
A COMBINATORIAL PROOF OF A PLETHYSTIC

MURNAGHAN–NAKAYAMA RULE

1. Introduction

The purpose of this note is to give a combinatorial proof of a plethystic

generalization of the Murnaghan–Nakayama rule, first stated in [1]. The key

step in the proof uses a sign-reversing pairing on sequences of bead moves

on James’ abacus (see [3, page 78]), inspired by the theme of [4] ‘when

beads bump, objects cancel’. The only prerequisites are the Murnaghan–

Nakayama rule and basic facts about plethysms of symmetric functions. The

necessary combinatorial background on border-strips and James’ abacus is

recalled in Section 2 below.

Let sλ/ν denote the Schur function corresponding to the skew-partition λ/ν

and let pr denote the power-sum symmetric function of degree r ∈ N. Let

sgn(λ/ν) = (−1)` if λ/ν is a border-strip of height ` ∈ N0, and let sgn(λ/ν) =

0 otherwise. The Murnaghan–Nakayama rule (see, for instance, [6, Theorem

7.17.1]) states that if ν is a partition and r ∈ N then

(1) sνpr =
∑

λ` r+|ν|

sgn(λ/ν)sλ.

To generalize (1) we need some further definitions. Let λ/ν be a skew-

partition and let d be minimal such that λd > νd. We say that an r-border-

strip λ/µ is the final r-border-strip in λ/ν if µ/ν is a skew-partition and

λd > µd. Thus λ/µ has a (necessarily unique) final r-border-strip if and only

if the r boxes at the top-right of the rim of the Young diagram of λ/ν can

be removed to leave a skew-partition. We say that λ/ν is r-decomposable if

there exist partitions µ(0), µ(1), . . . , µ(m) such that

λ = µ(0) ⊃ µ(1) ⊃ . . . ⊃ µ(m) = ν

and µ(i)/µ(i+1) is the final r-border-strip in µ(i)/ν for each i. In this case

we define sgnr(λ/ν) = sgn(µ(0)/µ(1)) . . . sgn(µ(m−1)/µ(m)). If λ/ν is not r-

decomposable we define sgnr(λ/µ) = 0. Let f ◦ g denote the plethysm of

symmetric functions f and g, as defined in [5, I.8] or [6, Appendix 2]. Finally

let hm = s(m) denote the complete symmetric function of degree m ∈ N0.

We shall prove that if ν is a partition and r, m ∈ N then

(2) sν(pr ◦ hm) =
∑

λ` rm+|ν|

sgnr(λ/ν)sλ.

Taking m = 1 recovers (1). The formula for sµ(pr ◦ hm1 . . . hmd
) given in

[1, page 29] follows by repeated applications of (2). This formula is proved
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2 A PLETHYSTIC MURNAGHAN–NAKAYAMA RULE

in [1] using Muir’s rule. Similarly (2) implies combinatorial formulae for

sµ(pr1 . . . prc ◦ hm), and, more generally, for sµ(pr1 . . . prc ◦ hm1 . . . hmd
). An

alternative proof of (2) using the character theory of the symmetric group

was given in [2, Proposition 4.3]. The special case ν = ∅ of (2) follows from

[5, I.8, Example 8].

2. Background on border-strips, signs and James’ abacus

Let λ be a partition of n with p parts. The Young diagram of λ is the set

[λ] = {(i, j) : 1 ≤ i ≤ p, 1 ≤ j ≤ λi}.

The elements of a Young diagram are called boxes. The rim of λ consists of

all boxes (i, j) such that (i+ 1, j + 1) 6∈ [λ]. A border-strip of length s in λ

consists of s adjacent boxes in the rim of λ whose removal from [λ] leaves

the Young diagram of a partition. The top-right and bottom-left boxes of a

border-strip are defined with respect to the ‘English’ convention for drawing

Young diagrams, shown in Figure 1 below. The height of a border-strip with

bottom-left box (i, j) and top-right box (i′, j′) is i− i′.
Clearly λ is determined by the sequence of right and up steps that starts

at (p, 1), visits exactly the boxes in the rim of λ, and finishes at (1, λ1).

Encoding each right step by a gap, denoted ◦, and each up step by a bead,

denoted •, we obtain the normalized abacus for λ. (This term is not entirely

standard, but is convenient here.) More generally, an abacus for λ is a

sequence consisting of any number of beads, followed by the normalized

abacus for λ, followed by any number of gaps. We number the positions in

such a sequence from 0.
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Figure 1. The 2-decomposable skew-partition λ/ν where λ =

(13, 10, 10, 5, 4, 3, 1) and ν = (11, 7, 4, 3, 1). The normalized abacus A for λ

and an abacus C for ν are shown on two runners. The marked 10 border-strip of

height 3 has top-right box (2, 10) and bottom-left box (5, 4); it corresponds to the

bead in position 15. Swapping this bead with the gap in position 5 removes this

border-strip, giving µ = (13, 9, 4, 3, 3, 3, 1). In the walk along the rim of µ, step

5 is up •, rather that right ◦; the walk then agrees with that for λ until step 15,

which is right ◦, rather than up •.
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In the proof of (2) we shall only be concerned with border-strips whose

length is a multiple of a fixed r ∈ N. In this case it is useful to represent

the gaps and beads on r runners, so that for each t ∈ {0, 1, . . . , r − 1} the

positions on runner t are t, t + r, t + 2r, . . .. We say that position t + jr

is above position t + j′r if j < j′. Define a single-step bead move to be a

move of a bead from a position β to the position β − r immediately above

it. These definitions are illustrated in Figure 1 on the previous page.

The following two lemmas records some basic results on the abacus.

Lemma 1. Let A be an abacus for the partition λ. Let s ∈ N. Let As be

the set of bead positions β of A such that β − s ≥ 0 and A has a gap in

position β − s.
(i) The map sending β ∈ As to the corresponding box in [λ] is a bijection

between As and the top-right boxes in the s border-strips in λ.

(ii) Let β ∈ As and let B be the abacus obtained from A by swapping

the bead in position β with the gap in position β − s. Then B is an

abacus for the partition obtained by removing the s border-strip from λ

corresponding to β.

(iii) The height of the s border-strip in λ corresponding to the bead in po-

sition β ∈ As is the number of beads in positions β − s + 1, . . . , β − 1

of A.

Proof. Parts (i) and (ii) follow from Lemma 2.7.13 in [3], using that the set

of bead positions in A is a set of β-numbers for λ. (An alternative proof,

avoiding β-numbers, is indicated in the caption to Figure 1.) For (iii),

observe that the beads in positions β − s + 1, . . . , β of A encode the steps

up made when walking the s border-strip in λ corresponding to β. �

Lemma 2. Let λ = µ(0), µ(1), . . . , µ(c) = ν be a sequence of partitions such

that µ(i)/µ(i+1) is an si border-strip in µ(i) for each i ∈ {0, 1, . . . , c−1}. Let

A be an abacus for λ. Let J be the set of pairs of positions {β, β′} such that

(i) β < β′;

(ii) A has beads b and b′ in positions β and β′, respectively;

(iii) after the sequence of bead moves that removes the border-strips µ(0)/µ(1),

. . ., µ(c−1)/µ(c), bead b finishes in a greater numbered position than

bead b′.

Then sgn(µ(0)/µ(1)) . . . sgn(µ(c−1)/µ(c)) = (−1)|J |.

Proof. We work by induction on c. The base case c = 0 is trivial. Let I be

the set defined in the same way as J for the sequence λ = µ(0), µ(1), . . .,

µ(c−1) = µ. Let B be the abacus for µ obtained from A by the sequence of

bead moves specified in (iii), stopping at µ. Suppose that the border-strip

µ/ν corresponds to the bead in position γ of B, and that his bead was in

position β of A. Let ` be the height of µ/ν. By Lemma 1(iii) there are `

beads in positions γ− sc+ 1, . . . , γ−1 of B. Suppose that exactly j of these

beads were originally in a position β′ > β of A. These j beads correspond

to pairs {β, β′} ∈ I\J and the remaining ` − j beads correspond to pairs

{β, β′} ∈ J \I. Apart from these pairs, the sets I and J agree. Thus
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|J | = |I| − j + (`− j) = |I|+ `− 2j. Hence, by induction,

(−1)|J | = (−1)|I|(−1)`

= sgn(µ(0)/µ(1)) . . . sgn(µ(c−2)/µ(c−1)) sgn(µ(c−1)/µ(c))

as required. �

For the remainder of this section, fix r, m ∈ N and let λ/ν be a skew-

partition of rm such that ν can be obtained from λ by repeatedly removing r

border-strips. Let A be an r-runner abacus for λ and let C be the abacus

for ν obtained from A by a sequence of bead moves that removes these r

border-strips.

Using Lemma 2 we obtain the following proposition, which is equivalent

to [3, 2.7.26].

Proposition 3. Let λ/ν and A be as just defined. There exists σ ∈ {1,−1}
such that if µ(0), µ(1), . . ., µ(m) is any sequence of partitions such that

µ(0) = λ, µ(m) = ν and µ(i)/µ(i+1) is an r border-strip in µ(i) for each

i ∈ {0, 1, . . . ,m− 1}, then

σ = sgn(µ(0)/µ(1)) . . . sgn(µ(m−1)/µ(m)).

Proof. The sequence µ(0), µ(1), . . ., µ(m) corresponds to a sequence of single-

step bead moves on A leading to the abacus C. Since the final positions

of the beads moved on A are independent of the order of moves, the result

follows from Lemma 2. �

An immediate corollary of Proposition 3 is that sgnr(λ/ν) can be com-

puted by removing r border-strips in any way. We use this corollary in the

proof of Proposition 6 below.

We end this section with a characterization of r-decomposable partitions

using the abacus.

Definition 4. Let the abaci A and C be as defined. Let t ∈ {0, . . . , r − 1}.
We say that runner t of A is r-decomposable if it has positions α1 < β1 <

· · · < αc < βc such that, for each k ∈ {1, . . . , c}, position βk has a bead,

positions αk, αk + r, . . . , βk − r have gaps, and runner t of C is obtained by

moving the bead in position βk to the gap in position αk.

Lemma 5. Let the skew-partition λ/ν and the abacus A be as defined.

(i) Let β be the greatest numbered position of A that has a bead moved in a

sequence of bead moves leading to ν. Then λ/ν has a final r border-strip

if and only if A has a gap in position β − r.
(ii) The skew-partition λ/ν is r-decomposable if and only if runner t of A

is r-decomposable for each t ∈ {0, . . . , r − 1}.

Proof. Let d be minimal such that λd > νd. The bead in position β corre-

sponds to the box in position (d, λd) of [λ]. By Lemma 1(i), this box is the

top-right box in an r border-strip in λ if and only if there is a gap in position

β − r of A. This proves (i). Part (ii) now follows by repeated applications

of (i). �
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The skew-partition λ/ν shown in Figure 1 is 2-decomposable. It may be

used to give an example of Proposition 3 and Lemma 5.

3. Proof of Equation (2)

The proof is by induction on m. We begin with the identity

(3) mhm =
m∑
`=1

p`hm−`,

which may be proved in a few lines working from the generating functions∑∞
m=0 hmt

m =
∏∞
i=1(1 − xit)

−1 and
∑∞

`=1 p`t
` =

∑∞
i=1 xit(1 − xit)

−1, or

found in [5, I, Equation (2.11)]. The map f 7→ pr ◦ f is an endomorphism

of the ring of symmetric functions (see [5, I.8.6]), so (3) implies that

pr ◦mhm = pr ◦
m∑
`=1

p`hm−` =

m∑
`=1

(pr ◦ p`)(pr ◦ hm−`) =

m∑
`=1

pr`(pr ◦ hm−`).

Since pr ◦mhm = mpr ◦ hm, it follows that

msν(pr ◦ hm) =

m∑
`=1

sν(pr ◦ hm−`)pr`.

By (1) and induction we get

msν(pr ◦ hm) =
m∑
`=1

∑
µ` r(m−`)+|ν|

∑
λ` r`+|µ|

sgnr(µ/ν) sgn(λ/µ)sλ.

It is therefore sufficient to prove that if λ/ν is a skew-partition of rm then

(4) m sgnr(λ/ν) =
∑
µ

sgn(λ/µ) sgnr(µ/ν)

where the sum is over all partitions µ such that λ/µ is a border-strip of

length divisible by r and µ/ν is a skew-partition.

Fix an r-runner abacus A for λ. We may assume that one side of (4) is

non-zero, and so an abacus C for ν can be obtained by a sequence of bead

moves on the runners of A. We say that a runner of A is of type

(I) if it is r-decomposable (see Definition 4);

(II) if it is not r-decomposable but an r-decomposable runner can be

obtained by swapping a bead on this runner with a gap one or more

positions above it;

(III) if it is neither of type (I) nor of type (II).

For example, in Figure 2 after the proof of Proposition 7, runner 0 of A has

type (II) and runner 1 has type (I).

By Lemma 1(ii), swapping a bead and a gap as described in (II) corre-

sponds to removing a border-strip of length divisible by r from λ to leave

a partition µ. The corresponding contribution of sgn(λ/µ) sgnr(µ/ν) to the

right-hand side of (4) is non-zero if and only if µ/ν is an r-decomposable

skew-partition. Hence if A has a runner of type (III) or two or more runners

of type (II), then both sides of (4) are zero. The following two propositions
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deal with the remaining cases. In both cases an example is given following

the proof.

Proposition 6. If all runners of A have type (I) then (4) holds.

Proof. Let µ be a partition such that λ/µ is a border-strip of length divisible

by r and µ/ν is a skew-partition. Suppose that µ is obtained by moving

a bead b on runner t of λ. By Lemma 5(ii) there are positions α1 < β1 <

· · · < αc < βc on runner t, such that, for each k ∈ {1, . . . , c}, position βk
has a bead, positions αk, αk + r, . . . , βk − r have gaps, and ν is obtained

by moving the bead in position βk to the gap in position αk. Since µ/ν

is a skew-partition, the bead b must be in one of the positions βk and,

after the move giving µ, it must be in position βk − rq for some q such that

1 ≤ q ≤ (βk−αk)/r. Since there are gaps in A in positions βk−rq, . . . , βk−r,
this move can also be achieved by a sequence of q single-step bead moves

of b. Since there are gaps in A in positions αk, . . . , βk − (r+ 1)q, the runner

obtained after moving bead b is still r-decomposable. Hence, by Lemma 5,

µ/ν is r-decomposable. By Proposition 3, noting that bead b can be moved

from position βk − rq to position αk by single-step bead moves, we have

sgn(λ/µ) sgnr(µ/ν) = sgnr(λ/ν).

It follows that all the non-zero summands on the right-hand side of (4) are

equal to sgnr(λ/ν). The number of partitions µ obtained by moving a bead

on runner t that give a non-zero summand is (β1−α1)/r+ · · ·+ (βc−αc)/r.
Summing over all runners, and using that λ/ν is a skew-partition of rm,

we see that there are exactly m non-zero summands. This completes the

proof. �

For an example consider the skew-partition λ/ν and the border-strip

λ/µ shown in Figure 1. The partition µ is obtained by moving the bead

in position 15 to position 5: we denote this move by (15, 5). The final

2 border-strips removed from µ to obtain ν correspond to the bead moves

(19, 17), (14, 12), (5, 3), (4, 2), (2, 0) and have heights 0, 0, 1, 1, 1. Since λ/µ

has height 3, we have sgn(λ/µ) sgn2(µ/ν) = (−1)6 = 1. The final 2 border-

strips removed from λ to obtain ν correspond to the bead moves (19, 17),

(15, 13), (14, 12), (13, 11), (11, 9), (9, 7), (7, 5), (5, 3), (4, 2), (2, 0) and have

heights 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, so sgn2(λ/ν) = (−1)8 = 1.

Proposition 7. If there is a unique runner of A of type (II) and all other

runners have type (I) then both sides of (4) are zero.

Proof. By Lemma 5(ii), λ/ν is not r-decomposable. Hence the left-hand

side of (4) is zero. Let runner t be the unique runner of A of type (II).

Since runner t is not r-decomposable, there are beads d and d? on this

runner, in positions δ and δ? respectively, such that δ > δ? and in any

sequence of single-step bead moves leading from A to C, bead d finishes

above position δ?. Choose δ maximal with this property. Then there are

positions

α0 < α1 ≤ β1 < α2 ≤ β2 < · · · < αb ≤ βb < βb+1
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on runner t such that (a) βb = δ? and βb+1 = δ, (b) the beads between posi-

tions α0 and βb+1 are exactly those in positions β1, . . . , βb+1, (c) in any

sequence of single-step bead moves leading from A to C, for each k ∈
{1, . . . , b + 1}, the bead in position βk finishes in the gap in position αk−1,

and (d) swapping bead d with the gap in position α0 gives an r-decomposable

runner.

Let P be the set of pairs (ε, γ) such that ε and γ are positions on runner t

and the runner obtained by swapping the bead in position ε with the gap in

position γ is r-decomposable. It follows from the choice of δ that if (ε, γ) ∈ P
then ε ∈ {δ?, δ} and that (δ, γ) ∈ P if and only if (δ?, γ) ∈ P . Hence

P =
{

(ε, γ) : ε ∈ {δ, δ?}, γ ∈ {α0, . . . , α1 − 1}
}
.

Let (δ, γ) ∈ P , let B be the abacus obtained by swapping bead d with the

gap in position γ, and let µ be the partition represented by B. Define B?

and µ? analogously, replacing d with d?. It suffices to show that

(5) sgn(λ/µ?) sgnr(µ
?/ν) = − sgn(λ/µ) sgnr(µ/ν)

so the contributions from µ and µ? to (4) cancel. We do this using Lemma 2

and a sign reversing pairing on sequences of bead moves from A to C. This

pairing is illustrated in Figure 2 and in the example following this proof.

Fix a sequence of bead moves that first swaps bead d with the gap in

position γ (giving B) then makes single-step bead moves to go from B to C.

This sequence is paired with the sequence that first swaps bead d? with the

gap in position γ (giving B?), then moves bead d to position δ? by single-

step moves (giving B, with beads d and d? swapped compared to the first

sequence) and then makes the same sequence of single-step moves to go from

B to C. Let J and J ? be the set of pairs {β, β′} defined, as in Lemma 2, for

these two sequences of bead moves. It is clear that J and J ? agree except

for pairs involving the positions δ and δ?. Moreover {δ, δ?} ∈ J \J ?.
Let α and α? be, respectively, the final positions of beads d and d? in C

after the sequence of moves from A to B to C. (Equivalently, α and α? are,

respectively, the final position of beads d? and d in C, after the sequence of

moves from A to B? to B to C.) Let A be the set of positions of A that have

a bead, excluding positions δ and δ?. For β ∈ A, let β̄ be the final position

in C, after either sequence of moves, of the bead starting in position β of A.

The following four claims are routine to check:

{β, δ} ∈ J and {β, δ?} 6∈ J ? ⇐⇒ δ? < β < δ and α < β̄,

{β, δ?} ∈ J and {β, δ} 6∈ J ? ⇐⇒ δ? < β < δ and β̄ < α?,

{β, δ} 6∈ J and {β, δ?} ∈ J ? ⇐⇒ δ? < β < δ and β̄ < α,

{β, δ?} 6∈ J and {β, δ} ∈ J ? ⇐⇒ δ? < β < δ and α? < β̄.

Let XJ , YJ , XJ ? , YJ ? be the sets of β ∈ A satisfying each of these condi-

tions, respectively. These sets are obstacles to a bijection J \
{
{δ, δ?}

}
←→
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J ? defined by {β, δ} ←→ {β, δ?}. Observe that

XJ = {β ∈ A : δ? < β < δ, α < β̄ < α?} ∪ YJ ? ,

YJ = {β ∈ A : δ? < β < δ, α < β̄ < α?} ∪XJ ? .

It follows that

|J | = 2
∣∣{β ∈ A : δ? < β < δ, α < β̄ < α?}

∣∣+ |J ?|+ 1

where the final summand comes from {δ, δ?}. Hence |J | and |J ?| have

opposite parities. Equation (5) now follows from Lemma 2. This completes

the proof. �

In the example shown in Figure 2 below with r = 2, we have δ = 18,

δ? = 14, α? = 12, α = 2 and γ = 4. The set P is {(δ, 2), (δ?, 2), (δ, 4), (δ?, 4)}.

0 1

A B C

0

α=2

γ=4
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d?
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d?

λ/ν, the heavy line shows λ/µ

B?

0 1

d

d?

λ/ν, the heavy line shows λ/µ?

Figure 2. Example to illustrate Proposition 7 when r = 2 and λ/ν =

(10, 10, 8, 5, 5, 5, 1)/(4, 4, 4, 2, 2). The partitions µ and µ? are (9, 7, 4, 4, 4, 1, 1) and

(10, 10, 4, 4, 4, 1, 1). Abaci A, B, B? and C for λ, µ, µ?, ν, respectively, are shown.

The bead moves between these abaci are indicated by arrows: B is obtained from

A by the move (δ, γ) = (18, 4) shown by a solid arrow and B? is obtained from A

by the move (δ?, γ) = (14, 4) shown by a dotted arrow.
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The sets J and J ? are

J =
{
{10, 18}, {9, 18}, {8, 18}, {3, 18}

}
∪
{
{17, 18}, {14, 17}

}
∪
{
{14, 18}

}
,

J ? =
{
{10, 14}, {9, 14}, {8, 14}, {3, 14}

}
.

The second set in the union for J gives the pairs coming from XJ = YJ =

{β ∈ A : δ? < β < δ, α < β̄ < α?} = {17}. In this example XJ ? = YJ ? =

∅. We have sgn(λ/µ?) sgn2(µ
?/ν) = 1 = − sgn(λ/µ) sgn2(µ/ν) as predicted

by (4).
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