ
the Lipshitz continuity of the slow dynamics to bound

|dn,j0 | =|yn,1M1
− h0(x

n + a(j)k(j−1))|

≤|h0(x
n)− h0(x

n + a(j)k(j−1))|+ |yn,1M1
− h0(x

n)|

≤LhCf∆t+ ρM1

(
−
δt

ε

)
|dn| , (3.19)

where we have employed a(j) ≤ 1, and where we have defined the distance of the fast
variable from the slow manifold at the beginning of the n-th macro step,

|dn| = |yn − h0(x
n)| .

For j = 1, |dn,10 | = |dn|. Analogously to (3.19) we now bound |dn|, employing (2.5)
and (2.6) to obtain

|dn+1| =|yn,1M1
− h0(x

n+1)|

≤|h0(x
n)− h0(x

n+1)|+ |yn,1M1
− h0(x

n)|

≤LhCf∆t+ ρM1

(
−
δt

ε

)
|dn| . (3.20)

We note that the bounds for the increments (3.19) and the macro steps (3.20) are the
same. In each bound, the first term measures the changing value of the slow manifold
over the drift of the slow variable, and the second term measures the distance of the
fast variable from the approximate slow manifold after the last macro step.
We will now use (3.19) and (3.20) to bound |dn,max| for the three formulations HMM1,
HMM2 and BA.

Recall that for HMM1 and HMM2, M1 = M . For these formulations, we employ the
practical assumption (3.1) that the micro solver accurately resolves the fast variable
compared to the drift in the slow manifold over an increment or macro step, which
we recall as

ρM
(
−
δt

ε

)
|dn| <LhCf∆t .

Then we obtain to lowest order the bound for HMM1 and HMM2,

|dn,max| ≤ 2LhCf∆t . (3.21)

For the BA, with M1 = 1, we cannot neglect ρ1
(
− δt

ε

)
|dñ|; instead we iterate (3.20)

to obtain

∣∣dñ
∣∣ ≤ρñ

(
−
δt

ε

) ∣∣d0
∣∣+ LhCf ∆̃t

1− ρñ
(
− δt

ε

)

1− ρ
(
− δt

ε

)

≤ρñ
(
−
δt

ε

) ∣∣d0
∣∣+ LhCf ∆̃t

1

1− ρ
(
− δt

ε

)

≤ρñ
(
−
δt

ε

) ∣∣d0
∣∣+ LhCf ∆̃t ε

δt
.
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Recalling that ñ = nM , we can now employ the practical assumption (3.2) that the
applications of the micro solver dampen any initial distance of the fast variable from
the slow manifold compared to the drift in the slow manifold over an increment or
macro step, which we recall as

ρnM
(
−
δt

ε

)∣∣d0
∣∣ <LhCf ∆̃t ε

δt
,

yielding to lowest order the bound

|dn,max| ≤2
LhCf ∆̃t ε

δt
. (3.22)

Substituting (3.22) into (3.18) with min(Mj) = 0 establishes Corollary 3.2; similarly
(3.21) with min(Mj) = M establishes Corollary 3.3, and (3.21) with min(Mj) = 0
establishes Corollary 3.4.

4. Numerics. We now illustrate the key predictions of Corollaries 3.2, 3.3, and
3.4, which we recall here with a second-order Runge-Kutta macro solver, i.e. P = 2,
and a forward Euler micro solver, i.e. ρ(−δt/ε) = 1 − δt/ε. We present the result
for each method along with the predicted behaviour of the error |xn −X(tn)| as the
parameters ∆t, ε, δt, M are varied.

1. BA:

|xn −X(tn)| ≤C

((
∆t

M

)2

+
∆t ε

M δt
+ ε

)
,

where we have used ∆̃t = ∆t/M so that the BA may be compared to HMM1
and HMM2. So long as the practical assumptions Mδt < ∆t < 1, δt ≤ ε are
satisfied, the error is always dominated by the second term; in particular the
error is linear in ∆t and in ε.

2. HMM1:

|xn −X(tn)| ≤C

(
∆t2 +∆t

(
1−

δt

ε

)M

+ ε

)
.

Depending on the parameters of the method and system, any of the three
terms could be the dominant error term.

3. HMM2:

|xn −X(tn)| ≤C
(
∆t2 +∆t+ ε

)
.

So long as the practical assumption ε < ∆t < 1 is satisfied, the error is always
dominated by the second term; we expect the error to scale linearly with ∆t.
Employing the practical assumption ε < Mδt, we see that the second term
in the bound for HMM2 is larger than the second term in the bound for the
BA.

To illustrate these results we present simulations of the Michaelis-Menten system
employed in [8],

ẋε = −xε + (xε + 0.5)yε (4.1)
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ẏε =
xε − (xε + 1)yε

ε
, (4.2)

with stable fixed point at (0, 0). We comment that the fast dynamics of this system
is more complicated than our form (1.2), but still converges to the slow manifold

hε(x) =
x

x+ 1
+ ε

x

2(x+ 1)4
+O(ε2) (4.3)

exponentially quickly, so that xε converges to the slow reduced system

Ẋ = −X + (X + 0.5)hε(X) . (4.4)

We use initial conditions xε(0) = 1, yε(0) = hε(1). Under these conditions, the fast
variable in the micro solver still converges to the slow manifold according to

∣∣∣dn,jm+1

∣∣∣ ≤
(
1−

δt

ε

) ∣∣dn,jm

∣∣ ,

so that Theorem 3.1 and the Corollaries apply.

We present results for three situations. First we choose parameters so that the error in
HMM1 is dominated by the term proportional to ∆t2. We then demonstrate situations
in which the error in HMM1 is dominated by the term proportional to ∆t (1− δt/ε)

M
,

and the term proportional to ε.

4.1. HMM1 with ideal parameters. We consider the scaling of the error with
the macro step ∆t for parameters such that HMM1 is as accurate as a second-order
Runge-Kutta solver applied to the reduced system, i.e. |xn − X(tn)| ∼ ∆t2. We
choose ε = 10−5 so that the error is not dominated by the term proportional to ε.
We choose δt = 0.2ε and M = 30 so that the fast variable converges very close to the
approximate slow manifold with (1 − δt/ε)M = 0.001 ≪ ∆t. The number of macro
steps ranges from 10 to 500 to keep T = 5 fixed. Figure 4.1 clearly illustrates the
identical quadratic scalings of the error in HMM1 and the error in a second-order
Runge-Kutta solver applied to the reduced system, and the linear scaling of the error
in HMM2 and the BA with ∆t.

4.2. HMM error dominated by under-resolved fast variable. We now
consider the scaling of the error with the macro step ∆t when the fast variable does
not converge close to the slow manifold, so that the error in HMM1 is dominated by
∆t(1− δt/ε)M ; that is, the error scaling is linear in ∆t. We choose as before ε = 10−5

and δt = 0.2ε, now with M = 10 so that (1 − δt/ε)M = 0.1 ≈ ∆t. The number of
macro steps again ranges from 10 to 500 to keep tn = 5 fixed. We illustrate the linear
error scaling with ∆t of all three formulations in Figure 4.2.

4.3. HMM error dominated by the scale separation. We now consider the
scaling of the error with ε. This term is dominant in HMM1 when ∆tP ≪ ε and the
fast variable converges well to the approximate slow manifold. In this situation, as
discussed earlier, HMM1 converges to the zeroth order approximation of the reduced
system f(x, h0(x)) and the error is dominated by the O(ε) difference between the
approximate reduced system and the true reduced system f(x, hε(x)). We choose as
before δt = 0.2ε and M = 30 so that as before the fast variable converge very close to
the approximate slow manifold. We use ∆t = 0.1 and take n = 50 macro steps. We
illustrate the linear error scaling with ε of the HMM1 and BA for ε > ∆t2 = 0.01 in
Figure 4.2. For HMM2, the error term proportional to ∆t always dominates the error
so long as the practical assumption ∆t ≫ ε is satisfied, as noted in Corollary 3.4.
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Fig. 4.1: Plot of the error versus log(∆t) for fixed time of integration tn = 5 of the
system (4.1)-(4.2). The crosses labelled ’RK2’ are from second-order Runge-Kutta
simulations of the reduced system (4.4). The dashed lines are linear regressions with
slopes of 2.07 for HMM1, 1.06 for HMM2 and 1.00 for the BA.

5. Discussion. We have extended the proof in [4] to provide convergence results
for the Heterogeneous Multiscale Methods with a Runge-Kutta macro solver and a
variable number of micro steps. These results naturally lead to error bounds for
three distinct numerical methods, all of which are special cases of the general formu-
lation of HMM. In particular, we obtained an improved error bound for the Boosting
Algorithm over the bound presented in [7]. The bound in [7] contains an additional
term that suggests a restriction on the micro step to inefficiently small values or on the
micro solver to high order solvers; the bound we derived does not have this restriction.

We also obtained an error bound for two distinct formulations of HMM, and used
these to demonstrate that the micro solver must be employed repeatedly during a sin-
gle step of a Runge-Kutta macro solver, otherwise the error is dominated by a linear
term in the macro step. If the micro solver is employed before every vector field eval-
uation in the macro solver as done in HMM1, the simulation of the slow variables is
within O(ε) of the output of a Runge-Kutta solver of arbitrary order applied to the re-
duced system. This provides a word of caution for the conceptual definitions of HMM.

While the HMM1 formulation is accurate, it is significantly more computationally
expensive than HMM2 or the BA. Consequently, accurate formulations of HMM2 or
the BA are still of interest. We now discuss some progress that has been made in
designing such schemes. As we have shown in this paper, any such improvements will
necessarily improve the estimate of the slow manifold used in the macro solver.
In [16], a leapfrog coupling is shown to yield second order accuracy in the macro
step for the HMM2 formulation. In particular, this allows the use of a second order
implicit macro solver, which is difficult to implement in the HMM1 formulation and
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Fig. 4.2: Plot of the error versus log(∆t) for fixed time of integration tn = 5 of the
system (4.1)-(4.2). The dashed lines are linear regressions with slopes of 1.13 for
HMM1, 1.05 for HMM2 and 0.98 for the BA.

advantageous if the macro scale dynamics are also stiff. In the same paper a new
numerical method is suggested, essentially a formulation of HMM2 with a varying
number of micro steps before each macro time step. It is shown that this approach is
advantageous in systems where the scale separation varies.
In [15] an extension of the BA is developed, called Variable Step size HMM. In this
scheme the BA macro step varies smoothly from micro to macro values; it is shown
that this approach enables the BA to achieve second order accuracy in the macro step
under some conditions on the step size.
The bound we derived for the BA is partially applicable to VSHMM. In particular
[15] uses fourth order Runge-Kutta for the micro solver in dissipative experiments
when our analysis suggests one could gain in accuracy via faster convergence to the
slow manifold, and save a factor of 4 computationally, by using forward Euler for the
micro solver.
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