
www.kuleuven.be

KU LEUVEN

Fast and backward stable computation of roots of
polynomials
Jared L. Aurentz, Thomas Mach, Raf Vandebril, and David S. Watkins

Jared L. Aurentz
Mathematical Institute,

University of Oxford
aurentz@maths.ox.ac.uk

Thomas Mach
Dept. Computer Science, KU Leuven

thomas.mach@cs.kuleuven.be

Raf Vandebril
Dept. Computer Science, KU Leuven

raf.vandebril@cs.kuleuven.be

David S. Watkins
Dept. of Mathematics,

Washington State University
watkins@math.wsu.edu

Abstract

A stable algorithm to compute the roots of polynomials is
presented. The roots are found by computing the eigenvalues of
the associated companion matrix by Francis’s implicitly-shifted
QR algorithm. A companion matrix is an upper Hessenberg
matrix that is unitary-plus-rank-one, that is, it is the sum of
a unitary matrix and a rank-one matrix. These properties are
preserved by iterations of Francis’s algorithm, and it is these
properties that are exploited here. The matrix is represented
as a product of 3n − 1 Givens rotators plus the rank-one part,
so only O(n) storage space is required. In fact, the information
about the rank-one part is also encoded in the rotators, so it is
not necessary to store the rank-one part explicitly. Francis’s al-
gorithm implemented on this representation requires only O(n)
flops per iteration and thus O(n2) flops overall. The algorithm is
described, normwise backward stability is proved, and an exten-
sive set of numerical experiments is presented. The algorithm is
shown to be about as accurate as the (slow) Francis QR algo-
rithm applied to the companion matrix without exploiting the
structure. It is faster than other fast methods that have been
proposed, and its accuracy is comparable or better.

Article information

• Aurentz, Jared L.; Mach, Thomas; Vandebril, Raf; Watkins, David S. Watkins Fast and backward stable compu-
tation of roots of polynomials, SIAM Journal on Matrix Analysis and Applications, 36(3):942–973, 2015.

• This article equals the final publisher’s version. A link is found below.

• Journal’s homepage: http://epubs.siam.org/toc/sjmael/current

• Published version: http://epubs.siam.org/doi/abs/10.1137/140983434

• KU Leuven’s repository url: https://lirias.kuleuven.be/handle/123456789/494876

http://www.kuleuven.be
mailto:aurentz@maths.ox.ac.uk
mailto:thomas.mach@cs.kuleuven.be
mailto:raf.vandebril@cs.kuleuven.be
mailto:watkins@math.wsu.edu
http://epubs.siam.org/toc/sjmael/current
http://epubs.siam.org/doi/abs/10.1137/140983434
https://lirias.kuleuven.be/handle/123456789/494876

SIAM J. MATRIX ANAL. APPL. c© 2015 Society for Industrial and Applied Mathematics
Vol. 36, No. 3, pp. 942–973

FAST AND BACKWARD STABLE COMPUTATION OF ROOTS
OF POLYNOMIALS∗

JARED L. AURENTZ† , THOMAS MACH‡, RAF VANDEBRIL‡ , AND DAVID S. WATKINS§

Abstract. A stable algorithm to compute the roots of polynomials is presented. The roots
are found by computing the eigenvalues of the associated companion matrix by Francis’s implicitly
shifted QR algorithm. A companion matrix is an upper Hessenberg matrix that is unitary-plus-rank-
one, that is, it is the sum of a unitary matrix and a rank-one matrix. These properties are preserved
by iterations of Francis’s algorithm, and it is these properties that are exploited here. The matrix
is represented as a product of 3n − 1 Givens rotators plus the rank-one part, so only O(n) storage
space is required. In fact, the information about the rank-one part is also encoded in the rotators,
so it is not necessary to store the rank-one part explicitly. Francis’s algorithm implemented on this
representation requires only O(n) flops per iteration and thus O(n2) flops overall. The algorithm
is described, normwise backward stability is proved, and an extensive set of numerical experiments
is presented. The algorithm is shown to be about as accurate as the (slow) Francis QR algorithm
applied to the companion matrix without exploiting the structure. It is faster than other fast methods
that have been proposed, and its accuracy is comparable or better.

Key words. polynomial, root, rootfinding, companion matrix, eigenvalue, QR algorithm,
rotators

AMS subject classifications. 65F15, 65H17, 15A18, 65H04

DOI. 10.1137/140983434

1. Introduction. We describe a method for computing the roots of a monic
polynomial p(z) expressed in terms of the monomial basis, say,

p(z) = zn + an−1z
n−1 + · · ·+ a1z + a0.

We will assume throughout this paper that a0 �= 0, since otherwise we can factor
out z and reduce the degree of the polynomial. Like many others before us, we

∗Received by the editors August 21, 2014; accepted for publication (in revised form) by J. L. Bar-
low April 22, 2015; published electronically July 7, 2015. This research was partially supported
by the Research Council KU Leuven, projects CREA-13-012, Can Unconventional Eigenvalue Al-
gorithms Supersede the State of the Art, OT/11/055, Spectral Properties of Perturbed Normal
Matrices and their Applications, and CoE EF/05/006, Optimization in Engineering (OPTEC), and
fellowship F+/13/020, Exploiting Unconventional QR Algorithms for Fast and Accurate Computa-
tions of Roots of Polynomials; by the DFG research stipend MA 5852/1-1; by Fund for Scientific
Research–Flanders (Belgium) project G034212N, Reestablishing Smoothness for Matrix Manifold
Optimization via Resolution of Singularities; by the Interuniversity Attraction Poles Programme,
initiated by the Belgian State, Science Policy Office, Belgian Network DYSCO (Dynamical Systems,
Control, and Optimization); and by the European Research Council under the European Union’s Sev-
enth Framework Programme (FP7/20072013)/ERC grant agreement 291068. The views expressed
in this article are not those of the ERC or the European Commission, and the European Union is
not liable for any use that may be made of the information contained here.

http://www.siam.org/journals/simax/36-3/98343.html
†Mathematical Institute, University of Oxford, Woodstock Road, OX2 6GG Oxford, UK

(jared.aurentz@maths.ox.ac.uk).
‡Department of Computer Science, KU Leuven, Celestijnenlaan 200A, 3001 Leuven (Heverlee),

Belgium (thomas.mach@cs.kuleuven.be, raf.vandebril@cs.kuleuven.be).
§Department of Mathematics, Washington State University, Pullman, WA 99164-3113

(watkins@math.wsu.edu).

942

http://www.siam.org/journals/simax/36-3/98343.html
mailto:jared.aurentz@maths.ox.ac.uk
mailto:thomas.mach@cs.kuleuven.be
mailto:raf.vandebril@cs.kuleuven.be
mailto:watkins@math.wsu.edu

FAST AND STABLE COMPUTATION OF ROOTS 943

solve this problem by using Francis’s implicitly shifted QR algorithm1 to compute
the eigenvalues of the associated companion matrix

A =

⎡
⎢⎢⎢⎣

−a0
1 −a1

. . .
...

1 −an−1

⎤
⎥⎥⎥⎦ .(1.1)

As the companion matrix is of Hessenberg form, one can directly apply Francis’s
algorithm [20, 21, 33] to retrieve the eigenvalues. This is what the roots command
in MATLAB does. This method preserves the upper Hessenberg form but does not
exploit other structures present in the companion matrix. Cleve Moler stated in 1991
[25], referring to this approach, “This method might not be the best possible because
it uses n2 storage and n3 time. An algorithm designed specifically for polynomial
roots might use order n storage and n2 time.”

In recent years several methods that use O(n) storage and O(n2) time have been
devised (see section 2), all of which exploit the fact that a companion matrix can be
decomposed into the sum of a unitary and a rank-one matrix. If one then applies a
unitary similarity transformation on this sum, one ends up again with a unitary-plus-
rank-one matrix. More precisely, taking the similarity determined by the implicit-
shifted QR algorithm always leads to a Hessenberg matrix equal to the sum of a
unitary and a rank-one matrix. This is the main theoretical idea behind all the fast
QR algorithms for companion matrices, differing, however, significantly in the way
the matrix is represented and how the algorithm is implemented.

Of the fast methods proposed up to this point, none have been proved to be
backward stable. The method that we propose here is backward stable and faster
than the other fast QR-based methods that have been proposed. Our Fortran codes
can be downloaded from http://people.cs.kuleuven.be/raf.vandebril.

The article is organized as follows. Section 2 discusses earlier work in this area.
Section 3 introduces some terminology and notational conventions that will aid in
the presentation of the new method. Section 4 presents our new memory-efficient
representation of unitary-plus-rank-one matrices, the QR algorithm itself is discussed
in section 5, and some implementation details are given in section 6. Section 7 presents
the stability analysis. We finish with our numerical experiments in section 8.

2. Previous work. The research on fast companion algorithms was initiated by
Bini, Daddi, and Gemignani [7] relying on the relation A = A−∗ + UV ∗, with A the
iterates in the QR algorithm, and UV ∗ a rank two part. It is proved that the strictly
upper triangular part of A stems from a rank three matrix. The authors rely solely
on the low rank structure and present a memory efficient storage of Q and R needed
to execute explicit QR steps, that is, explicitly computing Q, R, and forming their
product RQ. Unfortunately the representation is not robust. Large discrepancies
between the magnitudes of the vectors generating the low rank parts are observed,
a problem which one is unable to fully solve. Moreover, the explicit version of the
QR algorithm can be considered as a drawback as typically additional memory and
computational effort is required compared to an implicit approach.

Bini et al. [8] develop an explicit QR algorithm operating directly on the Hessen-
berg matrix. They store the rank-one part with two vectors and the unitary matrix

1In this paper the terms Francis’s algorithm and QR algorithm will be used interchangeably.

http://people.cs.kuleuven.be/raf.vandebril

944 J. L. AURENTZ, T. MACH, R. VANDEBRIL, AND D. S. WATKINS

via quasi-separable generators. The quasi-separable representation is, however, not
able to retain the unitarity. To overcome this problem the authors enforce the unitar-
ity by taking out the tiny error and using it to update the generators of the rank-one
part. This update is constructed in such a way that it does not destroy the Hessenberg
structure.

Chandrasekaran et al. [14] were the first to perform implicit QR steps directly on
the QR factorization of the Hessenberg matrix, where the Q matrix is decomposed in
rotators and the low rank structure of the upper triangular part of R is stored via the
sequentially semiseparable representation which essentially equals the quasi-separable
representation in this case. Even though the rank of R should be bounded by 2, they
admit 3 and require compression after each step to keep the rank numerically bounded
by 3. Also in this paper focus is on retaining the low rank structure imposed by the
unitary and rank-one matrix, but no effort is put into retaining the unitarity itself.

Delvaux, Frederix, and Van Barel [16] present an algorithm for block companion
matrices. The approach resembles [14] as the QR factorization of the Hessenberg
matrix is stored, but the R factor is now stored via a Givens-weight representation.
Again the unitary-plus-low-rank structure deteriorates while running the QR algo-
rithm. The authors propose a restoration technique based on a combination of the
ones proposed in [14]: obtain the desired rank in R and [8]; restore the unitary struc-
ture. At the end both the unitary and the low rank part are combined to compute
the eigenvalues.

Van Barel et al. [28] present a representation based on three sequences of rotators
and a vector. Implicit QR steps are executed on the factorization directly and no
compression steps are used to enforce any of the three structures. As a result one
ends with a unitary-plus-rank-one matrix that approximates a Hessenberg matrix;
numerical roundoff slightly perturbs the exact cancellation that should occur between
the unitary and low rank part.

In [6] Bini et al. enhance their previous results from [8] and convert their ex-
plicit QR version to an implicit one. Two different representations are used in the
implementation of the algorithm: in each iterate the unitary matrix is stored as a
product of essentially 2 × 2 and 3 × 3 unitary matrices, and to update this matrix
under a QR step the quasi-separable representation of the unitary matrix is com-
puted and utilized. In [12] Boito et al. enhance and simplify their implicit version by
doing all computations directly on the quasi-separable representation of the unitary
matrix, and a compression technique is used to reduce the number of quasi-separable
generators after a QR step to a minimum.

In [19] Eidelman, Gohberg, and Haimovici revisit the method from [14]. They
also describe a factorization of the companion matrix using 3n− 3 rotations similar
to what we propose in this paper. However, they keep the low-rank part explicitly
and go back to a semiseparable representation of R for the description of the QR
algorithm. Furthermore, they do not provide numerical results.

For completeness we mention that besides the QR variants there is also an ap-
proach based on companion pencils [11] and there are fast nonunitary GR algo-
rithms [2, 3, 35], but they are potentially unstable. Other, QR related approaches
tackle root finding problems of polynomials expressed in other bases, for example,
comrade or confederate matrices [18, 30]. Still other methods attack the polynomial
problem directly, notably Bini’s code [5], which uses the Ehrlich–Aberth method, and
the more recent code MPSolve of Bini and Fiorentino [9], which uses multiprecision
arithmetic to produce the zeros to any specified precision. In this paper we consider
only codes that use fixed (double) precision arithmetic.

FAST AND STABLE COMPUTATION OF ROOTS 945

3. Core transformations. Our method makes heavy use of rotators. In the
interest of flexibility we will introduce a more general concept. A core transformation
Gi is a nonsingular matrix that is identical to the identity matrix except in the 2× 2
submatrix in the (i : i+1, i : i+1) diagonal block, which is called the active part of the
core transformation. We will consistently use the subscript i on a core transformation
Gi to indicate the position of the active part. It follows that the core transformations
Gi and Gj commute whenever |i− j| > 1.

In some of our previous work [2,3] we have made use of core transformations that
are not unitary, but in this paper we will use only unitary ones. Thus, in this paper,
the term core transformation will mean unitary core transformation. Givens rotators,
with active parts of the form

[
c −s
s c

]
with |c |2 + s2 = 1, are core transformations, and

so are Givens reflectors
[
c s
s −c

]
. We implemented our algorithms using rotators, but

we could equally well have used reflectors. In our initial description we will refer to
generic core transformations, which could be rotators, reflectors, or any other kind of
unitary core transformations.

It is well known (and easy to prove) that every n× n unitary upper Hessenberg
matrix can be factored into a descending sequence of n− 1 core transformations:

(3.1) Q = Q1Q2 . . .Qn−1.

To simplify the notation, to clarify some equations, and to increase the readability
of the algorithms we will frequently depict a core transformation as �� , where the
tiny arrows indicate the position of the active part. For example, for n = 9, the
factorization (3.1) can be depicted as

Q = Q1Q2 · · ·Qn−1 =

��
��
��
��
��
��
��
��

.

As another example, the equation

��

⎡
⎢⎣

x1
x2
x3
x4

⎤
⎥⎦ =

⎡
⎢⎣

x1
x2
x̃3
0

⎤
⎥⎦

means that the vector x is multiplied by a core transformation G3 on the left to
produce a new vector that has a zero in the fourth position. With this notation
established, we can now describe our new method.

4. Representation of the matrix. We will store each unitary-plus-rank-one
upper Hessenberg matrix in QR decomposed form, as in [14]. Q is a unitary upper
Hessenberg matrix, which can be stored compactly as a product of core transforma-
tions (3.1). R is an upper triangular unitary-plus-rank-one matrix. We decompose
the latter into a unitary part and a rank-one part. All unitary matrices are stored as
sequences of core transformations, as in [28]. We will prove that our representation of
the unitary part also contains the information about the rank-one part encoded within
the core transformations. Therefore there will be no need to keep track of or update
the rank-one part in the course of the iterations. Everything will be updated auto-
matically in the core transformations. Thus our algorithm will consist almost entirely

946 J. L. AURENTZ, T. MACH, R. VANDEBRIL, AND D. S. WATKINS

of unitary similarity transformations on unitary matrices represented as products of
core transformations.

Now we get more specific. Starting from a companion matrix, we begin by em-
bedding it in a larger matrix,

(4.1) A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 −a0 1
1 −a1 0

1 −a2 0
. . .

...
1 −an−1 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

with an extra row of zeros and a column that is nearly zero. The one in the (1, n+1)
position ensures that the unitary-plus-rank-one structure is preserved. The enlarged
matrix clearly has one extra zero eigenvalue, which can be deflated out immediately.
This curious beginning has at least two important consequences, as we shall see. It
ensures that the information about the rank-one part is fully encoded in the core
transformations, and it results in a simpler, cleaner algorithm.

If we take the QR factorization of the enlarged matrix, we obtain

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0
1 0 0

1 0 0
. . .

...
...

1 0 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −a1 0
1 −a2 0

. . .
...

...
1 −an−1 0

−a0 1
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

We store Q as a product of core transformations as in (3.1). In this specific case we
have Q = Q1 · · ·Qn−1, where each Qi has active part [0 1

1 0]. Here we are depicting the
core transformations as reflectors for simplicity. In the actual code we used rotators[

0 1
−1 0

]
, which can be done if we insert a factor (−1)n−1 in appropriate entries in Q

and R.

Since Q is of dimension n+ 1, the factorization into core transformations should
have n factors, but in this case there are only n− 1. The last transformation is trivial
(Qn = I) because the bottom row of A is trivial. This is important.

The upper triangular matrix has unitary-plus-rank-one form: R = Zn + xeTn ,
where

(4.2) Zn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
1

. . .
...

1
0 1
1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and x = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a1
a2
...

an−1

a0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Let C = C1C2 · · ·Cn be a product of core transformations C1, . . . , Cn such that
C1 · · ·Cnx = αe1, where |α | = ‖x‖2. Pictorially, for n = 8, we have

FAST AND STABLE COMPUTATION OF ROOTS 947

��
��
��
��
��
��
��
��

x1
x2
x3
...

xn+1

=

α
0
0
...

0

C = C1 · · ·Cn

.

Since C is a product of a descending sequence of core transformations it is a unitary
upper Hessenberg matrix. Notice that since |xn+1 | = 1 �= 0, the core transformation
Cn is nontrivial (that is, nondiagonal) and thus it follows easily that all the Ci are
nontrivial. Therefore C is a proper upper Hessenberg matrix, that is, its subdiagonal
entries are all nonzero.

The information about the rank-one part is concentrated in the vector x. We
form the Ci by rolling up x, transforming x to a multiple of e1. In the process we are
encoding the rank-one part in the core transformations Ci.

Letting B = CZn and y = αen, we have

(4.3) R = C∗(B + e1y
T).

Notice that B is also a unitary upper Hessenberg matrix, so it can be factored into
a descending sequence of core transformations: B = B1 · · ·Bn. In fact it is obvious
that we can take Bi = Ci, for i = 1, . . . , n− 1, and Bn = CnZn. Expanding (4.3) we
have

R = C∗
n · · ·C∗

1 (B1 · · ·Bn + e1y
T).

Now combining Q and R, we have

(4.4) A = QR = QC∗(B + e1y
T) = Q1 · · ·Qn−1C

∗
n · · ·C∗

1 (B1 · · ·Bn + e1y
T).

Pictorially, for n = 8, we have

A =

��
��
��
��
��
��
��

��
��

��
��

��
��

��
��

��
��
��
��
��
��
��
��

+

1
0
0
0
0
0
0
0
0

×××××××××

Q = Q1 · · ·Qn−1 C∗ = C∗
n · · ·C∗

1 B = B1 · · ·Bn

yT

e1

R

.

Notice that the Q sequence of core transformations is shorter than the other sequences
due to the fact that the last row of A is trivial.

4.1. Properties of the factorization. The factorized form (4.4) is the form
in which we will store our matrix. Over the course of the iterations of Francis’s
algorithm, the contents of the Qi, Ci, Bi, and y will evolve, but the form (4.4) will
be preserved. Certain specific properties of the form will be preserved as well, as we
now show.

Although we are not yet ready to describe the algorithm, we can make some
general statements about it. Because the last row of A represents a zero eigenvalue
that has been deflated from the problem, the iterations of our algorithm will be
similarity transformations by matrices of the form U = [Ũ 0

0 1
], where Ũ is n × n.

Initially we have A = QR, where Q = [Q̃ 0
0 1

] and R = [R̃ ×
0 0

], and these general forms

948 J. L. AURENTZ, T. MACH, R. VANDEBRIL, AND D. S. WATKINS

are preserved under such a similarity transformation, for (as we shall see in section
5) we have

(4.5) Â = U∗AU = U∗QRU = U∗QV V ∗RU = Q̂R̂

for some unitary matrix V of the form
[
Ṽ 0
0 1

]
. We haveR = Z+xzT , where x is initially

given by (4.2). In particular xn+1 = −1. Under the transformation R → R̂ = V ∗RU ,
x is transformed to x̂ = V ∗x. Because of the form of V , the transformed x still satisfies
xn+1 = −1 and will continue to do so forever. Similarly, the vector z is initially en,
and, in particular, zn+1 = 0, a property that persists under the iterations. The vector
y in (4.4) satisfies y = αz, so we will have yn+1 = 0 forever.

Taking a closer look at the decomposition, we have A = QC∗(B + e1y
T) and

(4.6) Â = Q̂Ĉ∗(B̂ + e1ŷ
T) = (U∗QV)(V ∗C∗W)(W ∗BU + e1y

TU),

where (see section 5) the unitary W has a different form from the other transforming
matrices: W =

[
1 0
0 W̃

]
. This is the part of the algorithm in which row and column

n + 1 get used. Notice that We1 = e1 = W ∗e1, which justifies leaving out the W ∗

that should have preceded the second e1 in (4.6).
The equation Cx = αe1 holds initially, and we can now demonstrate that this

relationship persists.
Lemma 4.1. Let C, x, and α be defined as above, with Cx = αe1. Take Ĉ =

W ∗CV to be the result of the unitary similarity transformation (4.5) defined in (4.6).
Then Ĉx̂ = αe1.

Proof. We have Ĉx̂ = (W ∗CV)(V ∗x) = W ∗Cx = αW ∗e1 = αe1.
Nontriviality of the core transformations Ci. We noted above that the core trans-

formations C1, . . . , Cn in (4.4) are all nontrivial initially. Now we can show that they
remain nontrivial forever. This is a consequence of the following result.

Theorem 4.2. For i = 1, . . . , n, let [ui vi
wi zi] denote the active part of Ci in (4.4),

and let γi = |wi | = |vi |. Then γi > 0, i = 1, . . . , n. Moreover

(4.7) γ1 · · · γn = 1/‖x‖2,
where x is given by (4.2).

Proof. The initial Ci satisfy C1 · · ·Cnx = αe1, and we have noted above that
this relationship persists as the Ci and x evolve in the course of the iterations. The
condition xn+1 = −1 also persists, and obviously ‖x‖2 remains invariant. Since
x = αC∗

n · · ·C∗
1e1, we find by direct computation that xn+1 = αvn · · · v1. Taking

absolute values we have 1 = |α |γn · · · γ1 or γ1 · · · γn = 1/|α | = 1/‖x‖2.
Preservation of triangular and Hessenberg forms. We want to know that the

Hessenberg form is preserved by the iterations. To this end we must show that the
triangular form of R is preserved.

Theorem 4.3. Suppose R = C∗(B+e1y
T) = C∗

n · · ·C∗
1 (B1 · · ·Bn+e1y

T), where
the core transformations C1, . . . , Cn are all nontrivial. Then R is upper triangular.

Proof. In the initial configuration we have A = QR, where

(4.8) R =

[
R̃ ×
0 0

]

with R̃ of size n×n, and × a vector. As we have noted above, this form of R persists
during the iterations, so we just need to show that R̃ remains upper triangular. Since

FAST AND STABLE COMPUTATION OF ROOTS 949

R = C∗(B+e1y
T), we have H = CR, where H = B+e1y

T . We rewrite this equation
in the partitioned form

(4.9)

[× ×
H̃ ×

]
=

[× ×
C̃ ×

] [
R̃ ×
0 0

]
,

where H̃ and C̃ are both n×n, and ×’s represent quantities that are not of immediate
interest. The fact that the core transformations Ci are all nontrivial implies that C is
a proper upper Hessenberg matrix (ci+1,i �= 0, i = 1, . . . , n), which implies that C̃ is

upper triangular and nonsingular. Similarly, H̃ is upper triangular. We note further
that H̃ = C̃R̃, which implies

(4.10) R̃ = C̃−1H̃.

Since H̃ and C̃−1 are upper triangular, R̃ must also be upper triangular.
Remark 4.4. The matrices H̃ and C̃ are taken in part from row n+ 1 of H and

C, respectively. These matrices have a row n+ 1 because we added a row artificially.
Had we not done so, we would not have been able to prove this theorem.

The equation A = QR can also be written as[
Ã ×
0 0

]
=

[
Q̃ 0
0 1

] [
R̃ ×
0 0

]
.

We have Ã = Q̃R̃, and it is on this submatrix that we principally operate. Because
a0 �= 0, Ã has no zero eigenvalues, it is nonsingular.

Theorem 4.5. If the core transformations Ci in (4.4) are all nontrivial, then Ã
is upper Hessenberg. If Ã is nonsingular, then Ã is properly upper Hessenberg if and
only if Q̃ is properly upper Hessenberg. Thus, Ã is properly upper Hessenberg if and
only if Q1, . . . , Qn−1 are all nontrivial.

This tells us that a deflation will take place if and only if one of the Qi becomes
trivial.

Proof. Since R̃ is upper triangular and Q̃ is upper Hessenberg, Ã = Q̃R̃ must
be upper Hessenberg. If Ã is nonsingular, so is R̃, and thus rii �= 0 for all i. Since
ai+1,i = qi+1,irii for i = 1, . . . , n, we see that Ã is properly upper Hessenberg if and

only if Q̃ is.
Nontriviality of the core transformations Bi. Because of the assumption a0 �= 0

we can show that the core transformations Bi are also nontrivial.
Theorem 4.6. For i = 1, . . . , n, let [ui vi

wi zi] denote the active part of Bi in (4.4),
and let βi = |wi | = |vi |. Then βi > 0, i = 1, . . . , n. Moreover

(4.11) β1 · · ·βn = |a0 |/‖x‖2,
where x is given by (4.2).

Proof. The subdiagonal entries of the upper Hessenberg matrix B = B1 · · ·Bn

are exactly the elements wi, the subdiagonal entries of the active parts of the Bi.
These are also the subdiagonal entries of H = B + e1y

T and the main diagonal
entries of the upper triangular submatrix H̃ defined in the proof of Theorem 4.3. By
similar reasoning the main diagonal entries of C̃ are exactly the subdiagonal entries
of the active parts of the Ci. Since H̃ = C̃R̃ we have hi+1,i = ci+1,irii for i = 1,
. . . , n. Taking absolute values we have βi = γi|rii |, where the γi are as defined in
Theorem 4.2. Now, taking a product, using Theorem 4.2, and noting that |det R̃ | =
|det Ã | = |a0 |, we have

β1 · · ·βn = γ1 · · · γn|det R̃ | = |a0 |/‖x‖2.

950 J. L. AURENTZ, T. MACH, R. VANDEBRIL, AND D. S. WATKINS

Extracting y from the core transformations. We now demonstrate that the infor-
mation about y is encoded in the core transformations by presenting a formula for
computing y explicitly.

Theorem 4.7. yT = −ρ−1eTn+1C
∗B, where ρ = eTn+1C

∗e1. ρ is the product of
the subdiagonal entries of C∗

1 , . . . , C
∗
n, and therefore |ρ | = 1/‖x‖2.

Proof. The entire last row of R is zero. Therefore

0 = eTn+1R = eTn+1C
∗(B + e1y

T) = eTn+1C
∗B + eTn+1C

∗e1yT .

This can be solved for yT to yield the desired result. The scalar ρ = eTn+1C
∗e1 is

easily shown to be equal to the product of the subdiagonal entries of the rotators C∗
i

by direct computation. Thus, by Theorem 4.2, |ρ | = 1/‖x‖2.
This theorem justifies our claim that there is no need to store y, since we can

compute it or any needed components at any time. However, it will turn out that our
algorithm never needs any part of y anyway. We will make use of Theorem 4.7 in the
backward error analysis.

Computing entries of A. At certain points in the algorithm we need to compute
elements of A explicitly. More precisely, we need elements of Ã. We already have
formulas, namely, R̃ = C̃−1H̃ and Ã = Q̃R̃. Now we need to show that the needed
entries can be computed efficiently. The points at which we need elements of A are the
shift computation, the computation of the transformation that starts each iteration,
and the final eigenvalue computation. In the course of computing elements of Ã we
must compute elements of R̃. For example, for the transformation that starts an
iteration in the double shift case, we need the submatix

⎡
⎣ a11 a12

a21 a22
0 a32

⎤
⎦ ,

and for this we need [
r11 r12
0 r22

]
.

We will use conventional shift strategies that require the submatrix

[
an−1,n−1 an−1,n

an,n−1 an,n

]
.

For this we need ⎡
⎣ rn−2,n−1 rn−2,n

rn−1,n−1 rn−1,n

0 rn,n

⎤
⎦ .

In each case we need just a few entries of R on or near the main diagonal. The same
is true in the final eigenvalue computation. For example, if we just need to compute
a single eigenvalue located at aii, we need only rii. We will show that each of these
computations can be done easily in O(1) time.

Suppose, for example, we need rii. We already observed in the proof of Theo-
rem 4.6 that hi+1,i = ci+1,irii, so

(4.12) rii = hi+1,i/ci+1,i.

FAST AND STABLE COMPUTATION OF ROOTS 951

hi+1,i and ci+1,i are the subdiagonal entries of the core transformations Bi and Ci,
respectively, so we have these numbers in hand. This equation is a consequence of
(4.10), which we now write as

(4.13) H̃ = C̃R̃.

(Recall that all three of these matrices are upper triangular, and the main diagonal
entries of H̃ and C̃ have indices (i + 1, i).)

Now suppose we also need ri−1,i. Picking an appropriate equation out of (4.13),

exploiting triangularity of C̃ and R̃, we have

(4.14)

[
hi,i

hi+1,i

]
=

[
ci,i−1 ci,i
0 ci+1,i

] [
ri−1,i

ri,i

]
,

which we can solve by back substitution. The first step yields rii by the formula
already given above, and the second step gives ri−1,i with just a bit more work. The
entries from H and C needed for this computation can be computed from Bi−1, Bi,
Ci−1, and Ci with negligible effort.

If we also need ri−2,i, we just need to carry the back solve one step further. To
construct the additional required entries from H and C, we need to bring Bi−2 and
Ci−2 into play.

Once the required entries from R̃ have been generated, the entries of Ã that we
wish to generate can be obtained by applying O(1) core transformations from Q̃.

5. The algorithm. We now consider how to execute single and double steps of
Francis’s implicitly shifted QR algorithm [31] by directly operating on the factored
form (4.4). In a standard QR step we disturb the Hessenberg structure by introducing
a bulge at the top of the matrix, which is then chased by unitary similarity transfor-
mations to the bottom of the Hessenberg matrix until it slides off the matrix. For a
detailed description see [32].

In our setting the bulge is represented by extra core transformations that are
introduced and then chased through the factored form. First, we disturb the factor-
ization by introducing the bulge (sections 5.2 and 5.5, for the single and the double
shift, respectively), then we restore the factorization by chasing the bulge via uni-
tary similarity transformations (sections 5.2 and 5.5) until it disappears (sections 5.4
and 5.7).

The algorithm utilizes two simple operations on core transformations called fusion
and turnover. Two core transformations acting on the same rows can be fused into a
single one, pictorially represented by

� �� � = �� .

One can also change a factorization of core transformations between the following two
forms:

� ��
�

�
� =

�
�

�
�� � .

This is the turnover operation, and it can be done in either direction. This is proved
easily by thinking of computing the QR factorization of a 3× 3 unitary matrix using,
say, Givens rotations and R being the identity. It is also convenient to look at the
turnover differently. Consider a core transformation on the right of an ascending

952 J. L. AURENTZ, T. MACH, R. VANDEBRIL, AND D. S. WATKINS

sequence. One can pass it through the sequence by a single turnover, and a new core
transformation pops up on the left, positioned on the row above its original position
(the vertical lines have no meaning except to group certain core transformations):

�
�

�

�
�

�
�

� �
�

=

�
�

�

�
�

�
�

� �
�

=

�
� �

�
�

�
�

�
�

�
=

�
� �

�
�

�
�

�
�

�
.

Similarly one can pass a core transformation from right to left through a descending
sequence, thereby moving it down a single row.

5.1. Deflations and properness. The QR algorithm operates on proper Hes-
senberg matrices, that is, all subdiagonal elements are nonzero. Obviously, when zeros
do appear on the subdiagonal, one can decouple the original problem into Hessenberg
matrices of smaller size and compute their eigenvalues. This process is called defla-
tion. A common criterion for checking whether a subdiagonal element numerically
equals zero is to check whether the subdiagonal entries of the upper Hessenberg ma-
trix are sufficiently small. However, when considering the matrix in the factored form
(4.4), we see that a deflation is signaled by an almost diagonal core transformation
Qi (Theorem 4.5). Rather than explicitly computing all subdiagonal elements of the
Hessenberg matrix, we will check for deflations by examining the Qi: if the subdiago-
nal entry of interest is below the unit roundoff, we deflate. It is proved by Mach and
Vandebril [24] that a deflation via core transformations of a single eigenvalue provides
good relative backward error.

Once a deflation has occurred, we must operate on submatrices of the original
matrix. This presents no difficulties, and we omit the details.

5.2. Single shift: Introducing the bulge. We begin by computing a shift μ
by a standard shifting strategy (section 6). For this we need to construct the 2 × 2
submatrix in the lower-right-hand corner of A. We can do this in O(1) flops as we
have seen in section 4.1.

Then we must compute a vector v = (A − μI)e1, for which we need a11 and
a21. We can compute these once we have r11, which we obtain in one division as
shown in section 4.1. Only the first two entries of v are nonzero. Let U1 be a core
transformation with first column proportional to v, that is, U1e1 = γ(A− μI)e1, and
perform a similarity transformation with U1. The resulting matrix U∗

1AU1 can be
described pictorially as

�� ��
U1U∗

1

��
��
��
��
��
��
��

��
��

��
��

��
��

��
��

��
��
��
��
��
��
��
��

+

1
0
0
0
0
0
0
0
0

×××××××× 0

.

Clearly we can get rid of U∗
1 by fusing it with Q1. Then the representation is

in the desired form, except for the core transformation U1 on the right. This is the
bulge. We must chase it through the matrix from right to left, from top to bottom,
until it gets absorbed by performing a fusion.

5.3. Single shift: Chasing the bulge. We chase U1 from right to left. First U1

is applied on both terms in the factorB+e1y
T ; we get (B+e1y

T)U1 = BU1+e1y
TU1 =

BU1 + e1ỹ
T . As B is a descending sequence of core transformations, we can pass U1

through it by a single turnover, moving it down one position. We get BU1 = W2B̃.
Pictorially we get (5.1), where each individual arrow corresponds to a specific action

FAST AND STABLE COMPUTATION OF ROOTS 953

to bring the core transformation U1 more and more to the left. More precisely, we
start with the two arrows leaving U1 on the right. The top arrow expresses that U1 is
applied to yT , thereby transforming y into ỹ. The bottom arrow moves U1 inside the
brackets, to the right of B. The arrow starting from U1 next to B indicates that the
next step is to move U1 to the left through the descending sequence by a turnover.
As a result we get W2, and B becomes B̃.

(5.1)

U1
W2

U1

����
��
��

��
��

����
��

��
��
��
��
��

��
��

��
��

��
��

��
��
��
��
��
��

+

1
0
0
0
0
0
0
0
0

×××××××× 0

Q̌ C∗ B → B̃

yT → ỹT .

In our illustrations we are displaying the rank-one part for completeness, but it is
important to remember that in our code we do not store or update y explicitly. The
information about y is encoded in the B and C core transformations, as explained in
Theorem 4.7. Whenever we need information about the rank-one part, we extract it
from the core transformations as shown in Theorem 4.7.

The core transformation W2 can be moved outside the brackets without affecting
the rank one part as it does not touch the first row:

C∗(W2B̃ + e1ỹ
T) = C∗W2(B̃ + e1ỹ

T).

W2 will become part of the matrix W as we mentioned in (4.6).
To bring the bulge W2 completely to the left we pass it through the ascending

sequence C∗ by a turnover, moving it up a row and giving V1. (V1 becomes part of
the matrix V in (4.6).) Then we pass it through the descending sequence Q, moving
it back down a row, resulting in U2.

��
��

U2 W2 W2

V1

����
��

��
��

��
��

��
��
��
��
��
��

��
��

��
��

��
��

��
��
��
��
��
��

+

1
0
0
0
0
0
0
0
0

×××××××× 0

Q̌ → Q̃ C∗ → C̃∗ B̃

ỹT

.

Now perform a similarity transformation by U2. In the resulting matrix

U∗
2U

∗
1AU1U2,

the bulge U2 has disappeared from the left and has shown up on the right. We then
pass U2 through the matrix in exactly the same way as we did with U1, resulting in
a new, lower positioned, core transformation U3 on the left. We then do a similarity
transformation by U3, moving it from the left to the right, pass it through the matrix
again to obtain U4, and so on. After n− 2 steps we arrive at the bottom.

5.4. Single shift: Absorbing the bulge, end of the chase. The next figure
illustrates the final pass through the matrix:

��
Vn−1

��
��
��
Wn

��

Un−1

��
��

��
��
Wn

��
��
��
��
��
��
��

��
��

��
��

��
��

��
��
��
��
��
��

+

1
0
0
0
0
0
0
0
0

×××××××× 0

.

954 J. L. AURENTZ, T. MACH, R. VANDEBRIL, AND D. S. WATKINS

We pass Un−1 through the descending B sequence to produce Wn, which is then
passed through the ascending C∗ sequence to produce Vn−1. Because the descending
Q sequence is shorter than the others, it is now possible to fuse Vn−1 with Qn−1.
Once we do this, we have eliminated the bulge. We have returned the matrix to the
form (4.4) so, by Theorem 4.5, the Hessenberg form has been restored.

The entire similarity transformation is Â = U∗AU , where U = U1U2 · · ·Un−1.
The core transformations U2, . . . , Un−1 all satisfy Uie1 = e1, so Ue1 = U1e1 = γ(A−
μI)e1. We have effected a unitary similarity transformation from proper Hessenberg
form to Hessenberg form with the “right” first column. Therefore we have executed
an iteration of Francis’s algorithm [31, Theorem 4.5.5], [32, Theorems 5.6.14, 6.3.12].

Notice that in the final step we created briefly a core transformation Wn that
occupies rows/columns n and n+1. Row and column n+1 would not exist if we had
not artificially adjoined them at the beginning. Because of the immediate deflation
of the added zero eigenvalue, the Q sequence of core transformations is shorter than
the others, allowing us to terminate the bulge chase with a fusion in Qn−1.

Remark 5.1. Early versions of our algorithm did not include the added row and
column. As a consequence the bulge chase terminated prematurely with a fusion in
the B sequence instead of the Q sequence. This meant that Hessenberg form had not
been reached. To finish the operation we had to look into the R matrix and force one
last entry to zero. For this purpose we needed to make use of the y vector, which
we had to keep track of explicitly. This situation persisted until the first deflation
was achieved, after which it became possible to complete the iteration without taking
special action. We also noticed that from that point on we had no further need to
keep track of the y vector. By adding an extra row and column with an artificial
deflation, we were able to eliminate these complications.

5.5. Double shift: Introducing the bulge. In the single shift algorithm the
bulge is represented by a single core transformation. In the double shift code three
core transformations are needed to represent the bulge, but it turns out that we only
need to pass two at a time through the matrix.

We begin by obtaining two shifts μ1 and μ2 by a standard shifting strategy. Then
we compute the vector v = (A−μ1I)(A−μ2I)e1, which has only the first three entries
nonzero. Let Ũ2 and U1 be two core transformations such that U∗

1 Ũ
∗
2 v = γ−1e1 for

some γ, so that Ũ2U1e1 = γv. Then carry out a similarity transformation to produce
U∗
1 Ũ

∗
2AŨ2U1. Pictorially, we have

��
�� ��

�� ��
��

Ũ2Ũ∗
2

U1U∗
1 ��

��
��
��
��

��
��

��
��

��
��

��
��

��
��
��
��
��
��
��
��

+

1
0
0
0
0
0
0
0
0

×××××××× 0

.

On the left side of the picture perform a turnover of U∗
1 Ũ

∗
2Q1 to produce X̆2Q̂1Q̌2.

Then fuse Q̌2 with Q2 to form Q̂2 = Q̌2Q2. We now have

��
��
�� ��

��

Ũ2X̆2

U1��
��
��
��
��

��
��

��
��

��
��

��
��

��
��
��
��
��
��
��
��

+

1
0
0
0
0
0
0
0
0

×××××××× 0

.

FAST AND STABLE COMPUTATION OF ROOTS 955

5.6. Double shift: Chasing the bulge. In each chasing step we will bring
both core transformations on the outer right to the outer left and execute a similarity
to swap them back to the right. After the similarity we end up again with two core
transformations on the right and a single one on the left, all positioned one row lower
than before.

Let us illustrate the flow pictorially. Moving the two right core transformations to
the left proceeds identically to the single shift case: apply them to the two terms, pass
them through the B sequence, bring them outside the brackets, pass them through
the C∗ sequence, and finally go through the Q sequence to arrive on the left side.
Because Ũ2 is positioned to the left of U1, Ũ2 should go first. We get

Ũ2

U1

Ũ2

U1

W̃3

W2

W̃3

W2Ṽ2

V1

X̃3

X2X̆2

�� ��
��

��
�� ��

����
��
����

�� ��
�� ��

��
��

��
��

��
��
��
��
��
��
��

��
��

��
��

��

��
��
��
��
��

+

1
0
0
0
0
0
0
0
0

×××××××× 0

,

Now do a turnover of X̆2X̃3X2 to produce Ũ3U2X̆3. Then do a similarity transfor-
mation with Ũ3U2 to move those two core transformations from the left side to the
right. This concludes the first chasing step. The next step is identical to the first,
except that everything has been moved down by one.

We remind the reader that although we are showing the rank-one part in the
pictures for completeness, we do not actually store or update y explicitly.

5.7. Double shift: Absorbing the bulge, end of the chase. After n − 3
chasing steps the core transformations reach the bottom of the matrix, where they
will be absorbed. We will pictorially depict what happens to core transformations
Ũn−1 and Un−2 individually. First Ũn−1 goes through the B and C∗ sequences and
fuses with the bottom core transformation in the Q sequence:

Ũn−1

Un−2

Ũn−1
W̃nW̃n

Ṽn−1

X̆n−1

�� ����
��
��
��

��
��

��
��

��
��

��
��
��
��
��
��

��
��

��
��

��
��

��
��
��
��
��
��

+

1
0
0
0
0
0
0
0
0

×××××××× 0

.

Then bring core transformation Un−2 through the B, C∗, and Q sequences, where it
can be fused with X̆n−1, leaving a single core transformation Un−1 on the left.

Un−2

Un−2

Wn−1Wn−1

Vn−2

Xn−1Un−1

��
��

��
��
�� ��

����

��
������

��
��
��
��
��
��

��
��

��
��

��
��

��
��
��
��
��
��

+

1
0
0
0
0
0
0
0
0

×××××××× 0

.

Perform a similarity transformation with Un−1 to move it from the left side to the
right. Then pass it through the matrix one more time and fuse it with the bottom
core transformation in the Q sequence, exactly as in the single shift case. The bulge
has been absorbed. We have returned the matrix to the form (4.4), and the iteration
is complete.

956 J. L. AURENTZ, T. MACH, R. VANDEBRIL, AND D. S. WATKINS

The entire similarity transformation is Â = U∗AU , where

U = Ũ2U1Ũ3U2 · · · Ũn−1Un−2Un−1.

Since Uie1 = e1 and Ũie1 = e1 for i > 1, we have

Ue1 = Ũ2U1e1 = γ(A− μ1)(A− μ2)e1.

We have effected a unitary similarity transformation with the “right” first column,
transforming a properly upper Hessenberg matrix to an upper Hessenberg matrix.
Therefore we have executed a Francis iteration of degree two [31, Theorem 4.5.5], [32,
Theorems 5.6.14, 6.3.12].

6. Implementation. Two versions of the algorithm are implemented in Fortran
90. There are the complex single shift (CSS) code to retrieve the roots of complex
polynomials and the real double shift (RDS) code to only deal with real arithmetic
when dealing with real polynomials. In the next sections we briefly discuss the storage
scheme, the basic operations, and the heuristics used.

6.1. Data storage. As core transformations we took rotators with real s,

(6.1)

[
c −s
s c

]
,

where |c|2 + s2 = 1. Three sequences of these rotators, of which only c and s are
required, need to be stored.

In the RDS code all core transformations are real and remain so during the
iterations. Both c and s are real numbers, leading to a storage cost of roughly 6n
reals.

In the CSS setting, if one wishes to keep the s entries real, more effort is required.
This restriction demands that we start with an upper Hessenberg matrix whose sub-
diagonal entries are all real. This can always be arranged and is already fulfilled
for companion matrices. In section 6.2 we will see that the turnover will not cause
problems; only the fusion does. Fusing core transformations with real s results in a
single core transformation for which the s value is typically not real. This problem
can be remedied by including an extra unitary diagonal matrix D in the Q factor:
Q = Q1 · · ·Qn−1D, where D contains some phase factors. Details are given below.
The actual factored form utilized in the CSS code is therefore

A = QR = (Q1 · · ·Qn−1)D(C∗
n · · ·C∗

1)(B1 · · ·Bn + αe1y
T).

As a result we need to store a complex c, stored as two reals, and a real s for each core
transformation. The diagonal D is complex, and each element takes up two reals. In
total we get a storage cost of approximately 11n reals.

6.2. Operations. The next paragraphs describe how to execute a fusion and a
turnover and pass a core transformation through a diagonal for both the CSS and
RDS codes.

Turnover. Executing a turnover is equivalent to computing a QR factorization of

� ��
�

�
� =

⎡
⎣c1 −s1
s1 c1

1

⎤
⎦
⎡
⎣1 c2 −s2

s2 c2

⎤
⎦
⎡
⎣c3 −s3
s3 c3

1

⎤
⎦

=

⎡
⎣c1c3 − s1c2s3 −c1s3 − s1c2c3 s1s2
s1c3 + c1c2s3 −s1s3 + c1c2c3 −c1s2

s2s3 s2c3 c2

⎤
⎦ =

�
�

�
�� � .

FAST AND STABLE COMPUTATION OF ROOTS 957

The first two rotators are computed from the first column. After updating the last
column we can compute the final rotator. As a result we can simply ignore the second
column. Rotators creating zeros in entries can always be chosen such to have real s,
and as a consequence the turnover keeps the s’s real.

Passing a rotator through a diagonal. In the CSS code we also need to accomplish

[
d 0
0 e

] [
c1 −s1
s1 c1

]
=

[
c2 −s2
s2 c2

] [
f 0
0 g

]
.

To this end take f = e, g = d, s2 = s1, and c2 = c1d e.

Fusion. We have

[
c1 −s1
s1 c1

] [
c2 −s2
s2 c2

]
=

[
c1c2 − s1s2 −s1c2 − c1s2
s1c2 + c1s2 c1c2 − s1s2

]
=

[
c′3 −s′3
s′3 c′3

]
,

where s′3 = s1c2 + c1s2 is not necessarily real when dealing with complex numbers (in
the RDS case there are no issues). As a consequence the diagonal D is involved in a
fusion in the CSS code. We compute

[
c′3 −s′3
s′3 c′3

]
=

[
c3 −s3
s3 c3

] [
f 0
0 g

]
,

which is realized by setting s3 = |s′3|, φ = s′3/s3, c3 = c′3φ, f = φ, and g = φ. The
values f and g are then incorporated into the diagonal D.

6.3. Heuristics and tunings.

Shift strategy. The Wilkinson shift [34] and the Rayleigh quotient shift are the
most popular shift strategies for single and double shift QR algorithms. For the RDS
code the eigenvalues of the trailing 2 × 2 submatrix under consideration are used
as shifts, which are Rayleigh quotient shifts. This ensures that we can stick to real
arithmetic during the entire QR algorithm. In the CSS case the Wilkinson shift, that
is, the eigenvalue of the trailing 2× 2 block closest to the last diagonal element of the
matrix under consideration, is used.

Deflation. A rotator is assumed to signal a deflation if |s| < εm ≈ 2.22 · 10−16,
where εm stands for the machine precision. In the CSS code the rotator is set explicitly
to the identity and the unimodular factors are put in the diagonal matrix D. In the
RDS the rotator is explicitly set to a diagonal matrix with ±1 on its diagonal.

We search for deflations starting at the bottom of the matrix. After a deflation
is detected the iterations are executed on the above positioned proper Hessenberg
matrix larger than 2× 2. The eigenvalues of 2× 2 blocks are explicitly computed via
the modified quadratic formula.

Square roots. During the turnover, the fusion, and the passing through a diagonal
we have to ensure that the computed rotators continue to satisfy |c|2 + s2 = 1. If this
condition is not enforced explicitly, the rotators will lose their unitarity due to roundoff
errors over time, and the algorithm will fail. Thus each new triplet (creal, cimag, s)
or pair (c, s) that we compute is renormalized: we compute η = c2real + c2imag + s2

or η = c2 + s2, then compute
√
η and divide through by this quantity. However, the

square root is very expensive relative to the other operations, so we do the square
root computation only if |η − 1| > εm. Otherwise we just set

√
η = 1. This simple

trick saves about 30% of the computing time.

958 J. L. AURENTZ, T. MACH, R. VANDEBRIL, AND D. S. WATKINS

Exploiting Ci = Bi in early stages. In the first iteration Bi = Ci for i = 1
,. . . , n − 1. After each iteration the number of coinciding rotators decreases by
one. Exploiting this by saving the number of turnovers explicitly executed saves
approximately 10% of the computing time.

7. Backward stability. Our analysis will push the error back onto the com-
panion matrix, not onto the coefficients of the polynomial. For the latter we refer the
reader to [15, 17, 29].

We begin by noting that our initial factorization A = QR = QC∗(B + e1y
T)

is backward stable. That is, the exact matrix QC∗(B + e1y
T) differs from A by an

amount that is on the order of the unit roundoff multiplied by ‖A‖2. This follows from
elementary considerations. In particular, operations by Givens rotators are backward
stable [22].

Now it suffices to show that a single step of the algorithm is backward stable. In
exact arithmetic we have Â = U∗AU , and we want to show that in floating point the
computed Â satisfies Â = U∗(A + E)U , where ‖E ‖2 is tiny relative to ‖A‖2. Since
A is built from Q, C, and B, we begin by obtaining backward error results for these
pieces separately. Recall that in exact arithmetic we have

Â = Q̂Ĉ∗(B̂ + e1ŷ
T) = (U∗QV)(V ∗C∗W)(W ∗BU + e1y

TU),

and in particular (in exact arithmetic)

Q̂ = U∗QV, Ĉ = W ∗CV, and B̂ = W ∗BU.

Theorem 7.1. After one step of the algorithm in floating-point arithmetic,

Q̂ = U∗(Q+ Eq)V, Ĉ = W ∗(C + Ec)V, and B̂ = W ∗(B + Eb)U,

where each of ‖Eq ‖2, ‖Ec ‖2, and ‖Eb ‖2 is a modest multiple of the unit roundoff u.

Proof. First consider the matrix B. The transformation to B̂ is effected entirely by
turnovers that pass rotators through the descending sequence of B rotators. Writing
the (exact arithmetic) equation as WB̂ = BU , we see that U is the product of all the
rotators that were used to initiate turnovers in B, and W is the product of all the
rotators that came out of such turnovers.

It suffices to consider a single turnover Wi+1B̃iB̃i+1 = BiBi+1Ui. In practice the
turnover is executed by multiplying together the incoming matrices, then performing
a QR decomposition by rotators on the product. Since these operations are backward
stable [22], we deduce that in floating-point arithmetic

Wi+1B̃iB̃i+1 = BiBi+1Ui + Et,

where ‖Et ‖2 is on the order of u. There is no complicating factor like ‖A‖2 because all
the participating matrices are unitary and have norm 1. In terms of the big matrices
we have

Wi+1B̃ = BUi + Et = (B + Et′)Ui,

where Et′ = EtU
∗
i has the same norm as Et. This then gives

B̃ = W ∗
i+1(B + Et′)Ui,

FAST AND STABLE COMPUTATION OF ROOTS 959

which shows that the turnover results in a tiny backward error in B. Since the whole
transformation from B to B̂ is just a sequence of such operations, we deduce that
B̂ = W ∗(B + Eb)U , where ‖Eb ‖2 is a modest multiple of the unit roundoff u.

The exact same argument applies to C. It applies to Q as well with some slight
modifications. In our complex code the matrix Q includes a unitary diagonal factor
D, and rotators need to be passed through D. These operations are trivial and easily
seen to have tiny backward errors. The operations on Q also include a couple of
fusions, one each at the beginning and the end of the iteration. These are just matrix
multiplications, and they are backward stable.

Theorem 7.2. Let Â be the result of one step of the algorithm in floating-point
arithmetic, starting from A. Then Â = U∗(A+E)U , where ‖E ‖2/‖A‖2 is a modest
multiple of the unit roundoff u.

Proof. To avoid notational congestion we consider the unitary and rank-one parts
separately. A = Au + Ar, where Au = QC∗B and Ar = QC∗e1yT . For the unitary
part we have, by Theorem 7.1,

Âu = Q̂Ĉ∗B̂ = U∗(Q + Eq)(C + Ec)
∗(B + Eb)U.

Thus

Âu = U∗(Au + Eu)U,

where

‖Eu ‖2 ≤ ‖Eq ‖2 + ‖Ec ‖2 + ‖Eb ‖2 + · · · .
The dots denote higher-order terms.

Now consider the rank-one part Ar = QC∗e1yT . From Theorem 4.7 we know
that yT = β‖x‖2eTn+1C

∗B, where β is a scalar satisfying |β | = 1, so

Ar = β‖x‖2QC∗e1eTn+1C
∗B.

Again applying Theorem 7.1 we have

Âr = β‖x‖2Q̂Ĉ∗e1eTn+1Ĉ
∗B̂

(using We1 = e1 and eTn+1V
∗ = eTn+1)

= β‖x‖2U∗(Q+ Eq)(C + Ec)
∗e1eTn+1(C + Ec)

∗(B + Eb)U

= U∗(β‖x‖2QC∗e1eTn+1C
∗B + Er)U

= U∗(Ar + Er)U,

where

‖Er ‖2 ≤ ‖x‖2
(‖Eq ‖2 + 2‖Ec‖2 + ‖Eb ‖2 + · · ·) .

Noting that 1 ≤ ‖x‖2 ≤ ‖A‖2, and in fact ‖x‖2 ≈ ‖A‖2; we deduce that ‖Er ‖2 is
a modest multiple of u‖A‖2.

Combining the unitary and rank-one parts we have Â = U∗(A + E)U , where
E = Eu + Er, and ‖E ‖2 is a modest multiple of u‖A‖2.

Applying Theorem 7.2 repeatedly, we find that the whole process is backward
stable: The matrix we have at the end of the iterations is unitarily similar to a matrix
that is very close to the matrix we started with. We now show that the final eigenvalue

960 J. L. AURENTZ, T. MACH, R. VANDEBRIL, AND D. S. WATKINS

Table 1

Number of runs for each polynomial degree considered.

Deg. No. runs Deg. No. runs Deg. No. runs Deg. No. runs
6 16,384 14 2048 128 128 2,048 8
8 16,384 16 1024 256 64 4,096 4

10 8,192 32 512 512 32 8,192 2
12 4,096 64 256 1024 16 16,384 1

extraction process is also backward stable. In the complex case this is trivial. The
final matrix is upper triangular, and its eigenvalues are the main diagonal entries.
These are of the form dirii, where di is the ith main diagonal entry of the diagonal
matrix D. In section 4 we saw that rii can be obtained by a single division (4.12).
Thus the computation of each eigenvalue requires one division and one multiplication.
These are backward stable operations.

The real case is not much harder. In this case the final matrix is quasi-triangular
with 2 × 2 blocks representing complex conjugate eigenvalues. We need to generate
these 2 × 2 blocks. The process was explained in section 4. In particular a 2 × 2
upper triangular system (4.14) has to be solved by back substitution. Before this can
be solved, it has to be set up via two matrix multiplications by core transformations.
After it is solved, one additional matrix multiplication by a core transformation Qi is
required. Thus all the operations involved in this process are either matrix multipli-
cations or back substitutions, and these operations are backward stable [22].

8. Numerical experiments. Speed and accuracy of both the single and double
shift implementation (AMVW) are examined and compared with other companionQR
algorithms. We compared against LAPACK’s Hessenberg eigenvalue solver (xHSEQR);
LAPACK’s eigensolver for general matrices (xGEEV);2 the method of Boito et al. [12]
(BEGG); and the algorithm of Chandrasekaran et al. [14] (CGXZ). We note that
BEGG has only a single shift implementation and CGXZ is available only as a double
shifted version.

We also experimented with the codes of Bini et al. [6], available in both single
shift and double shift versions. We found that their single shift code was slightly
slower than BEGG, and their double shift code was marginally faster than CGXZ.
However, these codes were often much less accurate than the others. Therefore, we
did not included the results from these codes.

The computations were executed on an Intel Core i5-3570 CPU running at 3.40
GHz with 8 GB of memory. GFortran 4.6.3 was used to compile the Fortran codes.
For the comparison LAPACK version 3.5 was used.

We have data from four categories of experiments: polynomials with random
coefficients, polynomials with roots of unity of the form zn − 1, special polynomials
used for testing polynomial solvers [9, 14, 23, 27], and polynomials designed to test
the stability of the code. In the first two experiments (see sections 8.1 and 8.2), the
computing time was examined. The depicted runtime is averaged over a decreasing
number of runs, as shown in Table 1. The accuracy is investigated in all experiments,
with the error measure adapted to the type of experiment and described further on.

8.1. Polynomials with random coefficients. Polynomials with random co-
efficients in the monomial basis are known to be well-conditioned as their eigenvalues

2xHSEQR and xGEEV are either the complex implementations ZHSEQR and ZGEEV or the
real double precision ones DHSEQR and DGEEV. xGEEV balances the problem first.

FAST AND STABLE COMPUTATION OF ROOTS 961

are typically located around the unit circle. The coefficients are normally distributed
with mean 0 and variance 1. For testing the single shift code, complex coefficients
were used, while real polynomials were piped to the double shift code.

The measure of accuracy for a single problem size is the maximum of all relative
residuals of all computed eigenpairs over 10 runs, where the relative residual for a
particular eigenpair (λ, v) equals

‖Av − λv‖∞
‖A‖∞‖v‖∞ .(8.1)

For avoiding over- and underflow and for easily computing the eigenvectors we refer
to [2].

Figures 1 and 2 illustrate that the accuracy of our proposed algorithm AMVW
is comparable to that of LAPACK, significantly better than BEGG, and slightly bet-
ter than CGXZ. Considering speed, we note that our algorithm is more than three
times faster than BEGG in the single shift case and becomes faster than LAPACK
for polynomials of degree 12 or greater. In the double shift case the speedup is less
pronounced, but the AMVW time is still less than half that of CGXZ. The crossover
with LAPACK now takes place at degree 16.

Jenkins and Traub [23] state that polynomials with normally distributed random
coefficients are a “poor choice as the randomness ‘averages out’ in the coefficients
and the polynomials differ but little from each other”. Therefore we also used the
test set (iv) from [23], polynomials with random coefficients aj = mj · 10ej , having
mj uniformly distributed in (−1, 1) and ej uniformly distributed in (−μ, μ), with
μ = 5, 10, 15, 20, 25. The results were very similar to those for normally distributed
coefficients, so we have not displayed them.

8.2. Polynomials zn − 1. The polynomials with roots of unity zn − 1 also
have well-conditioned roots as the companion matrix itself is unitary. Furthermore,
the roots lie on the unit circle and are known exactly: zj = cos(2jn π) + i · sin(2jn π),
j = 0, . . . , n − 1, where i is the imaginary unit. The accuracy here is the maximum
absolute difference between the computed and the exact roots, which also equals the
maximum relative difference.

The results shown in Figures 3 and 4 are along the same lines as for the random
case. In the single shift case the algorithm’s accuracy is comparable to that of LAPACK
and better than BEGG. For the double shift case, it performs slightly better than the
other approaches. In the single shift case, it is more than three times faster than the
fastest currently available approach, in the double shift case, twice as fast.

8.3. Special real polynomials. In this section we compute roots of difficult
polynomials and report the forward and backward errors of the various methods. All
the test polynomials have real coefficients and we used them to test both the real
and the complex codes. In cases where the roots are known either exactly or to high
accuracy, we report the maximum relative forward error. To get a correct measure of
backward error, we take the computed roots and use extended precision arithmetic
to compute the coefficients âi of a polynomial having those roots. We then compare
these to the original ai. To compute the âi we used the multiprecision arithmetic
MPFUN [26] and a function from the CGXZ code [14]. The backward error measure
is the maximal error on the coefficients relative to the norm of the coefficients

max
i

|ai − âi|
‖x‖2

(8.2)

with x = −[a1, . . . , an−1, a0, 1].

962 J. L. AURENTZ, T. MACH, R. VANDEBRIL, AND D. S. WATKINS

Table 2

Special polynomials tested by Chandrasekaran et al. in [14].

No. Description Deg. Roots
1 Wilkinson polynomial 10 1, . . . , 10
2 Wilkinson polynomial 15 1, . . . , 15
3 Wilkinson polynomial 20 1, . . . , 20
4 scaled and shifted Wilkinson poly. 20 −2.1,−1.9, . . . , 1.7
5 reverse Wilkinson polynomial 10 1, 1/2, . . . , 1/10
6 reverse Wilkinson polynomial 15 1, 1/2, . . . , 1/15
7 reverse Wilkinson polynomial 20 1, 1/2, . . . , 1/20

8 prescribed roots of varying scale 20 2−10, 2−9, . . . , 29

9 prescribed roots of varying scale −3 20 (2−10 − 3), . . . , (29 − 3)

10 Chebyshev polynomial 20 cos(2j−1
40

π)

11 z20 + z19 + · · ·+ z + 1 20 cos(2j
21

π)

Table 3

Special polynomials used to test MPSolve in [9].

No. Description Deg. Roots
12 trv m, C. Traverso 24 known
13 mand31 Mandelbrot example (k = 5) 31 known
14 mand63 Mandelbrot example (k = 6) 63 known

Balancing. The LAPACK codes that we have used in these tests are xHSEQR,
which does not balance, and xGEEV, which has a balancing step. As the tables
below show, balancing is occasionally very helpful, but there are also examples where
balancing is detrimental.

Since our algorithm relies on the unitary-plus-rank-one structure of the companion
matrix, we do not have as much freedom to balance the matrix as one has in the
general case. In particular, the diagonal balancing strategy used by xGEEV cannot
be used. However, we do have the freedom to replace p(z) by α−np(αz), where α
is a positive scalar chosen to even out the coefficients of the polynomial. Currently,
an efficient and reliable strategy for choosing α is not known; this is a question that
requires further study. We implemented one very simple strategy here: choose α so
that the magnitude of the constant term is 1. All solvers were tested on both the
original polynomials and on polynomials balanced in this way. The results for the
balanced polynomials were reported only in those cases where there was a significant
difference between results for the balanced and unbalanced polynomials. In some
cases balancing was beneficial, but in other cases it was harmful.

The test set. The first 11 polynomials, Table 2, are polynomials also tested in
[14], for which the roots are known: Wilkinson polynomials and polynomials with
particular distributions of the roots. We added polynomial 9 because it triggers a
special behavior of the CGXZ code compared with polynomial 8.

Some polynomials taken from MPSolve [9] are given in Table 3. We assume the
roots computed by MPSolve, using variable precision arithmetic, to be exact. The
MPSolve collection contains many polynomials deliberately designed to be too ill-
conditioned to solve using double precision arithmetic; we did not report on those.
In [9] it is stated that the polynomial trv m, provided by Carlo Traverso, arises
from the symbolic processing of a system of polynomial equations and has multiple
roots. The Mandelbrot polynomials are defined iteratively as follows: p0(z) = 1,
pi(z) = zpi−1(z)

2 + 1, for i = 1, 2, . . . , k, with n = 2k − 1.

FAST AND STABLE COMPUTATION OF ROOTS 963

Table 4

Special polynomials provided by V. Noferini.

No. Description Deg. Roots
15 polynomial from V. Noferini 12 almost random
16 polynomial from V. Noferini 35 almost random

Table 5

Polynomials to test root finding algorithms from [23].

No. Description Deg. Roots
17 p1(z) with a =1 e−8 3 1 e−8, -1 e−8, 1
18 p1(z) with a =1 e−15 3 1 e−15, -1 e−15, 1
19 p1(z) with a =1 e+8 3 1 e+8, -1 e+8, 1
20 p1(z) with a =1 e+15 3 1 e+15, -1 e+15, 1
21 p3(z) underflow test 10 1 e−1, . . . ,1 e−10
22 p3(z) underflow test 20 1 e−1, . . . ,1 e−20
23 p10(z) deflation test a = 10 e+3 3 1, 1 e+3, 1 e−3
24 p10(z) deflation test a = 10 e+6 3 1, 1 e+6, 1 e−6
25 p10(z) deflation test a = 10 e+9 3 1, 1 e+9, 1 e−9

26 p11(z) deflation test m = 15 60 exp(ikπ
2m

), 0.9 exp(ikπ
2m

)

Table 6

Bernoulli and truncated exponential.

No. Description Deg. Roots
27 Bernoulli polynomial (k = 20) 20 —
28 truncated exponential (k = 20) 20 —

The examples in Table 4, were created for us by Vanni Noferini. The polynomials
have normally distributed real roots with mean 0 and standard deviation 1, where
one random root is scaled by 1 e+12 and another one by 1 e+9. These polynomials
are difficult to balance.

The polynomials in Table 5 are from Jenkins and Traub [23] and were designed
to test particular properties of rootfinding methods. The cubic polynomial p1(z) =
(z − a)(z + a)(z − 1), used in test cases 17−20, examines the termination criteria,
i.e., convergence difficulties; p3(z) =

∏n
i=1(z−10i) checks the occurence of underflow;

and p10(z) = (z − a)(z − 1)(z − a−1) and p11(z) =
∏m−1

k=1−m(z − exp(ikπ2m))
∏3m

k=m(z −
0.9 exp(ikπ2m)) having zeros on two half-circles examine the deflation strategy.

Table 6 reports the Bernoulli polynomial
∑n

k=0 (
n
k) bn−kz

k, with the Bernoulli

numbers of the first kind bn−k and the truncated exponential k!
∑n

k=0
zk

k! .
The polynomials in Table 7 were used in [4] and originate from [1, 10, 13]:

p1(z) = 1 +

(
m

m+ 1
+

m+ 1

m

)
zm + z2m,

p2(z) =
1

m

⎛
⎝m−1∑

j=0

(m+ j)zj + (m+ 1)zm +

m−1∑
j=0

(m+ j)z2m−j

⎞
⎠ ,

p3(z) = (1− λ)zm+1 − (λ+ 1)zm + (λ+ 1)z − (1 − λ).

These polynomials exhibit particular symmetries, with p1(z) and p2(z) palindromic
and p3(z) antipalindromic.

964 J. L. AURENTZ, T. MACH, R. VANDEBRIL, AND D. S. WATKINS

Table 7

Polynomials tested in [4], coming from [1, 10, 13].

No. Description Deg. Roots
29–33 p1(z) with m = 10, 20, 30, 256, 512 2m —
34–38 p2(z) with m = 10, 20, 30, 256, 512 2m —
39–43 p3(z) with m+ 1 = 20, . . . , 1024, λ = 0.9 m+ 1 —
44–48 p3(z) with m+ 1 = 20, . . . , 1024, λ = 0.999 m+ 1 —

Discussion. For the single and double shift codes, forward and backward errors
of both balanced and unbalanced polynomials are reported. Note, however, that the
results of the unbalanced polynomials are shown only for those cases where balanc-
ing had a significant impact. To make a fair comparison with an unstructured QR
algorithm on the companion matrix, we added to each table a column containing
the results linked to xGEEV, allowing for a more advanced balancing strategy. This
also implies that the results of xGEEV in Tables 9, 11, 13, and 15 originate from a
balanced polynomial, put in a companion matrix balanced once more before its roots
were computed.

Tables 8 and 9 depict the results for the single shifted code, without and with
balancing, respectively. Comparing first LAPACK’s balanced (ZGEEV) and unbal-
anced (ZHSEQR) solvers we see that in general the additional scaling does improve
the forward error, as seen in polynomials 5, 6, 8, 12, and 17–22. Only the polynomials
15 and 16 seem to suffer from the balancing. We can deduce that the forward error
of AMVW is almost always in close proximity to that of LAPACK’s ZHSEQR, except
for polynomials 3, 12, 17, 18, and 21. Balancing those polynomials brings the forward
error up to the same level as ZHSEQR and sometimes even better, as illustrated by
polynomials 17 and 18. However, for polynomial 8 we seem to be unable to achieve the
accuracy of the ZGEEV method with full balancing. Moreover, one should be careful
with balancing, for example, for polynomial 20 AMVW loses five decimal places w.r.t.
the unbalanced version, whereas BEGG gains 8; furthermore, for polynomials 15 and
16 the balancing is disastrous.

Tables 10 and 11 report the backward errors for the single shifted code, without
and with balancing, respectively. Overall, we can state by looking at Table 10 that
the backward error is almost always at the level of machine precision and is compara-
ble to the error of LAPACK’s ZHSEQR and ZGEEV. Moreover, we have an excellent
backward error for polynomials 15 and 16, whereas ZGEEV loses many digits. We
perform well for polynomials 19 and 20, whereas ZHSEQR fails completely. Only for
polynomial 28 are we two or three digits behind. Polynomial 28 is the only case where
balancing seems to help AMVW. For all other cases the balancing has no effect or a
negative effect on the backward error; for example, we record a dramatic loss for poly-
nomial 16. Also for the backward error, the effect of the balancing strongly depends
on the method, for example, ZHSEQR behaves dissimilarly in case 19 compared to
cases 15 and 16.

Tables 12 and 13 report the data of the double shift code with and without bal-
ancing. The forward errors of all three methods, excluding DGEEV, are typically
comparable; except for polynomials 8, 12, and 18 our algorithm is worse than CXGZ,
and for 12 is also much worse than DHSEQR. Except for polynomials 15 and 16,
DGEEV provides the best forward error. After balancing, we achieve an error com-
parable to the one of CXGZ for 12 and 18, but not for polynomial 8. Polynomial 8 is
an interesting case. The representation used by CXGZ and the fact that it operates

FAST AND STABLE COMPUTATION OF ROOTS 965

Table 8

Unbalanced single shift version: relative forward errors.

No. AMVW ZHSEQR ZGEEV BEGG
1 2.1050 e−10 2.2132 e−11 1.8227 e−10 2.6921 e−11
2 5.0840 e−06 1.9949 e−06 2.9499 e−06 6.2327 e−08
3 6.4836 e+00 4.7536 e−03 3.0706 e−03 9.9687 e−01
4 3.4537 e−12 9.9365 e−13 9.6145 e−13 8.2891 e−13
5 2.9382 e−06 3.8860 e−06 8.2346 e−10 4.3172 e−06
6 4.3553 e−01 4.7760 e−01 1.0849 e−04 5.1168 e−01
7 2.1438 e+00 2.4780 e+00 2.7442 e−01 2.2530 e+00
8 3.3777 e−01 1.5862 e+00 2.8288 e−13 1.0000 e+00
9 6.6578 e−02 3.5919 e−02 4.7317 e−02 8.8937 e−01
10 1.2156 e−10 3.6616 e−11 5.3622 e−12 2.6118 e−11
11 1.5779 e−15 3.0227 e−15 2.2861 e−15 1.3545 e−14
12 1.1470 e+02 2.3742 e−04 7.0187 e−08 2.0689 e−04
13 1.2361 e−06 5.9051 e−06 1.0481 e−06 2.9379 e−07
14 2.3801 e−01 2.3893 e−01 2.1137 e−01 1.8421 e−01
15 6.2579 e−13 4.1005 e−13 6.4643 e−09 4.5861 e+00
16 3.1063 e−04 1.5007 e−04 7.6375 e−02 9.5143 e+00
17 5.3671 e−02 6.4531 e−09 2.2830 e−14 1.0000 e+00
18 5.2684 e+06 4.5303 e−02 1.5777 e−15 1.0000 e+00
19 5.0000 e−09 4.5648 e−01 4.4703 e−16 1.2872 e−01
20 7.5000 e−16 7.0539 e+06 1.2500 e−16 2.5385 e+13
21 1.8865 e+07 1.0000 e+00 3.2526 e−15 9.1219 e+07
22 2.8557 e+16 9.7471 e+15 1.2585 e−13 1.5085 e+17
23 4.0658 e−16 2.2204 e−16 1.3323 e−15 2.1103 e−12
24 5.2940 e−16 3.7253 e−16 4.4409 e−16 5.2636 e−10
25 1.2925 e−16 1.1102 e−15 7.7716 e−16 1.7481 e−06
26 3.9438 e−08 6.8424 e−08 1.5569 e−08 3.3993 e−08

Table 9

Balanced single shift version: relative forward errors.

No. AMVW ZHSEQR ZGEEV BEGG
3 1.0936 e−02 1.6164 e−02 1.3548 e−02 3.0069 e−03
5 1.3543 e−09 3.3472 e−10 1.9049 e−10 1.7691 e−10
6 2.4207 e−06 4.6529 e−05 6.5809 e−07 4.8093 e−07
7 7.3168 e−02 7.8505 e−02 3.5468 e−02 9.3801 e−04
8 2.6127 e−03 1.0478 e−01 1.0003 e−13 4.2559 e+00
12 9.4884 e−08 6.5912 e−08 6.5913 e−08 6.5914 e−08
15 1.7688 e−08 1.6919 e−01 3.7136 e−08 1.4816 e+01
16 4.0845 e+00 2.3640 e+00 2.8642 e−01 5.5635 e+00
17 3.3307 e−16 8.0898 e−14 8.0898 e−14 1.9533 e−12
18 2.2204 e−16 1.3331 e−11 1.3331 e−11 7.8722 e−08
19 5.8531 e−13 2.4438 e−14 7.4506 e−16 6.7711 e−13
20 5.0957 e−11 3.7500 e−16 2.5000 e−16 2.0993 e−08
21 1.7896 e−08 6.7911 e−09 4.1200 e−15 1.8439 e−07

on a row companion matrix3 seem to make CXGZ particularly suited to compute
roots of this polynomial with excellent forward error. However, the backward error
of all methods is excellent as shown in Table 14. But, if one shifts the roots by −3 as
done deliberately by us in polynomial 9, CXGZ loses its advantages.

Tables 14 and 15 depict the backward errors for the double shift code. Some
interesting polynomials, when comparing AMVW with LAPACK, are 12, 15, 16, and

3This triggers initial zero shifts, and as a consequence the smallest roots are computed first up
to high accuracy.

966 J. L. AURENTZ, T. MACH, R. VANDEBRIL, AND D. S. WATKINS

Table 10

Unbalanced single shift version: backward error measure (8.2).

No. AMVW ZHSEQR ZGEEV BEGG
1 5.1196 e−15 4.1115 e−16 5.8997 e−16 1.5451 e−15
2 3.9604 e−15 1.3259 e−15 8.2223 e−15 3.4513 e−15
3 1.0444 e−14 4.4686 e−15 1.0897 e−14 3.3521 e−01
4 2.5540 e−15 1.4871 e−15 4.7586 e−15 1.4956 e−14
5 8.2139 e−16 1.0871 e−15 1.3384 e−15 2.1723 e−15
6 2.2860 e−15 2.5367 e−15 1.0886 e−15 1.2435 e−14
7 2.2331 e−15 1.2368 e−15 1.2356 e−15 2.9261 e−14
8 2.7015 e−15 4.4440 e−16 4.4440 e−15 4.3155 e−14
9 2.7186 e−14 4.3771 e−15 1.7130 e−15 5.4169 e−01
10 1.5407 e−15 2.5169 e−15 2.8764 e−15 1.7898 e−14
11 2.0003 e−15 2.8510 e−15 3.5121 e−15 2.6659 e−14
12 4.7822 e−15 9.4479 e−13 4.7233 e−15 4.7723 e−06
13 4.9819 e−15 4.3757 e−15 2.7359 e−15 2.2766 e−14
14 1.8597 e−15 3.8582 e−15 6.5575 e−15 5.5561 e−14
15 1.3389 e−15 2.1200 e−15 2.7315 e−12 7.5294 e−01
16 3.3954 e−15 1.2577 e−15 1.7363 e−10 4.8497 e−01
17 7.0711 e−17 2.3551 e−16 3.1702 e−22 8.6299 e−17
18 1.9626 e−17 4.7103 e−16 1.2551 e−30 1.5701 e−16
19 2.8284 e−16 7.9289 e−01 5.2684 e−24 1.7032 e−01
20 9.9516 e−17 3.5184 e+13 9.9516 e−17 7.0711 e−01
21 6.8952 e−16 8.8275 e−16 1.2931 e−18 7.6787 e−15
22 4.2578 e−16 1.2713 e−15 4.1379 e−17 1.0589 e−13
23 2.5722 e−16 3.8583 e−16 1.4147 e−15 5.1444 e−16
24 1.3171 e−16 2.6342 e−16 5.2684 e−16 6.8489 e−15
25 1.5701 e−26 8.0922 e−16 5.3948 e−16 7.0711 e−11
26 7.6615 e−15 8.8366 e−15 1.0720 e−14 2.0853 e−13
27 2.1675 e−15 4.5595 e−15 1.7593 e−15 1.7038 e−14
28 3.1876 e−12 5.0699 e−14 3.2455 e−15 7.3074 e−03
29 4.9669 e−15 5.1055 e−15 3.7699 e−15 2.8623 e−14
30 9.5901 e−15 8.2199 e−15 1.1074 e−14 1.8039 e−13
31 9.9974 e−15 1.0205 e−14 1.5443 e−14 4.3526 e−13
32 2.1807 e−13 1.3192 e−13 1.7909 e−13 3.7859 e−11
33 8.0583 e−13 4.4225 e−13 2.3127 e−13 1.6207 e−10
34 2.9405 e−15 4.8468 e−15 2.5078 e−15 1.9583 e−14
35 4.9934 e−15 6.1108 e−15 8.8445 e−15 3.9206 e−14
36 6.4280 e−15 1.1107 e−14 9.6821 e−15 9.2465 e−14
37 7.1336 e−14 7.0023 e−14 2.9302 e−14 3.3525 e−12
38 8.0993 e−14 2.5129 e−13 7.2148 e−14 1.2479 e−11
39 3.0150 e−15 8.8480 e−15 5.3923 e−15 7.8171 e−14
40 4.8915 e−15 1.0332 e−14 1.0953 e−14 2.4283 e−13
41 8.9851 e−15 1.6620 e−14 2.8066 e−14 5.7554 e−13
42 2.5584 e−13 1.2546 e−13 3.1821 e−13 7.4880 e−11
43 3.4998 e−13 5.1111 e−13 3.6126 e−13 4.1188 e−10
44 2.6053 e−15 4.2770 e−14 1.4583 e−14 1.3910 e−13
45 5.8822 e−15 4.2237 e−14 1.7358 e−14 2.3743 e−13
46 8.0065 e−15 4.8979 e−14 1.7963 e−14 5.7847 e−13
47 4.2851 e−13 2.9020 e−13 4.7464 e−13 7.4323 e−11
48 1.9136 e−12 1.2078 e−12 9.1693 e−13 4.1296 e−10

18–20; otherwise we are in each other’s proximity. AMVW appears robust for the
balancing; we gain accuracy in cases 12, 19, and 20 and arrive at the same level as
LAPACK, but we lose accuracy for polynomials 3, 9, 15, and 16. CXGZ, on the other
hand, seems to benefit often from the balancing, for example, of cases 1, 2, and 3.

FAST AND STABLE COMPUTATION OF ROOTS 967

Table 11

Balanced single shift version: backward error measure (8.2).

No. AMVW ZHSEQR ZGEEV BEGG
3 3.6523 e−12 9.3948 e−12 3.6005 e−15 4.0993 e−14
8 1.3945 e−15 4.3632 e−15 3.5552 e−15 8.0150 e−02
9 3.4155 e−11 1.8478 e−11 5.3243 e−15 3.3980 e−14
12 2.9828 e−14 7.8137 e−13 8.0198 e−15 5.1514 e−14
15 3.2535 e−12 3.5266 e−06 7.7020 e−11 1.8265 e+06
16 4.6922 e−04 9.1242 e−05 3.3598 e−09 4.4007 e+01
19 4.1352 e−13 1.4142 e−16 5.6569 e−16 9.3791 e−13
20 3.6032 e−11 1.9903 e−16 2.9855 e−16 2.9680 e−08
28 2.1364 e−14 1.3348 e−14 4.7639 e−15 4.6575 e−14

Table 12

Unbalanced double shift version: relative forward errors.

No. AMVW DHSEQR DGEEV CGXZ
1 1.6210 e−10 4.9825 e−11 2.3028 e−10 1.5539 e−09
2 1.3451 e−05 2.0112 e−06 2.8902 e−06 4.0939 e−02
3 1.1105 e−01 4.7901 e−03 1.9342 e−03 1.1366 e+00
4 1.0592 e−11 9.7908 e−13 9.6026 e−13 1.3891 e−12
5 2.9139 e−06 7.3219 e−07 4.6375 e−09 5.2079 e−07
6 3.1037 e−01 4.7761 e−01 1.0670 e−04 2.7667 e−01
7 2.1373 e+00 2.4780 e+00 2.7437 e−01 1.7181 e+00
8 1.3517 e−02 1.5862 e+00 2.9221 e−13 2.3874 e−12
9 6.9255 e−02 3.6109 e−02 4.7155 e−02 3.6172 e−02
10 9.1321 e−11 3.5446 e−11 2.7766 e−12 8.4860 e−12
11 2.1897 e−15 1.7772 e−15 1.7902 e−15 1.5029 e−15
12 3.8450 e+09 1.5396 e−07 6.5915 e−08 9.9998 e−01
13 1.6734 e−06 5.8771 e−06 1.4481 e−06 1.2551 e−07
14 1.9244 e−01 2.3890 e−01 2.0926 e−01 1.8676 e−01
15 3.5791 e−13 2.8406 e−13 1.6215 e−07 6.5713 e−09
16 5.0829 e−02 6.0853 e−02 3.4274 e−01 3.1499 e−02
17 1.5574 e−01 1.5467 e−01 1.6544 e−16 4.9644 e−01
18 2.3283 e+05 1.1886 e+07 0.0000 e+00 1.0000 e+00
19 3.4217 e−02 0.0000 e+00 2.2204 e−16 2.9289 e−01
20 1.4074 e+14 1.1102 e−16 2.5000 e−16 8.9582 e+13
21 8.2155 e+06 8.3282 e+05 3.3881 e−15 2.2859 e+04
22 1.3689 e+17 1.2372 e+16 2.1125 e−13 3.9170 e+16
23 2.2204 e−16 2.7105 e−16 5.4570 e−16 1.1018 e−13
24 6.6310 e−14 1.3136 e−11 4.6322 e−15 4.9989 e−08
25 3.8147 e−16 1.8274 e−09 2.4169 e−14 5.0000 e−01
26 2.0278 e−08 6.9016 e−08 2.0442 e−08 2.0860 e−08

Table 13

Balanced double shift version: relative forward errors.

No. AMVW DHSEQR DGEEV CGXZ
2 2.5408 e−07 6.4221 e−07 1.4197 e−06 3.7187 e−08
3 4.3991 e−03 1.6125 e−02 1.3044 e−02 9.9774 e−05
5 1.1167 e−09 9.9303 e−10 7.7720 e−10 1.9518 e−10
6 9.5742 e−06 4.7094 e−05 4.6864 e−07 3.8280 e−07
7 9.1226 e−02 7.8035 e−02 3.6341 e−02 3.7364 e−03
12 1.2993 e−07 6.5912 e−08 6.5913 e−08 6.5913 e−08
15 2.8718 e−08 1.4421 e+00 1.3549 e−06 3.0468 e−11
16 9.3849 e+00 1.0386 e+00 3.0570 e−01 1.0000 e+00
17 1.4724 e−14 2.8245 e−12 2.8245 e−12 4.4409 e−16
18 2.3219 e−07 1.9722 e−16 1.9722 e−16 5.0000 e−06
19 5.9605 e−16 2.2204 e−16 2.2204 e−16 6.6613 e−16
20 1.1102 e−16 0.0000 e+00 2.2204 e−16 0.0000 e+00
21 4.6878 e−08 1.0450 e−04 4.3944 e−15 2.6235 e−11

968 J. L. AURENTZ, T. MACH, R. VANDEBRIL, AND D. S. WATKINS

AMVW: 4.269

BEGG: 15.442

101 102 103 104

10−5

10−2

101

T
im

e
in

se
co
n
d
s

AMVW
ZHSEQR
BEGG

101 102 103 104
10−16

10−12

10−8

Dimension

A
cc
u
ra
cy

Fig. 1. Runtime and accuracy for the single shift code for random coefficients.

AMVW: 3.817

CGXZ: 9.023

101 102 103 104

10−5

10−2

101

T
im

e
in

se
co
n
d
s

AMVW
DHSEQR
CGXZ

101 102 103 104
10−16

10−12

10−8

Dimension

A
cc
u
ra
cy

Fig. 2. Runtime and accuracy for the double shift code for random coefficients.

FAST AND STABLE COMPUTATION OF ROOTS 969

AMVW: 3.198

BEGG: 16.933

101 102 103 104

10−5

10−2

101

T
im

e
in

se
co
n
d
s

AMVW
ZHSEQR
BEGG

101 102 103 104
10−16

10−12

10−8

Dimension

A
cc
u
ra
cy

Fig. 3. Runtime and accuracy for the single shift code for roots of unity.

AMVW: 3.554

CGXZ: 8.883

101 102 103 104

10−5

10−2

101

T
im

e
in

se
co
n
d
s

AMVW
DHSEQR
CGXZ

101 102 103 104
10−16

10−12

10−8

Dimension

A
cc
u
ra
cy

Fig. 4. Runtime and accuracy for the double shift code for roots of unity.

970 J. L. AURENTZ, T. MACH, R. VANDEBRIL, AND D. S. WATKINS

Table 14

Unbalanced double shift version: backward error measure (8.2).

No. AMVW DHSEQR DGEEV CGXZ
1 1.2554 e−15 3.5731 e−15 1.4486 e−15 1.5982 e−11
2 4.6694 e−15 2.4362 e−15 1.5226 e−15 1.8855 e−06
3 2.4299 e−14 4.9498 e−15 4.8598 e−15 1.6969 e−01
4 2.0819 e−15 4.7586 e−15 2.0394 e−15 2.6427 e−14
5 3.2376 e−16 4.1775 e−16 5.8485 e−16 4.5953 e−15
6 1.2676 e−15 1.2676 e−15 5.4327 e−16 1.6540 e−14
7 1.3531 e−15 1.2344 e−15 1.4243 e−15 1.8041 e−15
8 2.0200 e−15 4.1208 e−15 3.8784 e−15 2.3755 e−14
9 1.2532 e−15 3.0366 e−15 4.9163 e−15 1.7128 e−04
10 2.8916 e−15 3.2139 e−15 1.2145 e−15 2.1735 e−14
11 2.5681 e−15 4.1186 e−15 3.0526 e−15 1.9382 e−15
12 1.4556 e−06 4.7803 e−12 8.1089 e−15 9.9727 e−01
13 3.3535 e−15 2.0554 e−15 2.7044 e−16 1.0223 e−14
14 9.9463 e−15 5.3784 e−15 5.1942 e−15 2.7746 e−13
15 1.1921 e−15 1.8423 e−15 1.5479 e−10 5.5105 e−10
16 6.5917 e−15 2.6367 e−15 1.4353 e−10 2.3723 e−05
17 7.8505 e−17 1.8694 e−16 1.1698 e−24 2.3551 e−16
18 4.8682 e−18 9.9894 e−17 0.0000 e+00 3.1402 e−16
19 4.9218 e−02 0.0000 e+00 1.4142 e−16 3.5355 e−01
20 7.0711 e−01 9.9516 e−17 2.9855 e−16 7.1278 e−01
21 9.6550 e−17 8.8275 e−16 1.3793 e−17 1.1988 e−05
22 9.9309 e−16 8.0260 e−16 4.1379 e−17 9.8621 e−01
23 2.5722 e−16 1.2861 e−16 6.4305 e−16 3.8583 e−16
24 6.7435 e−14 2.6342 e−16 1.0537 e−15 3.5347 e−15
25 2.6974 e−16 1.3487 e−16 1.7036 e−24 3.5355 e−11
26 4.7127 e−15 1.0052 e−14 6.5066 e−15 1.9228 e−14
27 1.0238 e−15 1.9382 e−15 8.6142 e−15 6.6957 e−14
28 4.4046 e−14 4.3488 e−14 5.4360 e−15 6.8382 e−01
29 2.5594 e−15 2.8052 e−15 5.3901 e−15 5.4346 e−15
30 3.7532 e−15 1.2390 e−14 1.7220 e−14 2.9183 e−14
31 7.7228 e−15 1.2892 e−14 1.5818 e−14 1.9156 e−14
32 6.4705 e−14 9.7108 e−14 1.2664 e−13 6.1607 e−11
33 1.3277 e−13 2.6016 e−13 4.8189 e−13 3.9090 e−09
34 3.8754 e−15 3.7173 e−15 5.6945 e−15 2.5309 e−15
35 9.1937 e−15 5.3933 e−15 5.9242 e−15 3.8843 e−15
36 7.0017 e−15 1.1381 e−14 5.1544 e−15 7.0245 e−15
37 6.2601 e−14 7.5814 e−14 2.2697 e−14 3.0492 e−12
38 5.1983 e−14 2.5335 e−13 4.9573 e−14 2.8747 e+07
39 2.7223 e−15 1.1619 e−14 7.4048 e−15 2.8782 e−15
40 9.2429 e−15 1.0906 e−14 1.1375 e−14 1.1950 e−14
41 9.9618 e−15 5.3342 e−14 3.9347 e−14 1.1091 e−14
42 6.1524 e−14 5.2484 e−13 5.6221 e−13 6.0132 e−13
43 1.6310 e−13 2.0665 e−12 2.1802 e−12 6.0115 e−12
44 6.7513 e−15 4.6688 e−14 1.7129 e−14 9.3708 e−14
45 5.4463 e−15 3.8494 e−14 2.0670 e−14 1.1650 e−13
46 1.3952 e−14 4.2139 e−14 2.7587 e−14 1.2530 e−13
47 9.2145 e−14 2.4008 e−13 8.0347 e−13 1.2574 e−12
48 1.3591 e−13 2.2192 e−12 1.0772 e−12 5.2213 e−12

FAST AND STABLE COMPUTATION OF ROOTS 971

Table 15

Balanced double shift version: backward error measure (8.2).

No. AMVW DHSEQR DGEEV CGXZ
1 1.7383 e−15 1.2337 e−14 1.5451 e−15 2.4046 e−14
2 1.2141 e−13 8.7755 e−14 4.2634 e−15 2.8220 e−14
3 4.1017 e−12 9.4995 e−12 5.5798 e−15 6.9387 e−14
8 1.0908 e−15 3.3128 e−15 2.8280 e−15 1.8422 e−14
9 1.4707 e−11 1.8488 e−11 2.4582 e−15 4.2897 e−14
12 2.3391 e−15 7.7783 e−13 4.1584 e−16 1.0812 e−14
15 4.6325 e−11 2.2070 e−03 3.4985 e−10 4.1042 e−12
16 7.6627 e−06 4.0016 e−07 1.2261 e−09 2.4671 e−04
18 4.7103 e−16 1.3945 e−31 1.3945 e−31 7.0711 e−21
19 8.4853 e−16 2.8284 e−16 4.2426 e−16 8.4853 e−16
20 9.9516 e−17 0.0000 e+00 2.9855 e−16 0.0000 e+00
21 5.5585 e−15 9.8398 e−13 2.7586 e−17 2.7586 e−17
22 4.3034 e−15 4.3103 e−19 2.7586 e−17 3.1413 e−11
28 3.9028 e−15 1.7981 e−14 2.9271 e−15 1.1011 e−14

Fig. 5. Relative backward error of the coefficients of the polynomial over ‖x‖2.

8.4. Tightness of the backward error bound. This experiment was sug-
gested to us by Froilán Dopico to test the backward error bound. We use polynomials
of degree 20 as in test set (iv) from Jenkins and Traub [23]. The polynomials have
random coefficients aj = mjρj ·10ej , mj uniformly distributed in (−1, 1), ej uniformly
distributed in (−μ, μ), with μ = 0, 1, 2, . . . , 12, and ρj uniformly distributed on the
unit circle. The measure of backward error used is (8.2). For each ρ 500 polynomials
are sampled. Each polynomial is represented by a geometrical symbol in Figure 5.
The x-value is ‖x‖2, and the y-value represents the backward error. To increase the
readibility Figure 5 is split into two parts, one for our algorithm and one for ZH-
SEQR. The results depicted are only for the CSS code; the results for the double shift
code look similar and are omitted. The algorithms BEGG and CGXZ exhibit similar
behavior.

The backward analysis shows that the normwise backward error on the companion
matrix depends on ‖x‖2. The normwise backward error on the coefficients of the
polynomial has an additional factor of max |ai|, which is bounded by ‖x‖2. The plot
shows the relative normwise backward error on the coefficients, where relative means

972 J. L. AURENTZ, T. MACH, R. VANDEBRIL, AND D. S. WATKINS

that we divided the error by ‖x‖2. We observe that the maximum achieved errors
have the same slope as the curve representing ‖x‖2, implying that our error bound is
tight. Moreover, exactly the same behavior is observed for ZHSEQR.

9. Conclusions. We have presented a fast and backward stable algorithm to
compute the roots of a polynomial presented in monomial basis form. The algorithm
is Francis’s implicitly shifted QR algorithm applied to a special representation of the
companion matrix consisting of 3n − 1 rotators. Thus the memory requirement is
O(n). The flop count is O(n) per iteration or O(n2) overall. Extensive tests indicate
that the new algorithm is about as accurate as the (slow) Francis algorithm applied
directly to the companion matrix. It is faster than other fast algorithms that have
been devised for this problem, and its accuracy is comparable or better.

Acknowledgments. The authors thank Vanni Noferini (University of Manch-
ester) for providing polynomials 15 and 16, which proved to be quite challenging
for some of the methods. We also thank Froilán Dopico (Universidad Carlos III de
Madrid) for suggesting the experiment in subsection 8.4. We also greatly appreciate
Piers Lawrence’s comments on an earlier version of the manuscript and the referees’
detailed remarks.

REFERENCES

[1] T. Aktosun, D. Gintides, and V. G. Papanicolaou, The uniqueness in the inverse problem
for transmission eigenvalues for the spherically symmetric variable-speed wave equation,
Inverse Problems, 27 (2011), 115004.

[2] J. L. Aurentz, R. Vandebril, and D. S. Watkins, Fast computation of the zeros of a
polynomial via factorization of the companion matrix, SIAM J. Sci. Comput., 35 (2013),
pp. A255–A269.

[3] J. L. Aurentz, R. Vandebril, and D. S. Watkins, Fast computation of eigenvalues of com-
panion, comrade, and related matrices, BIT, 54 (2014), pp. 7–30.

[4] R. Bevilacqua, G. M. Del Corso, and L. Gemignani, A CMV-Based Eigensolver for Com-
panion Matrices, preprint, arXiv:1406.2820 [math.NA], 2014.

[5] D. A. Bini, Numerical computation of polynomial zeros by means of Aberth’s algorithm, Numer.
Algorithms, 13 (1996), pp. 179–200.

[6] D. A. Bini, P. Boito, Y. Eidelman, L. Gemignani, and I. Gohberg, A fast implicit QR
eigenvalue algorithm for companion matrices, Linear Algebra Appl., 432 (2010), pp. 2006–
2031.

[7] D. A. Bini, F. Daddi, and L. Gemignani, On the shifted QR iteration applied to companion
matrices, Electron. Trans. Numer. Anal., 18 (2004), pp. 137–152.

[8] D. A. Bini, Y. Eidelman, L. Gemignani, and I. Gohberg, Fast QR eigenvalue algorithms
for Hessenberg matrices which are rank-one perturbations of unitary matrices, SIAM J.
Matrix Anal. Appl., 29 (2007), pp. 566–585.

[9] D. A. Bini and G. Fiorentino, Design, analysis, and implementation of a multiprecision
polynomial rootfinder, Numer. Algorithms, 23 (2000), pp. 127–173.

[10] D. A. Bini, G. Fiorentino, L. Gemignani, and B. Meini, Effective fast algorithms for poly-
nomial spectral factorization, Numer. Algorithms, 34 (2003), pp. 217–227.

[11] P. Boito, Y. Eidelman, and L. Gemignani, Implicit QR for rank-structured matrix pencils,
BIT, 54 (2013), pp. 85–111.

[12] P. Boito, Y. Eidelman, L. Gemignani, and I. Gohberg, Implicit QR with compression,
Indag. Math., 23 (2012), pp. 733–761.

[13] A. Böttcher and M. Halwass, Wiener–Hopf and spectral factorization of real polynomials
by Newton’s method, Linear Algebra Appl., 438 (2013), pp. 4760–4805.

[14] S. Chandrasekaran, M. Gu, J. Xia, and J. Zhu, A fast QR algorithm for companion matri-
ces, in Recent Advances in Matrix and Operator Theory, Oper. Theory Adv. Appl., 179,
Springer, New York, 2007, pp. 111–143.

[15] F. De Terán and F. M. Dopico, Low rank perturbation of regular matrix polynomials, Linear
Algebra Appl., 430 (2009), pp. 579–586.

FAST AND STABLE COMPUTATION OF ROOTS 973

[16] S. Delvaux, K. Frederix, and M. Van Barel, An algorithm for computing the eigenvalues
of block companion matrices, Numer. Algorithms, 62 (2013).

[17] A. Edelman and H. Murakami, Polynomial roots from companion matrix eigenvalues, Math.
Comp., 64 (1995), pp. 763–776.

[18] Y. Eidelman, L. Gemignani, and I. C. Gohberg, Efficient eigenvalue computation for
quasiseparable Hermitian matrices under low rank perturbation, Numer. Algorithms, 47
(2008), pp. 253–273.

[19] Y. Eidelman, I. Gohberg, and I. Haimovici, Separable Type Representations of Matrices and
Fast Algorithms—Volume 2: Eigenvalue Method, Oper. Theory Adv. Appl., 235, Springer,
New York, 2013.

[20] J. G. F. Francis, The QR. transformation. A unitary analogue to the LR transformation—
Part 1, Computer J., 4 (1961), pp. 265–271.

[21] J. G. F. Francis, The QR Transformation—Part 2, Computer J., 4 (1962), pp. 332–345.
[22] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, 1996.
[23] M. A. Jenkins and J. F. Traub, Principles for testing polynomial zerofinding programs, ACM

Trans. Math. Software, 1 (1975), pp. 26–34.
[24] T. Mach and R. Vandebril, On deflations in extended QR algorithms, SIAM J. Matrix Anal.

Appl., 35 (2014), pp. 559–579.
[25] C. B. Moler, Cleve’s corner: Roots—of polynomials, that is, Mathworks Newsletter, 5 (1991),

pp. 8–9.
[26] MPFUN Multiprecision Software. http://www.netlib.org/mpfun (2005).
[27] K.-C. Toh and L. N. Trefethen, Pseudozeros of polynomials and pseudospectra of companion

matrices, Numer. Math., 68 (1994), pp. 403–425.
[28] M. Van Barel, R. Vandebril, P. Van Dooren, and K. Frederix, Implicit double shift

QR-algorithm for companion matrices, Numer. Math., 116 (2010), pp. 177–212.
[29] P. Van Dooren and P. Dewilde, The eigenstructure of an arbitrary polynomial matrix:

Computational aspects, Linear Algebra Appl., 50 (1983), pp. 545–579.
[30] R. Vandebril and G. M. Del Corso, An implicit multishift QR-algorithm for Hermitian plus

low rank matrices, SIAM J. Sci. Comput., 32 (2010), pp. 2190–2212.
[31] D. S. Watkins, The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods, SIAM,

Philadelphia, 2007.
[32] D. S. Watkins, Fundamentals of Matrix Computations, 3rd ed., Pure Appl. Math., John Wiley,

New York, 2010.
[33] D. S. Watkins, Francis’s algorithm, Amer. Math. Monthly, 118 (2011), pp. 387–403.
[34] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Numer. Math. Sci. Comput., Oxford

University Press, New York, 1988.
[35] P. Zhlobich, Differential qd algorithm with shifts for rank-structured matrices, SIAM J. Matrix

Anal. Appl., 33 (2012).

http://www.netlib.org/mpfun

