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FULLY ADAPTIVE NEWTON-GALERKIN METHODS FOR

SEMILINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

MARIO AMREIN AND THOMAS P. WIHLER

Abstract. In this paper we develop an adaptive procedure for the numerical
solution of general, semilinear elliptic problems with possible singular per-
turbations. Our approach combines both a prediction-type adaptive Newton
method and an adaptive finite element discretization (based on a robust a

posteriori error analysis), thereby leading to a fully adaptive Newton-Galerkin
scheme. Numerical experiments underline the robustness and reliability of the
proposed approach for different examples.

1. Introduction

The focus of this paper is the numerical approximation of semilinear elliptic
problems with possible singular perturbations. More precisely, for a fixed pa-
rameter ε > 0 (possibly with ε ≪ 1), and a continuously differentiable function
f : R→ R, we consider the problem of finding a function u : Ω→ R which satisfies

−ε∆u = f(u) in Ω, u = 0 on ∂Ω. (1)

Here, Ω ⊂ R
d, with d = 1 or d = 2, is an open and bounded 1d interval or a

2d Lipschitz polygon, respectively. Problems of this type appear in a wide range
of applications including, e.g., nonlinear reaction-diffusion in ecology and chemical
models [5, 9, 12, 16, 17], economy [3], or classical and quantum physics [4, 24].

From an analysis point of view, semilinear elliptic boundary value problems (1)
have been studied in detail by a number of authors over the last decades; we refer,
e.g., to the monographs [1, 19, 23] and the references therein. In particular, solu-
tions of (1) are known to be typically not unique (even infinitely many solutions
may exist), and, in the singularly perturbed case, to exhibit boundary layers, inte-
rior shocks, and (multiple) spikes. The existence of multiple solutions due to the
nonlinearity of the problem and/or the appearance of singular effects constitute two
challenging issues when solving problems of this type numerically; see, e.g.,[20, 27].

Nowadays the use of the Newton-Raphson method in dealing with nonlinear
phenomena is standard. Indeed, this method is highly successful if initial guesses
are chosen close enough to a solution and if the basins of attraction for different
solutions are sufficiently well-behaved for the Newton iteration to stay within the
same attractor. As a consequence, on a local level, the scheme is often celebrated for
its quadratic convergence regime close to a root. From a global perspective, however,
the Newton method is well-known to exhibit chaotic behavior. Indeed, applying the
Newton method to algebraic systems of equations, for example, may result in highly
complex or even fractal attractor boundaries of the associated roots; see, e.g., [18].

2010 Mathematics Subject Classification. 49M15,58C15,65N30.
Key words and phrases. Adaptive Newton-Raphson methods, semilinear elliptic problems,

singularly perturbed problems, adaptive finite element methods.
1

http://arxiv.org/abs/1408.5221v2


2 M. AMREIN AND T. P. WIHLER

This is related to the fact that the Newton iteration may be unstable in the sense
that, farther away from a root, iterates may switch from one basin of attraction
to another, and hence, converge to an undesired root (or even diverge). In the
context of semilinear elliptic PDE the situation is even worse (and yet more severe
in the singularly perturbed case): In fact, for certain types of problems, the Newton
iteration will typically tend to become unbounded, and hence, will not approach
a sensible solution at all; see, e.g., [6], where this issue has been addressed for a
certain class of problems by means of a suitable rescaling technique in each step.
A frequently employed remedy to tame (although not to eliminate) the chaotic
behavior of Newton’s method is the use of damping to avoid the appearance of
possibly large updates in the iterations. An even more sophisticated way to further
improve the quality of the results is the application of variable damping; see, e.g.,
the extensive overview [7] or [8, 10] for different variations of the classical Newton
scheme. The idea of adaptively adjusting the magnitude of the Newton updates
has also been studied in the recent articles [2, 21]; there, following, e.g., [15, 18, 22],
the Newton method was identified as the numerical discretization of a specific
ordinary differential equation (ODE)—the so-called continuous Newton method—
by the explicit Euler scheme, with a fixed step size k = 1. Then, in order to tame
the chaotic behavior of the Newton iterations, the idea presented in [2, 21] is based
on discretizing the continuous Newton ODE by the explicit Euler method with
variable step sizes, and to combine it with a simple step size control procedure; in
particular, the resulting algorithm retains the optimal step size k = 1 whenever
sensible and is able to deal with singularities in the iterations more carefully than
the classical Newton scheme. In fact, numerical experiments for algebraic and
differential equations in [2, 21] revealed that the new method is able to generate
attractors with almost smooth boundaries, whereas the traditional Newton method
produces fractal Julia sets; moreover, the numerical tests demonstrated an improved
convergence rate not matched on average by the classical Newton method.

In the present paper, our goal is to extend the approach developed in [2, 21]
to the numerical solution of (1). To this end, we will start by applying an adap-
tive Newton scheme, which is based on some simple prediction strategies, to the
nonlinear boundary value problem (1). Subsequently, we discretize the resulting
sequence of linear problems by a standard P1-finite element method (FEM); note
that this approach is in contrast to solving the nonlinear algebraic system resulting
from a FEM discretization of the original PDE with the aid of the Newton method
(see, e.g., the work on inexact Newton methods [11]). In order to control the ap-
proximation error caused by the FEM discretization, we derive a residual-based a
posteriori error analysis which allows to adaptively refine the finite element mesh;
here, following the approach in [25], we will take particular care of the singular
perturbation in order to obtain ε-robust error estimates. The final error estimate
(Theorem 4.4) bounds the error in terms of the (elementwise) finite element ap-
proximation (FEM-error) and the error caused by the linearization of the original
problem due to Newton’s method (Newton-error). Then, in order to define a fully
adaptive Newton-Galerkin scheme, we propose an interplay between the adaptive
Newton-Raphson method and the adaptive finite element approach: More precisely,
as the adaptive procedure is running, we either perform a Newton-Raphson step in
accordance with our prediction strategy (Section 2) or refine the current mesh based
on the a posteriori error analysis (Section 4), depending on which error (FEM-error
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or Newton-error) is more dominant in the current iteration step. Our numerical
results will reveal that sensible solutions can be found even in the singularly per-
turbed case, and that our scheme is reliable for reasonable choices of initial guesses,
and ε-robust.

For the purpose of this paper, we suppose that a (not necessarily unique) so-
lution u ∈ X := H1

0 (Ω) of (1) exists; here, we denote by H1
0 (Ω) the standard

Sobolev space of functions in H1(Ω) = W 1,2(Ω) with zero trace on ∂Ω. Further-
more, signifying by X ′ = H−1(Ω) the dual space of X , and upon defining the map
Fε : X → X ′ through

〈Fε(u), v〉 :=

∫

Ω

{ε∇u · ∇v − f(u)v} dx ∀v ∈ X, (2)

where 〈·, ·〉 is the dual product in X ′×X , the above problem (1) can be written as
a nonlinear operator equation in X ′:

u ∈ X : Fε(u) = 0. (3)

In addition, on any subset D ⊆ Ω, we introduce the norm

|||u|||ε,D :=
(
ε ‖∇u‖

2
0,D + ‖u‖

2
0,D

)1/2

, (4)

where ‖ · ‖0,D denotes the L2-norm on D. Note that, in the case of f(u) = −u,
when (1) is linear and strongly elliptic, the norm |||·|||ε,Ω is a natural energy norm
on X . Frequently, for D = Ω, the subindex ‘D’ will be omitted. Furthermore, the
associated dual norm of Fε from (2) is given by

|||Fε(u)|||X′,ε = sup
v∈X

|||v|||ε=1

∫

Ω

{ε∇u · ∇v − f(u)v} dx.

Throughout this work we shall use the abbreviation x 4 y to mean x ≤ cy, for a
constant c > 0 independent of the mesh size h and of ε > 0.

The paper is organized as follows: In Section 2 we will consider the Newton-
Raphson method within the context of dynamical systems in general Banach spaces,
and present two prediction strategies for controlling the Newton step size parameter.
Furthermore, Section 3 focuses on the application of the Newton-Raphson method
to semilinear elliptic problems. In addition, we discuss the discretization of the
problems under consideration by finite element methods in Section 4, and derive an
ε-robust a posteriori error analysis. A series of numerical experiments illustrating
the performance of the fully adaptive Newton-Galerkin scheme proposed in this
work will be presented as well. Finally, we summarize our findings in Section 5.

2. Adaptive Newton-Raphson Methods in Banach Spaces

In the following section we shall briefly revisit the adaptive Newton algorithm
from [2], and additionally, will derive an improved variant of our previous work.

2.1. Abstract Framework. Let X,Y be two Banach spaces, with norms ‖ · ‖X
and ‖ · ‖Y , respectively. Given an open subset Ξ ⊂ X , and a (possibly nonlinear)
operator F : Ξ→ Y , we consider the nonlinear operator equation

F(u) = 0, (5)
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for some unknown zeros u ∈ Ξ. Supposing that the Fréchet derivative F′ of F exists
in Ξ (or in a suitable subset), the classical Newton-Raphson method for solving (5)
starts from an initial guess u0 ∈ Ξ, and generates the iterates

un+1 = un + δn, n ≥ 0, (6)

where the update δn ∈ X is implicitly given by the linear equation

F
′(un)δn = −F(un), n ≥ 0.

Naturally, for this iteration to be well-defined, we need to assume that F
′(un) is

invertible for all n ≥ 0, and that {un}n≥0 ⊂ Ξ.

2.2. A Simple Prediction Strategy. In order to improve the reliability of the
Newton method (6) in the case that the initial guess u0 is relatively far away from
a root u∞ ∈ Ξ of F, F(u∞) = 0, introducing some damping in the Newton-Raphson
method is a well-known remedy. In that case (6) is rewritten as

un+1 = un − knF
′(un)

−1
F(un), n ≥ 0, (7)

where kn > 0, n ≥ 0, is a damping parameter that may be adjusted adaptively in
each iteration step.

Provided that F
′(u) is invertible on a suitable subset of Ξ ⊂ X , we define the

Newton-Raphson Transform by

u 7→ NF(u) := −F
′(u)−1

F(u).

Then, rearranging terms in (7), we notice that

un+1 − un

kn
= NF(un), n ≥ 0, (8)

i.e., (7) can be seen as the discretization of the Davydenko-type system,

u̇(t) = NF(u(t)), t ≥ 0, u(0) = u0, (9)

by the forward Euler scheme with step size kn > 0.
For t ∈ [0,∞), the solution u(t) of (9) defines a trajectory in X that begins

at u0, and that will potentially converge to a zero of F as t→∞. Indeed, this can
be seen (formally) from the integral form of (9), that is,

F(u(t)) = F(u0)e
−t, t ≥ 0, (10)

which implies that F(u(t))→ 0 as t→∞.
Now taking the view of dynamical systems, our goal is to compute an upper

bound for the value of the step sizes kn > 0 from (7), n ≥ 0, so that the discrete
forward Euler solution {un}n≥0 from (7) stays reasonably close to the continuous
solution of (9). To this end, we approximate the trajectory u from (9) close to the
initial value u0 by a second-order Taylor expansion:

u(t) ≈ u0 + tu̇(0) + t2ξ, (11)

for some (fixed) ξ ∈ X to be determined. Using the integral form (10), we see that

F(u0)e
−t = F(u(t)) ≈ F(u0 + tu̇(0) + t2ξ),

where a Taylor expansion of F leads to F(u0)e
−t ≈ F(u0) + F

′(u0)(tu̇(0) + t2ξ).
Moreover, from (9) we observe that

u̇(0) = NF(u0), (12)
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or equivalently, F′(u0)u̇(0) = −F(u0), and hence F(u0)(e
−t + t − 1) ≈ t2F′(u0)ξ.

Approximating e−t ≈ 1− t+ 1
2 t

2 results in

ξ ≈
1

2
F
′(u0)

−1
F(u0) = −

1

2
NF(u0). (13)

Combining (11) and (13) yields

‖u(k0)− u1‖X ≈ k20‖ξ‖X ≈
k20
2
‖NF(u0)‖X ,

where u1 = u0 + k0NF(u0) is the first Newton iterate from (7) (with n = 0).
Recalling that u1 may also be seen as the forward Euler approximation (with step
size k0 > 0) of the solution u of (9) at t = k0, the above relation can be understood
as the nodal error between the solution of (9) and its numerical approximation after
the first time step. Then, for a given error tolerance τ > 0, choosing

k0 =

√
2τ

‖NF(u0)‖X
,

we arrive at ‖u(k0)−u1‖X ≈ τ , i.e., the exact trajectory given by the solution of (9)
and its forward Euler approximation from (7) remain τ -close in the ‖.‖X-norm for
the given time step k0.

Iterating the above observations leads to the following prediction strategy for
the selection of kn in (7). Incidentally, the resulting algorithm is identical with the
one presented in [2, Algorithm 2.1] although our derivation here is different.
Algorithm 2.1. Fix a tolerance τ > 0.

(i) Start the Newton iteration with an initial guess u0 ∈ Ξ.
(ii) In each iteration step n = 0, 1, 2, . . ., compute

kn = min

(√
2τ

‖NF(un)‖X
, 1

)
. (14)

(iii) Compute un+1 based on the Newton iteration (7), and go to (ii) with n ←
n+ 1.

Remark 2.2. The minimum in (14) ensures that the step size kn is chosen to
be 1 whenever possible. Indeed, this is required in order to guarantee quadratic
convergence of the Newton iteration close to a root (provided that the root is
simple).

Remark 2.3. Under certain conditions it can been proved that the above algorithm
does in fact converge to a zero of F; see [2, Theorem 2.4].

2.3. An Improved Prediction Strategy. In Section 2.2 our step size prediction
strategy is based on approximating the solution of the Davydenko-type system (9)
by the use of (11). We can improve this approach by looking at the Taylor expansion

u(t) = u0 + tu̇(0) +
1

2
t2ü(0) +O(t3) (15)

of the trajectory u defined by (9). Recalling (12) we can replace u̇(0) above by
the Newton-Raphson transform NF(u0), however, we still need to find a good ap-
proximation of ü(0). This can be accomplished by taking the derivative of (9) with
respect to t at t = 0. Applying the chain rule gives

ü(0) = N
′
F(u0)u̇(0) = N

′
F(u0)NF(u0).
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Since it is preferable to avoid the explicit appearance of N′
F
(u0) we look at, for some

small h > 0, the Taylor expansion

NF(u0 + hNF(u0)) = NF(u0) + hN′
F
(u0)NF(u0) +O(h

2‖NF(u0)‖
2
X).

We conclude

ü(0) = N
′
F
(u0)NF(u0) =

1

h
ηh +O(h‖NF(u0)‖

2
X),

with ηh = NF(u0+hNF(u0))−NF(u0). Inserting this identity into (15) and employ-
ing (12), we arrive at

u(t) = u0 + tNF(u0) +
t2

2h
ηh +O(t3) +O(t2h‖NF(u0)‖

2
X).

Hence, after the first time step of length k0 > 0 there holds

u(k0)− u1 =
k20
2h

ηh +O(k30) +O(k
2
0h‖NF(u0)‖

2
X), (16)

where u1 is the forward Euler solution from (7). Then, for a prescribed toler-

ance τ > 0 as before, we have ‖u(k0) − u1‖X ≈ τ if we set k0 =
√
2τh‖ηh‖

−1
X .

In order to balance the O-terms in (16) it is reasonable to make the choice h =
O(k0‖NF(u0)‖

−2
X ), i.e.,

h = γk0‖NF(u0)‖
−2
X , (17)

for some parameter γ > 0.
With these calculations we can improve the previous Algorithm 2.1 as follows:

Algorithm 2.4. Fix a tolerance τ > 0 and a parameter γ > 0, and set n = 0.

(i) Start the Newton iteration with an initial guess u0 ∈ Ξ.
(ii) If n = 0, then choose

κ0 = min

(√
2τ

‖NF(u0)‖X
, 1

)
,

according to Algorithm 2.1, else if n ≥ 1, let κn = kn−1. Moreover, set
hn = γκn‖NF(un)‖

−2
X based on (17), and define

kn = min

(√
2τhn

‖NF(u0 + hnNF(u0))− NF(u0)‖X
, 1

)
. (18)

(iii) Compute un+1 based on the Newton iteration (7), and go to (ii) with n ←
n+ 1.

Remark 2.5. In contrast to the simple prediction strategy from Section 2.2, Algo-
rithm 2.4 is based on the improved Taylor approximation (15). This will naturally
lead to more reliable results in the adaptive Newton iteration, since the discrete
system (8) will supposedly follow the continuous dynamics of (9) more closely.
Evidently, the price to pay is one additional evaluation of the Newton-Raphson
transform in each time step of the discrete dynamical system (7); cf. (18). This will
roughly increase the complexity of Algorithm 2.1 by a constant factor of 2.

Remark 2.6. The preset tolerance τ in the above adaptive strategies will typically
be fixed a priori. Here, for highly nonlinear problems featuring numerous or even
infinitely many solutions, it is recommendable to select τ ≪ 1 small in order to
increase the chances of remaining within the attractor of the given initial guess.
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This is particularly important if the starting value is relatively far away from a
solution.

3. Application to Semilinear Elliptic Problems

In order to apply an adaptive Newton-Raphson method as introduced in Sec-
tion 2 to the nonlinear PDE problem (3), note that the Fréchet-derivative of Fε

from (3) at u ∈ X is given, by

〈F′
ε(u)w, v〉 =

∫

Ω

{ε∇w · ∇v − f ′(u)wv} dx, v, w ∈ X = H1
0 (Ω).

We note that, if there is a constant β > 0 for which f ′(u) ∈ L1+β(d−1)(Ω), then
F
′
ε(u) is a well-defined linear mapping from X to X ′; see Lemma A.1.
Then, given an initial guess u0 ∈ X for (3), the Newton method (7) is to

find un+1 ∈ X from un ∈ X , n ≥ 0, such that

F
′
ε(un)(un+1 − un) = −knFε(un),

in X ′. Equivalently,

aε(un;un+1, v) = aε(un;un, v)− knℓε(un; v) ∀v ∈ X, (19)

where, for fixed u ∈ X ,

aε(u;w, v) :=

∫

Ω

{ε∇w · ∇v − f ′(u)wv} dx,

lε(u; v) :=

∫

Ω

{ε∇u · ∇v − f(u)v} dx

are bilinear and linear forms on X ×X and X , respectively.

Remark 3.1. Let us consider a special case, where the weak formulation (19), for
given un, always has a (unique) solution un+1 ∈ X . To this end, we assume that
there are constants λ, λ ≥ 0 with εC−2

P > λ such that −λ ≤ f ′(u) ≤ λ holds for all
u ∈ R. Here, CP = CP (Ω) > 0 is the constant in the Poincaré inequality on Ω:

‖w‖0 ≤ CP ‖∇w‖0 ∀w ∈ X. (20)

Then, for any given un ∈ X the linear problem (19) has a unique solution un+1 ∈ X .

Proof. Our goal is to apply the Lax-Milgram Lemma. For this purpose, we will
show that aε(un; ·, ·) is a bounded and coercive bilinear form on X ×X , and that
lε(un; ·) is a bounded linear form on X .

By definition of the bilinear form aε(un; ·, ·) we have

a(un;w,w) =

∫

Ω

{ε|∇w|2 − f ′(un)w
2} dx

= ε

∫

Ω

|∇w|2 dx−

∫

M∁
f

f ′(un)w
2
dx−

∫

Mf

f ′(un)w
2
dx.

Here, Mf = {x ∈ Ω : (f ′ ◦ un)(x) > 0}. Then,

a(un;w,w) ≥ ε

∫

Ω

|∇w|2 dx− λ

∫

Mf

w2
dx ≥ ε

∫

Ω

|∇w|2 dx− λ

∫

Ω

w2
dx. (21)

Invoking the Poincaré inequality (21) results in a(un;w,w) ≥ (ε − λC2
p ) ‖∇w‖

2
0,Ω,

which, by the equivalence of the H1-seminorm and the norm |||·|||ε from (4) on X
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(resulting from the Poincaré inequality (20)), shows that a(un; ·, ·) is coercive by
assumption on the difference ε− λC2

p > 0.
Furthermore, a(un; ·, ·) is bounded. Indeed, for v, w ∈ X there holds

|a(un; v, w)| ≤ ε

∫

Ω

|∇w||∇v| dx + sup
x∈R

|f ′(x)|

∫

Ω

|w||v| dx

≤ ε

∫

Ω

|∇w||∇v| dx +max(λ, λ)

∫

Ω

|w||v| dx.

Applying the Cauchy-Schwarz inequality, we obtain

|a(un; v, w)| 4
(
ε‖∇v‖20 + ‖v‖

2
0

)1/2 (
ε‖∇w‖20 + ‖w‖

2
0

)1/2
= |||v|||ε,Ω |||w|||ε,Ω ,

which shows the continuity of a(un; ·, ·).
Let us now focus on ℓε(un; v): For v ∈ X , the Cauchy-Schwarz inequality yields

|ℓε(un; v)| ≤
(
ε‖∇un‖

2
0 + ‖f(un)‖

2
0

)1/2 (
ε‖∇v‖20 + ‖v‖

2
0

)1/2
. (22)

Noting that by the Lipschitz continuity of f , there holds |f(un)| ≤ m |un| + c,
with m = max(λ, λ). Hence, we see that

‖f(un)‖
2
0,Ω ≤

∫

Ω

(m|un|+ c)2 dx ≤ 2

∫

Ω

(
m2|un|

2 + c2
)
dx

≤ 2m2‖un‖
2
0 + 2c2|Ω| 4 |||un|||

2
ε + |Ω|,

for any u ∈ X . Inserting into (22) we end up with

‖ℓε(un; ·)‖X′ 4

(
|||un|||

2
ε,Ω + |Ω|

)1/2

,

i.e., the linear form v 7→ ℓε(un; v) is bounded.
The above calculations show that, for any fixed un ∈ X , the linear form v 7→

aε(un;un, v)−knℓε(un; v) is bounded. Hence, recalling the coercivity and continuity
of aε(un; ·, ·), the linear problem (19) possesses a unique solution un+1 ∈ X by the
Lax-Milgram Lemma. �

4. Newton-Galerkin Finite Element Discretization

In order to provide a numerical approximation of (1), we will discretize the
weak formulation (19) by means of a finite element method, which, in combination
with the Newton-Raphson iteration, constitutes a Newton-Galerkin approximation
scheme. Furthermore, we shall derive a posteriori error estimates for the finite
element discretization which allow for an adaptive refinement of the meshes in each
Newton step. This, together with the adaptive prediction strategies from Section 2,
leads to a fully adaptive Newton-Galerkin discretization method for (1).

4.1. Finite Element Meshes and Spaces. Let Th = {T }T∈Th
, be a regular and

shape-regular mesh partition of Ω into disjoint open simplices, i.e., any T ∈ Th is an

affine image of the (open) reference simplex T̂ = {x̂ ∈ R
d
+ :

∑d
i=1 x̂i < 1}. By hT =

diam(T ) we signify the element diameter of T ∈ Th, and by h = maxT∈Th
hT

the mesh size. Furthermore, by Eh we denote the set of all interior mesh nodes
for d = 1 and interior (open) edges for d = 2 in Th. In addition, for T ∈ Th, we
let Eh(T ) = {E ∈ Eh : E ⊂ ∂T }. For E ∈ Eh, we let hE be the mean of the lengths
of the adjacent elements in 1d, and the length of E in 2d.
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We consider the finite element space of continuous, piecewise linear functions on
Th with zero trace on ∂Ω given by

V h
0 := {ϕ ∈ H1

0 (Ω) : ϕ|T ∈ P1(T )∀T ∈ Th},

where P1(T ) is the standard space of all linear polynomial functions on T .
Moreover, for any function ϕ ∈ V h and a given edge E ∈ Eh = ∂T ♯ ∩ ∂T ♭

shared by two neighboring elements T ♯, T ♭ ∈ Th, we denote by JϕKE the jump of ϕ
across E:

JϕKE (x) = lim
t→0+

ϕ(x+ tn♯)n♯ + lim
t→0+

ϕ(x+ tn♭)n♭ ∀x ∈ E.

Here, n♯ and n
♭ denote the unit outward vectors on ∂T ♯ and ∂T ♭, respectively.

Furthermore, for T ∈ Th, and E ∈ Eh, we set

w̃T :=
⋃

T ′∈Th:

T∩T ′ 6=∅

T ′, wE :=
⋃

T∈Th:

E⊂∂T

T.

4.2. Approximation Results. Let us recall the following classical quasi-interpo-
lation result.

Proposition 4.1. Let Ih : H1
0 (Ω)→ V h

0 be the quasi-interpolation Clément opera-
tor (see, e.g., [26]). Then, there holds the error estimate

∥∥∇l(v − Ihv)
∥∥
0,T

4 hk−l
T

∥∥∇kv
∥∥
0,w̃T

for all T ∈ Th, all l, k ∈ N with 0 ≤ l ≤ k ≤ 1, and all v ∈ Hk(w̃T ).

In order to provide ε-robust approximation results, we follow the approach pre-
sented in [25] (see also [14]). More precisely, recalling Proposition 4.1, we have

‖v − Ihv‖
2
0,T 4 ‖v‖20,w̃T

, ‖v − Ihv‖
2
0,T 4 ε−1h2

T ε ‖∇v‖
2
0,w̃T

,

for any T ∈ Th. Thus, if we set

αT := min(1, ε−
1/2hT ), (23)

we find

‖v − Ihv‖0,T 4 αT |||v|||ε,w̃T
. (24)

Furthermore, recalling the well-known multiplicative trace inequality,

‖w‖20,E 4 h−1
T ‖w‖

2
0,T + ‖w‖0,T ‖∇w‖0,T ∀w ∈ H1(T ), ∀E ∈ Eh(T ),

for any T ∈ Th, we have

‖v − Ihv‖
2
0,E 4 h−1

T ‖v − Ihv‖
2
0,T + ‖v − Ihv‖0,T ‖∇(v − Ihv)‖0,T ,

for any E ∈ Eh with E ⊂ ∂T . Inserting (24) and employing Proposition 4.1, we
arrive at

‖v − Ihv‖
2
0,E 4 h−1

T α2
T |||v|||

2
ε,w̃T

+ αT |||v|||ε,w̃T
‖∇v‖0,w̃T

4 h−1
T α2

T |||v|||
2
ε,w̃T

+ ε−
1/2αT |||v|||

2
ε,w̃T

4

(
h−1
T min(1, ε−

1/2hT )
2 + ε−

1/2 min(1, ε−
1/2hT )

)
|||v|||2ε,w̃T

4 min(1, ε−
1/2hT )

(
min(h−1

T , ε−
1/2) + ε−

1/2
)
|||v|||

2
ε,w̃T

4 ε−
1/2 min(1, ε−

1/2hT ) |||v|||
2
ε,w̃T
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Hence,

‖v − Ihv‖0,E 4 ε−
1/4α

1/2
T |||v|||ε,w̃T

,

and by shape-regularity of the mesh Th,

‖v − Ihv‖0,E 4 ε−
1/4α

1/2
E |||v|||ε,w̃T

,

with

αE := min(1, ε−
1/2hE), E ∈ Eh. (25)

Let us summarize the above estimates:

Corollary 4.2. Let Ih : H1
0 (Ω)→ V h

0 be the quasi-interpolation Clément operator
from Proposition 4.1. Then, for any elements T, T ′ ∈ Th, and an edge E = Eh(T )∩
Eh(T

′), and any v ∈ H1
0 (Ω), there hold the approximation bounds

‖v − Ihv‖0,T 4 αT |||v|||ε,w̃T
,

‖v − Ihv‖0,E 4
1

2
ε−

1/4α
1/2
E

(
|||v|||ε,w̃T

+ |||v|||ε,w̃T ′

)
,

where αT and αE are defined in (23) and (25), respectively.

4.3. Linear Finite Element Discretization. We consider the finite element ap-
proximation of (19) which is to find uh

n+1 ∈ V h
0 from a given un ∈ X , n ≥ 0,

(with u0 ∈ X being an initial guess) such that

aε(u
h
n;u

h
n+1, v) = aε(u

h
n;u

h
n, v)− tℓε(u

h
n; v) ∀v ∈ V h

0 . (26)

Here, t takes the role of a parameter which corresponds to the step size in the
adaptive Newton scheme. Introducing

u
(t,h)
n+1 := uh

n+1 − (1 − t)uh
n (27)

and

f t(uh
n+1) := tf(uh

n) + f ′(uh
n)(u

h
n+1 − uh

n), (28)

and rearranging terms, (26) can be rewritten as

ε

∫

Ω

∇u
(t,h)
n+1 · ∇v dx =

∫

Ω

f t(uh
n+1)v dx ∀v ∈ V h

0 . (29)

4.4. A Posteriori Error Analysis. The aim of this section is to derive a poste-
riori error bounds for (29).

4.4.1. Upper Bound. In order to measure the error between the finite element dis-
cretization (26) and the original problem (1), a natural quantity to bound is the
residual Fε(u

h
n+1) in X ′. In order to proceed in this direction, we notice that the

adaptively chosen damping parameter t in the Newton-Raphson method (26) will
equal 1 sufficiently close to a root of Fε. For this reason, we may focus on the

‘shifted’ residual Fε(u
(t,h)
n+1 ) in X ′ instead. To do so, let v ∈ H1

0 (Ω). We begin
with (29), which implies that

∫

Ω

{
ε∇u

(t,h)
n+1 · ∇Ihv − f t(uh

n+1)Ihv
}
dx = 0,
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where Ihv is the quasi-interpolant from Proposition 4.1. Then,
〈
Fε(u

(t,h)
n+1 ), v

〉
=

∫

Ω

{
ε∇u

(t,h)
n+1 · ∇v − f(u

(t,h)
n+1 )v

}
dx

= ε

∫

Ω

∇u
(t,h)
n+1 · ∇(v − Ihv) dx+

∫

Ω

{
f t(uh

n+1)Ihv − f(u
(t,h)
n+1 )v

}
dx

= ε

∫

Ω

∇u
(t,h)
n+1 · ∇(v − Ihv) dx+

∫

Ω

f t(uh
n+1)(Ihv − v) dx

+

∫

Ω

{
f t(uh

n+1)− f(u
(t,h)
n+1 )

}
v dx.

Integrating by parts elementwise in the first term yields∫

Ω

∇u
(t,h)
n+1 · ∇(v − Ihv) dx = −

∑

T∈Th

∫

T

∆u
(t,h)
n+1 (v − Ihv) dx

+
∑

T∈Th

∫

∂T

(∇u
(t,h)
n+1 · nT )(v − Ihv) ds.

An elementary calculation, recalling the fact that (v − Ihv)|∂Ω = 0, shows that
∑

T∈Th

∫

∂T

(∇u
(t,h)
n+1 · nT )(v − Ihv) ds =

∑

E∈Eh

∫

E

r
∇u

(t,h)
n+1

z
(v − Ihv) ds.

Therefore, we have the following result:

Proposition 4.3. Given u
(t,h)
n+1 and f t(uh

n+1) from (27) and (28), respectively.
Then, there holds the identity

〈
Fε(u

(t,h)
n+1 ), v

〉
=
∑

E∈Eh

aE +
∑

T∈Th

(bT + cT ), (30)

where

aE :=

∫

E

ε
r
∇u

(t,h)
n+1

z
(v − Ihv) ds, cT :=

∫

T

{
f t(uh

n+1)− f(u
(t,h)
n+1 )

}
v dx,

bT :=

∫

T

{
f t(uh

n+1) + ε∆u
(t,h)
n+1

}
(Ihv − v) dx, (31)

with E ∈ Eh, T ∈ Th.

Now, for T ∈ Th, defining

δn,T :=
∥∥∥f t(uh

n+1)− f(u
(t,h)
n+1 )

∥∥∥
0,T

, (32)

and

η2n,T := α2
T

∥∥∥f t(uh
n+1) + ε∆u

(t,h)
n+1

∥∥∥
2

0,T
+

1

2

∑

E∈Eh(T )

ε−
1/2αE

∥∥∥ε
r
∇u

(t,h)
n+1

z∥∥∥
2

0,E
, (33)

with αT and αE from (23) and (25), respectively, we are ready to prove an upper
a posteriori bound on the (shifted) residual.

Theorem 4.4. Consider u
(t,h)
n+1 from (27). Then, there holds the upper bound:

∣∣∣
∣∣∣
∣∣∣F(u(t,h)

n+1 )
∣∣∣
∣∣∣
∣∣∣
2

X′,ε
4 δ2n,Ω +

∑

T∈Th

η2n,T , (34)

with δn,Ω and ηT,n from (32) and (33), respectively.
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Proof. First let E ∈ Eh and T, T ′ ∈ Th with E = Eh(T ) ∩ EH(T ′). Then, aE
from (31) can be estimated using Corollary 4.2 as follows:

|aE | ≤ ε
∥∥∥
r
∇u

(t,h)
n+1

z∥∥∥
0,E
‖v − Ihv‖0,E

4
1

2
ε
3/4α

1/2
E

∥∥∥
r
∇u

(t,h)
n+1

z∥∥∥
0,E

(
|||v|||ε,w̃T

+ |||v|||ε,w̃T ′

)
.

Applying the Cauchy-Schwarz inequality leads to
∣∣∣∣∣
∑

E∈Eh

aE

∣∣∣∣∣ 4
(
1

2

∑

E∈Eh

ε
3/2αE

∥∥∥
r
∇u

(t,h)
n+1

z∥∥∥
2

0,E

)1/2

|||v|||ε,Ω .

Furthermore, again using Corollary 4.2, we see that
∣∣∣∣∣
∑

T∈Th

bT

∣∣∣∣∣ 4
∑

T∈Th

αT

∥∥∥f t(uh
n+1) + ε∆u

(t,h)
n+1

∥∥∥
0,T
|||v|||ε,w̃T

4

(
∑

T∈Th

α2
T

∥∥∥f t(uh
n+1) + ε∆u

(t,h)
n+1

∥∥∥
2

0,T

)1/2

|||v|||ε,Ω .

Similarly, there holds
∣∣∣∣∣
∑

T∈Th

cT

∣∣∣∣∣ 4
∑

T∈Th

∥∥∥f t(uh
n+1)− f(u

(t,h)
n+1 )

∥∥∥
0,T
‖v‖0,T

4

(
∑

T∈Th

∥∥∥f t(uh
n+1)− f(u

(t,h)
n+1 )

∥∥∥
2

0,T

)1/2

|||v|||ε,Ω .

Now, applying the Cauchy-Schwarz inequality to (30) we see that
∣∣∣
〈
Fε(u

(t,h)
n+1 ), v

〉∣∣∣ 4
∑

E∈Eh

|aE |+
∑

T∈Th

|bT |+
∑

T∈Th

|cT |

4

(
δ2n,Ω +

∑

T∈Th

η2n,T

)1/2

|||v|||ε,Ω .

Dividing by |||v|||ε,Ω, and taking the supremum for all v ∈ H1
0 (Ω), completes the

proof. �

Remark 4.5. Under certain conditions on the nonlinearity f in (1), the right-hand

side of (34) is equivalent to
∣∣∣
∣∣∣
∣∣∣u− u

(t,h)
n+1

∣∣∣
∣∣∣
∣∣∣
ε,Ω

. To explain this, for v, w ∈ X , we notice

that

〈Fε(v)− Fε(w), v − w〉 =

∫

Ω

{
ε|∇(v − w)|2 − (f(v)− f(w))(v − w)

}
dx.

Then, supposing that there exists a constant λ > −C−2
P ε, where CP is the Poincaré

constant from (20), such that (f(x) − f(y))(x − y) ≤ −λ(x − y)2 for all x, y ∈ R,
we conclude that

〈Fε(v)− Fε(w), v − w〉 ≥

∫

Ω

{
ε|∇(v − w)|2 + λ(v − w)2

}
dx.
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From this, for β ≥ 0, it follows that

〈Fε(v)− Fε(w), v − w〉

≥ βε ‖∇(v − w)‖
2
0,Ω + (1− β)ε ‖∇(v − w)‖

2
0,Ω + λ ‖v − w‖

2
0,Ω

≥ βC−2
P ε ‖v − w‖

2
0,Ω + (1− β)ε ‖∇(v − w)‖

2
0,Ω +min(1, λ) ‖v − w‖

2
0,Ω

≥ min(1− β, βC−2
P ε+min(1, λ)) |||v − w|||2ε,Ω .

Choosing β = (C−2
P ε+ 1)−1(1−min(1, λ)), it holds

〈Fε(v)− Fε(w), v − w〉 ≥
C−2

P ε+min(1, λ)

C−2
P ε+ 1

|||v − w|||2ε,Ω . (35)

By assumption on λ, the constant on the right-hand side in the above inequality
is positive. Moreover, if there exists a constant L > 0 such that there holds the
Lipschitz condition |f(x) − f(y)| ≤ L|x − y| for all x, y ∈ R, then, for z ∈ X , we
observe that

|〈Fε(v)− Fε(w), z〉| ≤

∫

Ω

{ε |∇(v − w) · ∇z|+ |(f(v)− f(w))z|} dx

≤

∫

Ω

{ε |∇(v − w)| |∇z|+ L|v − w||z|} dx.

Using the Cauchy-Schwarz inequality, yields

|〈Fε(v)− Fε(w), z〉| ≤
(
ε ‖∇(v − w)‖

2
0 + L2 ‖v − w‖

2
0

)1/2(
ε ‖∇z‖

2
0 + ‖z‖

2
0

)1/2

≤ max(1, L) |||v − w|||ε,Ω |||z|||ε,Ω . (36)

Now, if u is the exact solution of (1), and u
(t,h)
n+1 6= u from (27), then (35) implies

that

〈Fε(u
(t,h)
n+1 ), u

(t,h)
n+1 − u〉 = 〈Fε(u

(t,h)
n+1 )− Fε(u), u

(t,h)
n+1 − u〉

≥
C−2

P ε+min(1, λ)

C−2
P ε+ 1

∣∣∣
∣∣∣
∣∣∣u− u

(t,h)
n+1

∣∣∣
∣∣∣
∣∣∣
2

ε,Ω
,

and thus,

∣∣∣
∣∣∣
∣∣∣u− u

(t,h)
n+1

∣∣∣
∣∣∣
∣∣∣
ε,Ω
≤

C−2
P ε+ 1

C−2
P ε+min(1, λ)

〈Fε(u
(t,h)
n+1 ), u

(t,h)
n+1 − u〉∣∣∣

∣∣∣
∣∣∣u− u

(t,h)
n+1

∣∣∣
∣∣∣
∣∣∣
ε,Ω

≤
C−2

P ε+ 1

C−2
P ε+min(1, λ)

∣∣∣
∣∣∣
∣∣∣Fε(u

(t,h)
n+1 )

∣∣∣
∣∣∣
∣∣∣
X′,ε

.

Incidentally, this bound can be estimated further by means of (34). Conversely, we
notice that (36) leads to

∣∣∣
∣∣∣
∣∣∣Fε(u

(t,h)
n+1 )

∣∣∣
∣∣∣
∣∣∣
X′,ε

= sup
06≡v∈X

〈Fε(u
(t,h)
n+1 )− Fε(u), v〉

|||v|||ε,Ω
≤ max(1, L)

∣∣∣
∣∣∣
∣∣∣u− u

(t,h)
n+1

∣∣∣
∣∣∣
∣∣∣
ε,Ω

.

This gives the equivalence of the residual and the error norm
∣∣∣
∣∣∣
∣∣∣u− u

(t,h)
n+1

∣∣∣
∣∣∣
∣∣∣
ε,Ω

.
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4.4.2. Lower Bounds. Let us sketch how ε-robust local lower error bounds can be
derived. To this end, consider E = Eh(T ) ∩ Eh(T

′) ∈ Eh, with T, T ′ ∈ Th. Then,
elementwise integration by parts on wE yields

∫

E

r
∇u

(t,h)
n+1

z
v ds =

∫

wE

∇u
(t,h)
n+1 · ∇v dx+

∫

wE

v∆u
(t,h)
n+1 dx ∀v ∈ H1

0 (wE).

Therefore, for all v ∈ H1
0 (wE), we obtain

∫

E

ε
r
∇u

(t,h)
n+1

z
v ds

=
〈
Fε(u

(t,h)
n+1 ), v

〉
+

∫

wE

{f(u
(t,h)
n+1 )− f t(uh

n+1)}v dx

+

∫

wE

{f t(uh
n+1)− f̂ t(uh

n+1)}v dx+

∫

wE

{f̂ t(uh
n+1) + ε∆u

(t,h)
n+1 }v dx,

where f̂ t(uh
n+1) ∈ V h

0 is the L2-projection of f t(uh
n+1) onto V h

0 . Especially, for v ∈

H1
0 (T ), where T ∈ Th, this implies that

−

∫

T

{f̂ t(uh
n+1) + ε∆u

(t,h)
n+1 }v dx =

〈
Fε(u

(t,h)
n+1 ), v

〉
+

∫

T

{f(u
(t,h)
n+1 )− f t(uh

n+1)}v dx

+

∫

T

{f t(uh
n+1)− f̂ t(uh

n+1)}v dx.

Then, proceeding along the lines of [25] by using suitable bubble function tech-
niques, the following bounds can be proved:

αT

∥∥∥f̂ t(uh
n+1) + ε∆u

(t,h)
n+1

∥∥∥
0,T

4

∣∣∣
∣∣∣
∣∣∣Fε(u

(t,h)
n+1 )

∣∣∣
∣∣∣
∣∣∣
ε,H1

0 (T )′
+ αT (δn,T + δ̂n,T ),

and

ε−
1/4α

1/2
E

∥∥∥ε
r
∇u

(t,h)
n+1

z∥∥∥
0,E

4

∣∣∣
∣∣∣
∣∣∣Fε(u

(t,h)
n+1 )

∣∣∣
∣∣∣
∣∣∣
ε,H1

0 (wE)′
+
∑

T∈wE

αT (δn,T + δ̂n,T ),

where, for a subset D ⊆ Ω, we let

|||Fε(u)|||ε,H1
0 (D)′ = sup

v∈H1
0
(D)

|||v|||ε,D=1

∫

D

{ε∇u · ∇v − f(u)v} dx, u ∈ X.

Here, for T ∈ Th,

δ̂n,T :=
∥∥∥f t(uh

n+1)− f̂ t(uh
n+1)

∥∥∥
0,T

is a data oscillation term. Moreover, δn,T was introduced in (32), and αT and αE

were defined in (23) and (25), respectively.

4.5. A Fully Adaptive Newton-Galerkin Algorithm. We will now propose a
procedure that will combine the adaptive Newton methods presented in Section 2
with automatic finite element mesh refinements based on the a posteriori error
estimate from Theorem 4.4. To this end, we make the assumption that the Newton-

Raphson sequence
{
u
(kn,h)
n+1

}
n≥0

given by (26) and (27), with a step size t = kn, is

well-defined as long as the iterations are being performed.

Algorithm 4.6. Given a parameter θ > 0, a (coarse) starting mesh Th in Ω, and
an initial guess uh

0 ∈ V h
0 . Set n := 0.
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Figure 1. Example 4.7: Exact solution (left) and performance of
Algorithm 4.6 (right) for ε = 10−5.

(1) Determine the Newton-Raphson step size parameter kn based on uh
n by one

of the adaptive procedures from Section 2.
(2) Compute the FEM solution uh

n+1 from (26) with step size t = kn on the

mesh Th. Furthermore, obtain u
(kn,h)
n+1 in (27), and evaluate the correspond-

ing error indicators ηT,n, T ∈ Th, and δn,Ω from (33) and (32), respectively.
(3) If there holds

δ2n,Ω ≤ θ
∑

T∈Th

η2T,n, (37)

then refine the mesh T ∈ Th adaptively based on the elementwise error
indicators ηn,T , T ∈ Th from Theorem 4.4; repeat step (2) with the new
mesh Th. Otherwise, i.e. if (37) is not fulfilled, then set n ← n + 1, and
perform another adaptive Newton step by going back to (1).

4.6. Numerical Experiments. We will now illustrate and test the above Algo-
rithm 4.6 with a number of numerical experiments in 1d and 2d.

4.6.1. Problems in 1d. In the following 1d-experiments we shall employ the fully
adaptive procedure from Algorithm 4.6, based on the improved prediction strategy
from Algorithm 2.4 (with γ = 0.5).

Example 4.7. Let us first consider a linear singularly perturbed problem:

−εu′′ + u = 1 on (0, 1), uε(0) = uε(1) = 0. (38)

In this case the Newton-Raphson iteration is redundant as it converges to the unique
solution in one single step. Our goal is here to test the robustness of the a posteriori
error analysis with respect to ε as ε→ 0.

Note that the exact solution uε exhibits two boundary layers at x ∈ {0, 1}; see
Figure 1 (left). We test our algorithm by comparing the true error |||uh − u|||ε,Ω
(cf. Remark 4.5) with the estimated error (i.e., the right-hand side of (34)), and
compute the efficiency indices (defined by the ratio of the estimated and true errors);
the results are displayed in Figure 2 for ε = 10−n, with n ∈ {0, 1, 2, 3, 4, 5}. For ε =
10−5 we observe from Figure 1 (right) that the convergence is of first order as
expected. Furthermore, Figure 2 clearly highlights the robustness of the efficiency
indices with respect to ε→ 0. Here, we have used θ = 0.5 in (37).
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Figure 2. Example 4.7: Efficiency indices.

Example 4.8. Furthermore, consider Fisher’s equation,

εu′′ + u− u2 = 0 on (0, 1), uε(0) = α, uε(1) = β. (39)

A first integral form for (39) is given by E(x, y) := εy2 − 2
3x

3 + x2, from which
we readily infer that the solutions have boundary layers close to x = 0 and x = 1.
Furthermore, for α > −1/2 and β < 1, the solutions feature an increasing number of
spikes (which are bounded by 1) as ε→ 0 (see Figure 3). There are infinitely many
solutions (for which there are no analytical solution formulas available in general);
see, e.g., [27] for a more detailed discussion.

In our example, we have started the Newton-Raphson iteration based on a uni-
form grid with 100 nodes, and an initial spike-like function depicted on the left in
Figure 3. Again, we set θ = 0.5 in (37), and perform our experiments for τ = 0.1
in Algorithm 2.1, and ε = 0.00025.

In Figure 4 we depict the performance of the error estimator. The fully adaptive
Newton-Galerkin scheme converges to a numerical solution as shown on the right
of Figure 3. We emphasize that our scheme is able to transport the initial function
to a numerical solution which is of similar shape; in particular, it seems clear that
the iteration has remained in the attractor of the solution which contains the initial
guess. It is well-known that this will typically not happen for the traditional Newton
scheme (with fixed step size 1), or even for a damped Newton method (with fixed
step size smaller than 1); indeed, for this type of problem with ε≪ 1, these methods
will mostly fail to converge to a bounded solution at all (see, e.g., [6]).

4.6.2. A Problem in 2d. We will now turn to a 2d-example, where we shall employ
the simple prediction strategy presented in Algorithm 2.1 (see also [2]) for the
selection of the local Newton-Raphson step size.

Example 4.9. Consider the well-known nonlinear Ginzburg-Landau equation on
the unit square Ω = (0, 1)2 given by

ε∆u− u3 + u = 0 in Ω, u = 0 on ∂Ω. (40)

Clearly u ≡ 0 is a solution. In addition, any solution u appears pairwise as −u is
obviously a solution also. Neglecting the boundary conditions for a moment, one
observes that u ≡ 1 and u ≡ −1 are solutions of the PDE. We therefore expect
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Figure 3. Example 4.8: Initial data (left) and numerical solution
resulting from Algorithm 4.6 (right) with α = −0.4, β = 0.5, and
ε = 0.00025.
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Figure 4. Example 4.8: Estimated error for ε = 0.00025.

boundary layers along ∂Ω, and possibly within the domain Ω; see Figure 5, where
we depict two different solutions of problem (40).

The solution on the top left in Figure 5 was obtained from choosing the initial
function (x1, x2) 7→ sign(x2), whereas the solution on the bottom left was computed
by choosing (x1, x2) 7→ −1 (both with enforced zero Dirichlet boundary conditions
at the boundary degrees of freedom). The perturbation parameter is chosen to
be ε = 0.5 · 10−5. We restrict the Newton step size in Algorithm 2.1 by choosing
τ = 0.1. Moreover we have set θ = 0.75. Again the performance data illustrated
on the right-hand side in Figure 5 indicates (optimal) first-order convergence as
expected.

5. Conclusions

The aim of this paper was to introduce a reliable and computationally feasi-
ble procedure for the numerical solution of general, semilinear elliptic boundary
value problems with possible singular perturbations. The key idea is to combine an
adaptive Newton-Raphson method with an automatic mesh refinement finite ele-
ment procedure. Here, the (local) Newton-Raphson damping parameter is selected
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Figure 5. Example 4.9: Numerical solutions (left) and the cor-
responding performances (right) with ε = 0.5 · 10−5 for different
initial guesses.

based on interpreting the scheme within the context of step size control for dy-
namical systems. Furthermore, the sequence of linear problems resulting from the
Newton discretization is treated by means of a robust (with respect to the singu-
lar perturbations) a posteriori residual-oriented error analysis and a corresponding
adaptive mesh refinement scheme. Our numerical experiments clearly illustrate
the ability of our approach to reliably find solutions reasonably close to the initial
guesses, and to robustly resolve the singular perturbations at an optimal rate.

Appendix A. A Sobolev Inequality

Lemma A.1. Let Ω ⊂ R
d be a bounded open interval (d = 1), or a bounded

Lipschitz domain (d = 2). Then, if g ∈ L1+β(d−1)(Ω), for some β ∈ (0, 1], then
there holds that

‖guv‖L1(Ω) 4 ‖g‖L1+β(d−1)(Ω)‖∇u‖L2(Ω)‖∇v‖L2(Ω),

for any u, v ∈ H1
0 (Ω).

Proof. We treat the cases d = 1 and d = 2 separately.
Case d = 1: By the Sobolev embedding theorem and the Poincaré inequality there
holds ‖u‖L∞(Ω) 4 ‖∇u‖L2(Ω). Thence, we get

‖guv‖L1(Ω) ≤ ‖g‖L1(Ω) ‖uv‖L∞(Ω) 4 ‖g‖L1(Ω) ‖∇(uv)‖L2(Ω) . (41)
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Furthermore, due to the product rule and the triangle inequality, we have

‖∇(uv)‖L2(Ω) ≤ ‖u∇v‖L2(Ω) + ‖v∇u‖L2(Ω)

≤ ‖u‖L∞(Ω) ‖∇v‖L2(Ω) + ‖v‖L∞(Ω) ‖∇u‖L2(Ω)

4 ‖∇u‖L2(Ω) ‖∇v‖L2(Ω) .

(42)

Inserting this bound into (41) completes the argument for d = 1.
Case d = 2: We choose δ ∈ (0, 1] to be specified later, and set p(δ) := (4−2δ)/(4−3δ) ∈
(1, 2] and q(δ) := (4−2δ)/δ ∈ [2,∞), so that p(δ)−1 + q(δ)−1 = 1. Then, by means of
Hölder’s inequality, we note that

‖guv‖L1(Ω) ≤ ‖g‖Lp(δ)(Ω) ‖uv‖Lq(δ)(Ω) . (43)

Here, referring to [13, Theorem 3.4.3]), there holds

‖uv‖Lq(δ)(Ω) 4 ‖∇(uv)‖Lr(δ)(Ω) , (44)

with r(δ) := 2 − δ ∈ [1, 2). Using the product rule together with the triangle
inequality, results in

‖∇(uv)‖Lr(δ)(Ω) ≤ ‖u∇v‖Lr(δ)(Ω) + ‖v∇u‖Lr(δ)(Ω) . (45)

Then, invoking Hölder’s inequality again as well as (44), we see that

‖u∇v‖Lr(δ)(Ω) ≤ ‖u‖L2r(δ)/(2−r(δ))(Ω)
‖∇v‖L2(Ω)

= ‖u‖Lq(δ)(Ω) ‖∇v‖L2(Ω) 4 ‖∇u‖Lr(δ)(Ω) ‖∇v‖L2(Ω)

4 ‖∇u‖L2(Ω) ‖∇v‖L2(Ω) ,

(46)

and similarly,

‖v∇u‖Lr(δ)(Ω) 4 ‖∇v‖L2(Ω) ‖∇u‖L2(Ω) . (47)

Combining (43)–(47), we end up with

‖guv‖L1(Ω) 4 ‖g‖Lp(δ)(Ω)‖∇u‖L2(Ω)‖∇v‖L2(Ω),

which shows the claim with p(δ) = 1 + β ∈ (1, 2]. �
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