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Abstract

We consider the problem of reconstructing the shape of an impenetrable sound-soft obstacle
from scattering measurements. The input data is assumed to be the far-field pattern generated
when a plane wave impinges on an unknown obstacle from one or more directions and at one
or more frequencies. It is well known that this inverse scattering problem is both ill posed
and nonlinear. It is common practice to overcome the ill posedness through the use of a
penalty method or Tikhonov regularization. Here, we present a more physical regularization,
based simply on restricting the unknown boundary to be band-limited in a suitable sense. To
overcome the nonlinearity of the problem, we use a variant of Newton’s method. When multiple
frequency data is available, we supplement Newton’s method with the recursive linearization
approach due to Chen.

During the course of solving the inverse problem, we need to compute the solution to a large
number of forward scattering problems. For this, we use high-order accurate integral equation
discretizations, coupled with fast direct solvers when the problem is sufficiently large.

1 Introduction

Inverse problems arise in many parts of science and engineering, including medical imaging, remote
sensing, ocean acoustics, nondestructive testing, geophysics and radar [1, 2, 3, 4]. In this paper,
we concentrate on the problem of recovering the shape of an unknown obstacle embedded in a
homogeneous medium from far-field acoustic scattering measurements in two space dimensions.
We assume that the object Ω is impenetrable and “sound-soft” with boundary Γ. We restrict our
attention here to the time harmonic setting, in which case the governing equation is the Helmholtz
equation

∆u(x) + k2u(x) = 0 , x ∈ R2 \ Ω.

In the sound-soft case, u must satisfy the Dirichlet condition

u(x) = 0, for x ∈ Γ.
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Following standard practice, we write

u(x) = uinc(x) + uscat(x),

where uinc denotes a known incoming field and uscat denotes the scattered field. We will assume
that the incoming field is a plane wave uinc(x) = exp(ikx ·d), where d is a unit vector that defines
the direction of propagation.

It is well-known that radiating fields have a simpe asymptotic structure as |x| → ∞. More
precisely [1],

Lemma 1.1 Let (r, θ) denote the polar coordinates of the point x. Every radiating solution uscat

to the Helmholtz equation has the asymptotic behavior of an outgoing cylindrical wave:

uscat(x) =
eikr

r1/2

{
u∞(θ) +O

(
1

r3/2

)}
, r →∞,

uniformly in all directions θ. The function u∞ is defined on the unit circle U and referred to as the
far-field pattern of uscat.

Definition 1.1 Suppose that uinc and the domain shape Γ are known. The forward scattering
problem consists of solving the boundary value problem:

∆uscat(x) + k2uscat(x) = 0 in R2 \ Ω (1)

uscat(x) = −uinc(x) in Γ, (2)

where uscat ∈ C2(R2 \ Ω) ∩ C(R2 \ Ω). The scattered field must satisfy the Sommerfeld radiation
condition

lim
r→∞

r1/2

(
∂uscat

∂r
− ikuscat

)
= 0, r = |x| .

We show in the next section how to compute u∞(θ) from an integral representation for uscat.
For the moment, we simply denote this mapping, from the curve to the far-field pattern as

F (Γ) = u∞ . (3)

Definition 1.2 The inverse scattering problem consists of determining Γ from u∞(θ). This re-
quires solving the nonlinear functional equation (3).

The forward problem is both linear and well-posed, although it does require the solution of a
partial differential equation. The inverse problem, however, is quite different. It is both nonlinear
and ill-posed, so that the development of robust and stable solvers remains quite challenging. The
nonlinearity leads to a non-convex optimization problem and the ill-posedness requires some form
of regularization. For discussion of the question of uniqueness, we refer the reader to [1, 5].

Following [5], we note that several approaches have been developed to handle the nonlinearity.
They can be classified as iterative methods, decomposition methods, and sampling methods. The
iterative category includes Newton’s method, Landweber iteration and the nonlinear conjugate
gradient method [1, 6, 7]. Decomposition methods proceed by first finding an equivalent source
representation that leads to the measured far-field pattern with sources located inside Ω. (The
suitable placement of sources requires some prior knowledge about the scatterer.) Once this linear
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(but ill-posed) problem has been solved, it remains to solve the well-posed, but nonlinear, problem
of determining Γ, using the fact that the total field uinc +uscat vanishes there [8, 9, 10, 11]. Finally,
in sampling methods, one seeks to compute an “indicator” function which vanishes inside Ω. This
category includes the linear sampling method of Colton and Kirsch [12], the singular source method
of Potthast [13, 11], the factorization method of Kirsch [14], and the probe method of Ikehata [15].
We refer the interested reader to the tutorial article [5] and the text [1] for further background
material. The ill-posedness of the inverse problem is usually addressed by using some variant of
Tikhonov regularization for the linearized problems which arise in each of the schemes listed above
[16, 1, 17, 3].

In this paper, we present a Newton-like iterative method for the inverse obstacle scattering
problem with several new features. First, unlike many obstacle scattering algorithms, we do not
assume the boundary is star-shaped. Instead, we assume it is bandlimited as a function of arclength
but otherwise unconstrained. Second, instead of Tikhonov regularization, we simply enforce a band-
limit on the reconstructed curve using the method of [18]. Third, we make use of efficient, high-
order forward modeling capabilities. After describing the single frequency reconstruction problem,
we investigate the quality of reconstruction using multiple angles of incidence as well as multiple
frequencies. In the latter case, we rely on the recursive linearization approach developed by Chen
[19], and employed previously by Sini and Thành [20] for impenetrable sound-soft obstacles (the
same problem considered here). Recursive linearization was also studied by Bao and Triki [21] for
the solution of the inverse medium problem.

In Section 2, we briefly review the direct scattering problem and its solution using integral
equation methods. In Section 3.1, we describe the inverse scattering problem in more detail for a
single frequency, its linearization and its solution using a Newton-like method. We also describe our
regularization based on band-limited approximation. In section 3.2, we consider multiple frequency
data and the recursive linearization approach. In Section 5, we illlustrate the performance of our
method, while section 6 contains some concluding remarks and a brief discussion of future directions
for research.

2 The direct scattering problem

In this section, we briefly review the solution of the forward acoustic scattering problem for sound-
soft impenetrable objects in two dimensions. We refer the read to [1] for a proof of uniqueness. We
simply note here that, in addition to being unique, the solution depends continuously on the data
uinc in the maximum norm.

We will make use of a boundary integral approach, since this requires discretization of Γ alone
and permits the imposition of the exact Sommerfeld radiation condition. We refer the interested
reader to [1, 22] for a review of the relevant potential theory.

Definition 2.1 Given a boundary Γ in R2, the single layer potential is defined by

[SΓ,kϕ] (x) :=

∫
Γ

Gk(x,y)ϕ(y) ds(y),

and the double layer potential is defined by

[DΓ,kϕ] (x) :=

∫
Γ

∂Gk(x,y)

∂ν(y)
ϕ(y) ds(y).
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The normal derivative of the single layer operator is defined by

[
S′Γ,kϕ

]
(x) :=

∫
Γ

∂Gk(x,y)

∂ν(x)
ϕ(y) ds(y).

Here, Gk(r) = i
4H0(kr) is the Green’s function for the Helmholtz equation that satisfies the

outgoing radiation condition, where H0 denotes the Hankel function of the first kind. We note
that SΓ,k is weakly singular and the integral is well-defined for any x. The limiting value of DΓ,k

depends on the side of Γ from which x approaches the curve. For x ∈ Γ, DΓ,k is defined in the
principal value sense. Note that S′Γ,k is the adjoint of DΓ,k and should also be interpreted in a
principal value sense when x ∈ Γ.

Remark 2.1 When the frequency k under consideration is clear from context, we will write
SΓ, DΓ, S

′
Γ instead of SΓ,k, DΓ,k, S

′
Γ,k.

Using the asymptotic behavior of the Hankel function as r → ∞, we have simple formulas for
the far-field patterns of the single and double layer potentials [1]. The far-field pattern of the single
layer potential is given by

[
S∞Γ,kϕ

]
(θ) :=

eiπ/4√
8πk

∫
Γ

e−ik(cos θ,sin θ)·yϕ(y) ds(y), θ ∈ U. (4)

U here is the unit circle. The far-field pattern of the double layer potential is given by

[
D∞Γ,kϕ

]
(θ) := e−iπ/4

√
k

8π

∫
Γ

e−ik(cos θ,sin θ)·y ((cos θ, sin θ) · ν(y))ϕ(y) ds(y). (5)

2.1 The combined field integral equation

Two distinct methods for solving the forward scattering problem will be needed in our inverse
scattering algorithm. The first is based on representing the scattered field as a linear combination
of single and double layer potentials with the same density:

uscat(x) := [DΓ,kϕ] (x)− iη [SΓ,kϕ] (x), x ∈ R2 \ Ω,

where η is a coupling parameter chosen to be proportional to the frequency of the incident wave
[23]. Imposing the boundary condition (2) and using standard jump relations for the double layer
potential [1, 22], we obtain for x ∈ Γ, the integral equation[(

1

2
I +DΓ,k − iηSΓ,k

)
ϕ

]
(x) = −uinc(x), (6)

where I is the identity operator. This is a well-conditioned, resonance free Fredholm equation of
the second kind [1].

Once ϕ is known, we may easily compute the far-field pattern u∞(θ) by using (4) and (5):

u∞(θ) =
[(
D∞Γ,k − iηS∞Γ,k

)
ϕ
]

(θ). (7)
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2.2 Green’s representation

A second method for solving the forward problem can be obtained by applying Green’s second
identity to uscat and uinc separately, together with the boundary condition (2). A straightforward
calculation shows that

u(x) = uinc(x)−
[
SΓ,k

∂u

∂ν

]
(x), x ∈ R2 \ Γ (8)

and, therefore, [
SΓ,k

∂u

∂ν

]
(x) = uinc(x), x ∈ R2 \ Γ. (9)

This is a first kind integral equation. To improve the conditioning of this approach, we take the
normal derivative of (9) as x → Γ, and add it to (8) multiplied by the factor iη. This results, for
x ∈ Γ, in the second kind integral equation[(

1

2
I − S′Γ,k + iηSΓ,k

)
∂u

∂ν

]
(x) =

∂uinc

∂ν
(x) + iηuinc(x). (10)

Once (10) is solved and ∂u
∂ν is known, it is straightforward to see from (8) that the far field

pattern is given by

u∞(θ) = −
[
S∞Γ,k

∂u

∂ν

]
(θ), θ ∈ U. (11)

2.3 Numerical solution of the direct scattering problem

It remains to discuss the discretization and solution of (6) and (10). For this, we assume the
boundary Γ is parametrized by γ : [0, L] → R2, with γ(0) = γ(L). We discretize the boundary
using a Nyström method [1], with N equispaced points corresponding to tj = (j − 1)L/N on the
boundary for j = 1, . . . , N . We assign an unknown value ϕ(tj) or ∂u

∂ν (tj) at each such point and
enforce the integral equation pointwise at the same points. If the domain Γ and the integrands in
SΓ,kϕ, DΓ,kϕ and S′Γ,kϕ were smooth, the trapezoidal rule would yield a dense N×N matrix whose
solution would be spectrally accurate (or superalgebraically convergent) [24, 25]. Because SΓ,k and
the principal value for DΓ,k and S′Γ,k are logarithmically singular, however, we employ the hybrid
Gauss-trapezoidal rule of order 16 due to Alpert [26]. Without entering into details, we simply note
here that the hybrid Gauss-trapezoidal rule replaces the diagonal band (with bandwidth sixteen)
of the matrix generated by the trapezoidal rule with special quadrature weights in order to achieve
sixteenth order accuracy. Other high order quadrature methods could be used equally well [27, 28].

For small N , we use direct LU factorization to solve the discretized versions of (6) and (10). For
large values of N , the O(N3) complexity makes the cost of naive LU factorization prohibitive. Given
a well-conditioned formulation, one could use fast multipole-accelerated iterative solution methods
such as GMRES. While this is asymptotically optimal, we are often interested in solving scattering
problems in the same geometry with different right-hand sides. For this, recently developed fast
direct solvers are more powerful. These methods make use of the fact that off-diagonal blocks of
the system matrix representing (10) or (6) are low-rank to a user-specified precision and we refer
the reader to the literature on hierarchical off-diagonal low-rank matrices (HODLR) [29, 30, 31],
hierarchically semi-separable (HSS) or hierarchically block-separable (HBS) matrices [32, 33, 34,
35, 36, 37], and H and H2 matrices [38, 39, 40, 41]. Here, we will employ the fast direct solver of
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Ambikasaran and Darve [29], whose cost scales as O(N log2N) for a fixed frequency, and which
performs well even for problems that are many wavelengths in size.

Once the densities {ϕ(tj)} or {∂u∂ν (tj)} are known at the points {γ(tj)}, we can calculate the
far-field pattern at M points {θ`, ` = 1, . . . ,M} on the unit circle using the trapezoidal rule for the
far-field operators S∞Γ,k and D∞Γ,k. Since the kernels of these operators are smooth (analytic), the
trapezoidal rule yields spectral accuracy [25]. M is modest in our examples here, so we compute the
far field directly, requiring O (NM) work. For larger-scale problems, fast algorithms are available
to reduce the computational complexity [42, 43, 44].

3 The inverse scattering problem

With fast and accurate solvers available for the forward scattering problem, we turn to the devel-
opment of an iterative method for the solution of the inverse problem (3)

F (Γ) = u∞ .

That is, given the far-field pattern, we wish to determine the shape Γ of the scatterer itself. We
will begin with a formulation of the problem for a single incident wave at a single frequency.

3.1 Inversion with a single incident direction

Let us assume for the moment that the incident plane wave is specified by the direction d at a single
frequency k. As noted in the introduction, even the theoretical foundations for the inverse problem
are rather complicated, with issues such as uniqueness and stability still active areas of research
[1, 5]. Mathematically, the problem is that the operator F is a smoothing operator. More precisely
[1], F : C1(Γ)→ L2(U), where U is the unit circle is continuous, compact and Fréchet differentiable.
Thus, inverting (3) is classically ill-posed. Physically, the problem is that subwavelength features
give rise to evanescent waves which decay exponentially in space and are not detectable in finite
precision from u∞ (essentially, a version of the Heisenberg uncertainty principle).

Before turning to the question of regularization, we present an informal description of our
iterative procedure—a Newton-like method to solve for the unknown Γ, based on the approximation

F (Γj + Pj) ≈ F (Γj) + F ′(Γj)Pj = u∞ ,

where Γj is the jth guess for Γ, F ′(Γj) denotes the Fréchet derivative of F , and Pj is the update.
The (j + 1)st iterate is then given by

Γj+1 = Γj + Pj . (12)

Remark 3.1 We note that the Fréchet derivative of a compact operator is itself compact, so that
F ′ will inherit much of the ill-posedness of F .

The approximation above leads to the linearized problem:

F ′(Γj)Pj = u∞ − F (Γj) , (13)

whose solution turns out to be fairly straightforward, due to a theorem of Kirsch [45].
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Theorem 3.1 Let Γj denote a closed boundary in R2 with uinc a given incoming field, parametrized
by γj(t) in arclength for t ∈ [0, Lj ]. Let uscatj denote the solution to the corresponding forward

scattering problem, with Neumann data for the total field on Γj given by
∂uj

∂ν and far-field pattern
F (Γj). Let v denote the solution to the forward scattering problem with Dirichlet data

v(t) = −νj(t) · Pj(t)
∂uj
∂ν

(t) on Γj ,

where Pj(t) is some two-dimensional perturbation of the boundary and νj(t) denotes the normal
vector to Γj. Finally, let v∞ denote its far-field pattern. Then

F ′(Γj)Pj = v∞. (14)

Remark 3.2 In order to make use of the preceding theorem, we need to first obtain the normal
derivative ∂uj/∂ν. This is accomplished by solving the integral equation (10) on Γj. Given this
normal derivative data, we denote by B the diagonal operator which corresponds to multiplication by
∂uj/∂ν(t). We then solve the Dirichlet problem for v using eq. (6) and apply the far field operator
from (7), yielding

(
D∞Γj ,k − iηS

∞
Γj ,k

)(1

2
I +DΓj ,k − iηSΓj ,k

)−1

B(νj · Pj) = u∞ − F (Γj). (15)

Rather than letting Pj be an arbitrary perturbation of the curve Γj , however, we will assume
that it lies in the normal direction:

Pj(t) = νj(t)pj(t) ,

where pj(t) is a scalar function. This avoids certain kinds of nonuniqueness which tangential motion
of the boundary would permit, making the recovery even more ill-conditioned. Thus, eq. (15) is
replaced by [(

D∞Γj ,k − iηS
∞
Γj ,k

)(1

2
I +DΓj ,k − iηSΓj ,k

)−1

B

]
pj(t) = u∞ − F (Γj). (16)

Hereafter, we will refer to the operator on the left-hand side of eq. (16) acting on pj(t) as F ′(Γj).
Several important features of the iteration remain to be discussed.

1. We must ensure that the curve Γj+1 constructed via (12) is not self-intersecting. Therefore,
we define

Γlj+1 = Γj + ρλlPj ,

where ρ is a user-specified parameter, and λ < 1 provides additional damping of the Newton
step if needed. We begin with l = 0 and accept the curve based on oversampling the curve
Γlj+1 at a large number of points Ns. We check that the polygonal approximation of the

curve is not self-intersecting. This is trivial to do using a naive O(N2
s ) algorithm. More

sophisticated algorithms achieve a computational complexity of O(Ns logNs) [46, 47, 48]. If
Γlj+1 fails to be simple, we increase l and repeat.
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2. To overcome the ill-posedness of the problem, we will restrict pj to be a band-limited curve:

pj(t) =

b/2−1∑
m=−b/2

pj,me
im2πt/L . (17)

We will return to the selection of the parameter b in section 4.1.

The integral equation (16) then takes the form of a “discrete-to-continuous” map, with b
degrees of freedom which we can solve in a least squares sense. The fully discrete version of
(16) is: [

A∞C−1BO
]
~pj = R

where A∞ is an M × N discretization of
(
D∞Γj ,k

− iηS∞Γj ,k

)
, C is an N × N discretization

of

(
1

2
I +DΓj ,k − iηSΓj ,k

)
, B is a diagonal N × N matrix discretizing B, O is an N × l

matrix mapping the coefficients ~pj in (17) to equispaced samples of pj(t) on Γj and R is a
discretization of the right-hand side u∞ − F (Γj) at M points. (We discretize the integral eq.
operator C from (6) as described in section 2.) Thus, in the fully discrete version, we have
F ′ = A∞C−1BO, which is of dimension M × b. We assume that M and b are sufficiently
small that standard linear algebra tools for least squares problems can be applied, such as the
QR factorization, so long as M > b.

3. It is more efficient to compute the entries of (F ′)T = OTBTC−T (A∞)T than F ′ itself, since
we then need to apply C−T to M distinct vectors, namely the columns of (A∞)T . (We are
assuming here that M is significantly smaller than N .) With the fast direct solver of [29],
this requires O(MN log2N) work. The operator OT can be applied using the fast Fourier
transform at a net cost of O(M(b+N) logN) work.

4. After each iteration, we have a new boundary Γj+1 sampled at N points: γj+1(tn) = γj(tn)+
ρλmPj(tn)νj(tn). where m is determined by the acceptance criterion discussed above. To
further improve the conditioning of the inverse problem, we use the algorithm of Beylkin and
Rokhlin [18] to filter the curve Γj+1 and return N points equispaced in arclength on this
resampled curve. Without entering into details, we have implemented the algorithm of [18] to
permit filtering of the curve beginning at frequency b, with a smooth roll-off until frequency
b + Nb. On output, the algorithm returns N points equispaced in arclength with respect to
the new (smooth) parameterization.

5. In our examples below, we choose Γ0 to be the unit disk. Better initial guesses can be obtained
by using a sampling method [12, 15, 14, 13, 11] which provides a good approximations to the
convex hull of the unknown object.

6. In addition to the use of damping to ensure that the curve is simple (not self-intersecting),
we need some stopping criteria for the Newton iteration. For this, we set a maximum number
of Newton steps, a minimum norm for the solution to the linearized problem |pj(t)| and a
residual tolerance (‖F (Γ)− u∞‖ < ε).

The choice of the parameter ρ in the damped Newton step can also be important [49, 50].
(Small values tend to require more iterations but can improve convergence.) In [51] Li and
Bao suggest a frequency-dependent damping parameter. We have not explored this choice
systematically in the present paper.
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3.2 Inversion with multiple incident directions

Suppose now that we seek to solve the inverse problem when scattering data is available from several
angles of incidence. Let L denote the number of incident plane waves:

uinc
m (x) = eikx·dl

with directions dl for l = 1, . . . , L. To solve this problem, eq. (13) is replaced at each iteration by
the system of equations: 

F ′1(Γj)
F ′2(Γj)

...
F ′L(Γj)

Pj =


u∞ − F1(Γj)
u∞ − F2(Γj)

...
u∞ − FL(Γj)

 (18)

where Fl is the far-field operator on Γj for data generated by the incident plane wave uinc
l (x) and

F ′l is its Fréchet derivative.
The discretization of each of the operators Fl and F ′l is carried out as in the previous section.

Note that, since the unknown in the fully discrete version of (18) is still ~pj , we can only improve
the conditioning of the least squares problem when compared to the setting with a single angle
of incidence. This makes physical sense; illuminating the unknown obstacle from more directions
should certainly make the recovery problem easier.

4 Multiple frequency measurements and recursive lineariza-
tion

Since the number of nontrivial measurements that can be made in the far field is proportional
to the size of the object in wavelengths, it is reasonable to expect that greater resolution should
be obtained as the frequency increases. There are fundamental difficulties, however, with using
Newton’s method (or one of its variants) for inverse scattering at a single frequency k. Mainly,
when k is large, the initial guess for the boundary shape Γ must be close to the correct solution
in order for the iteration not to diverge or be trapped in a spurious local minimum. Moreover,
only the “illuminated” portion of the boundary can be recovered with fidelity, as discussed in [52].
When k is small, however, despite the fact that the inverse scattering problem is ill-posed, if one
only seeks to recover a small number of parameters (say the centroid and area of the scatterer), a
few Newton iterations are sufficient for convergence without a good initial guess.

This interplay between easy recovery at low frequencies of a blurry reconstruction and the need
for a good initial guess at high frequency to achieve higher fidelity reconstruction led Chen [19] to
introduce the recursive linearization algorithm (RLA). The essential idea is that given the (blurry
but converged) solution to the inverse scattering problem at frequency k, one step of Newton’s
method is sufficient to get the converged solution for frequency k + δk, for sufficiently small δk.
That is the sense in which the problem has been linearized. It has been used previously by Sini and
Thanh [20] and Borges [52] for the inverse obstacle problem for a single angle of incidence with an
unknown star-shaped object. The procedure is initiated at a sufficiently small frequency k so that
Newton’s method converges without a good initial guess. We refer the reader to [19] for a more
detailed explanation.
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When a finite number of frequency measurements are available, k1 < k2 < · · · < kJ , a modifi-
cation of RLA is to begin at the lowest frequency k1 and to solve the inverse scattering problem
to obtain a guess which we will denote by Γ(k1). Γ(k1) can then be used as the initial guess for a
new Newton iteration at frequency k2, with the recursion continuing until the maximum frequency
kJ has been reached. A formal theory, of course, might require tight control on the spacing in
frequency δk = kj+1 − kj , and we use the RLA framework here simply as a sensible guideline, as
in [52, 20].

In summary, for the muti-frequency, multi-direction problem, we assume we are given measure-
ments of the far-field pattern at M angular points θl, generated by the scattering of J · L incident
plane waves uinc

j,l (x) = eikjx·dl for l = 1, 2, . . . , L and j = 1, 2, . . . , J , where k1 < k2 < · · · < kJ . The
goal, as always, is to reconstruct the unknown object Ω with boundary Γ.

4.1 Setting the bandlimit

In order for the inverse problem to be well-conditioned at each frequency, it is important to choose
the parameter b in (17) correctly. The value of b determines how complicated a curve we are able
to reconstruct since it controls the complexity of the perturbation Pj(t). Clearly, its value should
be approximately proportional to k in order to achieve the best possible resolution. Smaller values
would lead to stable but excessively pessimistic reconstructions while larger values would permit
subwavelength instabilities to develop.

5 Numerical experiments

In this section, we illustrate the performance of our inverse obstacle scattering algorithm. Before
turning to specific examples, a few general remarks are in order. First, with a single incident wave,
we should not expect to obtain a good reconstruction of the poorly illuminated “backside” of the
boundary. (This effect is more pronounced at higher frequencies [52, 20].) With multiple directions
of incidence, however, it should be possible to reconstruct the entire object with much greater
fidelity. Second, because we are carrying out our reconstruction over the space of band-limited
closed curves, geometric singularities and regions of high curvature will inevitably be filtered (with
the extent of filtering a decreasing function of frequency.)

For each object, we construct simulated measurement data in the far field pattern by solving the
direct scattering problem, as discussed in Section 2. We compute the solution to (10) or (6) with
at least ten digits of accuracy to generate far field data u∞k,d and then introduce Gaussian noise in
the data. Here k denotes the frequency and d the direction of incidence. We set

vk,d∞ = u∞k,d + δ
‖u∞k,d‖
‖ε1 + iε2‖

(ε1 + iε2),

where ε1 and ε2 are normally distributed variables with mean zero and variance one. As in [53], we
also make sure to use a different number of quadrature points in the discretization of the the direct
problem and in the integral equations used in solving the inverse problem.

In our examples, we use δ = 0.05, and let dl = 2πl/L (for l = 1, . . . , L) for wavenumbers
kj = k0 + j∆k with j = 1, . . . , J . The far field pattern is obtained at the angles θ` = (2`− 1)π/M ,
for ` = 1, . . . ,M . At each wavenumber k, the number of quadrature points used in solving the
direct scattering problem is N = d100k|Γ|e, where |Γ| is the perimeter of the object. The number
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Figure 1: Reconstruction using recursive linearization with Newton’s method for the object in Example 1 for L = 1
(a) and for L = 4 (b).

of collocation points used in solving the inverse problem is denoted by N1. The specific values for
M , L, J , k0, ∆k and N1 are described for each numerical experiment below.

Example 5.1 A star-shaped object with 7 oscillations

In our first example, we consider a star-shaped object with parameterization γ : [0, 2π] → R2

given by
γ(t) = (2 + 0.2 cos(7t)) (cos(t), sin(t)) . (19)

The initial wavenumber is k0 = 0.5, ∆k = 0.5, and J = 11. We let M = 32 and use the damping
parameter ρ = 0.1 for wavenumbers up to k = 5 and ρ = 0.1/k for higher wavenumbers. Within
Newton’s method, the stopping criterion used for the nonlinear residual is ε = ‖F (Γ)−u∞‖ < 10−4.
We used N1 = d10k|Γj |e quadrature points in solving the integral equations within the Newton step.
In Fig. 1(a), we plot the reconstruction using a single direction of incidence, L = 1, and use the
bandlimit b = dke at each wavenumber, while in Fig. 1(b) we plot the reconstruction for L = 4 and
use the bandlimit b = 2dke + 1. In both cases, the filter in the curve resampling algorithm uses a
smooth roll-off from b to b+ 50. In both cases, we show the solutions obtained for k = 2 and k = 6.
The reason we can choose a larger value for b when using multiple angles of incidence is that the
system matrix (18) remains well-conditioned, as noted in section ??.

To illustrate the advantage of solving the forward scattering problem using the integral equation
(6) by applying the HODLR algorithm, we compare the run-time of HODLR and direct factorization
for problems with increasing wavenumber k and number of discretization points, using the star-
shaped object with 7 oscillations as the geometry. The error is computed by taking as boundary
data the field induced by a singular point source at the origin, which lies in the interior of the
scatterer and testing the computed exterior solution at the target point (10, 8).

11



Table 1: Running time for direct scattering problem

k N
Direct solver HODLR

Time(s) Error Time(s) Error

1 360 0.17 7.711837e-13 0.72 7.715468e-13
2 720 0.57 1.764748e-12 1.64 1.766015e-12
4 1440 2.08 3.097516e-12 3.80 3.094913e-12
8 2880 7.19 1.988648e-12 7.91 2.120391e-12
16 5760 33.48 2.298391e-11 17.20 2.303258e-11
32 11520 314.83 1.957544e-11 37.91 1.939017e-11
64 23040 – – 95.44 3.924397e-11
128 46080 – – 278.49 9.649962e-11

Note that the direct solver is faster than the HODLR for small problems, but that it scales
much better with N . The run-times for direct factorization are omitted for the largest problems,
since prohibitive amounts of memory would be needed.

Example 5.2 An aircraft-like object

We next consider a more complicated (and not star-shaped) object, shown in Figs. 2(a)-2(d).
Our initial guess is the circle of radius 1 centered at the origin. We used an initial wavenumber of
k0 = 0.5, with ∆k = 0.5, and J = 60, and let the number of far-field measurements be M = 128.
Within Newton’s method, the stopping criterion used for the nonlinear residual is ε = ‖F (Γ) −
u∞‖ < 10−3. We used N1 = d20k|Γj |e quadrature points in solving the integral equations within
the Newton step and let the damping parameter ρ = 1.

In order to show the improvement of the reconstruction using an increasing number of incident
plane waves, we present the final reconstructions for the cases L = 1, 2, 3, 4 with b = 2dke+ 1 (Figs.
2(a) - 2(d)).

Finally, we present a reconstruction using six directions of incidence and the bandlimit b =
2dke + 1, with a smooth roll-off in the curve resampling from b to b + 130. All other parameters
are chosen as before. In Fig. 3(a), we plot the solution obtained with our scheme for varying
maximum frequencies. In Figs. 3(b)–3(d), we present zoomed in details of the reconstruction in
certain high-curvature regions of the object.

Example 5.3 Reconstruction of an elongated object

In our final example, we reconstruct an object with a submarine-like shape. Our initial guess is
the circle of radius 1 centered at the origin. The initial wavenumber is k0 = 0.1, with ∆k = 0.4, and
J = 57. We let the number of far field measurements be M = 128 and assumed six directions of
incidence (L = 6). We choose the damping parameter ρ = 1. We use the bandlimit b = 2dke+ 1 at
each wavenumber, with a smooth roll-off in in the curve resammpling filter from b to b+50. Within
Newton’s method, the stopping criterion used for the nonlinear residual is ε = ‖F (Γ)−u∞‖ < 10−3.
We used N1 = d20k|Γj |e quadrature points in solving the integral equations within the Newton step.
In Fig. 4(a), we plot the solution obtained for various maiximal frequencies. Figs. 4(b)–4(d) show
details of the reconstruction in certain high curvature regions of the object.
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(c) Reconstruction with 3 incident directions
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(d) Reconstruction with 4 incident directions

Figure 2: Reconstruction of the aircraft-like object using Newton’s method with an increasing number of incident
directions.

The number of Newton iterations at each frequency to recover the aircraft-like and submarine-
like objects are shown in Fig. 5.

Note that a large number of damped steps are required at the lowest frequency, when the initial
guess is very far from the correct shape, but that the number decreases significantly after that.
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Figure 3: Reconstruction using recursive linearization with Newton’s method to reconstruct the aircraft-like object
of Example 2.

6 Conclusion

We have presented a technique for reconstructing the shape of two-dimensional sound-soft obstacles,
given the far-field pattern, using multiple angles of incidence and multiple frequencies. While the
problem is both ill-posed and nonlinear, a combination of techniques makes it tractable. First, we
reduce the number of degrees of freedom to be determined based on physical considerations (the
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Figure 4: Reconstruction using recursive linearization with Newton’s method to reconstruct the submarine-like
object.

approximate dimensions of the object in wavelengths). We do not make use of Tikhonov regular-
ization or other generic regularization schemes. Second, when multiple frequency data is available,
we make use of recursive linearization [19]. In our experiments, Newton’s method with damping
has trouble converging at the lowest frequency, when the initial guess is far from the desired mini-
mum. Subsequently, recursive linearization enables rapid convergence, consistent with the analysis
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Figure 5: Number of iterations for the Newton’s method at each wavenumber k.

of Sini and Thành [20]. In our method, we also make use of the fact that the conditioning of
the reconstruction problem is improved by using multiple angles of incidence. Finally, we employ
high-order accurate discretizations and the HODLR fast solver to accelerate the solution of the nec-
essary forward scattering problems, so that all our experiments are easily carried out using modest
computational resources. Unlike many algorithms for the inverse obstacle scattering problem, we
make no assumption about the parametrization of the geometry, such as being star-shaped. In our
present formulation, however, we do assume that the obstacle is a single, simply-connected region
in the plane.

The method is easily extended to the case of sound-hard obstacles or impedance boundary
conditions. Moreover, most aspects have straightforward three-dimensional analogs: recursive lin-
earization, high-order discretization and fast, forward scattering solvers (although the latter two are
still areas of active research). One aspect that is not so straightforward concerns the development
of a simple and robust parametrization of surfaces which permits “physical regularization” - sys-
tematically reducing the number of degrees of freedom to be solved for in each linearized problem
by enforcing some kind of band-limit on the perturbation. We are currently considering a variety
of approaches for this and progress will be reported at a later date.

Two issues we have not addressed here are inverse obstacle scattering when only partial aperture
data is available and when only the magnitude of the far field is measured, rather than magnitude
and phase. These are of significant practical importance and also active areas of research.
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[28] A. Klöckner, A. Barnett, L. Greengard, and M. O’Neil, “Quadrature by expansion: A new
method for the evaluation of layer potentials,” J. Comput. Physics, vol. 252, pp. 332–349,
2013.

[29] S. Ambikasaran and E. Darve, “An O(NlogN) fast direct solver for partial hierarchically semi-
separable matrices — with application to radial basis function interpolation.,” J. Sci. Comput.,
no. 3, pp. 477–501, 2013.

[30] A. Aminfar, S. Ambikasaran, and E. Darve, “A fast block low-rank dense solver with applica-
tions to finite-element matrices,” arXiv preprint arXiv:1403.5337 [cs-NA], 2014.

[31] W. Y. Kong, J. Bremer, and V. Rokhlin, “An adaptive fast direct solver for boundary integral
equations in two dimensions,” Applied and Computational Harmonic Analysis, vol. 31, no. 3,
pp. 346–369, 2011.

[32] L. Greengard, D. Gueyffier, P.-G. Martinsson, and V. Rokhlin, “Fast direct solvers for integral
equations in complex three-dimensional domains,” Acta Numerica, vol. 18, no. 1, pp. 243–275,
2009.

18



[33] S. Chandrasekaran, P. Dewilde, M. Gu, W. Lyons, and T. Pals, “A fast solver for HSS repre-
sentations via sparse matrices,” SIAM Journal on Matrix Analysis and Applications, vol. 29,
no. 1, pp. 67–81, 2006.

[34] S. Chandrasekaran, M. Gu, and T. Pals, “A fast ULV decomposition solver for hierarchically
semiseparable representations,” SIAM Journal on Matrix Analysis and Applications, vol. 28,
no. 3, pp. 603–622, 2006.

[35] K. L. Ho and L. Greengard, “A fast direct solver for structured linear systems by recursive
skeletonization,” SIAM Journal on Scientific Computing, vol. 34, no. 5, pp. 2507–2532, 2012.

[36] P.-G. Martinsson, “A fast direct solver for a class of elliptic partial differential equations,”
Journal of Scientific Computing, vol. 38, no. 3, pp. 316–330, 2009.

[37] P.-G. Martinsson and V. Rokhlin, “A fast direct solver for boundary integral equations in two
dimensions,” Journal of Computational Physics, vol. 205, no. 1, pp. 1–23, 2005.

[38] M. Bebendorf, “Hierarchical LU decomposition-based preconditioners for BEM,” Computing,
vol. 74, no. 3, pp. 225–247, 2005.
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