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Abstract. We give two determinantal representations for a bivariate polynomial. They may be used to compute the
zeros of a system of two of these polynomials via the eigenvalues of a two-parameter eigenvalue problem. The first
determinantal representation is suitable for polynomials with scalar or matrix coefficients, and consists of matrices with
asymptotic order n2/4, where n is the degree of the polynomial. The second representation is useful for scalar polynomials
and has asymptotic order n2/6. The resulting method to compute the roots of a system of two bivariate polynomials is
competitive with some existing methods for polynomials up to degree 10, as well as for polynomials with a small number
of terms.
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1. Introduction. In this paper, we make some progress on a problem that has essentially been
open since 1902 [9]. It is well known that for each monic polynomial p(x) = p0 + p1 x + · · · +
pn−1 xn−1 + xn one can construct a matrix A ∈ Cn×n, such that det(x I − A) = p(x). One of the
options is a companion matrix (see, e.g., [20, p. 146])

Ap =




0 1 0 · · · 0

0 0 1
...

...
...

...
. . . 0

0 0 1
−p0 −p1 · · · · · · −pn−1




.

Thus, we can numerically compute the zeros of the polynomial p as eigenvalues of the corresponding
companion matrix Ap using tools from numerical linear algebra. This approach is used in many
numerical packages, for instance in the roots command in Matlab [29].

The aim of this paper is to find a similar elegant tool for finding the zeros of a system of two
bivariate polynomials of degree n

(1.1)

p(x , y) :=
n∑

i=0

n− j∑
j=0

pi j x i y j = 0,

q(x , y) :=
n∑

i=0

n− j∑
j=0

qi j x i y j = 0.

An approach analogous to the univariate case would be to construct matrices A1, B1, C1, A2, B2, and
C2 of size n× n such that

(1.2)
det(A1+ xB1+ yC1) = p(x , y),

det(A2+ xB2+ yC2) = q(x , y).
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This would give an equivalent two-parameter eigenvalue problem [1]

(1.3)
(A1+ xB1+ yC1)u1 = 0,

(A2+ xB2+ yC2)u2 = 0

that could be solved by the standard tools like the QZ algorithm, see [16] for details.
This idea looks promising, but there are many obstacles on the way to a working numerical

algorithm that could be applied to a system of bivariate polynomials. Although it is known for
more than a century [8, 9, 15] that such matrices of size n× n exist, so far there are no efficient
numerical algorithms that can construct them. Even worse, it seems that the construction of such
matrices might be an even harder problem than finding zeros of polynomials p and q. There exist
simple and fast constructions [31, 37] that build matrices of size O (n2) that satisfy (1.2), where
the resulting two-parameter eigenvalue problem (1.3) is singular; we will discuss more details in
Section 4. Recent results [31] show that it is possible to solve singular two-parameter eigenvalue
problems numerically for small to medium-sized matrices. However, the O (n2) size of the matrices
pushes the complexity of the algorithm to the enormous O (n12) and it is reported in [30] that this
approach to compute zeros is competitive only for polynomials of degree n< 5.

The construction of [31] yields matrices that are of asymptotic order 1
2
n2, while those of [37]

are of asymptotic order 1
4
n2. In this paper we give two new representations. The first one uses the

tree structure of monomials in x and y . The resulting matrices are smaller than those of [37], with
the same asymptotic order 1

4
n2. This representation can be used for bivariate polynomials as well

as for polynomial multiparameter eigenvalue problems [32]; that is, for polynomials with matrix
coefficients. The second representation is even more condensed, with asymptotic order 1

6
n2, and

can be applied to scalar bivariate polynomials. Although the size of the matrices asymptotically
still grows quadratically with n, the smaller size renders this approach attractive for polynomials of
degree n<∼ 10, or for larger n if the polynomials have only few terms. This already is an interesting
size for a practical use and might trigger additional interest in such methods that could culminate
in even more efficient representations. Moreover, as we will see, for modest n, the order of the
matrices is only roughly 2n. Furthermore, for polynomials of degree 3, we present a construction of
matrices of order (exactly) 3.

There are other ways to study a system of polynomials as an eigenvalue problems, see, e.g., [10]
and [41], but they involve more symbolic computation. In [27] an algorithm is proposed that only
requires to solve linear systems and check rank conditions, which are similar tools that we use in the
staircase method [31] to solve the obtained singular two-parameter eigenvalue problem. Of course,
there are many numerical methods that can be applied to systems of bivariate polynomials, two main
approaches are the homotopy continuation and the resultant method, see, e.g., [11, 22, 38, 42, 46]
and the references therein. There are also many methods which aim to compute only real solutions
of a system of two real bivariate polynomials, see, e.g., [33, 40]. We compare our method with two
existing approaches, Mathematica’s NSolve [48] and PHCpack [46] in Section 7, and show that
our approach is competitive for polynomials up to degree <∼ 10.

Let us mention that another advantage of writing the system of bivariate polynomials as a two-
parameter eigenvalue problem is that then we can apply iterative subspace numerical methods such
as the Jacobi–Davidson method and compute just a small part of zeros close to a given target (x0, y0)
[18]; we will not pursue this approach in this paper.

The rest of this paper is organized as follows. In Section 2 we give some applications where
bivariate polynomial systems have to be solved. In Section 3 we introduce determinantal represen-
tations. Section 4 focuses on two-parameter eigenvalue problems. In Section 5 we give a deter-
minantal representation that is based on the “tree” of monomials, involves no computation, and is
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suitable for both scalar and matrix polynomials. The matrices of the resulting representation are
asymptotically of order 1

4
n2. In Section 6 we give a representation with smaller matrices, of asymp-

totic order 1
6
n2, that involves just a trivial amount of numerical computation (such as computing

roots of low-degree univariate polynomials) and can be computed very efficiently. This representa-
tion may be used for scalar polynomials. We end with some numerical experiments in Section 7 and
conclusions in Section 8.

2. Motivation. In delay differential equations, determining critical delays in the case of so-
called commensurate delays may lead to a problem of type (1.1) [21]. The simplest example is of
the form x ′(t) = a x(t) + b x(t − τ) + c x(t − 2τ), where τ > 0 is the delay; asked are values of τ
that results in periodic solutions. This yields p and q of degrees 2 and 3, respectively. More delay
terms with delays that are multiples of τ gives polynomials of higher degree.

Polynomial systems of form (1.1) arise in numerous applications and fields, such as signal pro-
cessing [4, 7, 13, 44] and robotics [49]. In computer aided design, one may be interested in the
intersections of algebraic curves, such as ellipses [2, 25, 28]. In two-dimensional subspace mini-
mization [6], such as polynomial tensor optimization, one is interested in two-dimensional searches
minα,β F(x + αd1 + βd2), where F : Rn → R, x is the current point, and d1 and d2 are search
directions; see [39, 40] and the references therein.

In systems and control the first-order conditions of the L2-approximation problem of minimizing
‖h−eh‖2 =

∫∞
0
|h(t)−eh(t)|2 dt, for a given impulse response h of degree n, and degree(eh) = en ≤ n,

lead to a system of type (1.1) [12].
When considering quadratic eigenvalue problems in numerical linear algebra, it is of interest

to determine argminθ∈C‖(θ2A+ θB+ C)u‖, as an approximate eigenvalue for a given approximate
eigenvector u, which gives a system of degree 3 in the real and imaginary part of θ [19, Sect. 2.3].
Generalizations to polynomial eigenvalue problems give rise to polynomials p and q of higher de-
gree.

Also, there has been some recent interest in this problem in the context of the chebfun2 project
[33, 43]. In chebfun2, nonlinear real bivariate functions are approximated by bivariate polynomials,
so solving (1.1) is relevant for finding zeros of systems of real nonlinear bivariate functions and for
finding local extrema of such functions.

3. Determinantal representations. In this section we introduce determinantal representations
and present some existing constructions. The difference between what should theoretically be possi-
ble and what can be done in practice is huge. The algorithms we propose reduce the difference only
by a small (but still significant) factor; there seems to be plenty of room for future improvements.

We say that a bivariate polynomial p(x , y) has degree n if all its monomials pi j x
i y j have total

degree less or equal to n, i.e., i + j ≤ n, and if at least one of the monomials has total degree equal
to n. We say that the square m × m matrices A, B, and C form a determinantal representation of
the polynomial p if det(A+ xB + yC) = p(x , y). As our motivation is to use eigenvalue methods
to solve polynomial systems, we will, instead of determinantal representation, often use the term
linearization since a determinantal representation transforms an eigenvalue problem that involves
polynomials of degree n into a linear eigenvalue problem (1.3). A definition of linearization that
extends that for the univariate case (see, e.g., [26]) is the following.

DEFINITION 3.1. A linear bivariate pencil A+ xB + yC of size m × m is a linearization of the
polynomial p(x , y) if there exist two polynomial matrices L(x , y) and Q(x , y) such that det(L(x , y))≡
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det(Q(x , y))≡ 1 and

L(x , y) (A+ xB+ yC)Q(x , y) =

�
p(x , y) 0

0 Im−1

�
.

We are interested not only in linearizations of scalar polynomials but also in linearizations of matrix
bivariate polynomials of the form (cf. (1.1))

(3.1) P(x , y) =
n∑

i=0

n− j∑
j=0

x i y j Pi j ,

where the Pi j are k× k matrices. In line with the above, a linear pencil A+ xB+ yC of matrices of
size m×m presents a linearization (determinantal representation) of the matrix polynomial P(x , y)
if there exist two polynomial matrices L(x , y) and Q(x , y) such that det(L(x , y))≡ det(Q(x , y))≡ 1
and

L(x , y) (A+ xB+ yC)Q(x , y) =

�
P(x , y) 0

0 Im−k

�
.

In this case det(A+ xB + yC) = det(P(x , y)). Each linearization of a matrix polynomial gives a
linearization for a scalar polynomial, as we can think of scalars as of 1× 1 matrices; the opposite is
not true in general.

Dixon [9] showed that for every scalar bivariate polynomial p(x , y) of degree n there exists
a determinantal representation with symmetric matrices of size n × n. Dickson [8] later showed
that this result cannot be extended to general polynomials in more than two variables, except for
three variables and polynomials of degree two and three, and four variables and polynomials of
degree two. Although they both give constructive proofs, there does not seem to exist an efficient
numerical algorithm to construct the determinantal representation with matrices of size n× n for a
given bivariate polynomial of degree n.

In recent years, the research in determinantal representations is growing, as determinantal rep-
resentations for a particular subset of polynomials, real zero polynomials, are related to linear ma-
trix inequality (LMI) constraints used in semidefinite programming SDP. For an overview see, e.g.,
[35, 47]; here we give just the essentials for bivariate polynomials that are related to our problem.

We say that a real polynomial p(x , y) satisfies the real zero condition with respect to (x0, y0) ∈ R2

if for all (x , y) ∈ R2 the univariate polynomial p(x ,y)(t) = p(x0+ t x , y0+ t y) has only real zeros. A
two-dimensional LMI set is defined as

¦
(x , y) ∈ R2 : A+ xB+ yC � 0

©
,

where A, B, and C are symmetric matrices of size m×m and � 0 stands for positive semidefinite. In
SDP we are interested in convex sets S ⊂ R2 that admit an LMI representation, i.e., S is an LMI
set for certain matrices A, B and C . Such sets are called spectrahedra and Helton and Vinnikov [15]
showed that such S must be an algebraic interior, whose minimal defining polynomial p satisfies
the real zero condition with respect to any point in the interior of S . Their results state that if a
polynomial p(x , y) of degree n satisfies real zero condition with respect to (x0, y0), then there exist
symmetric matrices A, B, and C of size n×n such that det(A+xB+ yC) = p(x , y) and A+x0B+ y0C �
0. Matrices A, B, and C thus form a particular determinantal representation for p.

The problem of constructing an LMI representation with symmetric or Hermitian matrices A, B,
and C for a given spectrahedron S raised much more interest than the related problem of gen-
erating a determinantal representation for a generic bivariate polynomial. There exist procedures,
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which rely heavily on slow symbolic computation or other expensive steps, that return an LMI rep-
resentation with Hermitian matrices for a given spectrahedron, but they are not efficient enough.
For instance, a method from [36], based on the proof from [9], does return n× n matrices for a
polynomial of degree n, but the reported times (10 seconds for a polynomial of degree 10) show
that it is much too slow for our purpose. As a first step of the above method is to find zeros of a
system of bivariate polynomials of degree n and n− 1, this clearly can not be efficient enough for
our needs. In addition, we are interested in determinantal representations for polynomials that do
not necessary satisfy the real zero condition.

In SDP and LMI the matrices have to be symmetric or Hermitian, which is not required in our
case. We need a simple and fast numerical construction of matrices that satisfy (1.2) and are as
small as possible—ideally their size should increase linearly and not quadratically with n.

If we look at the available determinantal representations for generic bivariate polynomials, we
first have the linearization by Khazanov with matrices of size n2 × n2 [24]. In [32, Appendix], a
smaller linearization for bivariate matrix polynomials is given with block matrices of order 1

2
n(n+1).

The linearization uses all monomials of degree up to n− 1 and contains a direct expression for the
matrices A, B and C such that det(A+ xB + yC) = p(x , y). Similar to [24], it can be applied to
matrix polynomials. We give an example for a general matrix polynomial of degree 3, from which it
is possible to deduce the construction for a generic degree. This linearization will be superseded in
Section 5 by a more economical one.

EXAMPLE 3.2. [32, Appendix] We take a matrix bivariate polynomial of degree 3

P(x , y) = P00+ x P10+ yP01+ x2P20+ x yP11+ y2P02+ x3P30+ x2 yP21+ x y2P12+ y3P03.

If u is a nonzero vector, then P(x , y)u= 0 if and only if (A+ xB+ yC)u= 0, where

(3.2) A+ xB+ yC =




P00 P10 P01 P20 + x P30 P11 + x P21 P02 + x P12 + yP03

−x Ik Ik 0 0 0 0
−y Ik 0 Ik 0 0 0

0 −x Ik 0 Ik 0 0
0 0 −x Ik 0 Ik 0
0 0 −y Ik 0 0 Ik




and

u= u⊗
�

1 x y x2 x y y2
�T

.

We have det(A+ xB+ yC) = det(P(x , y)) and A+ xB+ yC is a linearization of P(x , y).

We remark that Quarez [37] also gives explicit expressions for determinantal representations. He is
interested in symmetric representations and is able to construct, for a bivariate polynomial of degree
n such that p(0) 6= 1, a linearization with symmetric matrices of size N × N , where

(3.3) N = 2
�bn/2c+ 2

2

�
≈ n2

4
.

This has asymptotically the same order as the linearization that we give in Section 5. Let us also
remark that in the phase, when we are solving a two-parameter eigenvalue problem to compute
the zeros of a system of two bivariate polynomials, we cannot exploit the fact that the matrices are
symmetric, so this is not important for our application.

There are some other available tools, for instance it is possible to construct a determinantal
representation using the package NCAlgebra [14, 34] for noncommutative algebra that runs in
Mathematica [48], but this does not give satisfactory results for our application as the matrices that
we can construct have smaller size.
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4. Two-parameter eigenvalue problems. In this section we briefly present the two-parameter
eigenvalue problem and the available numerical methods. A motivation for the search for small
determinantal representations is that if we transform a system of bivariate polynomials into an
eigenvalue problem, then we can apply existing numerical methods for such problems.

A two-parameter eigenvalue problem has the form (1.3) where Ai , Bi , and Ci are given ni × ni
complex matrices. We are looking for x , y ∈ C and nonzero vectors ui ∈ Cni , i = 1, 2, such that
(1.3) is satisfied. In such case we say that a pair (x , y) is an eigenvalue and the tensor product
u1 ⊗ u2 is the corresponding eigenvector. If we introduce the so-called operator determinants, the
matrices

∆0 = B1⊗ C2− C1⊗ B2,

∆1 = C1⊗ A2− A1⊗ C2,(4.1)

∆2 = A1⊗ B2− B1⊗ A2,

then the problem (1.3) is related to a coupled pair of generalized eigenvalue problems

∆1 w = x ∆0 w,
(4.2)

∆2 w = y ∆0 w

for a decomposable tensor w = u1 ⊗ u2. If ∆0 is nonsingular, then Atkinson [1] showed that the
solutions of (1.3) and (4.2) agree and the matrices∆−1

0 ∆1 and∆−1
0 ∆2 commute. In the nonsingular

case the two-parameter problem (1.3) has n1n2 eigenvalues and we can numerically solve it with
a variant of the QZ algorithm on (4.2) from [16]. Ideally, if we could construct a determinantal
representation with matrices n× n for a bivariate polynomial of degree n, this would be the method
that we would apply on the “companion” two-parameter eigenvalue problem to get the zeros of
the polynomial system. As matrices ∆0,∆1, and ∆2 have size n1n2 × n1n2, the computation of
all eigenvalues of a nonsingular two-parameter eigenvalue problem has time complexity O (n3

1 n3
2),

which would lead to O (n6) algorithm for a system of bivariate polynomials. Of course, for this
approach we need a construction of a determinantal representation with matrices n× n that should
not be more computationally expensive than the effort to solve a two-parameter eigenvalue problem.

Unfortunately, all practical constructions for determinantal representations (including the two
presented in this paper) return matrices that are much larger than n×n. If we have a determinantal
representation with matrices larger than the degree of the polynomial, then the corresponding two-
parameter eigenvalue problem is singular, which means that both matrix pencils (4.2) are singular,
and we are dealing with a more difficult problem. There exists a numerical method from [32] that
computes the regular eigenvalues of (1.3) from the common regular part of (4.2). For the generic
singular case it is shown in [31] that the regular eigenvalues of (1.3) and (4.2) do agree. For other
types of singular two-parameter eigenvalue problems the relation between the regular eigenvalues
of (1.3) and (4.2) is not completely known, but the numerical examples indicate that the method
from [32] can be successfully applied to such problems as well. However, the numerical method,
which is a variant of a staircase algorithm [45], has to make a lot of decisions on the numerical rank
and a single inaccurate decision can cause the method to fail. As the size of the matrices increases,
the gaps between singular values may numerically disappear and it may be difficult to solve the
problem.

This is not the only issue that prevents the use of determinantal representations to solve a bivari-
ate system. The algorithm for the singular two-parameter eigenvalue problems still has complexity
O (n3

1 n3
2), but the fast determinantal representations that we are aware of return matrices of size

O (n2) instead of O (n). This is what pushes the overall complexity to O (n12) and makes this ap-
proach efficient only for polynomials of small degree. Nonetheless, at complexity so high, each
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construction that gives a smaller determinantal representation can make a change. In view of this,
we propose two new linearizations in the next two sections.

5. First linearization. We are interested in linearizations of the matrix polynomial

P(x , y) = P00+ x P10+ yP01+ · · ·+ xnPn0+ xn−1 yPn−1,1+ · · ·+ ynP0n

of degree n, where Pi j are square matrices. Our goal is to find square matrices A, B, and C as small
as possible such that det(A+ xB+ yC) = det(P(x , y)). Also, we need a relation that P(x , y)u= 0 if
and only if (A+ xB+ yC)u= 0, where u is a tensor product of u and a polynomial of x and y . The
linearization in this section also applies to scalar bivariate polynomials, where all matrices are 1×1
and u= 1.

In Section 3 we have given a linearization with block matrices of order 1
2
n(n+ 1). We can view

this linearization in the following way. If P(x , y)u= 0 for u 6= 0, then det(A+ xB+ yC)u= 0, where
the vector u has the form

(5.1) u= u⊗
�

1 x y x2 x y y2 · · · xn−1 xn−2 y · · · yn−1
�T

.

This means that u always begins with the initial block u and then contains all blocks of the form
x j yku where j + k ≤ n− 1. To simplify the presentation we will usually omit u when referring to
the blocks of the vector (5.1). The blocks are ordered in the degree negative lexicographic ordering,
i.e., xa y b ≺ x c yd if a+ b < c+ d, or a+ b = c+ d and a > c.

The above block structure of vector u is defined in the rows of the matrix from the second one
to the last one (see Example 3.2). For each block s = x j yk of (5.1) such that j+ k ≥ 1 there always
exists a preceding block q of the grade j + k− 1 such that either s = xq or s = yq (when j ≥ 1 and
k ≥ 1 both options are possible). Suppose that s = xq, ind(s) = is, and ind(q) = iq, where function
ind returns the index of a block. Then the matrix A+ xB + yC has block −x I on position (is, iq)
and block I on position (is, is). These are the only nonzero blocks in the block row is. A similar
construction with −x I replaced by −y I is used in the case s = yq.

The first block row of the matrix A+ xB+ yC is used to represent the matrix polynomial P(x , y).
One can see that there exist linear pencils Ai1+ xB1i + yC1i , i = 1, . . . , m, such that

(5.2) P(x , y)u=
�

A11+ xB11+ yC11 A12+ xB12+ yC12 · · · A1m+ xB1m+ yC1m

�
u,

where m = 1
2
n(n+ 1) is the number of blocks in (5.1). The pencils in (5.2) are not unique. For

instance, a term x j ykPjk of P(x , y) can be represented in one of up to the three possible ways:
a) if j+ k < n, we can set A1p = Pjk where p = ind(x j yk),
b) if j > 0, we can set B1p = Pjk where p = ind(x j−1 yk),
c) if k > 0, we can set C1p = Pjk where p = ind(x j yk−1).

Based on the above discussion we see that not all the blocks in (5.1) are needed to represent a
matrix polynomial P(x , y). What we need is a minimal set of monomials x j yk, where j + k < n,
that is sufficient for a matrix polynomial of degree n. We can formulate the problem of finding the
smallest possible set for a given polynomial as a graph problem.

We can think about all possible terms x j yk, where j + k < n, as of nodes in a directed graph G
with the root 1 and a directed edge from node s to node t if t = xs or t = ys (see Figure 5.1 for
the case n = 5). Now, we are looking for the smallest connected subgraph G′ with a root 1 that can
represent a given polynomial. Equivalently, we are looking for a minimal directed rooted tree. Let
us remember that for each term x j ykPjk of the polynomial P(x , y) there are up to three possible
nodes in the graph G that can be used to represent it. It is sufficient that one of these nodes is in
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FIG. 5.1. Graph G for the polynomial of degree 5.

a minimal tree G′. Furthermore, if j + k > 1, then we can assume that we always use a node of
degree j + k− 1 to represent x j ykPjk and then there are only one or two options for a given term.
All together, each nonzero term x j ykPjk, where j + k > 0, in the polynomial P defines one of the
following rules for the subgraph G′:

a) if k = 0 then x j−1 y0 has to be in the subgraph G′,
b) if j = 0 then x0 yk−1 has to be in the subgraph G′,
c) if j > 0 and k > 0 then at least one of x j−1 yk or x j yk−1 has to be in the subgraph G′.

The term P00 can be presented by the root 1, which is always present in the subgraph G′.
Finding a minimal tree for a given polynomial is not an easy problem: it can be formulated as

an NP-hard directed Steiner tree problem (DST) (see, e.g., [23]), where one has a directed graph
G = (V, E) with nonnegative weights on edges and the goal is to find the minimum weight directed
rooted tree that connects all terminals X ⊂ V to a given root r ∈ V .

Suppose that we are looking for a minimal representation tree for a polynomial P(x , y) of degree
n. In the graph G, which contains all nodes x j yk for j + k < n (see Figure 5.1 for the case n = 5),
we put weight 1 on all directed x and y edges. Now we add a new vertex for each monomial x j yk

that is present in P(x , y) and connect it with zero weight edges from all possible nodes in G that
could be used to represent the monomial in the linearization. We make a DST problem by taking
node 1 as a root and all newly added vertices as terminals. From a solution of the DST problem the
minimal representation tree can be recovered. Although this is an NP-hard problem, there exist some
polynomial time approximation algorithms that give a solution close to the optimal one and could
be used to construct a small determinantal representation for a given polynomial with small number
of nonzero terms. For the latest available algorithms, see, e.g., [3] and the references therein.

EXAMPLE 5.1. We are interested in a minimal tree for the matrix polynomial

(5.3) P(x , y) = P00+ x P10+ yP01+ y3P03+ x2 y2P22+ x4 yP41+ x y4P14+ x6P60+ x4 y2P42.

Nonzero terms in (5.3) define the nodes that have to be present in the minimal subgraph. They are
either strictly defined as are the nodes 1, y2, and x5, or come in pairs where at least one element of
each pair has to be present in the subgraph. Such pairs are (x2 y, x y2), (x4, x3 y), and (x2 y3, x y4).
The situation is presented in Figure 5.2, where nodes and pairs, such that either left or right node
has to be included, are shadowed green. The nodes of the minimal connected subgraph that includes
all required nodes are colored red.

In a DST formulation each green shadow presents a terminal linked by zero weight edges to one
or two nodes that are included in the region. On all other edges we put weight 1 and then search
for the minimum weight directed rooted tree that connects all terminals to the root 1.

FIG. 5.1. Graph G for the polynomial of degree 5.

a minimal tree G′. Furthermore, if j + k > 1, then we can assume that we always use a node of
degree j + k− 1 to represent x j ykPjk and then there are only one or two options for a given term.
All together, each nonzero term x j ykPjk, where j + k > 0, in the polynomial P defines one of the
following rules for the subgraph G′:

a) if k = 0 then x j−1 y0 has to be in the subgraph G′,
b) if j = 0 then x0 yk−1 has to be in the subgraph G′,
c) if j > 0 and k > 0 then at least one of x j−1 yk or x j yk−1 has to be in the subgraph G′.

The term P00 can be presented by the root 1, which is always present in the subgraph G′.
Finding a minimal tree for a given polynomial is not an easy problem: it can be formulated as

an NP-hard directed Steiner tree problem (DST) (see, e.g., [23]), where one has a directed graph
G = (V, E) with nonnegative weights on edges and the goal is to find the minimum weight directed
rooted tree that connects all terminals X ⊂ V to a given root r ∈ V .

Suppose that we are looking for a minimal representation tree for a polynomial P(x , y) of degree
n. In the graph G, which contains all nodes x j yk for j + k < n (see Figure 5.1 for the case n = 5),
we put weight 1 on all directed x and y edges. Now we add a new vertex for each monomial x j yk

that is present in P(x , y) and connect it with zero weight edges from all possible nodes in G that
could be used to represent the monomial in the linearization. We make a DST problem by taking
node 1 as a root and all newly added vertices as terminals. From a solution of the DST problem the
minimal representation tree can be recovered. Although this is an NP-hard problem, there exist some
polynomial time approximation algorithms that give a solution close to the optimal one and could
be used to construct a small determinantal representation for a given polynomial with small number
of nonzero terms. For the latest available algorithms, see, e.g., [3] and the references therein.

EXAMPLE 5.1. We are interested in a minimal tree for the matrix polynomial

(5.3) P(x , y) = P00+ x P10+ yP01+ y3P03+ x2 y2P22+ x4 yP41+ x y4P14+ x6P60+ x4 y2P42.

Nonzero terms in (5.3) define the nodes that have to be present in the minimal subgraph. They are
either strictly defined as are the nodes 1, y2, and x5, or come in pairs where at least one element of
each pair has to be present in the subgraph. Such pairs are (x2 y, x y2), (x4, x3 y), and (x2 y3, x y4).
The situation is presented in Figure 5.2, where nodes and pairs, such that either left or right node
has to be included, are shadowed green. The nodes of the minimal connected subgraph that includes
all required nodes are colored red.
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In a DST formulation each green shadow presents a terminal linked by zero weight edges to one
or two nodes that are included in the region. On all other edges we put weight 1 and then search
for the minimum weight directed rooted tree that connects all terminals to the root 1.ROOTS OF BIVARIATE POLYNOMIAL SYSTEMS 9
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FIG. 5.2. A minimal directed subtree G′ for the matrix polynomial (5.3) of degree 6.

Matrix polynomial (5.3) can thus be represented with matrices of block size 11×11. If we order
the nodes of the subgraph in the degree negative lexicographic ordering, then u has the form

u= u⊗
�

1 x y x2 y2 x3 x y2 x4 x y3 x5 x2 y3
�T

and a possible first block row of A+ xB+ yC has the form
�

P10+ x P10+ yP01 0 0 0 yP03 0 yP22 yP41 yP14 x P60 x P42

�
.

In the subsequent block rows, the matrix A+ xB + yC has only 20 nonzero blocks, 10 of them are
identity blocks on the main diagonal. The remaining nonzero blocks are −x I on block positions
(2, 1), (4, 2), (6,4), (7,5), (8, 6), (10,8), (11,9) and blocks −y I on positions (3,1), (5,3), (9, 7).

If we have a generic matrix polynomial P(x , y), whose terms are all nonzero, then it is easy to
see that the subgraph that contains all terms x j yk, where j + k < n and either k = 0 or j is even,
is minimal. The detailed situation for the case n = 6 is presented in Figure 5.3, and representation
trees for polynomials of degree from 1 to 8 are presented in Figure 5.4. Counting the number of
nodes in the tree gives the following result

(5.4) ψ(n) := |G′|=
¨ 1

4
n(n+ 1), n even,

1
4
(n− 1)(n+ 5) + 1, n odd.

If we compare this with the linearization from Example 3.2 that has matrices of block size 1
2
n(n+1),

we see that the new linearization uses matrices of roughly half size. The size of the matrices is also
smaller than (3.3) from [37], which has the same asymptotic order.

THEOREM 5.2. We can linearize each matrix polynomial P(x , y) of degree n with matrices of block
size ψ(n) from (5.4) using a minimal tree G′ that contains the terms x j yk, where j+ k < n and either
k = 0 or j is even.

Proof. We order all nodes of a minimal tree G′ in the degree negative lexicographic ordering
and form the block matrix L(x , y) in the following way. All diagonal blocks of L(x , y) are I . If a
node with index p is connected to a node with index q with an x or y edge, then we put −x I or
−y I in the block position (q, p), respectively. Because of the ordering, the matrix L is block lower
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(2, 1), (4, 2), (6,4), (7,5), (8, 6), (10,8), (11,9) and blocks −y I on positions (3,1), (5,3), (9, 7).

If we have a generic matrix polynomial P(x , y), whose terms are all nonzero, then it is easy to
see that the subgraph that contains all terms x j yk, where j + k < n and either k = 0 or j is even,
is minimal. The detailed situation for the case n = 6 is presented in Figure 5.3, and representation
trees for polynomials of degree from 1 to 8 are presented in Figure 5.4. Counting the number of
nodes in the tree gives the following result
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If we compare this with the linearization from Example 3.2 that has matrices of block size 1
2
n(n+1),

we see that the new linearization uses matrices of roughly half size. The size of the matrices is also
smaller than (3.3) from [37], which has the same asymptotic order.

THEOREM 5.2. We can linearize each matrix polynomial P(x , y) of degree n with matrices of block
size ψ(n) from (5.4) using a minimal tree G′ that contains the terms x j yk, where j+ k < n and either
k = 0 or j is even.
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FIG. 5.3. A minimal tree G′ for a generic polynomial of degree 5.

ψ(1) = 1 ψ(2) = 3 ψ(3) = 5 ψ(4) = 8

ψ(8) = 24ψ(7) = 19ψ(6) = 15ψ(5) = 11

FIG. 5.4. Minimal representation trees for polynomials of degrees 1 to 8.

triangular and nonsingular. Its inverse L(x , y)−1 is therefore also a lower triangular matrix with
diagonal identity blocks.

Let m = ψ(n) be the number of nodes in G′. If follows from L(x , y)L(x , y)−1 = I that the first
block column of L(x , y)−1 has the form

(5.5) I ⊗
�

1 s2 s2 · · · sm

�T
,

where s j is the monomial in the jth node of G′ for j = 1, . . . , m (s1 = 1).
Now we will construct the linearization of the matrix polynomial P(x , y). We need a block matrix

M(x , y) = A+ xB + yC , whose elements are linear pencils in x and y . We take M(x , y) = L(x , y)
and adjust the first block row M1(x , y), where we put linear pencils such that

M1(x , y)(I ⊗
�

1 s2 s2 · · · sm

�T
) = P(x , y).

This is always possible as for each term x j ykPjk in the polynomial P(x , y) there exists a term x r yq

in G′ such that ( j, k)−(r, q) is one of the following three options: (0, 0), (1, 0), or (0, 1). The product
M(x , y)L(x , y)−1 is an upper block triangular matrix of the form

M(x , y)L(x , y)−1 =




P(x , y) H2(x , y) · · · Hm(x , y)
I

. . .
I




,

FIG. 5.3. A minimal tree G′ for a generic polynomial of degree 5.

ψ(1) = 1 ψ(2) = 3 ψ(3) = 5 ψ(4) = 8
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FIG. 5.4. Minimal representation trees for polynomials of degrees 1 to 8.

Proof. We order all nodes of a minimal tree G′ in the degree negative lexicographic ordering
and form the block matrix L(x , y) in the following way. All diagonal blocks of L(x , y) are I . If a
node with index p is connected to a node with index q with an x or y edge, then we put −x I or
−y I in the block position (q, p), respectively. Because of the ordering, the matrix L is block lower
triangular and nonsingular. Its inverse L(x , y)−1 is therefore also a lower triangular matrix with
diagonal identity blocks.

Let m = ψ(n) be the number of nodes in G′. If follows from L(x , y)L(x , y)−1 = I that the first
block column of L(x , y)−1 has the form

(5.5) I ⊗
�

1 s2 s2 · · · sm

�T
,

where s j is the monomial in the jth node of G′ for j = 1, . . . , m (s1 = 1).
Now we will construct the linearization of the matrix polynomial P(x , y). We need a block matrix

M(x , y) = A+ xB + yC , whose elements are linear pencils in x and y . We take M(x , y) = L(x , y)
and adjust the first block row M1(x , y), where we put linear pencils such that

M1(x , y)(I ⊗
�

1 s2 s2 · · · sm

�T
) = P(x , y).

This is always possible as for each term x j ykPjk in the polynomial P(x , y) there exists a term x r yq

in G′ such that ( j, k)−(r, q) is one of the following three options: (0, 0), (1, 0), or (0, 1). The product
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M(x , y)L(x , y)−1 is an upper block triangular matrix of the form

M(x , y)L(x , y)−1 =




P(x , y) H2(x , y) · · · Hm(x , y)
I

. . .
I




,

where H2(x , y), . . . , Hm(x , y) are matrix polynomials. If we introduce the matrix polynomial

U(x , y) =




I −H2(x , y) · · · −Hm(x , y)
I

. . .
I




,

then it follows that

U(x , y)M(x , y) L(x , y)−1 =




P(x , y)
I

. . .
I




and since det(L(x , y)) ≡ det(U(x , y)) ≡ 1, this proves that M(x , y) = A+ xB + yC is indeed a
linearization of the matrix polynomial P(x , y).

EXAMPLE 5.3. As an example we consider the scalar bivariate polynomial

p(x , y) = 1+ 2x + 3y + 4x2+ 5x y + 6y2+ 7x3+ 8x2 y + 9x y2+ 10y3,

which was already linearized in [31] with matrices of size 6×6 (we can also get a 6×6 linearization
if we insert the coefficients in matrix (3.2) of Example 3.2). Now we can linearize it with matrices
of size 5× 5 as p(x , y) = det(A+ xB+ yC), where

A+ xB+ yC =




1+ 2x + 3y 4x + 5y 6y 7x + 8y 9x + 10y
−x 1 0 0 0
−y 0 1 0 0
0 −x 0 1 0
0 0 −y 0 1


.

In the next section we will further reduce the size of the matrices to 4× 4 and 3× 3.

6. Second linearization. We will upgrade the approach from the previous section and produce
even smaller representations for scalar polynomials. As before, representations have a form of the
directed tree, but instead of using only x and y , an edge can now be any linear polynomial αx+β y
such that (α,β) 6= (0,0). These additional parameters give us enough freedom to produce smaller
representations. The root is still 1 while the other nodes are polynomials in x and y that are products
of all edges on the path from the root to the node. In each node all monomials have the same degree,
which is equal to the graph distance to the root. Before we continue with the construction, we give
a small example to clarify the idea.
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FIG. 6.1. A representation tree and a linearization for a polynomial of degree 3.

Similar as in Section 5, we can write the matrices by putting the linear coefficients in the first row
and relations between the polynomials q1(x , y) to q4(x , y) in the subsequent rows. For each edge
of the form qk = (αx + β y)q j we put −(αx + β y) in the position (k, j) in the matrix M(x , y) =
A+ xB + yC and 1 in the position (k, k). In the first row we put ak + bk x + ck y in the position
(1, k) if fk(x , y) = ak + bk x + ck y is the linear factor that multiplies the polynomial qk(x , y) in the
linearization. The matrix M(x , y) that corresponds to Figure 6.1, such that det(M(x , y)) = p(x , y),
is

M(x , y) =




1+ 3x + 2y 2x + 1 x + 3y 2x − y
−x + y 1 0 0

0 −x − 3y 1 0
−2x + y 0 0 1


 .

Algorithm 1 Given a bivariate polynomial p(x , y) = α00+α10 x+α01 y+· · ·+αn0 xn+αn−1,1 xn−1 y+
· · · + α0n yn such that αn0 6= 0, the algorithm returns a representation tree with a determinantal
representation of the polynomial.

1. Compute n zeros ζ1, . . . ,ζn of the polynomial h(t) = αn0 tn+αn−1,1 tn−1+ · · ·+α0n.
2. Form a branch of the tree with the root q1(x , y) ≡ 1 and nodes q2, . . . , qn, where qk+1 is a

successor of qk and the edge from qk to qk+1 contains the factor x−ζk y for k = 1, . . . , n−1.
3. Compute linear coefficients f1, . . . , fn for nodes q1, . . . , qn in the following way:

(a) take f1(x , y) = α00+α10 x +α01 y ,
(b) take fk(x , y) = αk0 x+(αk−1,1−αk0βk)y , where βk is a coefficient of qk(x , y) at xk−1 y ,

for k = 2, . . . , n− 1,
(c) take fn(x , y) = αn0(x − ζn y).

4. Compute the remainder r(x , y) = p(x , y) −∑n
i=1 fk(x , y)qk(x , y), which has the form

r(x , y) = y2s(x , y), where s(x , y) is a polynomial of degree n− 3.
5. If s(x , y)≡ 0 then stop and return the tree.
6. Add node qn+1 and connect it to the root by an edge having the factor y .
7. If s(x , y) is a nonzero constant β00, then use fn+1 = β00 y as a coefficient for the node qn+1,

stop, and return the tree.
8. Recursively call the same algorithm to obtain a representation tree with the root q′1 for the

polynomial s(x , y).
9. Connect qn+1 to q′1 by an edge with a factor y and return the tree with the root q1.

FIG. 6.1. A representation tree and a linearization for a polynomial of degree 3.

EXAMPLE 6.1. A linearization of a polynomial of degree 3 with matrices of size 4×4 is presented in
Figure 6.1. Let us explain the figure and show how to produce the matrices from the representation
tree. The nodes in the representation tree are the following polynomials:

q1(x , y) = 1, q2(x , y) = (x − y)q1(x , y) = x − y,

q3(x , y) = (x + y)q2(x , y) = x2− y2, q4(x , y) = (2x − y)q1(x , y) = 2x − y.

The polynomial of degree 3 is then a linear combination of nodes in the representation tree and
coefficients f1, . . . , f4 which are polynomials of degree 1 contained in the ellipses. This gives

p(x , y) = (1+ 3x + 2y)q1(x , y) + (2x + 1)q2(x , y) + (x + 3y)q3(x , y) + (2x − y)q4(x , y)

= 1+ 4x + y + 6x2− 6x y + y2+ x3+ 3x2 y − x y2− 3y3.

Similar as in Section 5, we can write the matrices by putting the linear coefficients in the first row
and relations between the polynomials q1(x , y) to q4(x , y) in the subsequent rows. For each edge
of the form qk = (αx + β y)q j we put −(αx + β y) in the position (k, j) in the matrix M(x , y) =
A+ xB + yC and 1 in the position (k, k). In the first row we put ak + bk x + ck y in the position
(1, k) if fk(x , y) = ak + bk x + ck y is the linear factor that multiplies the polynomial qk(x , y) in the
linearization. The matrix M(x , y) that corresponds to Figure 6.1, such that det(M(x , y)) = p(x , y),
is

M(x , y) =




1+ 3x + 2y 2x + 1 x + 3y 2x − y
−x + y 1 0 0

0 −x − 3y 1 0
−2x + y 0 0 1


 .

In Example 6.1 we showed how to construct the bivariate pencil M(x , y) = A+ xB + yC from
a representation tree and the corresponding linear coefficients. The outline of an algorithm that
constructs a representation tree and the corresponding linear coefficients for a given polynomial
p(x , y) is presented in Algorithm 1. In the following discussion we give some missing details and
show that the algorithm indeed gives a linearization.

• The nodes q2, . . . , qn that we construct in Step 2 are polynomials of the form qk(x , y) =
(x − ζ1 y) · · · (x − ζk−1 y) for k = 2, . . . , n. All monomials in qk have degree k − 1 and the
leading term is xk−1.
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Algorithm 1 Given a bivariate polynomial p(x , y) = α00+α10 x+α01 y+· · ·+αn0 xn+αn−1,1 xn−1 y+
· · · + α0n yn such that αn0 6= 0, the algorithm returns a representation tree with a determinantal
representation of the polynomial.

1. Compute n zeros ζ1, . . . ,ζn of the polynomial h(t) = αn0 tn+αn−1,1 tn−1+ · · ·+α0n.
2. Form a branch of the tree with the root q1(x , y) ≡ 1 and nodes q2, . . . , qn, where qk+1 is a

successor of qk and the edge from qk to qk+1 contains the factor x−ζk y for k = 1, . . . , n−1.
3. Compute linear coefficients f1, . . . , fn for nodes q1, . . . , qn in the following way:

(a) take f1(x , y) = α00+α10 x +α01 y ,
(b) take fk(x , y) = αk0 x+(αk−1,1−αk0βk)y , where βk is a coefficient of qk(x , y) at xk−1 y ,

for k = 2, . . . , n− 1,
(c) take fn(x , y) = αn0(x − ζn y).

4. Compute the remainder r(x , y) = p(x , y) −∑n
i=1 fk(x , y)qk(x , y), which has the form

r(x , y) = y2s(x , y), where s(x , y) is a polynomial of degree n− 3.
5. If s(x , y)≡ 0 then stop and return the tree.
6. Add node qn+1 and connect it to the root by an edge having the factor y .
7. If s(x , y) is a nonzero constant β00, then use fn+1 = β00 y as a coefficient for the node qn+1,

stop, and return the tree.
8. Recursively call the same algorithm to obtain a representation tree with the root q′1 for the

polynomial s(x , y).
9. Connect qn+1 to q′1 by an edge with a factor y and return the tree with the root q1.

• Each product qk(x , y) fk(x , y) for k = 2, . . . , n is a polynomial with monomials of exact
degree k, while q1(x , y) f1(x , y) is a polynomial of degree 1. The linear factors fk(x , y) in
Step 3 are constructed so that:

– leading two monomials (xk and xk−1 y) of fk(x , y)qk(x , y) agree with the part αk0 xk+
αk−1,1 xk−1 y of the polynomial p(x , y) for k = 2, . . . , n− 1,

– the product fn(x , y)qn(x , y) = an0(x−ζ1 y) · · · (x−ζn y) agrees with the part of p(x , y)
composed of all monomials of degree exactly n,

– the product q1(x , y) f1(x , y) = a00 + a10 x + a01 y agrees with the part of p(x , y) com-
posed of all monomials of degree up to 1.

As a result, the remainder in Step 4 has the form y2s(x , y), where s(x , y) is a polynomial of
degree n− 3. The situation at the end of Step 4 is presented in Figure 6.2.

• If the coefficient αn0 is zero, then we can apply a linear substitution of x and y of the form
x = ex and y = ey + γx , where we pick γ such that

αn−1,1 γ+αn−2,2 γ
2+ · · ·+α0n γ

n 6= 0.

This ensures that the substituted polynomial in ex and ey will have a nonzero coefficient at
exn. After we complete the representation tree for the substituted polynomial in ex and ey , we
perform the substitution back to x and y .

• If the polynomial s(x , y) in Step 4 is not a constant, then we obtain a representation subtree
for s(x , y) by calling recursively the same algorithm. In order to obtain the final representa-
tion tree, we then join the existing branch to the representation subtree for the polynomial
s(x , y). We do this by introducing a new node qn+1 in Step 6 that is linked to the root by
the edge with the factor y . To this new node we link the root q′1 of the subtree for the
polynomial s(x , y) in Step 9, again using the edge with the factor y . As q′1 is linked to the
root by two edges y , this multiplies all nodes in the subtree by y2 and, since the subtree is
a representation for s(x , y), this gives a representation for the remainder r(x , y) from Step
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In Example 6.1 we showed how to construct the bivariate pencil M(x , y) = A+ xB + yC from
a representation tree and the corresponding linear coefficients. The outline of an algorithm that
constructs a representation tree and the corresponding linear coefficients for a given polynomial
p(x , y) is presented in Algorithm 1. In the following discussion we give some missing details and
show that the algorithm indeed gives a linearization.

• The nodes q2, . . . , qn that we construct in Step 2 are polynomials of the form qk(x , y) =
(x − ζ1 y) · · · (x − ζk−1 y) for k = 2, . . . , n. All monomials in qk have degree k − 1 and the
leading term is xk−1.

• Each product qk(x , y) fk(x , y) for k = 2, . . . , n is a polynomial with monomials of exact
degree k, while q1(x , y) f1(x , y) is a polynomial of degree 1. The linear factors fk(x , y) in
Step 3 are constructed so that:

– leading two monomials (xk and xk−1 y) of fk(x , y)qk(x , y) agree with the part αk0 xk+
αk−1,1 xk−1 y of the polynomial p(x , y) for k = 2, . . . , n− 1,

– the product fn(x , y)qn(x , y) = an0(x−ζ1 y) · · · (x−ζn y) agrees with the part of p(x , y)
composed of all monomials of degree exactly n,

– the product q1(x , y) f1(x , y) = a00 + a10 x + a01 y agrees with the part of p(x , y) com-
posed of all monomials of degree up to 1.

As a result, the remainder in Step 4 has the form y2s(x , y), where s(x , y) is a polynomial of
degree n− 3. The situation at the end of Step 4 is presented in Figure 6.2.

1

q2

qn−1

qn

fn

fn−1

f2

f1

x − ζ1 y

x − ζ2 y

x − ζn−2 y

x − ζn−1 y

FIG. 6.2. The representation tree after Step 4 of Algorithm 1. The remainder p(x , y) −∑n
j=1 f j(x , y)q j(x , y) is a

polynomial of the form y2s(x , y), where s(x , y) is a polynomial or degree n− 3.

• If the coefficient αn0 is zero, then we can apply a linear substitution of x and y of the form
x = ex and y = ey + γx , where we pick γ such that

αn−1,1 γ+αn−2,2 γ
2+ · · ·+α0n γ

n 6= 0.

This ensures that the substituted polynomial in ex and ey will have a nonzero coefficient at
exn. After we complete the representation tree for the substituted polynomial in ex and ey , we
perform the substitution back to x and y .

• If the polynomial s(x , y) in Step 4 is not a constant, then we obtain a representation subtree
for s(x , y) by calling recursively the same algorithm. In order to obtain the final representa-
tion tree, we then join the existing branch to the representation subtree for the polynomial
s(x , y). We do this by introducing a new node qn+1 in Step 6 that is linked to the root by

FIG. 6.2. The representation tree after Step 4 of Algorithm 1. The remainder p(x , y) −∑n
j=1 f j(x , y)q j(x , y) is a

polynomial of the form y2s(x , y), where s(x , y) is a polynomial or degree n− 3.

4. The situation after Step 9 with the final representation tree for the polynomial p(x , y) is
presented in Figure 6.3.
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the edge with the factor y . To this new node we link the root q′1 of the subtree for the
polynomial s(x , y) in Step 9, again using the edge with the factor y . As q′1 is linked to the
root by two edges y , this multiplies all nodes in the subtree by y2 and, since the subtree is
a representation for s(x , y), this gives a representation for the remainder r(x , y) from Step
4. The situation after Step 9 with the final representation tree for the polynomial p(x , y) is
presented in Figure 6.3.

1

q2 qn+1

eq1

qn−1

qn

y

y

x − ζ1 y

x − ζ2 y

x − ζn−2 y

x − ζn−1 y
subtree for s(x , y)

FIG. 6.3. The final representation tree.

From the output of Algorithm 1, matrices A, B, C such that det(A+ xB + yC) = p(x , y) can be
obtained in the same way as in Example 6.1. Let us remark that the zeros ζ1, . . . ,ζn in Step 1 can be
complex, even if polynomial p has real coefficients. Thus, in a general case a linearization produced
by Algorithm 1 has complex matrices A, B, and C .

EXAMPLE 6.2. We apply Algorithm 1 on p(x , y) = 1+2x+3y+4x2+5x y+6y2+7x3+8x2 y+
9x y2+ 10y3 from Example 5.3. First, we compute the roots

(6.1) ζ1 =−0.0079857− 1.1259i, ζ2 =−0.0079857+ 1.1259i, ζ3 =−1.1269

of the polynomial h(t) = 7t3+ 8t2+ 9t + 10. The zeros are ordered so that |ζ1| ≤ |ζ2| ≤ · · · ≤ |ζn|.
In exact computation the order is not important, but in numerical tests we experience better results
with this order. This gives the polynomials in the first branch of the representation tree:

q1(x , y) = 1, q2(x , y) = x+(0.0079857+1.1259i)y, q3(x , y) = x2+0.015971x y+1.2677y2,

and we can compute the corresponding coefficients

f1(x , y) = 1+ 2x + 3y, f2(x , y) = 4x + (4.9681+ 4.5036i)y, f3(x , y) = 7x + 7.8882y.

For the remainder r(x , y) = p(x , y)−
3∑

j=1

f j(x , y)q j(x , y) = (0.88972+ 5.5576i)y2 we need just

one additional node q4(x , y) = y with the coefficient f4(x , y) = (0.88972+ 5.5576i)y . The deter-

FIG. 6.3. The final representation tree.

From the output of Algorithm 1, matrices A, B, C such that det(A+ xB + yC) = p(x , y) can be
obtained in the same way as in Example 6.1. Let us remark that the zeros ζ1, . . . ,ζn in Step 1 can be
complex, even if polynomial p has real coefficients. Thus, in a general case a linearization produced
by Algorithm 1 has complex matrices A, B, and C .

EXAMPLE 6.2. We apply Algorithm 1 on p(x , y) = 1+2x+3y+4x2+5x y+6y2+7x3+8x2 y+
9x y2+ 10y3 from Example 5.3. First, we compute the roots

(6.1) ζ1 =−0.0079857− 1.1259i, ζ2 =−0.0079857+ 1.1259i, ζ3 =−1.1269

of the polynomial h(t) = 7t3+ 8t2+ 9t + 10. The zeros are ordered so that |ζ1| ≤ |ζ2| ≤ · · · ≤ |ζn|.
In exact computation the order is not important, but in numerical tests we experience better results
with this order. This gives the polynomials in the first branch of the representation tree:

q1(x , y) = 1, q2(x , y) = x+(0.0079857+1.1259i)y, q3(x , y) = x2+0.015971x y+1.2677y2,
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and we can compute the corresponding coefficients

f1(x , y) = 1+ 2x + 3y, f2(x , y) = 4x + (4.9681+ 4.5036i)y, f3(x , y) = 7x + 7.8882y.

For the remainder r(x , y) = p(x , y)−
3∑

j=1

f j(x , y)q j(x , y) = (0.88972+ 5.5576i)y2 we need just

one additional node q4(x , y) = y with the coefficient f4(x , y) = (0.88972+ 5.5576i)y . The deter-
minantal representation with 4× 4 matrices is p(x , y) = det(A+ xB+ yC), where

A=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


, B =




2 4 7 0
−1 0 0 0

0 −1 0 0
0 0 0 0


, and

C =




3 4.9681+ 4.5036i 7.8882 0.88972+ 5.5576i
−0.0079857+ 1.1259i 0 0 0

0 −0.0079857− 1.1259i 0 0
−1 0 0 0


.

θ(1) = 1 θ(2) = 2 θ(3) = 4 θ(4) = 6

θ(8) = 17θ(7) = 14θ(6) = 11θ(5) = 8

FIG. 6.4. Representation trees for polynomials of degrees 1 to 8.

Representation trees for polynomials of degree from 1 to 8 are presented in Figure 6.4. If
we compare them to the determinantal representations from Section 5 in Figure 5.4, then we see
that representations obtained by Algorithm 1 are much smaller. The following lemma shows that
asymptotically we use 1

3
fewer nodes than in Section 5.

LEMMA 6.3. Algorithm 1 returns representation tree G for the linearization of a polynomial p(x , y)
of degree n of size

(6.2) θ(n) = |G|=
¨

1
6
n(n+ 5), n= 3k or n= 3k+ 1,

1
6
n(n+ 5)− 1

3
, n= 3k+ 2.

Proof. It follows from the recursion in the algorithm (see Figure 6.3) that the number of nodes
satisfies the recurrence equation

θ(n) = n+ 1+ θ(n− 3).
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The solution of this equation with the initial values θ(1) = 1, θ(2) = 2, and θ(3) = 4 is (6.2).

For generic polynomials of degrees n = 3 and n = 4 it turns out to be possible to modify the
construction and save one node in the representation tree. The main idea is to apply a linear
substitution of variables x and y in the preliminary phase to the polynomial p(x , y) to eliminate
some of the terms. This implies that the resulting matrices are of order 3 (n = 3) and 5 (n = 4),
instead of order 4 and 6 as seen before and, it also reduces the size of the matrices for n = 3k and
n= 3k+ 1 by 1. We give details in the following two subsections.

6.1. The special case n = 3. Let us consider a cubic bivariate polynomial p(x , y) = α00 +
α10 x +α01 y + · · ·+α30 x3+ · · ·+α03 y3, where we can assume that α30 6= 0. We introduce a linear
substitution of the form x = ex + sey + t and y = ey , where s is such that

(6.3) h(s) := α30s3+α21s2+α12s+α03 = 0

and t =
p20s2+ p11s+ p02

h′(s)
.

The substitution is well defined if s is a single root of (6.3) and the only situation, where this is
not possible, is when h has a triple root.

The above substitution transforms p(x , y) into a polynomial ep(ex , ey) such that its coefficients ep03
and ep02 are both zero. If we apply Algorithm 1 to ep(ex , ey) and choose ζ1 = 0 for the first zero, then
the remainder in Step 4 is zero and we get 3×3 matrices eA, eB, and eC such that det(eA+ exeB+ ey eC) =
ep(ex , ey). Now, it is easy to see that for A= eA− teB, B = eB, and C = eC−seB, det(A+ xB+ yC) = p(x , y).

EXAMPLE 6.4. We take the recurrent example p(x , y) = 1 + 2x + 3y + 4x2 + 5x y + 6y2 +
7x3 + 8x2 y + 9x y2 + 10y3 (see Examples 5.3 and 6.2). If we take s = 1.1269 (see (6.3)) and
t =−0.30873, then substitution x = ex + sey + t and y = ey changes p(x , y) into a polynomial

p(ex , ey) = 0.55782+1.5317ex+0.49276ey−2.4833ex2+5.6571ex ey+7ex3−15.665ex2ey+17.637ex ey2.

Algorithm 1 gives 3× 3 matrices eA, eB, and eC such that det(eA+ exeB + ey eC) = ep(ex , ey), from which
matrices

A=


 1.0307 −0.76665 2.1611
−0.30873 1 0

0 −0.30873 1


 , B =


1.5317 −2.4833 7
−1 0 0
0 −1 0


, and

C =


 2.2189 2.8587 0.00559+ 7.8813i
−1.1269 0 0

0 −0.0079857+ 1.1259i 0




such that det(A+ xB+ yC) = p(x , y), are obtained and we have a 3× 3 linearization.

6.2. The special case n = 4. Before we give a construction for a generic quartic bivariate
polynomial, let us consider a particular case, when a polynomial p(x , y) =

∑4
j=0

∑4− j
k=0α jk x j yk of

degree 4 is such that α30 = α40 = α03 = α04 = 0. In this case 5 nodes are enough to represent the
polynomial p(x , y). The representation tree for the polynomial p(x , y) is presented in Figure 6.5,
where ζ1 and ζ2 are the zeros of α31ζ

2+α22ζ+α03.
For a generic quartic polynomial we first transform it into one with zero coefficients at x3,

x4, y3, and y4. Except for very special polynomials, we can do this with a combination of two
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1

x y

x y

x y(x−ζ1 y)

α00+α10 x+α01 y

α02 yα20 x + α11 y

α21 x + α12 y

α31(x − ζ2 y)

yx

y

x − ζ1 y

FIG. 6.5. A representation tree and a linearization for a polynomial p(x , y) =
∑4

j=0

∑4− j
k=0 α jk x j yk of degree 4 such that

α30 = α40 = α03 = α04 = 0.

and v =−α30+α21u+α12u2+α03

g ′(u)
.

This substitution is well defined if u is a single root of g(u); therefore, both substitutions exist
for a generic polynomial of degree 4.

After the second substitution we get a polynomial bp(bx , by) such that its coefficients bα30, bα40, bα03,
and bα04 are all zero. For such polynomial we can construct a representation with matrices 4× 4 as
presented in Figure 6.5. This gives 4×4 matrices bA, bB, and bC such that det(bA+ bxbB+ by bC) = bp(bx , by).
Finally, if we take

A= bA− tbB− (v− tu) bC , B = bB− u bC , C = bC − s bB,

then det(A+ x B+ y C) = p(x , y).
If we add the constructions from Subsections 6.1 and 6.2 as special cases to Algorithm 1, then we

save one node for all generic polynomials of degree n = 3k or n = 3k+ 1. Although this advantage
seems to be modest, numerical results in the following section point out that for small n this does
speed up the computation of the zeros considerably (for instance, for n = 6 the corresponding
∆-matrices are of order 102 = 100 instead of 112 = 121).

7. Numerical examples. Determinantal representations from Sections 5 and 6 can be used
to numerically solve a system of two bivariate polynomials. We first linearize the problem as a
two-parameter eigenvalue problem and then solve it with the method for singular two-parameter
eigenvalue problems from [32]. Subsequently, we refine the solutions by two steps of Newton’s
method. We refer to the numerical methods that use linearizations from Sections 5 and 6 as Lin1
and Lin2, respectively. In the first example we take polynomials with random coefficients, while
the second example considers some challenging benchmark polynomials.

EXAMPLE 7.1. We compare Lin1 and Lin2 to NSolve in Mathematica 9 and PHCLab 1.02
[11] running PHCpack 2.3.84 on systems of full bivariate polynomials of the same degree, whose
coefficients are random real numbers uniformly distributed on [0,1] or random complex numbers,
such that real and imaginary part are both uniformly distributed on [0,1].

The results are presented in Table 7.1. For each n we run all methods on the same set of 20
random polynomial systems and measure the average time. Lin1 and Mathematica’s NSolve work
faster for polynomials with real coefficients while this does not make a change for Lin2 and PHCLab,
therefore, the results in the table for Lin2 and PHCLab are an average of 20 real and 20 complex

FIG. 6.5. A representation tree and a linearization for a polynomial p(x , y) =
∑4

j=0

∑4− j
k=0 α jk x j yk of degree 4 such that

α30 = α40 = α03 = α04 = 0.

linear substitutions. Similar as in case n = 3, we first introduce a linear substitution of the form
x = ex + sey + t and y = ey , where s is such that

h(s) := α40s4+α31s3+α22s2+α13s+α04 = 0

and t =−α30s3+α21s2+α12s+α03

h′(s)
.

The substitution is well defined if s is a single root of h(s). After the substitution we have a
polynomial ep(ex , ey) such that its coefficients ep04 and ep03 are both zero. On this polynomial we apply
a new substitution ex = bx and ey = ubx + by + v, where

g(u) := eα40+ eα31u+ eα22u2+ eα13u3 = 0

and v =−α30+α21u+α12u2+α03

g ′(u)
.

This substitution is well defined if u is a single root of g(u); therefore, both substitutions exist
for a generic polynomial of degree 4.

After the second substitution we get a polynomial bp(bx , by) such that its coefficients bα30, bα40, bα03,
and bα04 are all zero. For such polynomial we can construct a representation with matrices 4× 4 as
presented in Figure 6.5. This gives 4×4 matrices bA, bB, and bC such that det(bA+ bxbB+ by bC) = bp(bx , by).
Finally, if we take

A= bA− tbB− (v− tu) bC , B = bB− u bC , C = bC − s bB,

then det(A+ x B+ y C) = p(x , y).
If we add the constructions from Subsections 6.1 and 6.2 as special cases to Algorithm 1, then we

save one node for all generic polynomials of degree n = 3k or n = 3k+ 1. Although this advantage
seems to be modest, numerical results in the following section point out that for small n this does
speed up the computation of the zeros considerably (for instance, for n = 6 the corresponding
∆-matrices are of order 102 = 100 instead of 112 = 121).

7. Numerical examples. Determinantal representations from Sections 5 and 6 can be used
to numerically solve a system of two bivariate polynomials. We first linearize the problem as a
two-parameter eigenvalue problem and then solve it with the method for singular two-parameter
eigenvalue problems from [32]. Subsequently, we refine the solutions by two steps of Newton’s



18 PLESTENJAK AND HOCHSTENBACH

method. We refer to the numerical methods that use linearizations from Sections 5 and 6 as Lin1
and Lin2, respectively. In the first example we take polynomials with random coefficients, while
the second example considers some challenging benchmark polynomials.

EXAMPLE 7.1. We compare Lin1 and Lin2 to NSolve in Mathematica 9 and PHCLab 1.02
[11] running PHCpack 2.3.84 on systems of full bivariate polynomials of the same degree, whose
coefficients are random real numbers uniformly distributed on [0, 1] or random complex numbers,
such that real and imaginary part are both uniformly distributed on [0,1].

The results are presented in Table 7.1. For each n we run all methods on the same set of 20
random polynomial systems and measure the average time. Lin1 and Mathematica’s NSolve work
faster for polynomials with real coefficients while this does not make a change for Lin2 and PHCLab,
therefore, the results in the table for Lin2 and PHCLab are an average of 20 real and 20 complex
examples. Clearly, if Lin1 is applied to a polynomial with real coefficients, then matrices ∆0, ∆1,
and ∆2 are real. If we apply Lin2 then the matrices are complex in general as roots of univariate
polynomials are used in the construction. Although the complex arithmetic is more expensive than
the real one, complex eigenproblems from Lin2 are so small that they are solved faster than the
larger real problems from Lin1.

TABLE 7.1
Average computational times for Lin1, Lin2, NSolve, and PHCLab for random full bivariate polynomial systems of

degree 3 to 10. For Lin1 and NSolve results are separated for real (R) and complex polynomials (C). Notice that these are
the running times; the accuracy of the methods varies, as we discuss in the text.

Time (sec) ∆-matrix size
n Lin1 (R) Lin1 (C) Lin2 PHCLab NSolve (C) NSolve (R) Lin1 Lin2
3 0.01 0.01 < 0.01 0.18 0.25 0.04 25 9
4 0.02 0.02 0.01 0.21 0.42 0.07 64 25
5 0.03 0.05 0.02 0.26 0.67 0.17 121 64
6 0.08 0.18 0.05 0.34 1.04 0.22 225 100
7 0.23 0.57 0.16 0.44 2.75 0.61 361 169
8 0.67 2.04 0.54 0.59 2.17 0.88 576 289
9 2.25 6.21 1.33 0.80 5.53 1.48 841 400

10 6.24 16.6 3.38 1.05 8.12 3.85 1225 576

Computational times for Lin1, Lin2, and PHCLab are very similar for each of the 20 test prob-
lems of the same degree. On the other hand, NSolve needs substantially more time for certain
problems. For example, for complex polynomials of degree n = 7, NSolve needed approximately
1.5s for 16 of the 20 examples, and 7.5s for the additional 4 examples. That explains why the
average time for NSolve (C) is larger in case n= 7 than in case n= 8.

Beside the computational time, accuracy and reliability are another important factors. NSolve
is the only method that finds all solutions in all examples, but on the other hand, the results are
on average less accurate than with other methods. As a measure of accuracy we use the maximum
value of

(7.1) max(|p1(x0, y0)|, |p2(x0, y0)|) ‖J−1(x0, y0)‖,
where J(x0, y0) is a Jacobian matrix of p1 and p2 at (x0, y0), over all computed zeros (x0, y0).
‖J−1(x0, y0)‖ is an absolute condition number of a zero (x0, y0) and we assume that in random
examples all zeros are simple. For a good method (7.1) should be as small as possible.

For real or complex systems of degree n ≤ 7, Lin2 is the fastest method and usually the most
accurate one. It is never significantly less accurate than the others, so it clearly wins in this case.
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For real polynomials of degree n = 8 computational times of all methods are very close. NSolve is
the fastest method with a tight margin in 17 out of 20 cases, but is also several orders of magnitude
less accurate. PHCLab is faster and slightly less accurate than Lin2 in 5 out of 40 cases, but, in one
of them it fails to compute all the solutions.

For n = 9 and n = 10 PHCLab becomes the fastest method, but is less reliable. In many cases it
does not compute all the solutions. For n = 9 this happens in 14 out of 40 times and for n = 10 in
17 out of 40 cases. As PHCLab is using random initial systems, a possible remedy is to run PHCLab
several times. Also Lin2 fails to compute solutions for 2 real examples for n = 10. A remedy for
Lin2 in these cases is to interchange variables x and y .

Lin1 is competitive in particular for real systems of degree n ≤ 7. For n = 8 it misses one
solution in one example and in two examples for n = 10 we have to adapt the criteria for detecting
a numerical rank in the staircase algorithm to get the correct number of solutions.

Let us remark that each node less in the representation tree really does make a difference. For
instance, if we do not apply the special case for n = 4 in Subsection 6.2, then the ∆ matrices for
Lin2 for polynomial systems of degree n = 10 are of size 625× 625 instead of 576× 576 and the
average computational time rises from 3.38s to 3.95s.

EXAMPLE 7.2. We test Lin1 and Lin2 on 25 examples ex001 to ex025 from [5]. This set
contains challenging benchmark problems with polynomials of small degree from (3,2) to (11,10)
that have many multiple zeros and usually have less solutions than a generic pair of the same
degrees. Lin1 and Lin2 performed satisfactorily on most examples, but, they also failed on some.
Instead of giving the details for all 25 examples, we give the key observations.

• Multiple zeros can present a problem for the algorithm from [16] that is used to solve the
projected regular problem e∆1 w = x e∆0 w, e∆2 w = y e∆0 w that is obtained from (4.2) by the
modified staircase algorithm from [32]. The QZ algorithm is first applied to e∆1 w = x e∆0 w
and then e∆2 w = y e∆0 w is multiplied by Q and Z . The eigenvalues are clustered along
the diagonal so that multiple eigenvalues x should be in the same block. For several of the
25 examples with eigenvalues of high multiplicity the clustering criteria have to be adapted
otherwise the results are not so accurate.

• Lin2 is faster, but the accuracy can be lost if the polynomial in Step 1 of Algorithm 1 has
multiple zeros, an example is p2 from ex008. The method fails for ex014, ex018, and
ex020.

• We get very good results in example ex005 with the system x9+ y9−1= 0 and x10+ y10−
1 = 0 using Lin2. In this case Lin2 returns optimal determinantal representations with
matrices of size 9 × 9 and 10 × 10, respectively. The obtained two-parameter eigenvalue
problem is not singular and we get the solutions in 0.08s, while PHCLab and NSolve need
0.6s. For comparison, Lin1, applied to the same problem, returns∆matrices of size 1015×
1015, while Lin2 gives ∆ matrices of size 90× 90.

• Lin1 is slower but can be more accurate. Because there is no computation in the construc-
tion, no errors are introduced in the construction of the linearization. Lin1 manages to
solve 22 out of 25 examples (in some examples the parameters have to be adapted to make
it work), but fails for ex007, ex016, and ex018.

• NSolve always finds all solutions but is slower than Lin1 and Lin2 except for ex014 where
polynomials are of degrees 11 and 10. PHCLab usually finds just one instance of a multiple
eigenvalue and thus returns much less zeros.

EXAMPLE 7.3. Encouraged by the good results for ex005 in Example 7.2, we carry out some
experiments with polynomials of form p(x , y) = αn0 xn + · · · + α0n yn + h(x , y), where h(x , y) is
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a polynomial of small degree m � n. For such polynomials Algorithm 1 returns matrices of size
n+ 1+ θ(m) or even smaller. For example, it is easy to see that for m = 1 we get linearization of
the smallest possible size n× n. We compared Lin2, PHCLab, and NSolve. Computational times
for random polynomials with complex coefficients of the above form are presented in Table 7.2. As
n increases, PHCLab becomes faster then Lin2, but in most cases it does not compute all solutions.
For instance, for n = 30 it misses 16 and 20 zeros for m = 1 and m = 3, respectively. Therefore,
Lin2 might be the preferred method for such polynomial systems.

TABLE 7.2
Computational times for Lin2, PHCLab, and NSolve for systems of two polynomials of the form p(x , y) = αn0 xn +

· · ·+α0n yn + h(x , y), where degree of h(x , y) is m� n.

Time (sec)
n m Lin2 PHCLab NSolve

15 1 0.48 1.9 3.7
15 3 0.87 1.8 4.1
20 1 2.1 4.5 10.8
20 3 3.8 5.0 11.3
25 1 9.6 10.6 25.0
25 3 13.1 12.7 26.3
30 1 23.2 17.4 52.8
30 3 37.2 20.1 55.0

8. Conclusions. We have proposed two linearizations for bivariate polynomials. The first lin-
earization does not involve any computation as the coefficients of the polynomials appear as (block)
coefficients of the matrices A, B, and C . This linearization is suitable for both scalar and matrix
bivariate polynomials. The second linearization, useful for scalar polynomials, involves little com-
putation and returns much smaller matrices. They are still larger than the theoretically smallest
possible size n× n, but their construction is very simple and fast. Moreover, while the asymptotic
order is 1

6
n2, the order for small n is about 2n; for polynomials of degree 3 and 4 we have presented

determinantal representations of order 3 and 5, respectively.
As an application we have presented a method for finding roots of two bivariate polynomials.

We show that an approach, where the polynomial system is first linearized into a two-parameter
eigenvalue problem, which is later solved by a modified staircase method, is numerically feasible
and gives good results for polynomials of degree n<∼ 10, as well as for polynomials of higher degree
but with few terms. Any further results on even smaller determinantal representations that can be
efficiently constructed numerically, could enlarge the above degree.
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