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A COMBINATORIAL PROOF OF A PLETHYSTIC
MURNAGHAN-NAKAYAMA RULE

1. INTRODUCTION

The purpose of this note is to give a combinatorial proof of a plethystic
generalization of the Murnaghan—Nakayama rule, first stated in [I]. The key
step in the proof uses a sign-reversing pairing on sequences of bead moves
on James’ abacus (see [3, page 78]), inspired by the theme of [4] ‘when
beads bump, objects cancel’. The only prerequisites are the Murnaghan—
Nakayama rule and basic facts about plethysms of symmetric functions. The
necessary combinatorial background on border-strips and James’ abacus is
recalled in Section 2 below.

Let sy, denote the Schur function corresponding to the skew-partition A\ /v
and let p, denote the power-sum symmetric function of degree r € N. Let
sgn(A\/v) = (=1)"if A\/v is a border-strip of height £ € Ny, and let sgn(\/v) =
0 otherwise. The Murnaghan—Nakayama rule (see, for instance, [0, Theorem
7.17.1]) states that if v is a partition and r € N then

(1) Sypr = Z sgn(A/v)sy.
AEr+|y|

To generalize we need some further definitions. Let A\/v be a skew-
partition and let d be minimal such that Ay > 4. We say that an r-border-
strip A/u is the final r-border-strip in \/v if pu/v is a skew-partition and
Ad > pg- Thus A/p has a (necessarily unique) final r-border-strip if and only
if the r boxes at the top-right of the rim of the Young diagram of A/v can
be removed to leave a skew-partition. We say that \/v is r-decomposable if
there exist partitions M(O),u(l), . ,,u(m) such that

A=pu >0 5 D,u(m) =v

and p® / w1 g the final r-border-strip in (9 /v for each i. In this case
we define sgn,. (A/v) = sgn(p® /M) .. sgn(p™=1 /™). If \/v is not r-
decomposable we define sgn,.(A/u) = 0. Let f o g denote the plethysm of
symmetric functions f and g, as defined in [5, 1.8] or [6, Appendix 2]. Finally

let hy, = 8(,,) denote the complete symmetric function of degree m € Ny.
We shall prove that if v is a partition and r, m € N then

(2) su(pr o hin) = Z sgn,.(A/v)sy.
A rm+|v|

Taking m = 1 recovers (|I). The formula for s,(p, © A, ... hm,) given in

[1, page 29] follows by repeated applications of . This formula is proved
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in [I] using Muir’s rule. Similarly implies combinatorial formulae for
Su(Pry - - Pr. © huy), and, more generally, for s,(pr, ... Dr. © himy - .. himy). An
alternative proof of using the character theory of the symmetric group
was given in [2, Proposition 4.3]. The special case v = @& of follows from
[0, 1.8, Example 8].

2. BACKGROUND ON BORDER-STRIPS, SIGNS AND JAMES’ ABACUS

Let A be a partition of n with p parts. The Young diagram of A is the set
N ={(4):1<i<p, 1<j< N}

The elements of a Young diagram are called bozes. The rim of A\ consists of
all boxes (i,7) such that (i + 1,7 + 1) & [\]. A border-strip of length s in A
consists of s adjacent boxes in the rim of A\ whose removal from [A] leaves
the Young diagram of a partition. The top-right and bottom-left boxes of a
border-strip are defined with respect to the ‘English’ convention for drawing
Young diagrams, shown in Figure 1 below. The height of a border-strip with
bottom-left box (4, j) and top-right box (i, j') is i — 7.

Clearly A is determined by the sequence of right and up steps that starts
at (p, 1), visits exactly the boxes in the rim of A, and finishes at (1, ;).
Encoding each right step by a gap, denoted o, and each up step by a bead,
denoted e, we obtain the normalized abacus for A. (This term is not entirely
standard, but is convenient here.) More generally, an abacus for X is a
sequence consisting of any number of beads, followed by the normalized
abacus for A, followed by any number of gaps. We number the positions in
such a sequence from 0.

0 1 0 1
0 1
2 3 o o o
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8 9 O O O O O
°

10 11

0
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°
16 17
o O
18 19 °
o
A C Alv

FIGURE 1. The 2-decomposable skew-partition A/v  where A =
(13,10,10,5,4,3,1) and v = (11,7,4,3,1). The normalized abacus A for A
and an abacus C for v are shown on two runners. The marked 10 border-strip of
height 3 has top-right box (2,10) and bottom-left box (5,4); it corresponds to the
bead in position 15. Swapping this bead with the gap in position 5 removes this
border-strip, giving p = (13,9,4,3,3,3,1). In the walk along the rim of u, step
5 is up e, rather that right o; the walk then agrees with that for A until step 15,
which is right o, rather than up e.
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In the proof of we shall only be concerned with border-strips whose
length is a multiple of a fixed » € N. In this case it is useful to represent
the gaps and beads on r runners, so that for each ¢t € {0,1,...,r — 1} the
positions on runner ¢ are t,t + r,t + 2r,.... We say that position t + jr
is above position t + j'r if j < j'. Define a single-step bead move to be a
move of a bead from a position 8 to the position 8 — r immediately above
it. These definitions are illustrated in Figure 1 on the previous page.

The following two lemmas records some basic results on the abacus.

Lemma 1. Let A be an abacus for the partition A. Let s € N. Let Ag be
the set of bead positions B of A such that f —s > 0 and A has a gap in
position B — s.

(i) The map sending € As to the corresponding boz in [ is a bijection
between As and the top-right boxes in the s border-strips in A.

(ii) Let B € As and let B be the abacus obtained from A by swapping
the bead in position B with the gap in position 8 —s. Then B is an
abacus for the partition obtained by removing the s border-strip from A
corresponding to 3.

(iii) The height of the s border-strip in \ corresponding to the bead in po-
sition B € Ag is the number of beads in positions 8 —s+1,...,8—1
of A.

Proof. Parts (i) and (ii) follow from Lemma 2.7.13 in [3], using that the set
of bead positions in A is a set of S-numbers for A\. (An alternative proof,
avoiding A-numbers, is indicated in the caption to Figure 1.) For (iii),
observe that the beads in positions 8 — s+ 1,...,8 of A encode the steps
up made when walking the s border-strip in A corresponding to . O

Lemma 2. Let A\ = M(O),u(l), el u(c) = v be a sequence of partitions such

that ;19 /Y s an s; border-strip in p® for each i € {0,1,...,¢—1}. Let

A be an abacus for \. Let J be the set of pairs of positions {3, 8’} such that

(i) B<p;

(i1) A has beads b and V' in positions 3 and (', respectively;

(iii) after the sequence of bead moves that removes the border-strips u(o)/,u(l),
e /,L(c_l)/u(c), bead b finishes in a greater numbered position than
bead .

Then sgn(p©) /uM) .. sgn(ple=1) /u@)) = (~1)V1,

Proof. We work by induction on c¢. The base case ¢ = 0 is trivial. Let Z be
the set defined in the same way as J for the sequence A = p(9, @,

w1 = ;. Let B be the abacus for p obtained from A by the sequence of
bead moves specified in (iii), stopping at pu. Suppose that the border-strip
u/v corresponds to the bead in position v of B, and that his bead was in
position 8 of A. Let ¢ be the height of p/v. By Lemma [If(iii) there are ¢
beads in positions v —s.+1,...,7—1 of B. Suppose that exactly j of these
beads were originally in a position ' > 8 of A. These j beads correspond
to pairs {3, 4'} € Z\J and the remaining ¢ — j beads correspond to pairs
{8,6'y € J\Z. Apart from these pairs, the sets Z and J agree. Thus
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|J|=|Z| —j+ (—j)=|Z| + ¢ — 2j. Hence, by induction,
(DW= (=) (1)
= sgn(pl/pM) . sgn(ule) /pe ) sgn(ulem /()

as required. O

For the remainder of this section, fix r, m € N and let A/v be a skew-
partition of 7m such that v can be obtained from A by repeatedly removing r
border-strips. Let A be an r-runner abacus for A\ and let C' be the abacus
for v obtained from A by a sequence of bead moves that removes these r
border-strips.

Using Lemma [2] we obtain the following proposition, which is equivalent
to [3, 2.7.26].

Proposition 3. Let A\/v and A be as just defined. There exists o € {1, —1}
such that if @, @, ... u™ is any sequence of partitions such that
u(o) = A, ,u(m) = v and ,u(i)/u(iH) is an r border-strip in u(i) for each
i€ {0,1,...,m — 1}, then

o =sgn(u® /uM) . sgn(p™ Y /utm).

Proof. The sequence u(o), ,u(l), e ,u(m) corresponds to a sequence of single-
step bead moves on A leading to the abacus C. Since the final positions
of the beads moved on A are independent of the order of moves, the result
follows from Lemma [21 O

An immediate corollary of Proposition |3|is that sgn,.(\/v) can be com-
puted by removing r border-strips in any way. We use this corollary in the
proof of Proposition [6] below.

We end this section with a characterization of r-decomposable partitions
using the abacus.

Definition 4. Let the abaci A and C be as defined. Let ¢ € {0,...,r —1}.
We say that runner ¢ of A is r-decomposable if it has positions a1 < 1 <
-+ < ae < P such that, for each k € {1,...,c}, position f; has a bead,
positions ag, ag + 7, ..., Br — r have gaps, and runner ¢ of C' is obtained by
moving the bead in position i to the gap in position ay.

Lemma 5. Let the skew-partition A\/v and the abacus A be as defined.
(i) Let B be the greatest numbered position of A that has a bead moved in a
sequence of bead moves leading to v. Then \/v has a final r border-strip
if and only if A has a gap in position B — r.
(ii) The skew-partition \/v is r-decomposable if and only if runner t of A
is r-decomposable for each t € {0,...,r —1}.

Proof. Let d be minimal such that Ay > v4. The bead in position 5 corre-
sponds to the box in position (d, Aq) of [A]. By Lemma [I](i), this box is the
top-right box in an 7 border-strip in A if and only if there is a gap in position
B —r of A. This proves (i). Part (ii) now follows by repeated applications
of (i). O
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The skew-partition A\/v shown in Figure 1 is 2-decomposable. It may be
used to give an example of Proposition [3] and Lemma

3. PROOF OF EQUATION
The proof is by induction on m. We begin with the identity

m
(3) Mhy =Y pehim—e,
=1
which may be proved in a few lines working from the generating functions
S o hmt™ = T[22, (1 —2t)~ and 332, pet® = D00, wit(1 — zit) 7L, or
found in [5, I, Equation (2.11)]. The map f ~— p, o f is an endomorphism
of the ring of symmetric functions (see [5], 1.8.6]), so implies that
m m m
Pr © Mhy, = pp o prhm—f = Z(pr o pf)(pr © hm—f) = ZPM(Pr © hm—[)-
=1 =1 =1
Since p, o mh,, = mp, o h,y, it follows that

m3u<pr o hm) = Z Su(pr o hmfé)prf-
/=1

By and induction we get

msy(prohm) =Y Y > sen,(u/v)sen(M/p)sn.

(=1 ptr(m—~0)+v] AbEré+|y|

It is therefore sufficient to prove that if A/v is a skew-partition of rm then

(4) msgn, (A/v) = sgn()/p) sgn, (1/v)

m
where the sum is over all partitions p such that A\/u is a border-strip of
length divisible by r and p/v is a skew-partition.

Fix an r-runner abacus A for A\. We may assume that one side of is
non-zero, and so an abacus C' for v can be obtained by a sequence of bead
moves on the runners of A. We say that a runner of A is of type

(I) if it is r-decomposable (see Definition [4));

(IT) if it is not r-decomposable but an r-decomposable runner can be
obtained by swapping a bead on this runner with a gap one or more
positions above it;

(III) if it is neither of type (I) nor of type (II).

For example, in Figure 2 after the proof of Proposition 7] runner 0 of A has
type (II) and runner 1 has type (I).

By Lemma [1fii), swapping a bead and a gap as described in (II) corre-
sponds to removing a border-strip of length divisible by r from A to leave
a partition u. The corresponding contribution of sgn(\/u)sgn,. (¢/v) to the
right-hand side of is non-zero if and only if u/v is an r-decomposable
skew-partition. Hence if A has a runner of type (III) or two or more runners
of type (II), then both sides of are zero. The following two propositions
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deal with the remaining cases. In both cases an example is given following
the proof.

Proposition 6. If all runners of A have type (1) then holds.

Proof. Let u be a partition such that \/u is a border-strip of length divisible
by r and p/v is a skew-partition. Suppose that p is obtained by moving
a bead b on runner ¢ of \. By Lemma (ii) there are positions a; < 1 <
-+ < ¢ < fBe on runner t, such that, for each k € {1,...,c}, position G
has a bead, positions ag,ar + 7,..., 0 — r have gaps, and v is obtained
by moving the bead in position f; to the gap in position «aj. Since p/v
is a skew-partition, the bead b must be in one of the positions [; and,
after the move giving u, it must be in position B — rq for some ¢ such that
1 < g < (Br—ayg)/r. Since there are gaps in A in positions Sy —rq, ..., Bx—r,
this move can also be achieved by a sequence of ¢ single-step bead moves
of b. Since there are gaps in A in positions ag, ..., B — (r+ 1)g, the runner
obtained after moving bead b is still r-decomposable. Hence, by Lemma [5]
w/v is r-decomposable. By Proposition 3| noting that bead b can be moved
from position B — rq to position aj by single-step bead moves, we have
sgn(A/p) sgn,.(u/v) = sgn,(A/v).

It follows that all the non-zero summands on the right-hand side of are
equal to sgn,(\/v). The number of partitions 1 obtained by moving a bead
on runner ¢ that give a non-zero summand is (81 —aq)/r+- -+ (8B —ae) /7.
Summing over all runners, and using that A\/v is a skew-partition of rm,
we see that there are exactly m non-zero summands. This completes the
proof. O

For an example consider the skew-partition A/v and the border-strip
A/p shown in Figure 1. The partition u is obtained by moving the bead
in position 15 to position 5: we denote this move by (15,5). The final
2 border-strips removed from p to obtain v correspond to the bead moves
(19,17),(14,12),(5,3),(4,2),(2,0) and have heights 0,0,1,1,1. Since \/u
has height 3, we have sgn(\/u) sgny(p/v) = (—1)% = 1. The final 2 border-
strips removed from A to obtain v correspond to the bead moves (19,17),
(15,13), (14,12), (13,11), (11,9), (9,7), (7,5), (5,3), (4,2), (2,0) and have
heights 0,1,1,1,0,1,1, 1, 1, 1, so sgny(\/v) = (—1)% = 1.

Proposition 7. If there is a unique runner of A of type (1) and all other
runners have type (1) then both sides of are zero.

Proof. By Lemma ii), A/v is not r-decomposable. Hence the left-hand
side of is zero. Let runner ¢ be the unique runner of A of type (II).
Since runner t is not r-decomposable, there are beads d and d* on this
runner, in positions § and §* respectively, such that § > ¢* and in any
sequence of single-step bead moves leading from A to C', bead d finishes
above position 6*. Choose d maximal with this property. Then there are
positions
ap <o <P <ap<Pa<-- <o < By < Pt
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on runner ¢ such that (a) 5, = 6* and fp1 = 9, (b) the beads between posi-
tions ap and Py are exactly those in positions f,...,Bpr1, (¢) in any
sequence of single-step bead moves leading from A to C, for each k €
{1,...,b+ 1}, the bead in position [ finishes in the gap in position aj_1,
and (d) swapping bead d with the gap in position ag gives an r-decomposable
runner.

Let P be the set of pairs (g,7) such that € and « are positions on runner ¢
and the runner obtained by swapping the bead in position € with the gap in
position v is r-decomposable. It follows from the choice of § that if (¢,~) € P
then ¢ € {0*,0} and that (J,v) € P if and only if (6*,7) € P. Hence

P={(e):c€ {8,671 € {ao....n —1}}.

Let (d,) € P, let B be the abacus obtained by swapping bead d with the
gap in position v, and let u be the partition represented by B. Define B*
and p* analogously, replacing d with d*. It suffices to show that

(5) sgn(A/p*) sgn, (1" /v) = —sgn(A/p) sgn, (u/v)

so the contributions from p and p* to cancel. We do this using Lemma
and a sign reversing pairing on sequences of bead moves from A to C. This
pairing is illustrated in Figure 2 and in the example following this proof.

Fix a sequence of bead moves that first swaps bead d with the gap in
position 7 (giving B) then makes single-step bead moves to go from B to C.
This sequence is paired with the sequence that first swaps bead d* with the
gap in position v (giving B*), then moves bead d to position §* by single-
step moves (giving B, with beads d and d* swapped compared to the first
sequence) and then makes the same sequence of single-step moves to go from
Bto C. Let J and J* be the set of pairs {8, 5’} defined, as in Lemma for
these two sequences of bead moves. It is clear that J and J* agree except
for pairs involving the positions § and 0*. Moreover {4, 6*} € J\J*.

Let a and o* be, respectively, the final positions of beads d and d* in C
after the sequence of moves from A to B to C. (Equivalently, o and o* are,
respectively, the final position of beads d* and d in C, after the sequence of
moves from A to B* to B to C.) Let A be the set of positions of A that have
a bead, excluding positions § and 6*. For 8 € A, let 3 be the final position
in C, after either sequence of moves, of the bead starting in position 8 of A.

The following four claims are routine to check:

{B,0} € J and {B,0*} ¢ J* <= §* < <dand a<fj,
{B,6*} € J and {B,6} ¢ J* <= 0* < B <dand < a*,
{8,6} ¢ J and {B,0*} € J* +—= * < <dand B <q,
{B,6"} ¢ J and {B,6} € J* = §* < B < and o* < f.

Let X7, Y7, X7+, Y7+ be the sets of 8 € A satisfying each of these condi-
tions, respectively. These sets are obstacles to a bijection J\{{4,6*}} +—
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J* defined by {3,} «<— {B,*}. Observe that
X;7={B€eA:0*<p<d a<B<a*}UYys,
Yr={B€A:5<B<S a<B<a*}UXz.
It follows that
T =2{BE€A:6*<B<6 a<B<a’}+|T+1

where the final summand comes from {0,0*}. Hence |7| and |J*| have
opposite parities. Equation now follows from Lemma This completes
the proof. O

In the example shown in Figure 2 below with » = 2, we have § = 18,
0*=14,a* =12, « = 2 and v = 4. Theset P is {(9,2), (6*,2),(5,4), (0*,4)}.

[SCI

© N wo

1
0
a=2
d ) =4
6
y 4 .
10 11
a*=12 13
d* ) 5 =14 15
16 17

6=18 19

A B C A/v, the heavy line shows A/

B* A/v, the heavy line shows \/u*

FIGURE 2. Example to illustrate Proposition [7| when r = 2 and A/v =
(10,10,8,5,5,5,1)/(4,4,4,2,2). The partitions p and p* are (9,7,4,4,4,1,1) and
(10,10,4,4,4,1,1). Abaci A, B, B* and C for A, u, u*, v, respectively, are shown.
The bead moves between these abaci are indicated by arrows: B is obtained from
A by the move (,7) = (18,4) shown by a solid arrow and B* is obtained from A
by the move (6*,v) = (14,4) shown by a dotted arrow.
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The sets J and J* are
J = {{10,18},{9,18},{8,18},{3,18} } U {{17,18},{14,17} } U {{14,18} },
J* = {{10,14},{9,14},{8,14}, {3, 14} }.

The second set in the union for J gives the pairs coming from X7 =Y, =
{BEA:6* < B < a<fB<a*}={17}. In this example X7+ = Y7« =
@. We have sgn(\/p*) sgny(pu*/v) =1 = —sgn(A/p) sgny(p/v) as predicted
by .
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