
Very Large-Scale Singular Value Decomposition Using Tensor

Train Networks

Namgil Lee ∗a and Andrzej Cichocki †a

aLaboratory for Advanced Brain Signal Processing, RIKEN Brain Science Institute,
Wako-shi, Saitama 3510198, Japan

Abstract

We propose new algorithms for singular value decomposition (SVD) of very large-scale ma-
trices based on a low-rank tensor approximation technique called the tensor train (TT) format.
The proposed algorithms can compute several dominant singular values and corresponding sin-
gular vectors for large-scale structured matrices given in a TT format. The computational
complexity of the proposed methods scales logarithmically with the matrix size under the as-
sumption that both the matrix and the singular vectors admit low-rank TT decompositions.
The proposed methods, which are called the alternating least squares for SVD (ALS-SVD) and
modified alternating least squares for SVD (MALS-SVD), compute the left and right singular
vectors approximately through block TT decompositions. The very large-scale optimization
problem is reduced to sequential small-scale optimization problems, and each core tensor of the
block TT decompositions can be updated by applying any standard optimization methods. The
optimal ranks of the block TT decompositions are determined adaptively during iteration pro-
cess, so that we can achieve high approximation accuracy. Extensive numerical simulations are
conducted for several types of TT-structured matrices such as Hilbert matrix, Toeplitz matrix,
random matrix with prescribed singular values, and tridiagonal matrix. The simulation results
demonstrate the effectiveness of the proposed methods compared with standard SVD algorithms
and TT-based algorithms developed for symmetric eigenvalue decomposition.

KEY WORDS: curse-of-dimensionality, low-rank tensor approximation, matrix factorization,
symmetric eigenvalue decomposition, singular value decomposition, tensor decomposition, ten-
sor network, matrix product operator, Hankel matrix, Toeplitz matrix, tridiagonal matrix

1 Introduction

The singular value decomposition (SVD) is one of the most important matrix factorization tech-
niques in numerical analysis. The SVD can be used for the best low-rank approximation for ma-
trices, computation of pseudo-inverses of matrices, solution of unconstrained linear least squares
problems, principal component analysis, cannonical correlation analysis, and estimation of ranks
and condition numbers of matrices, just to name a few. It has a wide range of applications in image

∗namgil.lee@riken.jp
†cia@brain.riken.jp

1

ar
X

iv
:1

41
0.

68
95

v2
 [

m
at

h.
N

A
]

 1
3

D
ec

 2
01

4

processing, signal processing, immunology, molecular biology, information retrieval, systems biology,
computational finance, and so on [44].

In this paper, we propose two algorithms for computing K dominant singular values and cor-
responding singular vectors of structured very large-scale matrices. The K dominant singular val-
ues/vectors can be computed by solving the following trace maximization problem: given A ∈ RP×Q,

maximize
U,V

trace
(
UTAV

)
subject to UTU = VTV = IK .

(1)

This can be derived based on the fact that the SVD of A is closely related to the eigenvalue

decomposition (EVD) of the symmetric matrix

[
0 A

AT 0

]
[6, Theorem 3.3], and the Ky Fan trace

min/max principles [12, Theorem 1]. See Appendix A for more detail. Standard algorithms for
computing the SVD of a P ×Q matrix with P ≥ Q cost O(PQ2) for computing full SVD [4, Table
3], and O(PQK) for computing K dominant singular values [31, Section 2.4]. However, in case
that P and Q are exponentially growing, e.g., P = Q = IN for some fixed I, the computational and
storage complexities also grow exponentially with N . In order to avoid the “curse-of-dimensionality”,
the Monte-Carlo algorithm [13] was suggested but its accuracy is not high enough.

The basic idea behind the proposed algorithms is to reshape (or tensorize) matrices and vectors
into high-order tensors and compress them by applying a low-rank tensor approximation technique
[15]. Once the matrices and vectors are represented in low-rank tensor formats such as the tensor
train (TT) [34, 37] or hierarchical Tucker (HT) [14, 17] decompositions, all the basic numerical
operations such as the matrix-by-vector multiplication are performed based on the low-rank tensor
formats with feasible computational complexities growing only linearly in N [14, 34].

On the other hand, traditional low-rank tensor approximation techniques such as the CAN-
DECOMP/PARAFAC (CP) and Tucker decompositions also compress high-order tensors into low-
parametric tensor formats [24]. Although the CP and Tucker decompositions have a wide range of
applications in chemometrics, signal processing, neuroscience, data mining, image processing, and
numerical analysis [24], they have their own limitations. The Tucker decomposition cannot avoid the
curse-of-dimensionality, which prohibits its application to the tensorized large-scale data matrices
[15]. The CP decomposition does not suffer from the curse-of-dimensionality, but there does not
exist a reliable and stable algorithm for best low-rank approximation due to the lack of closedness
of the set of tensors of bounded tensor ranks [7].

In this paper, we focus on the TT decomposition, which is one of the most simplest tensor
network formats [10]. The TT and HT decompositions can avoid the curse-of-dimensionality by
low-rank approximation, and possess the closedness property [10, 11]. For numerical analysis, basic
numerical operations such as addition and matrix-by-vector multiplication based on low-rank TT
formats usually lead to TT-rank growth, so an efficient rank-truncation should be followed. Efficient
rank-truncation algorithms for the TT and HT decompositions were developed in [14, 34].

The computation of extremal eigen/singular values and the corresponding eigen/singular vectors
are usually obtained by solving an optimization problem such as the one in (1) or by maximiz-
ing/minimizing the Rayleigh quotient [6]. In order to solve large-scale optimization problems based
on the TT decomposition, several different types of optimization algorithms have been suggested in
the literature.

First, existing iterative methods can be combined with truncation of the TT format [20, 28, 33].
For example, for computing several extremal eigenvalues of symmetric matrices, conjugate-gradient

2

type iterative algorithms are combined with truncation for minimizing the (block) Rayleigh quotient
in [28, 33]. In the case that a few eigenvectors should be computed simultaneously, the block of
orthonormal vectors can be efficiently represented in block TT format [28]. However, the whole
matrix-by-vector multiplication causes all the TT-ranks to grow at the same time, which leads to a
very high computational cost in the subsequent truncation step.

Second, alternating least squares (ALS) type algorithms reduce the given large optimization
problem into sequential relatively small optimization problems, for which any standard optimization
algorithm can be applied. The ALS algorithm developed in [19] is easy to implement and each
iteration is relatively fast. But the TT-ranks should be predefined in advance and cannot be changed
during iteration. The modified alternating least squares (MALS) algorithm, or equivalently density
matrix renormalization group (DMRG) method [19, 22, 40] can adaptively determine the TT-ranks
by merging two core tensors into one bigger core tensor and separating it by using the truncated SVD.
The MALS shows a fast convergence in many numerical simulations. However, the reduced small
optimization problem is solved over the merged bigger core tensor, which increases the computational
and storage costs considerably in some cases. Dolgov et al. [8] developed an alternative ALS type
method based on block TT format, where the mode corresponding to the number K of orthonormal
vectors is allowed to move to the next core tensor via the truncated SVD. This procedure can
determine the TT-ranks adaptively if K > 1 for the block TT format. Dolgov and Savostyanov [9]
and Kressner et al. [25] further developed an ALS type method which adds rank-adaptivity to the
block TT-based ALS method even if K = 1.

In this paper, we propose the ALS and MALS type algorithms for computingK dominant singular
values of matrices which are not necessarily symmetric. The ALS algorithm based on block TT
format was originally developed for block Rayleigh quotient minimization for symmetric matrices
[8]. The MALS algorithm was also developed for Rayleigh quotient minimization for symmetric
matrices [19, 22, 40]. We show that the K dominant singular values can be efficiently computed by
solving the maximization problem (1). We compare the proposed algorithms with other block TT-
based algorithms which were originally developed for computing eigenvalues of symmetric matrices,
by simulated experiments and a theoretical analysis of computational complexities.

Moreover, we present extensive numerical experiments for various types of structured matrices
such as Hilbert matrix, Toeplitz matrix, random matrix with prescribed singular values, and tridi-
agonal matrix. We compare the performances of several different SVD algorithms, and we present
the relationship between TT-ranks and approximation accuracy based on the experimental results.
We show that the proposed block TT-based algorithms can achieve very high accuracy by adap-
tively determining the TT-ranks. It is shown that the proposed algorithms can solve very large-scale
optimization problems for matrices of as large sizes as 250 × 250 on desktop computers.

The paper is organized as follows. In Section 2, notations for tensor operations and TT formats
are described. In Section 3, the proposed SVD algorithms based on block TT format is presented.
Their computational complexities are analyzed and computational considerations are discussed. In
Section 4, extensive experimental results are presented for analysis and comparison of performances
of SVD algorithms for several types of structured matrices. Conclusion and discussions are given in
Section 5.

3

2 Tensor Train Formats

2.1 Notations

We refer to [3, 24, 29] for notations for tensors and multilinear operations. Scalars, vectors, and
matrices are denoted by lowercase, lowercase bold, and uppercase bold letters as x, x, and X,
respectively. An Nth order tensor X is a multi-way array of size I1 × I2 × · · · × IN , where In is the
size of the nth dimension or mode. A vector is a 1st order tensor and a matrix is a 2nd order tensor.
The (i1, i2, . . . , iN)th entry of X ∈ RI1×I2×···×IN is denoted by either xi1,i2,...,iN or X(i1, i2, . . . , iN).
Let (i1, i2, . . . , iN) denote the multi-index defined by

(i1, i2, . . . , iN) = i1 + (i2 − 1)I1 + · · ·+ (iN − 1)I1I2 · · · IN−1. (2)

The vectorization of a tensor X ∈ RI1×I2×···×IN is denoted by

vec(X) ∈ RI1I2···IN , (3)

and each entry of vec(X) is associated with each entry of X by

(vec(X))(i1,i2,...,iN) = X(i1, i2, . . . , iN) (4)

like in MATLAB. For each n = 1, 2, . . . , N , the mode-n matricization of a tensor X ∈ RI1×···×IN is
defined by

X(n) ∈ RIn×I1···In−1In+1···IN (5)

with entries (
X(n)

)
in,(i1,...,in−1,in+1,...,iN)

= X(i1, i2, . . . , iN). (6)

Tensorization is the reverse process of the vectorization, by which large-scale vectors and matrices
are reshaped into higher-order tensors. For instance, a vector of length I1I2 · · · IN can be reshaped
into a tensor of size I1× I2× · · ·× IN , and a matrix of size I1I2 · · · IN ×J1J2 · · · JN can be reshaped
into a tensor of size I1 × I2 × · · · × IN × J1 × J2 × · · · × JN .

The mode-n product of a tensor A ∈ RI1×···×IN and a matrix B ∈ RJ×In is defined by

C = A×n B ∈ RI1×···×In−1×J×In+1×···×IN (7)

with entries

ci1,...,in−1,j,in+1,...,iN =

IN∑
in=1

ai1,...,iN bj,in . (8)

The mode-(M, 1) contracted product of tensors A ∈ RI1×I2×···×IM and B ∈ RIM×J2×J3×···×JN is
defined by

C = A •B ∈ RI1×I2×···×IM−1×J2×J3×···×JN (9)

with entries

ci1,i2,...,iM−1,j2,j3,...,jN =

IM∑
iM=1

ai1,i2,...,iM biM ,j2,j3,...,jN . (10)

The mode-(M, 1) contracted product is a natural generalization of the matrix-by-matrix multiplica-
tion.

4

(a) (b)

(c) (d)

Figure 1: Tensor network diagrams for (a) a vector, a matrix, a 3rd order tensor, (b) the mode-(3, 1)
contracted product of two 3rd order tensors, (c) the tensorization of a vector, and (d) singular value
decomposition of an I × J matrix

Figure 2: Tensor network diagram for an Nth order tensor in TT format

Tensors and tensor operations are often represented as tensor network diagrams for illustrating
the underlying principles of algorithms and tensor operations [19]. Figure 1 shows examples of the
tensor network diagrams for tensors and tensor operations. In Figure 1(a), a tensor is represented
by a node with as many edges as its order. In Figure 1(b), the mode-(3, 1) contracted product is
represented as the link between two nodes. Figure 1(c) represents the tensorization process of a vector
into a 3rd order tensor. Figure 1(d) represents a singular value decomposition of an I × J matrix
into the product UΣVT. The matrices U and V of orthonormal column vectors are represented by
half-filled circles, and the diagonal matrix Σ is represented by a circle with slash.

2.2 Tensor Train Format

A tensor X ∈ RI1×I2×···×IN is in TT format if it is represented by

X = X(1) •X(2) • · · · •X(N−1) •X(N), (11)

where X(n) ∈ RRn−1×In×Rn , n = 1, 2, . . . , N , are 3rd order core tensors which are called as TT-cores,
and R1, R2, . . . , RN−1 are called as TT-ranks. It is assumed that R0 = RN = 1.

Figure 2 shows the tensor network diagram for an Nth order tensor in TT format. Each of the
core tensors is represented as a third order tensor except the first and the last TT-cores, which are
matrices.

The TT format is often called the matrix product states (MPS) with open boundary conditions
in quantum physics community because each entry of X in (11) can be written by the products of

5

matrices as
xi1,i2,...,iN = X

(1)
i1

X
(2)
i2
· · ·X(N)

iN
, (12)

where X
(n)
in

= X(n)(:, in, :) ∈ RRn−1×Rn are the slice matrices of X(n). Note that X
(1)
i1
∈ R1×R1 and

X
(N)
iN
∈ RRN×1 are row and column vectors, respectively. Each entry of X can also be written by

sums of scalar products

xi1,i2,...,iN =

R1∑
r1=1

R2∑
r2=1

· · ·
RN−1∑
rN−1=1

x
(1)
1,i1,r1

x
(2)
r1,i2,r2

· · ·x(N)
rN−1,iN ,1

, (13)

where x
(n)
rn−1,in,rn

= X(n)(rn−1, in, rn) ∈ R is the entry of the nth TT-core X(n). The tensor X in

TT format can also be written by the outer products of the fibers (or column vectors) as

X =

R1∑
r1=1

R2∑
r2=1

· · ·
RN−1∑
rN−1=1

x
(1)
1,r1
◦ x(2)

r1,r2 ◦ · · · ◦ x
(N)
rN−1,1

, (14)

where ◦ is the outer product and x
(n)
rn−1,rn = X(n)(rn−1, :, rn) ∈ RIn is the mode-2 fiber of the nth

TT-core X(n).
The storage cost for a TT format is O(NIR2), where I = max(In) and R = max(Rn), that is

linear with the order N . Any tensor can be represented exactly or approximately in TT format
by using the TT-SVD algorithm in [34]. Moreover, basic numerical operations such as the matrix-
by-vector multiplication can be performed in time linear with N under the assumption that the
TT-ranks are bounded [34].

2.3 Tensor Train Formats for Vectors and Matrices

Any large-scale vector or matrix can also be represented in TT format. We suppose that a vector
x ∈ RI1I2···IN is tensorized into a tensor X ∈ RI1×I2×···×IN and consider the TT format (11) as the
TT representation of x = vec(X).

Similarly, a matrix A ∈ RI1I2···IN×J1J2···JN is considered to be tensorized and permuted into a
tensor A ∈ RI1×J1×I2×J2×···×IN×JN . Then, as in (11), the tensor A is represented in TT format as
contracted products of TT-cores

A = A(1) •A(2) • · · · •A(N), (15)

where A(n) ∈ RR
A
n−1×In×Jn×R

A
n , n = 1, 2, . . . , N , are 4th order TT-cores with TT-ranksRA1 , R

A
2 , . . . , R

A
N−1.

We suppose that RA0 = RAN = 1. The entries of A can also be represented in TT format by the
products of slice matrices

ai1,j1,i2,j2,...,iN ,jN = A
(1)
i1,j1

A
(2)
i2,j2
· · ·A(N)

iN ,jN
, (16)

where A
(n)
in,jn

= A(n)(:, in, jn, :) ∈ RR
A
n−1×R

A
n is the slice of the nth TT-core A(n).

In this paper, we call the TT formats (11) and (15) as the vector TT and matrix TT formats,
respectively. Note that if the indices in and jn are joined as kn = (in, jn) in (16), then the matrix
TT format is reduced to the vector TT format. Figure 3 shows a tensor network representing a
matrix of size I1I2 · · · IN × J1J2 · · · JN in matrix TT format. Each of the TT-cores is represented as
a 4th order tensor except the first and the last core tensor.

6

Figure 3: Tensor network diagram for a matrix of size I1I2 · · · IN ×J1J2 · · · JN in matrix TT format

Figure 4: Tensor network diagram for a group of vectors in block-n TT format

2.4 Block TT Format

A group of several vectors can be represented in block TT format as follows. Let U = [u1,u2, . . . ,uK] ∈
RI1I2···IN×K denote a matrix with K column vectors. Suppose that the matrix U is tensorized and
permuted into a tensor U ∈ RI1×I2×···×In−1×K×In×···×IN , where the mode of the size K is located
between the modes of the sizes In−1 and In for a fixed n. In block TT format, the tensor U is
represented as contracted products of TT-cores

U = U(1) •U(2) • · · · •U(N), (17)

where the nth TT-core U(n) ∈ RR
U
n−1×K×In×R

U
n is a 4th order tensor and the other TT-cores

U(m) ∈ RR
U
m−1×Im×R

U
m ,m 6= n, are 3rd order tensors. We suppose that RU0 = RUN = 1. Each entry

of U can be expressed by the products of slice matrices

ui1,i2,...,in−1,k,in,...,iN = U
(1)
i1

U
(2)
i2
· · ·U(n−1)

in−1
U

(n)
k,in

U
(n+1)
in+1

· · ·U(N)
iN

, (18)

where U
(m)
im
∈ RR

U
m−1×R

U
m ,m 6= n, and U

(n)
k,in
∈ RR

U
n−1×R

U
n are the slice matrices of the mth and nth

TT-cores. We note that for a fixed k ∈ {1, 2, . . . ,K}, the subtensor U(n)(:, k, :, :) ∈ RRn−1×In×Rn

of the nth TT-core is of order 3. Hence, the kth column vector uk is in the vector TT format with
TT-ranks bounded by (RU1 , . . . , R

U
N−1).

In this paper, we call the block TT format (17) as the block-n TT format, termed by [25], in
order to distinguish between different permutations of modes. Figure 4 shows a tensor network
representing a matrix U ∈ RI1I2···IN×K in block-n TT format. We can see that the mode of the
size K is located at the nth TT-core. We remark that the position of the mode of the size K is not
fixed.

In order to clearly state the relationship between the TT-cores of the vectors u1, . . . ,uK in vector
TT format and the matrix U in block-n TT format, we first define the full-rank condition for block-n
TT decompositions, similarly as in [18].

7

Definition 2.1 (full-rank condition, [18]). For an arbitrary tensor U ∈ RI1×···×In−1×K×In×···×IN ,
a block-n TT decomposition

U = U(1) •U(2) • · · · •U(N) (19)

of TT-ranks RU1 , . . . , R
U
N−1 is called minimal or fulfilling the full-rank condition if all the TT-cores

have full left and right ranks, i.e.,

Rm−1 = rank
(
U

(m)
(1)

)
, Rm = rank

(
U

(m)
(3)

)
, for m = 1, . . . , n− 1, n+ 1, . . . , N, (20)

and
Rn−1 = rank

(
U

(n)
(1)

)
, Rn = rank

(
U

(n)
(4)

)
. (21)

In principle, any collection of vectors u1, . . . ,uK ∈ RI1I2···IN can be combined and a block-n
TT format for U = [u1, . . . ,uK] can be computed by the TT-SVD algorithm proposed in [34]. As
described in [18], a minimal block-n TT decomposition for U can be computed by applying SVD
without truncation successively. Moreover, the TT-ranks for U are determined uniquely, which will
be called minimal TT-ranks.

Given a block-n TT decomposition (17) of the tensor U ∈ RI1×···×In−1×K×In×···×IN , we define
the contracted products of the left or right TT-cores by

U<m = U(1) • · · · •U(m−1) ∈ RI1×···×Im−1×Rm−1 (22)

for m = 1, 2, . . . , n, and

U>m = U(m+1) • · · · •U(N) ∈ RRm×Im+1×···×IN (23)

for m = n, n+ 1, . . . , N . We define that U<1 = U>N = 1. The tensors U≤m and U≥m are defined
in the same manner. The mode-m matricization of U<m and the mode-1 matricization of U>m are
written by

U<m
(m) ∈ RRm−1×I1I2···Im−1 ,

U>m
(1) ∈ RRm×Im+1Im+2···IN .

(24)

We can easily derive the conditions on the vectors u1, . . . ,uK based on a minimal block-n TT
decomposition (17) of the matrix U of TT-ranks RU1 , . . . , R

U
N−1 as follows.

Proposition 2.2. Suppose that the matrix U = [u1, . . . ,uK] ∈ RI1I2···IN×K has the minimal block-n
TT decomposition (17) of TT-ranks RU1 , . . . , R

U
N−1. Let

Uk,m ∈ RI1I2···Im×Im+1···IN (25)

denote the matrix obtained by reshaping the vector uk ∈ RI1I2···IN , i.e, uk = vec(Uk,m), for m =
1, 2, . . . , N . Then, we can show that

span (Uk,m) ⊂ span

((
U<m+1

(m+1)

)T)
, m = 1, 2, . . . , n− 1, (26)

and

span
(
UT
k,m

)
⊂ span

((
U>m

(1)

)T)
, m = n, n+ 1, . . . , N, (27)

8

where span(A) is the column space of a matrix A. Consequently, the minimal TT-ranks, RUk,1, . . . , R
U
k,N−1,

of the vector uk are bounded by the minimal TT-ranks, RU1 , . . . , R
U
N−1, of U, i.e.,

RUk,m ≤ RUm, m = 1, . . . , N − 1, k = 1, . . . ,K. (28)

Proof. Since the vector uk is represented in vector TT format as in (18), the matrices Uk,m are
represented by

Uk,m =
(
U<m+1

(m+1)

)T
U>m
k,(1), m = 1, 2, . . . , n− 1,

Uk,m =
(
U<m+1
k,(m+1)

)T
U>m

(1) , m = n, n+ 1, . . . , N,

(29)

where U>m
k,(1) and U<m+1

k,(m+1) are the matricizations of subtensors of U>m and U<m+1. It holds that

the minimal TT-ranks RUk,m = rank(Uk,m) by [18]. This proves the Proposition 2.2.

2.5 Matricization of Block TT Format

A matrix U ∈ RI1I2···IN×K having a block-n TT decomposition (17) can be expressed as a product
of matrices, which is useful for describing algorithms based on block TT formats. For a fixed n,
frame matrices are defined as follows.

Definition 2.3 (Frame matrix, [8, 19, 25]). The frame matrices U 6=n ∈ RI1I2···IN×Rn−1InRn and
U 6=n−1,n ∈ RI1I2···IN×Rn−2In−1InRn are defined by

U 6=n =
(
U>n

(1)

)T
⊗ IIn ⊗

(
U<n

(n)

)T
(30)

and

U 6=n−1,n =
(
U>n

(1)

)T
⊗ IIn ⊗ IIn−1

⊗
(
U<n−1

(n−1)

)T
. (31)

The block-n TT tensor U is written by U = U<n •U(n) •U>n, where the nth TT-core is a 4th
order tensor, U(n) ∈ RRn−1×K×In×Rn . The matrix U is the transpose of the mode-n matricization
U(n) ∈ RK×I1I2···IN of U, which can be expressed by

U(n) =
(
U<n •U(n) •U>n

)
(n)

=

(
U(n) ×1

(
U<n

(n)

)T
×4

(
U>n

(1)

)T)
(2)

= U
(n)
(2)

(
U>n

(1) ⊗ IIn ⊗U<n
(n)

)
.

(32)

Next, we consider the contraction of two neighboring core tensors as

U(n−1,n) = U(n−1) •U(n) ∈ RRn−2×In−1×K×In×Rn . (33)

Then the block-n TT tensor U is written by U = U<n−1 • U(n−1,n) • U>n, and we can get an
another expression for the mode-n matricization as

U(n) = U
(n−1,n)
(3)

(
U>n

(1) ⊗ IIn ⊗ IIn−1
⊗U<n−1

(n−1)

)
∈ RK×I1I2···IN . (34)

9

Figure 5: Tensor network diagram for a group of vectors in block-n TT format whose TT-cores are
either left- or right-orthogonalized except the nth TT-core. The left- or right-orthogonalized tensors
are represented by half-filled circles.

From (32) and (34), the matrix U = [u1,u2, . . . ,uK] ∈ RI1I2···IN×K in block-n TT format can be
written by

U = U 6=nU(n), n = 1, 2, . . . , N, (35)

where U(n) = (U
(n)
(2))T ∈ RRn−1InRn×K , and by

U = U 6=n−1,nU(n−1,n), n = 2, 3, . . . , N, (36)

where U(n−1,n) = (U
(n−1,n)
(3))T ∈ RRn−2In−1InRn×K .

2.6 Orthogonalization of Core Tensors

Definition 2.4 (Left- and right-orthogonality, [18]). A 3rd order core tensor U(m) ∈ RRm−1×Im×Rm

is called left-orthogonal if

U
(m)
(3)

(
U

(m)
(3)

)T
= IRm

, (37)

and right-orthogonal if

U
(m)
(1)

(
U

(m)
(1)

)T
= IRm−1 . (38)

We can show that the matricizations U<n
(n) and U>n

(1) have orthonormal rows if the left core

tensors U(1), . . . ,U(n−1) are left-orthogonalized and the right core tensors U(n+1), . . . ,U(N) are
right-orthogonalized [29]. Consequently, the frame matrices U 6=n and U 6=n−1,n have orthonormal
columns if each of the left and right core tensors is properly orthogonalized. From the expressions
(35) and (36), we can guarantee orthonormality of the columns of U by orthogonalizing the TT-
cores. Figure 5 shows a tensor network diagram for the matrix U in block-n TT format where all
the core tensors are either left or right orthogonalized except the nth core tensor. In this case we
can guarantee that the frame matrices U 6=n and U 6=n−1,n have orthonormal columns.

3 SVD Algorithms Based on Block TT Format

In this section, we describe the new SVD algorithms, which we call the ALS for SVD (ALS-SVD)
and MALS for SVD (MALS-SVD).

10

(a) (b)

Figure 6: Tensor network diagrams for the trace
(
UTAV

)
in the maximization problem (1). (a)

U ∈ RP×K and V ∈ RQ×K are matrices with orthonormal column vectors and A ∈ RP×Q is a
matrix. (b) The matrices U and V are represented in block-n TT format and the matrix A is
represented in matrix TT format, where P = I1I2 · · · IN and Q = J1J2 · · · JN . Each of the TT-cores
of U and V are orthogonalized in order to keep the orthogonality constraint.

In the ALS-SVD and MALS-SVD, the left and right singular vectors U = [u1, . . . ,uN] ∈
RI1I2···IN×K and V = [v1, . . . ,vN] ∈ RJ1J2···JN×K are initialized with block-N TT formats. For
each n ∈ {1, 2, . . . , N}, we suppose that U and V are represented by block-n TT formats

U = U(1) •U(2) • · · · •U(N), V = V(1) •V(2) • · · · •V(N), (39)

where the nth core tensors U(n) ∈ RR
U
n−1×K×In×R

U
n and V(n) ∈ RR

V
n−1×K×Jn×R

V
n are 4th order

tensors and the other core tensors are 3rd order tensors. We suppose that all the 1, 2, . . . , (n −
1)th core tensors are left-orthogonalized and all the n + 1, n + 2, . . . , Nth core tensors are right-
orthogonalized.

Figure 6 illustrates the tensor network diagrams representing the trace
(
UTAV

)
in the maxi-

mization problem (1). Note that the matrix A ∈ RI1I2···IN×J1J2···JN is in matrix TT format. In the
algorithms we don’t need to compute the large-scale matrix-by-vector products AV or ATU. All
the necessary basic computations are performed based on efficient contractions of core tensors.

3.1 ALS for SVD Based on Block TT Format

The ALS algorithm for SVD based on block TT format is described in Algorithm 1. Recall that,
from (35), the matrices U and V of singular vectors are written by

U = U 6=nU(n), V = V 6=nV(n), (40)

where U(n) = (U
(n)
(2))T ∈ RR

U
n−1InR

U
n×K and V(n) = (V

(n)
(2))T ∈ RR

V
n−1JnR

V
n×K . Note that (U 6=n)TU 6=n =

IRU
n−1InR

U
n

and (V 6=n)TV 6=n = IRV
n−1InR

V
n
. Given that all the core tensors are fixed except the nth

11

core tensors, the maximization problem (1) is reduced to the smaller optimization problem as

maximize
U(n),V(n)

trace
(
UTAV

)
= trace

(
(U(n))TAnV(n)

)
subject to (U(n))TU(n) = (V(n))TV(n) = IK ,

(41)

where the matrix An is defined by

An = (U 6=n)TAV 6=n ∈ RR
U
n−1InR

U
n×R

V
n−1JnR

V
n . (42)

We call An as the projected matrix. In the case that the TT-ranks {RUn } and {RVn } are small
enough, the projected matrix An has much smaller sizes than A ∈ RI1I2···IN×J1J2···JN , so that any
standard and efficient SVD algorithms can be applied. In Section 3.3, we will describe how the
reduced local optimization problem (41) can be efficiently solved. In practice, the matrix An don’t

need to be computed explicitly. Instead, the local matrix-by-vector multiplications A
T

nu and Anv

for any vectors u ∈ RR
U
n−1InR

U
n and v ∈ RR

V
n−1JnR

V
n are computed more efficiently based on the

contractions of core tensors of U, A, and V.
We note that the K dominant singular values Σ = diag(σ1, σ2, . . . , σK) are equivalent to the K

dominant singular values of the projected matrix An in the sense that Σ = UTAV = (U(n))TAnV(n).
Hence, the singular values are updated at each iteration by the singular values estimated by the stan-
dard SVD algorithms for the reduced optimization problem (41).

The TT-ranks of block TT formats are adaptively determined by separating the mode corre-
sponding to the size K from the nth TT-cores by using δ-truncated SVD. We say that the iteration
is during the right-to-left half sweep if the mode of the size K is moving from the nth TT-core to
the (n−1)th TT-core, whereas the iteration is during the left-to-right halft sweep if the mode of the
size K moves from the nth TT core to the (n + 1)th TT-core. During the right-to-left half sweep,
the δ-truncated SVD decomposes unfolded nth TT-cores as

U
(n)
({1,4}×{2,3}) = U1S1V

T
1 + E1 ∈ RR

U
n−1K×InR

U
n ,

V
(n)
({1,4}×{2,3}) = U2S2V

T
2 + E2 ∈ RR

V
n−1K×JnR

V
n ,

(47)

where ‖E1‖F ≤ δ‖U(n)‖F and ‖E2‖F ≤ δ‖V(n)‖F. Then, the TT-ranks are updated by RUn−1 =
rank(V1) and RVn−1 = rank(V2), which are simply the numbers of columns of V1 and V2. The nth
TT-cores are updated by reshaping VT

1 and VT
2 . Note that in the case that K = 1, the TT-ranks

RUn−1 and RVn−1 cannot be increased because, for example,

RU,new = rank(V1) = rank(U1S1) ≤ RUn−1K = RUn−1. (48)

Figure 7 illustrates the ALS scheme based on block TT format for the first two iterations. In
the figure, the nth TT-core is computed by a local optimization algorithm for the maximization
problem (41), and then the block-n TT format is converted to the block-(n− 1) TT format via the
δ-truncated SVD.

3.2 MALS for SVD Based on Block TT Format

In the ALS scheme, the TT-ranks cannot be adaptively determined if K = 1. Moreover, a small
value of K often slows the rate of convergence because of the relatively slow growth of TT-ranks,

12

Algorithm 1: ALS for SVD based on block TT format

Input : A ∈ RI1I2···IN×J1J2···JN in matrix TT format, K ≥ 2, δ ≥ 0 (truncation parameter)
Output: Dominant singular values Σ = diag(σ1, σ2, . . . , σK) and corresponding singular

vectors U ∈ RI1I2···IN×K and V ∈ RJ1J2···JN×K in block-N TT format with
TT-ranks RU1 , R

U
2 , . . . , R

U
N−1 for U and RV1 , R

V
2 , . . . , R

V
N−1 for V.

1 Initialize U and V in block-N TT format with left-orthogonalized TT-cores

U(1), . . . ,U(N−1),V(1), . . . ,V(N−1) and small TT-ranks RU1 , . . . , R
U
N−1, R

V
1 , . . . , R

V
N−1.

2 Compute the 3rd order tensors L<1, . . . ,L<N recursively by (59) and (60). Set R>N = 1.
3 repeat
4 for n = N,N − 1, . . . , 2 do right-to-left half sweep

// Optimization

5 Compute U(n) and V(n) by solving (41).

6 Update the singular values Σ = (U(n))TAnV(n).
// Matrix Factorization and Adaptive Rank Estimation

7 Reshape U(n) = reshape(U(n), [RUn−1, In, R
U
n ,K]),

V(n) = reshape(V(n), [RVn−1, Jn, R
V
n ,K]).

8 Compute δ-truncated SVD:

[U1,S1,V1] = SVDδ

(
U

(n)
({1,4}×{2,3})

)
,

[U2,S2,V2] = SVDδ

(
V

(n)
({1,4}×{2,3})

)
.

(43)

9 Set RU,new = rank(V1), RV,new = rank(V2).
10 Update TT-cores

U(n) = reshape(VT
1 , [R

U,new, In, R
U
n]),

V(n) = reshape(VT
2 , [R

V,new, Jn, R
V
n]).

(44)

11 Compute multiplications

U(n−1) = reshape(U(n−1), [RUn−2In−1, R
U
n−1]) · reshape(U1S1, [R

U
n−1,KR

U,new]),

V(n−1) = reshape(V(n−1), [RVn−2Jn−1, R
V
n−1]) · reshape(V1S1, [R

V
n−1,KR

V,new]).

(45)

12 Update TT-cores

U(n−1) = reshape(U(n−1), [RUn−2, In−1,K,R
U,new]),

V(n−1) = reshape(V(n−1), [RVn−2, Jn−1,K,R
V,new]).

(46)

13 Update TT-ranks RUn−1 = RU,new, RVn−1 = RV,new.

14 Compute the 3rd order tensor R>n−1 by (62)

15 end
16 for n = 1, 2, . . . , N − 1 do
17 Carry out left-to-right half sweep similarly
18 end

19 until a stopping criterion is met (See Section 3.5.2);13

Figure 7: Illustration of the ALS scheme based on block TT format for the first two iterations during
right-to-left half sweep

which is described in the inequality in (48). On the other hand, the MALS scheme shows relatively
fast convergence and the TT-ranks can be adaptively determined even if K = 1.

The MALS algorithm for SVD is described in Algorithm 2. In the MALS scheme, the right-
to-left half sweep means the iterations when the (n − 1)th and nth TT-cores are updated for n =
N,N − 1, . . . , 2, and the left-to-right half sweep means the iterations when the nth and (n + 1)th
TT-cores are updated for n = 1, 2, . . . , N − 1. At each iteration during the right-to-left half sweep,
the left and right singular vectors U and V are represented in block-n TT format. From (36), the
matrices U and V are written by

U = U 6=n−1,nU(n−1,n), V = V 6=n−1,nV(n−1,n) (49)

for n = 2, 3, . . . , N, where U(n−1,n) ∈ RR
U
n−2In−1InR

U
n×K and V(n−1,n) ∈ RR

V
n−2Jn−1JnR

V
n×K are

matricizations of the merged TT-cores U(n−1) •U(n) and V(n−1) •V(n). Given that all the TT-cores
are fixed except the (n−1)th and nth TT-cores, the large-scale optimization problem (1) is reduced
to

maximize
U(n−1,n),V(n−1,n)

trace
(
UTAV

)
= trace

(
(U(n−1,n))TAn−1,nV(n−1,n)

)
subject to (U(n−1,n))TU(n−1,n) = (V(n−1,n))TV(n−1,n) = IK ,

(50)

where
An−1,n = (U 6=n−1,n)TAV 6=n−1,n ∈ RR

U
n−2In−1InR

U
n×R

V
n−2Jn−1JnR

V
n (51)

is called as the projected matrix.
Figure 8 illustrates the MALS scheme. In the MALS, two neighboring core tensors are first

merged and updated by solving the optimization problem (50). Then, the δ-truncated SVD factorizes
it back into two core tensors. The block-n TT format is transformed into either the block-(n − 1)
TT format or the block-(n+ 1) TT format consequently.

14

Algorithm 2: MALS for SVD based on block TT format

Input : A ∈ RI1I2···IN×J1J2···JN in matrix TT format, K ≥ 1, δ ≥ 0 (truncation parameter)
Output: Dominant singular values Σ = diag(σ1, σ2, . . . , σK) and corresponding singular

vectors U ∈ RI1I2···IN×K and V ∈ RJ1J2···JN×K in block-N TT format with
TT-ranks RU1 , R

U
2 , . . . , R

U
N−1 for U and RV1 , R

V
2 , . . . , R

V
N−1 for V.

1 Initialize U and V in block-N TT format with left-orthogonalized TT-cores

U(1), . . . ,U(N−2),V(1), . . . ,V(N−2) and small TT-ranks RU1 , . . . , R
U
N−1, R

V
1 , . . . , R

V
N−1.

2 Compute the 3rd order tensors L<1, . . . ,L<N−1 recursively by (59) and (60). Set R>N = 1.
3 repeat
4 for n = N,N − 1, . . . , 2 do right-to-left half sweep

// Optimization

5 Compute U(n−1,n) and V(n−1,n) by solving (50).

6 Update the singular values Σ = (U(n−1,n))TAn−1,nV(n−1,n).
// Matrix Factorization and Adaptive Rank Estimation

7 Reshape U(n−1,n) = reshape(U(n−1,n), [RUn−2, In−1, In, R
U
n ,K]),

V(n−1,n) = reshape(V(n−1,n), [RVn−2, Jn−1, Jn, R
V
n ,K]).

8 Compute δ-truncated SVD:

[U1,S1,V1] = SVDδ

(
U

(n−1,n)
({1,2,5}×{3,4})

)
,

[U2,S2,V2] = SVDδ

(
V

(n−1,n)
({1,2,5}×{3,4})

)
.

(52)

9 Update TT-ranks RUn−1 = rank(V1), RVn−1 = rank(V2).
10 Update TT-cores

U(n) = reshape(VT
1 , [R

U
n−1, In, R

U
n]),

V(n) = reshape(VT
2 , [R

V
n−1, Jn, R

V
n]).

(53)

11 Update TT-cores

U(n−1) = reshape(U1S1, [R
U
n−2, In−1,K,R

U
n−1]),

V(n−1) = reshape(U2S2, [R
V
n−2, Jn−1,K,R

V
n−1]).

(54)

12 Compute the 3rd order tensor R>n−1 by (62)

13 end
14 for n = 1, 2, . . . , N − 1 do
15 Carry out left-to-right half sweep similarly
16 end

17 until a stopping criterion is met (See Section 3.5.2);

15

Figure 8: Illustration of the MALS scheme based on block TT format for the first two iterations
during right-to-left half sweep

3.3 Efficient Computation of Projected Matrix-by-Vector Product

In order to solve the reduced optimization problems (41) and (50), we consider the eigenvalue
decomposition of the block matrices

Bn =

[
0 An

A
T

n 0

]
, Bn−1,n =

[
0 An−1,n

A
T

n−1,n 0

]
. (55)

It can be shown that the K largest eigenvalues of Bn correspond to the K dominant singular values
of the projected matrix An, and the eigenvectors of Bn correspond to a concatenation of the left
and right singular vectors of An. See Appendix A for more detail. The same holds for Bn−1,n and
An−1,n.

For computing the eigenvalue decomposition of the above matrices, we don’t need to compute
the matrices explicitly, but we only need to compute matrix-by-vector products. Let

x ∈ RR
U
n−1InR

U
n , y ∈ RR

V
n−1JnR

V
n , x̃ ∈ RR

U
n−2In−1InR

U
n , ỹ ∈ RR

V
n−2Jn−1JnR

V
n (56)

be given vectors. Then, the matrix-by-vector products are expressed by

Bn

[
x
y

]
=

[
Any

A
T

nx

]
, Bn−1,n

[
x̃
ỹ

]
=

[
An−1,nỹ

A
T

n−1,nx̃

]
, (57)

which consist of the projected matrix-by-vector products, Any,A
T

nx,An−1,nỹ, and A
T

n−1,nx̃.
The computation of the projected matrix-by-vector products is performed in an iterative way

as follows. Let U
(m)
im

= U(m)(:, im, :), A
(m)
im,jm

= A(m)(:, im, jm, :), and V
(m)
jm

= V(m)(:, jm, :) be the
slice matrices of the three mth core tensors for m 6= n. Let

Z(m) =

Im∑
im=1

Jm∑
jm=1

U
(m)
im
⊗A

(m)
im,jm

⊗V
(m)
jm
∈ RR

U
m−1R

A
m−1R

V
m−1×R

U
mR

A
mR

V
m . (58)

16

We define 3rd order tensors L<m ∈ RR
U
m−1×R

A
m−1×R

V
m−1 , m = 1, 2, . . . , n, and R>m ∈ RRU

m×R
A
m×R

V
m ,

m = n, n+ 1, . . . , N, recursively by
vec
(
L<1

)
= 1, (59)

vec
(
L<m

)T
= vec

(
L<m−1

)T
Z(m−1) ∈ R1×RU

m−1R
A
m−1R

V
m−1 , m = 2, 3, . . . , n, (60)

and
vec
(
R>N

)
= 1, (61)

vec
(
R>m

)
= Z(m+1)vec

(
R>m+1

)
∈ RR

U
mR

A
mR

V
m×1, m = n, n+ 1, . . . , N − 1. (62)

Recall that (U(n))TAnV(n) = UTAV. Let u
(n)
k1

and v
(n)
k2

denote the k1th and k2th column vectors

of the matrices U(n) and V(n). From the matrix product representations of the matrix TT and
block TT formats (16) and (18), we can show that the (k1, k2) entry of (U(n))TAnV(n) is expressed
by

(u
(n)
k1

)TAnv
(n)
k2

= uT
k1Avk2

= Z(1) · · ·Z(n−1)

 In∑
in=1

Jn∑
jn=1

U
(n)
k1,in

⊗A
(n)
in,jn

⊗V
(n)
k2,jn

Z(n+1) · · ·Z(N)

= vec
(
L<n

)T In∑
in=1

Jn∑
jn=1

U
(n)
k1,in

⊗A
(n)
in,jn

⊗V
(n)
k2,jn

 vec
(
R>n

)
,

(63)

which is the contraction of the tensors L<n,U(n),A(n),V(n), and R>n. Thus, the computation
of Any is performed by the contraction of the tensors L<n, Y, A(n), and R>n, where Y ∈
RR

V
n−1×Jn×R

V
n is the tensorization of the vector y. In the same way, the computation of A

T

nx

is performed by the contraction of the tensors L<n, X, A(n), and R>n, where X ∈ RR
U
n−1×In×R

U
n is

the tensorization of the vector x.
Similarly, we can derive an expression for the projected matrix An−1,n as

(u
(n−1,n)
k1

)TAn−1,nv
(n−1,n)
k2

= vec
(
L<n−1

)T∑
in−1

∑
in

∑
jn−1

∑
jn

U
(n−1,n)
in−1,k1,in

⊗
(
A

(n−1)
in−1,jn−1

A
(n)
in,jn

)
⊗V

(n−1,n)
jn−1,k2,jn

 vec
(
R>n

)
,

(64)

which is the contraction of the tensors L<n−1, U(n−1,n), A(n−1), A(n), V(n−1,n), and R>n. Thus,
the computation of An−1,nỹ is performed by the contraction of the tensors L<n−1, Ỹ, A(n−1), A(n),

and R>n, where Ỹ ∈ RR
V
n−2×Jn−1×Jn×RV

n is the tensorization of the vector ỹ. In the same way, the

computation of A
T

n x̃ is performed by the contraction of the tensors L<n−1, X̃, A(n−1), A(n), and

R>n, where X̃ ∈ RR
U
n−2×In−1×In×RU

n is the tensorization of the vector x̃.
Figure 9 illustrates the tensor network diagrams for the computation of the projected matrix-by-

vector products Any and An−1,nỹ for the vectors y ∈ RR
V
n−1JnR

V
n and ỹ ∈ RR

V
n−2Jn−1JnR

V
n . Based

on the tensor network diagrams, we can easily specify the sizes of the tensors and how the tensors
are contracted with each other.

17

(a) Any for ALS-SVD

(b) An−1,nỹ for MALS-SVD

Figure 9: Computation of the projected matrix-by-vector products (a) Any and (b) An−1,nỹ
for solving the reduced optimization problems in the ALS-SVD and MALS-SVD algorithms. (a)

The computation of Any is carried out by the contraction of L<n, Y, A(n), and R>n. (b) The

computation of An−1,nỹ is carried out by the contraction of L<n−1, Ỹ, A(n−1), A(n), and R>n.
An efficient order of contraction is expressed by the numbers on each tensor.

18

Table 1: Computational complexities of the ALS-SVD and MALS-SVD algorithms for one iteration

ALS-SVD MALS-SVD
Orthonormalization line 5: O(K2IR2) line 5: O(K2I2R2)

Projected Matrix-by- line 5: O(KIRA(R+ IRA)R2) line 5: O(KI2RA(R+ IRA)R2)
Vector Products

Factorization line 8: O(KI2R3) line 8: O(KI3R3)
Updating Tensor line 12: O(IRA(R+ IRA)R2) line 14: O(IRA(R+ IRA)R2)

L<n or R>n

3.4 Computational Complexity

Let R = max({RUn }, {RVn }), RA = max({RAn }), and I = max({In}, {Jn}). The computational
complexities for the ALS-SVD and MALS-SVD algorithms are summarized in Table 1. We may
assume that K ≥ I because we usually choose very small values for In and Jn, e.g., I = In = Jn = 2.
The computational complexities in Table 1 correspond to each iteration, so the total computational
costs for one full sweep (right-to-left and left-to-right half sweeps) grow linearly with the order N
given that R,RA, I, and K are bounded.

At the optimization step at line 5 of the ALS-SVD, standard SVD algorithms perform two impor-

tant computations [31]: the orthonormalization of a matrix V(n) ∈ RR
V
n−1JnR

V
n×K via QR decompo-

sition, and the projected matrix-by-vector products, AnV(n). The computational complexity for the
QR decomposition is O(K2IR2). For the MALS-SVD, the size of V(n−1,n) is RVn−2Jn−1JnR

V
n ×K,

which leads to the computational complexity O(K2I2R2).
The computational complexities for the projected matrix-by-vector products can be conveniently

analyzed by using the tensor network diagrams in Figure 9. In Figure 9(a), an efficient order

of contraction for computing Any is (L<n,Y,A(n),R>n), and its computational complexity is
O(IRA(R + IRA)R2). Since the matrix-by-vector product is performed for K column vectors of
V(n), the computational complexity is multiplied by K. On the other hand, if we compute the
contractions in the order of (L<n,A(n),Y,R>n), however, the computational complexity increases
to O(I2RA(R + RA)R2). On the other hand, an explicit computation of the matrix An can be

performed by the contraction of L<n,A(n), and R>n, which costs O(I2RA(R2 + RA)R2). Thus, it
is recommended to avoid computing the projected matrices explicitly.

In Figure 9(b), one of the most efficient orders of contractions for computing An−1,nỹ is (L<n−1, Ỹ,

A(n−1),A(n),R>n), and the computational complexity amounts to O(I2RA(R + IRA)R2). How-

ever, if we follow the order of (L<n−1,A(n−1),A(n), Ỹ,R>n) for contraction, it costs as highly as
O(I4RA(R + RA)R2). Moreover, if we have to compute the projected matrix An−1,n explicitly, its
computational cost increases to O(I4RA(R2 +RA)R2).

For performing the factorization step of the ALS-SVD, the truncated SVD costsO(min(K2IR3,KI2R3)).
Since we assume that K ≥ I, we choose O(KI2R3). For the MALS-SVD, the computational com-
plexity is O(KI3R3).

Both the ALS-SVD and MALS-SVD maintain the recursively defined left and right tensors
L<m,m = 1, 2, . . . , n, and R>m,m = n, n + 1, . . . , N, during iteration. At each iteration, the
algorithms update the left or right tensors after the factorization step by the definitions (60) or
(62). For example, during the right-to-left half sweep, the right tensor R>n−1 is computed by the
equation (62). Figure 10 shows the tensor network diagram for the computation of R>n−1 during

19

Figure 10: Iterative computation of the right tensor R>n−1 by the contraction of the tensors R>n,
V(n), A(n), and U(n) during the right-to-left half sweep. The optimal order of contraction is ex-
pressed by the numbers on each tensor.

the right-to-left half sweep. In the figure we can see that the mode corresponding to the size K has
already been shifted to the (n− 1)th core tensor. From (62) and (58), we can see that the compu-

tation is performed by the contraction of the tensors U(n),A(n),V(n), and R>n. An optimal order
of contraction is (R>n,V(n),A(n),U(n)), and its computational complexity is O(IRA(R+ IRA)R2)
for both the ALS-SVD and MALS-SVD. On the other hand, if we compute the contractions in the
order of (R>n,A(n),U(n),V(n)) or (R>n,U(n),V(n),A(n)), then the computational cost increases
to O(I2RA(R+RA)R2).

3.5 Computational Considerations

3.5.1 Initialization

The computational costs of the ALS-SVD and MALS-SVD are significantly affected by the TT-
ranks of the left and right singular vectors. Even if we have good initial guesses for the left and right
singular vectors U and V, it may take much computational time until convergence if their TT-ranks
are large. Therefore, it is advisable to initialize U and V in block TT format with relatively small
TT-ranks. The minimum values of the TT-ranks are determined by

RUn = dK/(In+1 · · · IN)e , RVn = dK/(Jn+1 · · · JN)e , n = 1, . . . , N, (65)

because each TT-core is initially left-orthogonalized and satisfies, e.g., RUn−1In ≥ RUn , n = 1, 2, . . . , N−
1, and the Nth TT-core is also orthogonalized in the sense that (U(N))TU(N) = IK , and it must
satisfy RUN−1IN ≥ K. Since both the ALS-SVD and MALS-SVD can adaptively determine TT-ranks
during iteration process when K ≥ 2, they update the singular vectors very fast for the first a few
sweeps and usually make good initial updates for themselves.

20

3.5.2 Stopping Criterion

The ALS-SVD and MALS-SVD algorithms can terminate if the relative residual decreases below a
prescribed tolerance parameter ε:

r =
‖ATU−VΣ‖F

‖Σ‖F
< ε. (66)

The computational cost for computing r is proportional to the order N [34]. However, since the
product ATU increases the TT-ranks to the multiplications, {RAnRUn }, we perform the truncation
method, called TT-rounding, proposed in [34].

3.5.3 Truncation Parameter

At each iteration, the δ-truncated SVD is used to determine close to optimal TT-ranks and simul-
taneously to orthogonalize TT-cores. The δ value significantly affects the convergence rate of the
ALS-SVD and MALS-SVD algorithms. If δ is small, then the algorithms usually converge fast within
one or two full sweeps, but the TT-ranks may also grow largely, which causes high computational
costs. In [18], it was reported that a MALS-based algorithm often resulted in a rapidly increasing
TT-ranks during iteration process. On the other hand, if δ is large, TT-ranks grow slowly, but the
algorithms may not converge to the desired accuracy but converge to a local minimum.

In this paper, we initially set the δ value to δ0 = ε/
√
N − 1 in numerical simulations. In [34],

it was shown that the δ0 yields a guaranteed accuracy in approximation and truncation algorithms.
In the numerical simulations, we observed that the TT-based algorithms including the proposed
algorithms converged to the desired accuracy ε within 1 to 3 full sweeps in most of the cases.

In the case that the algorithm could not converge to the desired tolerance ε after the Nsweep
number of full sweeps, we restart the algorithm with different random initializations. In this case,
the δ value may not be changed or decreased to, e.g., 0.1δ. If K is not small, the algorithms usually
converge in 1 or 2 full sweeps, so a small Nsweep value is often sufficient. But if K is small, e.g.,
K = 2, then the rank growth in each sweep is relatively slow and a more number of sweeps may
be necessary. Moreover, in order to reduce the computational complexity, we used a rather large δ
value at the first half sweep, for instance, 100δ. In this way, we can speed up the computation while
not harming the convergence.

4 Numerical simulations

In numerical simulations, we computed the K dominant singular values and correponding singular
vectors of several different types of very large-scale matrices. We compared the following SVD
methods including two standard methods, LOBPCG and SVDS.

1. LOBPCG: The LOBPCG [23] method can compute the K largest or smallest eigenvalues of

Hermitian matrices. We applied a MATLAB version of LOBPCG to the matrix

[
0 A

AT 0

]
to

compute its K largest eigenvalues Λ = Σ = diag(σ1, . . . , σK) and the corresponding eigenvec-
tors W = 2−1/2

[
UT VT

]
.

2. SVDS: The MATLAB function SVDS computes a few singular values and vectors of matrices
by using the MATLAB function EIGS, which applies the Fortran package ARPACK [30].

21

We applied the function EIGS directly to the matrix

[
0 A

AT 0

]
, so that the matrix-by-vector

products are performed more efficiently than in SVDS. We obtained its 2K eigenvalues/vectors
of largest magnitudes, which are plus/minus largest singular values of A: ±σ1, . . . ,±σK . And
then we selected only the K largest singular values among them.

3. ALS-SVD, MALS-SVD: The ALS-SVD and MALS-SVD algorithms are described in Algo-
rithms 1 and 2. For the local optimization at each iteration, we applied the MATLAB function
EIGS with the projected matrix-by-vector product described in Section 3.3. We computed 2K
eigenvalues/vectors of largest magnitudes, ±σ1, . . . ,±σK , at each local optimization as de-
scribed in the SVDS method above.

4. ALS-EIG, MALS-EIG: The ALS and MALS schemes are implemented for computing the K
largest eigenvalues of the Hermitian matrix ATA by maximizing the block Rayleigh quotient
[8]. We applied the MATLAB function EIGS for optimization at each iteration. After comput-
ing the K eigenvalues of largest magnitudes Λ = Σ2 and eigenvectors V of ATA, the iteration
stops when

‖ATAVΣ† −VΣ‖2 < ε2‖Σ‖2, (67)

where Σ† is the pseudo-inverse. The left singular vectors are computed by U = AVΣ−1 if
Σ is invertible. If Σ is not invertible, then eigenvalue decomposition of AAT is computed to
obtain U. In this way, the relative residual can be controlled below ε as

‖ATU−VΣ‖2 = ‖ATAVΣ−1 −VΣ‖2 ≤ ε2‖Σ‖2. (68)

We note that the computation of ATA and U = AVΣ−1 is followed by the truncation algorithm
of [34] to reduce the TT-ranks. Especially, the computational cost for the truncation of ATA is
O(NIR6

A), which is quite large compared to the computational costs of the ALS-SVD and MALS-
SVD in Table 1. Moreover, for the two standard methods, LOBPCG and SVDS, the matrix A is
in full matrix format, whereas for the block TT-based SVD methods, the matrix A is in matrix
TT format. In the simulations, we stopped running the two standard methods when the size of the
matrix grows larger than 213 × 213, because not only the computational time is high, but also the
storage cost exceed the desktop memory capacity.

We implemented our code in MATLAB. The simulations were performed on a desktop computer
with Intel Core i7 X 980 CPU at 3.33 GHz and 24GB of memory running Windows 7 Professional
and MATLAB R2007b. In the simulations, we performed 30 repeated experiments independently
and averaged the results.

4.1 Random Matrix with Prescribed Singular Values

In order to measure the accuracy of computed singular values, we built matrices of rank 25 in matrix
TT format by

A = U0Σ0V
T
0 ∈ R2N×2N , (69)

where U0 ∈ R2N×25 and V0 ∈ R2N×25 are left and right singular vectors in block-N TT format,
where each of TT-cores are generated by standard normal distribution and then orthogonalized to
have orthonormal column vectors in U0 and V0. The singular values Σ0 = diag(σ0

1 , σ
0
2 , . . . , σ

0
25) are

given by
σ0
k = βk−1, k = 1, 2, . . . , 25. (70)

22

Figure 11: Singular values of the random matrices for Section 4.1

The β takes values from {0.2, 0.3, 0.4, 0.5, 0.6}. Figure 11 illustrates the 25 singular values for each
β value. The block TT-ranks of U0 and V0 are set at the fixed value 5. The TT-cores of A in (69)
were calculated based on the TT-cores of U0 and V0 as

A
(n)
:,in,jn,:

= U
(n)
:,in,:
⊗V

(n)
:,jn,:

∈ RR
U
n−1R

V
n−1×R

U
nR

V
n , n = 1, 2, . . . , N − 1,

A
(N)
:,iN ,jN ,:

=

25∑
k=1

U
(N)
:,k,iN ,:

⊗V
(N)
:,k,jN ,:

∈ RR
U
N−1R

V
N−1×R

U
NR

V
N ,

(71)

for in = 1, . . . , In, jn = 1, . . . , Jn. We set ε = 10−8 and K = 10. The relative error for the estimated
singular values Σ is calculated by

‖Σ−Σ0‖F
‖Σ0‖F

. (72)

Figure 12 shows the convergence of the proposed ALS-SVD and MALS-SVD algorithms for
different K values, K = 2, 10, fixed dimension N = 50, and truncation parameter δ = 10−8/

√
N − 1.

In Figures 12(a) and (b), the value K = 2 is relatively small. In this case, the maximum of the
TT-ranks of the right singular vectors U increases slowly in Figure 12(b). The convergence of the
MALS-SVD is faster than the ALS-SVD in Figure 12(a), because its TT-ranks increases faster than
the ALS-SVD. Note that the relatively fast convergence of the MALS-SVD for small K values were
explained in the inequality (48). On the other hand, Figures 12(c) and (d) show the results when
the K value is relatively large, i.e., K = 10. In Figure 12(d), the TT-ranks of U increase fastly
in a few initial iterations, and then decrease to the optimal TT-ranks a few iterations before the
convergence. In this case, we can see that both the ALS-SVD and MALS-SVD converge fastly in
Figure 12(c). Note that the fast convergence does not imply small computational costs because the
large TT-ranks will slow the speed of computation at each iteration.

In Figure 13, we can see that the computational costs of the TT-based algorithms grow only
logarithmically with the matrix size, whereas the times for the standard SVD algorithms grow ex-
ponentially with N . Among the TT-based algorithms, the ALS-SVD and MALS-SVD show the
smallest computational costs. The ALS-EIG and MALS-EIG have higher computational costs be-
cause the product ATA increases its matrix TT-ranks and the subsequent truncation step results

23

(a) (b)

(c) (d)

Figure 12: Convergence of the ALS-SVD and MALS-SVD algorithms for the dimension N = 50
for Section 4.1. Top panels (a) and (b) are the results for K = 2 and the bottom panels (c) and (d)
are the results for K = 10. Circles represent the end of the right-to-left half sweep, and the squares
represent each of the full-sweeps.

24

Figure 13: Performances for 2N × 2N random matrices with 10 ≤ N ≤ 50 and fixed β = 0.5

in high computational costs. The LOBPCG and SVDS show a fast rate of increase in the computa-
tional cost. The LOBPCG and SVDS were stopped running for larger matrix sizes than 213 × 213

because of the computational cost and desktop computer memory capacity. The black dotted line
shows a predicted computational time for the LOBPCG.

Moreover, the ALS-based methods are faster than the MALS-based methods because the MALS-
based methods solve larger optimization problems at each iteration over the merged TT-cores. How-
ever, the MALS-based methods can determine TT-ranks during iteration even if K = 1, and the
rate of convergence per iteration is faster for small K values as shown in Figure 12.

Figure 14 shows the performances of the four TT-based algorithms for various β values for the

random matrices A ∈ R2N×2N with N = 50. In Figure 14(a), the ALS-SVD and MALS-SVD show
the smallest computational times over all the β values. In Figures 14(b) and (c), we can see that
the ALS-SVD and MALS-SVD accurately estimate the block TT-ranks and the K = 10 dominant
singular values. On the other hand, the ALS-EIG and MALS-EIG estimate the block TT-ranks and
the singular values slightly less accurately, especially for small β values. We note that the ALS-EIG
and MALS-EIG take square roots on the obtained eigenvalues to compute the singular values.

4.2 A Submatrix of Hilbert Matrix

The Hilbert matrix H ∈ RP×P is a symmetric matrix with entries hi,j = (i + j − 1)−1, i, j =
1, 2, . . . , P . It is known that the eigenvalues of the Hilbert matrix decay to zero very fast. In this

simulation, we consider a rectangular submatrix A ∈ R2N×2N−1

of the Hilbert matrix defined by

A = H(:, 1 : 2N−1) ∈ R2N×2N−1

(73)

in MATLAB notation, in order to apply the SVD algorithms to the non-symmetric matrix A. The
matrix TT representation of A was computed based on the explicit TT representation of Hankel
matrices, which is described in Appendix B in detail. For this purpose, we applied the cross approxi-
mation algorithm FUNCRS2 in TT-Toolbox [35] to transform the vector [1, 1, 2−1, 3−1, . . . , (2N+1−
1)−1]T ∈ R2N+1

to a vector TT format with the relative approximation error of 10−8. Then we
used the explicit TT representation of Hankel matrices to convert the vector into the Hilbert matrix

25

(a) (b)

(c)

Figure 14: Performances for 2N × 2N random matrices with prescribed singular values for N = 50
and various β values. (a) The computational time, (b) maximum block TT-rank of right singular
vectors, and (c) relative error for singular values.

26

(a) (b)

Figure 15: Performances for the 2N × 2N−1 submatrices of Hilbert matrices with 10 ≤ N ≤ 50 and
K = 10. (a) Computational cost and (b) maximum block TT-rank of the right singular vectors.

in matrix TT format. Finally, we could find that the maximum value of the matrix TT-ranks,
max(RAn), are between 14 and 22 over 10 ≤ N ≤ 50.

For comparison of performances of the SVD algorithms, we set ε = 10−3 and K = 10. In Figure
15(a), the computational costs of the TT-based algorithms grow logarithmically with the matrix
size. The ALS-SVD and MALS-SVD have the least computational costs. In Figure 15(b), we can
see that the maximum block TT-ranks, max(RVn), are relatively large for N = 30, 40, 50, which may
have affected the computational costs in Figure 15(a).

4.3 Random Tridiagonal Matrix

A tridiagonal matrix is a banded matrix whose nonzero entries are only on the main diagonal, the
first diagonal above the main diagonal, and the first diagonal below the main diagonal. The matrix
TT representation of a tridiagonal matrix is described in Appendix C. We randomly generated three
vector TT tensors a,b, c with TT-cores drawn from the standard normal distribution and TT-ranks
Rn = R = 5, 1 ≤ n ≤ N − 1. Then, each TT-cores are orthogonalized to yield ‖a‖ = ‖b‖ = ‖c‖ = 1.
We built the 2N × 2N tridiagonal matrix A whose sub, main, and super diagonals are a,b, and c.
The matrix TT-ranks of A are bounded by 5R, which are largely reduced after truncation to around
17.

For performance evaluation, we set ε = 10−8 and K = 10. In this simulation, all the TT-based
SVD algorithms converged within 3 full sweeps.

Figure 16(a) shows that the computational costs for the TT-based SVD algorithms are grow-
ing logarithmically with the matrix size over 10 ≤ N ≤ 50. The ALS-SVD and MALS-SVD have
the smallest computational costs. The ALS-EIG and MALS-EIG have relatively high computa-
tional costs because the matrix TT-ranks are relatively large in this case so the truncation of ATA
was computationally costly. Figure 16(b) shows that the maximum value of the block TT-ranks,
max(RVn), are bounded by 20 and slowly decreasing as N increases. We note that the diagonal
entries of the matrices were randomly generated and the 10 dominant singular values were close to

27

(a) (b)

Figure 16: Performances for the 2N × 2N random tridiagonal matrices with K = 10 and 10 ≤ N ≤
50. (a) Computational cost and (b) maximum block TT-rank of the right singular vectors.

each other, similarly as the identity matrix. We conclude that the TT-based SVD algorithms can
accurately compute several dominant singular values and singular vectors even in the case that the
singular values are almost identical.

4.4 Random Toeplitz Matrix

Toeplitz matrix is a square matrix that has constant diagonals. An explicit matrix TT representation
of a Toeplitz matrix is described in [21]. See Appendix B for more detail. We generated a vector x =
[x1, . . . , x2N+1]T in vector TT format with its TT-cores drawn from the standard normal distribution

and fixed TT-ranks Rn = R = 5. Then, we converted x into a Toeplitz matrix A ∈ R2N×2N in
matrix TT format with entries

ai,j = x2N+i−j , i, j = 1, 2, . . . , 2N . (74)

The matrix TT-ranks of A are bounded by twice the TT-ranks of x, i.e., 2R [21].
Since the matrix A is generated randomly, we cannot expect that the TT-ranks of the left and

right singular vectors are bounded over N . Instead, we fixed the maximum of the TT-ranks, Rmax,
and compared the computational times and relative residuals of the algorithms. We set K = 10,
and Nsweep = 2.

Figures 17(a) and (b) show the performances of the SVD algorithms for Rmax = 15 and 10 ≤
N ≤ 30. In Figure 17(a), we can see that the computational costs of the TT-based algorithms
grow logarithmically with the matrix size because the matrix TT-ranks and the block TT-ranks are
bounded by 2R = 10 and Rmax = 15, respectively. In Figure 17(b), the relative residual values
remain almost constantly around 0.15. Figures 17(c) and (d) show the computational costs and
relative residuals for various 10 ≤ Rmax ≤ 30 and fixed N = 30. We can see that the computational
cost for the ALS-SVD is the smallest and growing slowly as Rmax increases.

28

(a) (b)

(c) (d)

Figure 17: Performances for 2N × 2N random Toeplitz matrices. The block TT-ranks of the left
and right singular vectors are bounded by Rmax. (a) Computational cost and (b) relative residual
for fixed Rmax = 15 and various 10 ≤ N ≤ 30. (c) Computational cost and (b) relative residual for
various 10 ≤ Rmax ≤ 30 and fixed N = 30.

29

5 Conclusion and Discussions

In this paper, we proposed new SVD algorithms for very large-scale structured matrices based on
TT decompositions. Unlike previous researches focusing only on eigenvalue decomposition (EVD)
of symmetric positive semidefinite matrices [8, 19, 20, 22, 25, 28, 33, 40], the proposed algorithms
do not assume symmetricity of the data matrix A. We investigated the computational complexity
of the proposed algorithms rigorously, and provided optimized ways of tensor contractions for the
fast computation of the singular values. We conducted extensive simulations to demonstrate the
effectiveness of the proposed SVD algorithms compared with the other TT-based algorithms which
are based on the EVD of symmetric positive semidefinite matrices.

Once a very large-scale matrix is represented in matrix TT format, the proposed ALS-SVD and
MALS-SVD algorithms can compute the SVD in logarithmic time complexity with respect to the
matrix size under the assumption that the TT-ranks are bounded. Unlike the EVD-based methods,
the proposed algorithms avoid truncation of the matrix TT-ranks of the product ATA but directly
optimize the maximization problem (1). In the simulated experiments, we demonstrated that the
computational costs of the EVD-based algorithms are highly affected by the matrix TT-ranks, and
the proposed methods are highly competitive compared with the EVD-based algorithms. Moreover,
we showed that the proposed methods can compute the SVD of 250 × 250 matrices accurately even
in a few seconds on desktop computers.

The proposed SVD methods can compute a few dominant singular values and corresponding
singular vectors of TT-structured matrices. The structured matrices used in the simulations are
random matrices with prescribed singular values, Hilbert matrix, random tridiagonal matrix, and
random Toeplitz matrix. The singular vectors are represented as block TT formats, and the TT-
ranks are adaptively determined during iteration process. Moreover, we also presented the case
of random Toeplitz matrices, where the block TT-ranks of the singular vectors are not bounded
as the matrix size increases. In this case, the proposed methods computed approximate solutions
based on fixed TT-ranks with reasonable approximation errors. Since the TT-ranks are fixed, the
computational cost will be much reduced if the δ-truncated SVD step is replaced with the QR
decomposition.

In the simulated experiments, we observed that the truncation parameter δ for the δ-trucated
SVD highly affects the convergence. If δ is too large, then the algorithm falls into local minimum
and its accuracy does not improve any more. If δ is too small, then the TT-ranks grow fastly and
the computational cost increases. We initialized the δ value by δ0 = ε/

√
N − 1 as proposed by

Oseledets [34], in which case the proposed algorithms usually achieved the desired accuracy. If the
TT-based ALS and MALS algorithms fall into local minimum, we restarted the algorithms with
new initial block TT tensors. If a proper δ value is selected and the number K of singular values is
large enough, then the algorithms converge usually in at most 3 full sweeps. Moreover, the MALS
algorithm shows faster convergence than the ALS algorithm because the TT-ranks can be increased
more fastly at each iteration.

The performance of the TT-based algorithms are highly dependent on the choice of the optimiza-
tion algorithms for solving the reduced local problems. In the simulations we applied the MATLAB

function EIGS to the matrix

[
0 A

AT 0

]
in order to obtain accurate singular values.

In order to convert a very large-scale matrix into matrix TT format, it is suggested to employ
cross approximation methods [1, 38]. We also applied the MATLAB function FUNCRS2 in TT-
Toolbox [35] for Hilbert matrices in the numerical simulations.

The proposed algorithms rely on the optimization with the trace function described in the max-

30

imization problem (1), so they cannot be applied for computing K smallest singular values directly.
In Appendix A, we explained how the K smallest singular values and corresponding singular vectors
can be computed by using the EVD-based algorithms. In the future work, we will develop a more
efficient method for computing a few smallest singular values and corresponding singular vectors
based on TT decompositions.

References

[1] J. Ballani, L. Grasedyck, and M. Kluge, Black box approximation of tensors in hierar-
chical Tucker format, Linear Algebra Appl., 438 (2013), pp. 639–657.

[2] G. Beylkin and M. J. Mohlenkamp, Numerical operator calculus in higher dimensions,
Proc. Natl. Acad. Sci. USA, 99 (2002), pp. 10246–10251.

[3] A. Cichocki, R. Zdunek, A.-H. Phan, and S. Amari, Nonnegative Matrix and Tensor Fac-
torizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation,
Wiley, Chichester, 2009.

[4] P. Comon and G. H. Golub, Tracking a few extreme singular values and vectors in signal
processing, Proceedings of the IEEE, 78 (1990), pp. 1327–1343.

[5] L. De Lathauwer, B. De Moor, and J. Vandewalle, A multilinear singular value de-
composition, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1253–1278.

[6] J. W. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, 1997.

[7] V. De Silva, L.-H. Lim, Tensor ranks and the ill-posedness of the best low-rank approximation
problem, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 1084–1127.

[8] S. V. Dolgov, B. N. Khoromskij, I. V. Oseledets, and D. V. Savostyanov, Compu-
tation of extreme eigenvalues in higher dimensions using block tensor train format, Comput.
Phys. Comm., 185 (2014), pp. 1207–1216.

[9] S. V. Dolgov and D. V. Savostyanov, Alternating minimal energy methods for linear
systems in higher dimensions, SIAM J. Sci. Comput., 36 (2014), pp. A2248–A2271.

[10] M. Espig, W. Hackbusch, S. Handschuh, and R. Schneider, Optimization problems in
contracted tensor networks, Comput. Vis. Sci., 14 (2011), pp. 271–285.

[11] A. Falcó and W. Hackbusch, On minimal subspaces in tensor representations, Found.
Comput. Math., 12 (2012), pp. 765–803.

[12] K. Fan, On a theorem of Weyl concerning eigenvalues of linear transformations. I, Proc. Nat.
Acad. Sci. USA, 35 (1949), pp. 652–655.

[13] A. Frieze, R. Kannan, and S. Vempala, Fast Monte-Carlo algorithms for finding low-
rank approximations, in Proceedings of the 39th Annual IEEE Symposium on Foundations of
Computer Science, IEEE, Los Alamitos, CA, 1998, pp. 370–378.

[14] L. Grasedyck, Hierarchical singular value decomposition of tensors, SIAM J. Matrix Anal.
Appl., 31 (2010), pp. 2029–2054.

31

[15] L. Grasedyck, D. Kressner, and C. Tobler, A literature survey of low-rank tensor ap-
proximation techniques, GAMM-Mitt., 36 (2013), pp. 53–78.

[16] W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, Springer, Berlin, 2012.

[17] W. Hackbusch and S. Kühn, A new scheme for the tensor representation, J. Fourier Anal.
Appl., 15 (2009), pp. 706–722.

[18] S. Holtz, T. Rohwedder, and R. Schneider, On manifolds of tensors with fixed TT-rank,
Numer. Math., 120 (2011), pp. 701–731. doi:10.1007/s00211-011-0419-7.

[19] S. Holtz, T. Rohwedder, and R. Schneider, The alternating linear scheme for tensor
optimization in the tensor train format, SIAM J. Sci. Comput., 34 (2012), pp. A683–A713.

[20] T. Huckle and K. Waldherr, Subspace iteration methods in terms of matrix product states,
Proc. Appl. Math. Mech., 12 (2012), pp. 641–642.

[21] V. A. Kazeev, B. N. Khoromskij, and E. E. Tyrtyshnikov, Multilevel Toeplitz matrices
generated by tensor-structured vectors and convolution with logarithmic complexity, SIAM J.
Sci. Comput., 35 (2013), pp. A1511–A1536.

[22] B. N. Khoromskij and I. V. Oseledets, DMRG+QTT approach to computation of the
ground state for the molecular Schrödinger operator, Preprint 69/2010, MPI MiS, Leipzig, 2010.
www.mis.mpg.de/preprints/2010/preprint2010_69.pdf.

[23] A. V. Knyazev, Toward the optimal preconditioned eigensolver: Locally optimal block pre-
conditioned conjugate gradient method, SIAM J. Sci. Comput., 23 (2001), pp. 517–541.
doi:10.1137/S1064827500366124.

[24] T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Rev., 51
(2009), pp. 455–500.

[25] D. Kressner, M. Steinlechner, and A. Uschmajew, Low-rank tensor methods with
subspace correction for symmetric eigenvalue problems, SIAM J. Sci. Comput., 36 (2014),
pp. A2346–A2368.

[26] J. M. Landsburg, Y. Qi, and K. Ye, On the geometry of tensor network states, Quantum
Inf. Comput., 12 (2012), pp. 346–354.

[27] W. D. Launey and J. Seberry, The strong Kronecker product, J. Combin. Theory Ser. A,
66 (1994), pp. 192–213. doi:10.1016/0097-3165(94)90062-0.

[28] O. S. Lebedeva, Tensor conjugate-gradient-type method for Rayleigh quotient minimization
in block QTT-format, Russian J. Numer. Anal. Math. Modelling, 26 (2011), pp. 465–489.

[29] N. Lee and A. Cichocki, Fundamental tensor operations for large-scale data analysis in
tensor train formats, arXiv preprint 1405.7786, 2014.

[30] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK User’s Guide: Solution of Large
Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, Software Environ. Tools
6, SIAM, Philadelphia, 1998. http://www.caam.rice.edu/software/ARPACK/.

32

www.mis.mpg.de/preprints/2010/preprint2010_69.pdf
http://www.caam.rice.edu/software/ARPACK/

[31] X. Liu, Z. Wen, and Y. Zhang, Limited memory block Krylov subspace optimization for
computing dominant singular value decompositions, SIAM J. Sci. Comput., 35 (2013), pp. 1641–
1668.

[32] C. Lubich, T. Rohwedder, R. Schneider, and B. Vandereycken, Dynamical approxi-
mation by hierarchical Tucker and tensor-train tensors, SIAM J. Matrix Anal. Appl., 34 (2013),
pp. 470–494.

[33] T. Mach, Computing inner eigenvalues of matrices in tensor train matrix format, in Numerical
Mathematics and Advanced Applications 2011, A. Cangiani et al., eds., Springer, Berlin, 2013,
pp. 781–788. doi:10.1007/978-3-642-33134-3 82.

[34] I. V. Oseledets, Tensor-train decomposition, SIAM J. Sci. Comput., 33 (2011), pp. 2295–2317.

[35] I. V. Oseledets, MATLAB TT-Toolbox Version 2.3, June 2014.
https://github.com/oseledets/TT-Toolbox.

[36] I. V. Oseledets and S. V. Dolgov, Solution of linear systems and matrix inversion in the
TT-format, SIAM J. Sci. Comput., 34 (2012), A2718–2739.

[37] I. V. Oseledets and E. E. Tyrtyshnikov, Breaking the curse of dimensionality, or how to
use SVD in many dimensions, SIAM J. Sci. Comput., 31 (2009), pp. 3744–3759.

[38] I. V. Oseledets and E. E. Tyrtyshnikov, TT-cross approximation for multidimensional
arrays, Linear Algebra Appl., 432 (2010), pp. 77–88.

[39] Y. Saad, Numerical Methods for Large Eigenvalue Problems: Revised Edition, SIAM, Philadel-
phia, 2011.

[40] U. Schollwöck, The density-matrix renormalization group in the age of matrix product states,
Ann. Physics, 326 (2011) pp. 96–192.

[41] A. Uschmajew and B. Vandereycken, The geometry of algorithms using hierarchical ten-
sors, Linear Algebra Appl., 439 (2013), pp. 133–166.

[42] F. Verstraete and J. I. Cirac, Renormalization algorithms for quantum-many body systems
in two and higher dimensions, arXiv preprint cond-mat/0407066, 2004.

[43] G. Vidal, Efficient classical simulation of slightly entangled quantum computations, Phys. Rev.
Lett., 91, 147902 (2003).

[44] M. E. Wall, A. Rechtsteiner, and L. M. Rocha, Singular value decomposition and
principal component analysis, in A Practical Approach to Microarray Data Analysis, D. P.
Berrar, W. Dubitzky, and M. Granzow, eds., Kluwer, Norwell, MA., 2003, pp. 91–109. LANL
LA-UR-02-4001.

[45] S. R. White, Density-matrix algorithms for quantum renormalization groups, Phys. Rev. B,
48 (1993), pp. 10345–10356.

33

http://arxiv.org/abs/cond-mat/0407066

A Optimization Problems for Extremal Singular Values

The SVD of a matrix A ∈ RP×Q is closely related to the eigenvalue decomposition (EVD) of the
following (P +Q)× (P +Q) matrix

B =

[
0 A

AT 0

]
. (75)

In this section, we show the relationship between the EVD optimization problems of B and the SVD
optimization problems of A.

A.1 Eigenvalues of B

We assume that P ≥ Q. The SVD of the matrix A ∈ RP×Q can be expressed as

A =
[
U0 U⊥0

] [Σ0

0

]
VT

0 , (76)

where U0 ∈ RP×Q, U⊥0 ∈ RP×(P−Q), and V0 ∈ RQ×Q are the matrices of singular vectors and
Σ0 ∈ RQ×Q is the diagonal matrix with nonnegative diagonal entries σ1 ≥ σ2 ≥ · · · ≥ σQ.

Lemma A.1. The EVD of the matrix B can be written by

B = W0Λ0W
T
0 , (77)

where

W0 =
1√
2

[
U0 U0

√
2U⊥0

V0 −V0 0

]
∈ R(P+Q)×(P+Q), (78)

Λ0 =

Σ0

−Σ0

0

 ∈ R(P+Q)×(P+Q). (79)

Proof. We can compute that WT
0 W0 = IP+Q. We can show that BW0 = W0Λ0.

We can conclude that the eigenvalues of the matrix B consist of ±σ1,±σ2, . . . ,±σQ, and an extra
zero of multiplicity P −Q.

A.2 Maximal Singular Values

The K largest eigenvalues of the matrix B can be computed by solving the trace maximization
problem [12, Theorem 1]

maximize
W

trace
(
WTBW

)
subject to WTW = IK .

(80)

Instead of building the matrix B explicitly, we solve the equivalent maximization problem described
as follows.

34

Proposition A.2. For K ≤ Q, the maximization problem (80) is equivalent to

maximize
U,V

trace
(
UTAV

)
subject to UTU = VTV = IK .

(81)

Proof. Let

W =
1√
2

[
U
V

]
∈ R(P+Q)×K , (82)

then
trace

(
WTBW

)
= trace

(
UTAV

)
. (83)

First, we can show that

max
WTW=IK

trace
(
WTBW

)
≥ max

UTU=VTV=IK
trace

(
UTAV

)
. (84)

Next, we can show that the maximum value σ1 + σ2 + · · · + σK of trace
(
WTBW

)
is obtained by

trace
(
UTAV

)
when U and V are equal to the first K singular vectors of U0 and V0.

A.3 Minimal Singular Values

Suppose that P = Q. The K minimal singular values of A can be obtained by computing 2K
eigenvalues of B with the smallest magnitudes, that is, ±σQ−K+1,±σQ−K+2, . . . ,±σQ. Computing
the 2K eigenvalues of B with the smallest magnitudes can be formulated by the following trace
minimization problem

minimize
W

trace
(
WTB2W

)
subject to WTW = I2K .

(85)

We can translate the above minimization problem into the equivalent minimization problem without
building the matrix B explicitly as follows.

Proposition A.3. The minimization problem (85) is equivalent to the following two minimization
problems if a permutation ambiguity is allowed:

minimize
V

trace
(
VTATAV

)
subject to VTV = IK

(86)

and

minimize
U

trace
(
UTAATU

)
subject to UTU = IK .

(87)

That is, the K minimal singular values of A can be computed by applying the eigenvalue de-
composition for ATA and AAT.

35

Proof. Let

W =
1√
2

[
U U
V −V

]
∈ R(P+Q)×2K , (88)

then we have
trace

(
WTB2W

)
= trace

(
UTAATU

)
+ trace

(
VTATAV

)
. (89)

By algebraic manipulation, we can derive that the constraint WTW = I2K is equivalent to UTU =
VTV = IK .

B Explicit Tensor Train Representation of Toeplitz Matrix
and Hankel Matrix

Explicit TT representations of Toeplitz matrices are presented in [21]. In this section, we summarize
some of the simplest results of [21], and extend them to Hankel matrix and rectangular submatrices.

First, we introduct the Kronecker product representation for matrix TT format. Given a matrix
A ∈ RI1I2···IN×J1J2···JN in matrix TT format (15), each entry of the tensor A ∈ RI1×J1×···×IN×JN
is representedy by the sum of scalar products

ai1,j1,i2,j2,...,iN ,jN =

RA
1∑

rA1 =1

RA
2∑

rA2 =1

· · ·
RA

N−1∑
rAN−1=1

a
(1)

1,i1,j1,rA1
a
(2)

rA1 ,i2,j2,r
A
2
· · · a(N)

rAN−1,iN ,jN ,1
, (90)

which is equal to each entry of the matrix A, i.e., a(i1,i2,...,iN),(j1,j2,...,jN), where (i1, i2, . . . , iN) is
the multi-index introduced in (2). From this expression, we can derive that the matrix A can be
represented as sums of Kronecker products of matrices

A =

RA
1∑

rA1 =1

RA
2∑

rA2 =1

· · ·
RA

N−1∑
rAN−1=1

A
(N)

1,rAN−1

⊗A
(N−1)
rAN−1,r

A
N−2

⊗ · · · ⊗A
(1)

rA1 ,1
, (91)

where the matrices A
(n)

rAn ,r
A
n−1

∈ RIn×Jn are defined by

A
(n)

rAn ,r
A
n−1

=
(
a
(n)

rAn−1,in,jn,r
A
n

)
in,jn

= A(n)(rAn−1, :, :, r
A
n). (92)

Note that the positions of the indices rAn−1 and rAn have been switched for notational convenience.
Next, we present the explicit TT representations for Toeplitz matrices and Hankel matrices. The

2N × 2N upper triangular Toeplitz matrix generated by [s1, s2, . . . , s2N−1]
T

is written by

T =

0 s1 s2 · · · s2N−2 s2N−1

0 s1 · · · s2N−3 s2N−2
...

...
0 s1

0

 . (93)

36

Similarly, the 2N × 2N upper anti-triangular Hankel matrix generated by [s1, s2, . . . , s2N−1]
T

is
written by

H =

s2N−1 s2N−2 · · · s2 s1 0
s2N−2 s2N−3 · · · s1 0

...
...

s1 0
0

 . (94)

The matrix TT representation for the Toeplitz matrix is presented in the following theorem.

Theorem B.1 (An explicit matrix TT representation of Toeplitz matrix, [21]). Let

I =

[
1 0
0 1

]
, J =

[
0 1
0 0

]
, K =

[
0 0
1 0

]
(95)

be 2× 2 matrices and let

L̃
(N)
1 =

[
I J

]
, L̃

(N−1)
1 = · · · = L̃

(2)
1 =

[
I J
0 K

]
, L̃

(1)
1 =

[
J
K

]
, (96)

L̃
(N)
2 =

[
J 0

]
, L̃

(N−1)
2 = · · · = L̃

(2)
2 =

[
J 0
K I

]
, L̃

(1)
2 =

[
0
I

]
(97)

be block matrices. For each of the block matrices L̃
(n)
kn
, kn = 1, 2, we denote the (qn, qn−1)th block of

L̃
(n)
kn

by L
(n)
qn,kn,qn−1

∈ R2×2, that is,

L̃
(n)
kn

=
[
L
(n)
qn,kn,qn−1

]
qn,qn−1

, kn = 1, 2. (98)

Suppose that the vector s = [s1, s2, . . . , s2N]
T

of length 2N is represented in TT format as

sk1,k2,...,kN =

R1∑
r1=1

R2∑
r2=1

· · ·
RN−1∑
rN−1=1

s
(1)
1,k1,r1

s
(2)
r1,k2,r2

· · · s(N)
rN−1,kN ,1

. (99)

Then, the upper triangular Toeplitz matrix (93) is expressed in matrix TT format as

T =

2R1∑
t1=1

2R2∑
t2=1

· · ·
2RN−1∑
tN−1=1

T
(N)
1,tN−1

⊗T
(N−1)
tN−1,tN−2

⊗ · · · ⊗T
(1)
t1,1

, (100)

where T
(n)
tn,tn−1

∈ R2×2 are defined by

T
(n)
(rn,qn),(rn−1,qn−1)

=

2∑
kn=1

s
(n)
rn−1,kn,rn

L
(n)
qn,kn,qn−1

(101)

with tn = (rn, qn) for n = 1, 2, . . . , N.

The matrix TT representation for Toeplitz matrices can be extended to Hankel matrices as
follows.

37

Corollary B.2 (An explicit matrix TT representation of Hankel matrix). Let

P =

[
0 1
1 0

]
, Q =

[
1 0
0 0

]
, R =

[
0 0
0 1

]
(102)

be 2× 2 matrices and let

M̃
(N)
1 =

[
P Q

]
, M̃

(N−1)
1 = · · · = M̃

(2)
1 =

[
P Q
0 R

]
, M̃

(1)
1 =

[
Q
R

]
, (103)

M̃
(N)
2 =

[
Q 0

]
, M̃

(N−1)
2 = · · · = M̃

(2)
2 =

[
Q 0
R P

]
, M̃

(1)
2 =

[
0
P

]
(104)

be block matrices. For each of the block matrices M̃
(n)
kn
, kn = 1, 2, we denote the (qn, qn−1)th block of

M̃
(n)
kn

by M
(n)
qn,kn,qn−1

∈ R2×2, that is,

M̃
(n)
kn

=
[
M

(n)
qn,kn,qn−1

]
qn,qn−1

, kn = 1, 2. (105)

Suppose that s = [s1, s2, . . . , s2N]
T

is represented in TT format as

sk1,k2,...,kN =

R1∑
r1=1

R2∑
r2=1

· · ·
RN−1∑
rN−1=1

s
(1)
1,k1,r1

s
(2)
r1,k2,r2

· · · s(N)
rN−1,kN ,1

. (106)

Then, the upper anti-triangular Hankel matrix (94) is expressed in matrix TT format as

H =

2R1∑
t1=1

2R2∑
t2=1

· · ·
2RN−1∑
tN−1=1

H
(N)
1,tN−1

⊗H
(N−1)
tN−1,tN−2

⊗ · · · ⊗H
(1)
t1,1

, (107)

where H
(n)
tn,tn−1

∈ R2×2 are defined by

H
(n)
(rn,qn),(rn−1qn−1)

=

2∑
kn=1

s
(n)
rn−1,kn,rn

M
(n)
qn,kn,qn−1

(108)

with tn = (rn, qn) for n = 1, 2, . . . , N.

The matrix TT representation of a submatrix of the Hankel matrix H can be derived from the
representation of H (107).

Corollary B.3. The 2N × 2N−1 submatrix H(:, 1 : 2N−1) of the Hankel matrix H can be written by

H(:, 1 : 2N−1) =

2R1∑
t1=1

2R2∑
t2=1

· · ·
2RN−2∑
tN−2=1

 2RN−1∑
tN−1=1

H
(N)
1,tN−1

(:, 1)⊗H
(N−1)
tN−1,tN−2

⊗ · · · ⊗H
(1)
t1,1

, (109)

where H
(N)
1,tN−1

(:, 1) ∈ R2×1 is the first column vector of H
(N)
1,tN−1

.

In the same way, we can derive the matrix TT representation of a top-left corner submatrix of
the Hankel matrix.

38

C Explicit Tensor Train Representation of Tridiagonal Ma-
trix

A shift matrix F ∈ RP×P is a banded binary matrix whose nonzero entries are on the first diagonal
above the main diagonal. The (i, j)th entry of F is fij = 1 if i+ 1 = j, and fij = 0 otherwise. The
following lemma describes a TT representation for the shift matrix.

Lemma C.1 (An explicit matrix TT representation of the shift matrix, [21]). Let L̃
(n)
1 and M̃

(n)
1 ,

n = 1, 2, . . . , N , are the block matrices defined by (96) and (103). The shift matrix F ∈ R2N×2N is
represented in TT format by

F =

2∑
q1=1

2∑
q2=1

· · ·
2∑

qN−1=1

L
(N)
1,1,qN−1

⊗ L
(N−1)
qN−1,1,qN−2

⊗ · · · ⊗ L
(1)
q1,1,1

. (110)

The transpose of the shift matrix F is represented in TT format by

FT =

2∑
q1=1

2∑
q2=1

· · ·
2∑

qN−1=1

(L
(N)
1,1,qN−1

)T ⊗ (L
(N−1)
qN−1,1,qN−2

)T ⊗ · · · ⊗ (L
(1)
q1,1,1

)T. (111)

A tridiagonal matrix A ∈ R2N×2N generated by three vectors a,b, c ∈ R2N is written by

A =

b1 c2 0
a1 b2 c3 0

. . .
. . .

. . .

0 a2N−2 b2N−1 c2N
0 a2N−1 b2N

 . (112)

Suppose that the vectors a,b, c are given in vector TT format. Then, by using the basic operations
[34], we can compute the tridiagonal matrix A by

A = FTdiag(a) + diag(b) + Fdiag(c). (113)

39

	1 Introduction
	2 Tensor Train Formats
	2.1 Notations
	2.2 Tensor Train Format
	2.3 Tensor Train Formats for Vectors and Matrices
	2.4 Block TT Format
	2.5 Matricization of Block TT Format
	2.6 Orthogonalization of Core Tensors

	3 SVD Algorithms Based on Block TT Format
	3.1 ALS for SVD Based on Block TT Format
	3.2 MALS for SVD Based on Block TT Format
	3.3 Efficient Computation of Projected Matrix-by-Vector Product
	3.4 Computational Complexity
	3.5 Computational Considerations
	3.5.1 Initialization
	3.5.2 Stopping Criterion
	3.5.3 Truncation Parameter

	4 Numerical simulations
	4.1 Random Matrix with Prescribed Singular Values
	4.2 A Submatrix of Hilbert Matrix
	4.3 Random Tridiagonal Matrix
	4.4 Random Toeplitz Matrix

	5 Conclusion and Discussions
	A Optimization Problems for Extremal Singular Values
	A.1 Eigenvalues of B
	A.2 Maximal Singular Values
	A.3 Minimal Singular Values

	B Explicit Tensor Train Representation of Toeplitz Matrix and Hankel Matrix
	C Explicit Tensor Train Representation of Tridiagonal Matrix

