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Abstract

Spatial multiscale methods have established themselves as useful tools for extend-
ing the length scales accessible by conventional statics (i.e., zero temperature molecular
dynamics). Recently, extensions of these methods, such as the finite-temperature qua-
sicontinuum (hot-QC) or Coarse-Grained Molecular Dynamics (CGMD) methods, have
allowed for multiscale molecular dynamics simulations at finite temperature. Here, we
assess the quality of the long-time dynamics these methods generate by considering
canonical transition rates. Specifically, we analyze the transition state theory (TST)
rates in CGMD and compare them to the corresponding TST rate of the fully atomistic
system. The ability of such an approach to reliably reproduce the TST rate is verified
through a relative error analysis, which is then used to highlight the major contribu-
tions to the error and guide the choice of degrees of freedom. Finally, our analytical
results are compared with numerical simulations for the case of a 1-D chain.

1 Introduction

Molecular dynamics (MD) — the direct integration of atomistic equations of motion —
provides a powerful tool for the study of chemical and material processes. Such an approach
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accurately captures the physics at the atomic scale and, in principle, enables the accurate
modeling of a wide range of atomistic systems. However, despite the high speed of modern
computers, MD simulations still struggle to access the wildly disparate length and time scales
required in many applications. To partially overcome this difficulty, multiscale methods that
bridge the length-scales from the nano- to the meso-scales have been proposed. While such
methods are certainly promising, relatively little is known of the effect of spatial coarse-
graining on the quality of the dynamics. Improving our understanding of these issues is
necessary in order to expand upon the range of problems that can be modeled using such
an approach.

We concern ourselves here with spatial multiscale processes for which the critical atom-
istic behaviors are localized yet strongly coupled to the environment through long-range
elastic effects. Probably the most well known numerical method to treat such systems is the
quasicontinuum (QC) method. Specifically, the QC method aims to solve molecular statics
(i.e., molecular dynamics at zero temperature) problems in such cases [1, 10–12, 16]. In the
QC method, the localized region of interest is treated atomistically in order to preserve a
high degree of accuracy, while the behavior of the remainder of the system is approximated
using continuum mechanics. This coupling between the length scales is meant to allow for
an elastic coupling of the two regions, ensuring proper boundary conditions for the atomistic
region. The number of degrees of freedom necessary to describe the system is significantly
reduced through the use of the Cauchy-Born approximation and a coarsening of the contin-
uum region via the finite element method (FEM). This greatly reduces its computational
cost compared to a fully atomistic solution.

Recently, finite temperature versions of the quasicontinuum method, so-called hot-QC
methods [4,15], have been developed in order to extend the QC approach to finite-temperature
molecular dynamics. Hot-QC was designed to simulate systems held at a constant temper-
ature, which permits an analysis from a thermodynamic perspective. Mathematical ap-
proaches to finite temperature equilibrium and dynamics have been given in [2, 3, 6, 7, 9].
Hot-QC aims at preserving any thermodynamic quantity that depends only on a (small)
subset of all degrees of freedom. It has recently been pointed out that this property implies
that transition state theory (TST) rates between metastable states of the system should
be well reproduced insofar as the system’s constituents that are essential to the the transi-
tions are approximately local to the fully-resolved atomistic region. This property has been
exploited in an extension of these methods — the hyper-QC method [8] — which seeks to
efficiently and accurately simulate state-to-state dynamics of spatially coarse-grained rare-
event systems through the use of accelerated molecular dynamics [13].

In this paper, we seek to better understand the error in transition rates introduced by
coarse-graining the periphery of the system. In order to isolate this error, we consider the
coarse-graining of an atomistic system according to the coarse-grained molecular dynamics
(CGMD) formalism described in [14]. However, we note that our choice of coarse variables
differ from that of conventional CGMD, as will be discussed below. CGMD and hot-QC
share the same formal basis, but CGMD provides a closed-form expression to the coarse
Hamiltonian, which enables a mathematical analysis. Further, it naturally handles the
interface between the region to be treated with atomistic detail and the remainder of the
system, in contrast to QC methods where so-called ghost forces pose additional challenges
[11]. In order to obtain closed-form results, we will consider transition rates computed within
the purview of harmonic transition state theory (HTST) [17]. HTST is often the method
of choice to approximate transition rates in hard materials. Our choice for the dividing
surface between the two metastable regions and how the dividing surface is affected by the
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coarse-graining will also be discussed. The error analysis for the TST rate will serve as
confirmation of the validity of the approach and provide intuition for the types of error
made in the coarsening process for spatial multiscale methods.

The paper is organized as follows: First, we define a coarse-grained energy in terms of
the atomistic energy to be used in the thermodynamic calculations. Second, we discuss and
analyze the HTST rates in atomistic and coarse-grained systems and derive the relative
error in rates due to coarse-graining in terms of eigenvalues of the respective Hamiltonians.
We then discuss how these eigenvalues are affected by coarse-graining. Following that, we
provide numerical results exhibiting the approximations to the HTST rate made by various
coarse-graining schemes for a 1D system and illustrate the major sources of error in these
computations. We specifically investigate the impact of the choice of degrees of freedom.
Finally, we conclude with general remarks.

2 The Coarse-Grained Energy

Consider a system of N particles in d dimensions held at a fixed temperature T . Let q ∈ RdN
and p ∈ RdN denote the position and momentum vectors of the particles respectively. When
necessary, we will denote the position and momentum vectors of individual particles by qi
and pi for 1 ≤ i ≤ N . For this paper, we will make use of mass-weighted coordinates for
the position and momentum vectors; that is, we will consider q̃i = qi/

√
mi, where mi is

the mass of the i-th particle so that p̃i = pi/
√
mi. However, we will dispense with the

tilde notation and still use q and p to denote the mass-weighted coordinates for position
and momentum respectively. The total energy, or Hamiltonian, of the system will be given
by H(q,p). We assume that the Hamiltonian is separable; that is, we assume that the
Hamiltonian may be written as a sum of the kinetic and potential energies of the system:

H(q,p) = V(q) +K(p),

where V(q) denotes the potential energy and K(p) denotes the kinetic energy. The total
kinetic energy K(p) is given by

K(p) =

N∑
i=1

1

2
‖pi‖2,

as usual.
In order to coarse-grain the system, we will partition the particles into representative

atoms and constrained atoms. The representative atoms are the subset of atoms which
will be fully resolved in the coarsened system while the constrained atoms are those atoms
which will have their degrees of freedom removed in the coarse-graining procedure. We will
denote the partitioning of the position and momentum vectors for the entire system into
representative and constrained components in the following manner:

q = (qr,qc), p = (pr,pc), (2.1)

where the superscripts r and c indicate the representative and constrained components,
respectively. These superscripts will be used throughout the paper to signal that a given
quantity pertains to the representative atoms or the constrained atoms. For example, we
will let Nr and N c denote the number of representative and constrained atoms, respectively.
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Figure 1: An example of a partitioning of particles in a 2D system. The filled in circles repre-
sent the representative atoms or repatoms while the empty circles represent the constrained
atoms.

Of course, we must then have N = Nr + N c. Throughout the paper, we will often simply
refer to the representative atoms as repatoms. Figure 1 shows a sample partitioning of
particles in a 2D system.

Note that this is only one of the possible ways to coarsen the variables. For other choices,
the following derivations are still valid as the same block structure of the resolved basis can
be recovered after a simple change of variable.

As we are interested in transitions from one metastable region to another, it will be
useful to consider system properties restricted to a given metastable region. Assume that
our system initially resides in a metastable region which we will label as A and that we are
interested in transitions to an adjacent metastable region which we will label B. Let ΩA
denote the set of positions for realizable configurations within the metastable region A for
the system. In addition, let ΩrA denote the set of the positions of the repatoms in these
realizable configurations within A; that is, let

ΩrA :=
{
qr ∈ RdN

r

: (qr,qc) ∈ ΩA for some qc ∈ RdN
c
}
. (2.2)

We also define ΩcA(qr) to be the set of constrained atom positions qc ∈ RdNc such that
(qr,qc) ∈ ΩA.

With these newly-defined sets, we define a potential of mean force that we will take
as the potential energy for the coarsened system, as is done in the CGMD, hot-QC, and
hyper-QC methods [4, 8, 14,15]:

Vcg(qr, β) := − 1

β
log

(∫
ΩcA(qr)

e−βV(qr,qc)dqc

)
,

where β := (kBT )−1, kB is Boltzmann’s constant, and T is the temperature of the system.
It is important to note that the coarse-grained energy is dependent upon the temperature
of the system. As mentioned earlier, note that we deviate here from the traditional CGMD
method in the choice of the coarse variables: in the original formulation, the coarse variables
are defined in terms of finite element shape functions, in contrast to the degrees of freedom
of repatoms [14].

This definition of the coarse potential is motivated by the fact that it preserves ther-
modynamic properties that are a function of only repatom degrees of freedom. Further,
this choice also implies the following equivalence of partition functions for the original,
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fully-atomistic, and coarse-grained systems:

ZV :=

∫
ΩA

e−βV(q)dq =

∫
ΩrA

e−βV
cg(qr,β)dqr =: Zcg

V , (2.3)

where ZV and Zcg
V are the elements of the total partition functions pertaining to the potential

energy for the original and coarsened systems, respectively.
We similarly define the coarse-grained kinetic energy to be an effective kinetic energy,

which may be computed analytically:

Kcg(pr, β) = − 1

β
log

(∫
e−βK(pr,pc)dpc

)
=

Nr∑
i=1

1

2
‖pri ‖2 −

d

2β

Nc∑
i=1

log

(
2π

β

)
.

Again, this choice gives consistent thermodynamics for quantities involving only repatom
degrees of freedom, and it also yields equal kinetic energy partition functions for the original
and coarsened systems. With the kinetic energy thus defined, the total energy or Hamilto-
nian of the coarse-grained system is defined to be the sum of the two coarse-grained energies:
Hcg(qr,pr, β) := Vcg(qr, β) + Kcg(pr, β). This Hamiltonian can then be used to carry out
molecular dynamics simulations.

3 Transition State Theory (TST) Rate

We are interested in estimating the rate at which a system residing in the metastable region
A crosses over into the metastable region B. True transition rates are in general difficult to
compute directly. A common approximation to the true transition rate is given by transition
state theory. In TST, one assumes that that once the system crosses the (hyper-)surface
between states A and B — the so-called dividing surface — it will thermalize in state B;
i.e., it assumes that the trajectory won’t rapidly cross back to A or leave to another state
C before losing its memory in B. This assumption is almost never exactly realized, but
nevertheless, it is often an excellent approximation. With these assumptions, we may define
the TST rate for the fully atomistic system to be the equilibrium flux across the dividing
surface ΓAB . In the canonical ensemble (NVT), the rate becomes:

RTST
A→B =

1
2

∫ ∫
ΓAB
|p · n|e−βH(q,p)dSdp∫ ∫

ΩA
e−βH(q,p)dqdp

=
1

2

√
2

πβ

∫
ΓAB

e−βVs(q)dS∫
ΩA

e−βV(q)dq
,

where n is the vector normal to the dividing surface and dS indicates that the integration
with respect to position is taken over the surface ΓAB . As we will be treating the potential
energy at the dividing surface separately from the potential energy in state A, for clarity,
we denote the potential energy at the dividing surface using Vs. This notation will be used
throughout the rest of the paper. The remaining variables are as they have been defined in
previous sections. Note that in the above equation we are able to integrate the momentum
portion of the integral as our dividing surface is taken to be a hyperplane and the momentum
integral is carried out over RdN [18]. Let us define the partition function

Z 6=V :=

∫
ΓAB

e−βVs(q)dS and recall that ZV =

∫
ΩA

e−βV(q)dq

5



so that we may write the TST rate in the following way:

RTST
A→B =

1

2

√
2

πβ

Z 6=V
ZV

. (3.1)

Analogously, we define the TST rate in the coarse-grained system as:

Rcg
A→B =

1
2

∫ ∫
Γcg
AB
|p · n|e−βHcg(qr,pr,β)dSrdpr∫ ∫

ΩrA
e−βHcg(qr,pr,β)dqrdpr

=
1

2

√
2

πβ

∫
Γcg
AB

e−βV
cg
s (qr,β)dSr∫

ΩrA
e−βVcg(qr,β)dqr

,

where n is the vector normal to the coarse-grained dividing surface, and dSr indicates
that the integral for the position of the atoms is taken over the corresponding coarse-
grained dividing surface. The superscript r serves as a reminder that this integral involves
integrating over only the repatom positions. Again, as we will be treating the potential
energy at the dividing surface separately from the potential energy in ΩrA, for clarity, we
denote the potential energy at the dividing surface using Vcg

s . Let us define

Zcg, 6=
V :=

∫
Γcg
AB

e−βV
cg
s (qr,β)dSr and recall that Zcg

V =

∫
ΩrA

e−βV
cg(qr,β)dqr

so that we may write the coarse-grained TST rate as

Rcg
A→B =

1

2

√
2

πβ

Zcg,6=
V
Zcg
V

. (3.2)

While formally simple, the TST approximation to the transition rate usually does not
allow for closed-form results because the partition function integrals cannot be carried out
for general potentials. This difficulty is compounded by the need to integrate along a
potentially complex dividing surface. These two challenges can be addressed through the
so-called Harmonic approximation to TST (HTST) [17]. HTST introduces two additional
assumptions: i) the kinetic bottleneck for the transition corresponds to crossing an energy
barrier (culminating at a first order saddle point) that stands between A and B, and ii)
for the purpose of the calculation of the partition functions, the potential can locally be
expanded to second order. These properties will be used to give an explicit definition of a
dividing surface and to analytically compute the partition functions entering into the rate
expression using this surface. The HTST assumptions are particularly appropriate when
states correspond to basins of attraction of a single minimum on the potential energy surface
(which is often the case for solid-state kinetics) and when the temperature is sufficiently low.

Consider the saddle point qs connecting the states A and B. The potential energy
around qs is then approximated as:

Vs(q) := V(qs) +
1

2
u ·Datu, u := q− qs, (3.3)

where u := q− qs is the vector displacement of all of the atoms from their positions at the
saddle point, and Dat is the Hessian matrix evaluated at the saddle point. Explicitly,

Dat
ij :=

∂2V
∂qi∂qj

(qs), 1 ≤ i, j ≤ N.

Note that the above approximation for the potential energy at the saddle point will be used
in conjunction with the other HTST assumption in the computation of (3.1), specifically the
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computations involving the dividing surface. A corresponding expansion could be carried
out around the potential energy minimum qm in state A in terms of a different Hessian
matrix Dat

m , but this is not necessary with our formulation of the problem.
At a first-order saddle point, the Hessian has one negative eigenvalue while the rest

are positive (assuming the absence of free translations or rotations). This offers a natural
definition of the dividing surface as the hyperplane that passes through qs and whose normal
vector is the unstable eigenmode of the system’s dynamical matrix at this point. For the
remainder of the paper, ΓAB will be used to denote the dividing surface defined by these
conditions. This choice conveniently allows for the explicit calculation of the saddle point
partition function as will be shown below.

We will similarly provide an explicit definition for the dividing surface Γcg
AB in the coars-

ened phase space. This requires that we first determine the appropriate saddle point in the
coarse-grained phase space and its corresponding dynamical matrix. As we are projecting
the fully atomistic system into a repatom subspace of this system, we might expect qrs, the
repatom components of the saddle point, to be the transition state in the coarse-grained
space. We are interested, then, in verifying whether this is actually the case and computing
the associated coarse-grained dynamical matrix.

To begin the derivation of the coarse-grained saddle point, consider the harmonic ap-
proximation of (3.3). By ordering the position variable q = (qr,qc) following (2.1), the
Hessian matrix has the block-form structure

Dat :=

(
R B
BT C

)
, (3.4)

where

Rij =
∂2Vs
∂qri ∂q

r
j

(qs), 1 ≤ i, j ≤ Nr; Ck` =
∂2Vs
∂qck∂q

c
`

(qs), 1 ≤ k, ` ≤ N c;

Bmn =
∂2Vs

∂qrm∂q
c
n

(qs), 1 ≤ m ≤ Nr, 1 ≤ n ≤ N c.

Now, we may define a coarse-grained energy near the saddle point with the domain given
by the subspace in (2.2):

Vcg
s (qr, β) := − 1

β
log

(∫
RdNc

e−βVs(q
r,qc)dqc

)
. (3.5)

The integration in the above definition is taken over all of RdNc rather than ΩcA(qr) to
allow for a closed form expression and is considered to be part of the assumptions for HTST
in regards to treating the potential energy as second-order. We may compute the integral
directly using (3.3):

Vcg
s (qr, β) = V(qs)−

1

β
log

(∫
e−

β
2 u·Datudqc

)
= V(qs)−

1

β
log

(∫
e−

β
2 ((uc−ucmin)·C(uc−ucmin)+ur·Dcgur)dqc

)
= V(qs) +

1

2β
log

(
detC

(2π/β)dNc

)
+

1

2
ur ·Dcgur,

(3.6)
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where
ucmin := −C−1BTur, Dcg := R−BC−1BT, (3.7)

and we have assumed that the matrix C is invertible and positive-definite. From this, we
can see that qrs (equivalently, ur = 0) is a saddle point of the coarse-grained system with
its corresponding dynamical matrix being

Dcg = R−BC−1BT (3.8)

provided that Dcg has both positive and negative eigenvalues. In order for the dividing
surface Γcg

AB to be well-defined, recall that the matrix Dcg must have only one negative
eigenvalue and that the rest of its eigenvalues must be positive. We will elaborate on these
requirements for C and Dcg and under what circumstances they can be guaranteed to be
met shortly. Before that, observe that the relation

u ·Datu = (uc − ucmin) ·C(uc − ucmin) + ur ·Dcgur (3.9)

arises from multiplying the displacement vector and dynamical matrix in their partitioned
forms from (3.4) and then completing the square for the constrained components. Writing
this portion of the atomistic energy in this form makes it clear that for a given ur, ucmin

gives the energy-minimizing displacements for the constrained atoms, thus motivating the
choice of notation for this vector. This quantity will play an important role in the discussion
on the error in the coarse-grained approximation of the TST rate. An equivalent derivation
can be carried out around the energy minimum. However, as this quantity will not be used
in the following, the derivation is omitted.

Note that, in order to facilitate the formal analysis, the method we consider here does not
exactly correspond to either the CGMD or hot-QC methods. As mentioned earlier, degrees
of freedom in CGMD are usually defined in terms of finite element shape functions and not
in terms of repatoms. Further, the coarse-grained Hamiltonian is computed only once from
(3.5) using a harmonic approximation around a specific value of qr (usually corresponding
to the energy minimum). In the case of hot-QC, additional approximations intervene in
the calculation of the coarse-grained Hamiltonian, namely, the harmonic approximation is
replaced by a local-harmonic approximation and the integral over the constrained atoms is
further approximated using the finite element method and a Cauchy-Born approximation
based on a set of nodes (which are distinct from repatoms) placed in the periphery. In
the “static” variant of hot-QC, the displacement of the nodes is chosen to minimize an ap-
proximation of the (free-)energy of the constrained atoms with respect to the instantaneous
qr while in the “dynamic” variant, the nodes are allowed to move dynamically in order to
reduce the computational cost inherent to the minimization.

Our discussion pertains to a hypothetical method that combines the best of CGMD and
hot-QC, i.e., where coarse-graining is carried out exactly at the harmonic level with respect
to the instantaneous qr. At sufficiently low temperature, the error of such a method is
therefore dominated by the coarse-graining error and provides a lower bound on the error
in an actual CGMD or hot-QC model. A complete analysis of the rate errors in hot-QC
would have to consider all of the additional approximations, which is beyond the scope
of the current paper. However, in such an analysis, the error contributed solely by the
coarse-graining process would exactly correspond to what will be derived below.

Returning to the properties of the matrices C and Dcg, we first note that whether C
is invertible and Dcg has a negative eigenvalue is entirely dependent upon a sensible choice
of the repatom region for the problem. Provided that the essential transition behavior is
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contained within the chosen repatom region, we expect that the matrices C and Dcg will
satisfy these conditions. Assuming this to be the case, it can be shown that C is also positive
definite and that the eigenvalues of Dcg are such that Γcg

AB is well defined. We now state
without proof a version of Cauchy’s Interlacing Theorem to be used in the major theorem
of this section proving the preceding statements.

Theorem 3.1 (Cauchy’s Interlacing Theorem) Let S be a symmetric n × n matrix.

Define the orthogonal projection matrix P in block form to be P :=

(
Im 0
0 0

)
, where Im is

an m×m identity matrix with m < n and the remainder of the blocks are zero matrices of
the appropriate dimensions. Let T denote the upper left m×m matrix block of PTSP:

PTSP =

(
T 0
0 0

)
,

where the remainder of the blocks are zero matrices of the appropriate dimensions. If the
eigenvalues of S are σ1 ≤ σ2 ≤ · · · ≤ σn and the eigenvalues of T are τ1 ≤ τ2 ≤ · · · ≤ τm,
then

σj ≤ τj ≤ σn−m+j , for 1 ≤ j ≤ m. (3.10)

Proof. See [5]. This may be proved using Courant’s Min-Max Theorem.

Now, we prove our claim.

Theorem 3.2 Let Dat and Dcg be the fully atomistic dynamical matrix and the coarse-
grained dynamical matrix as defined in (3.4) and (3.8), respectively. Recall that we assume
that Dat has only one negative eigenvalue while the rest are positive. For ease of reference,

Dat =

(
R B
BT C

)
and Dcg = R−BC−1BT. (3.11)

We also require that the matrix C be non-singular so that the above definitions make sense.
If Dcg has a negative eigenvalue, then the remaining eigenvalues of Dcg are positive and the
matrix C is positive definite. In addition, the negative eigenvalue of Dcg is greater than or
equal to in absolute value that of Dat. In symbols,

|λcg| ≥ |λat|.

Proof. As the matrix Dat possesses no zero eigenvalue, it is invertible. Since the matrix
C is also invertible, we may use a standard block-matrix determinant identity and (3.11) to
show the following:

detDat = detCdetDcg. (3.12)

Thus, the determinant of Dcg is non-zero, so Dcg is non-singular. We may then compute
the inverse of Dat in block form which is

(Dat)−1 =

(
(Dcg)−1 −(Dcg)−1BC−1

−C−1BT(Dcg)−1 C−1 + C−1BT(Dcg)−1BC−1

)
.

Note that, as the eigenvalues of (Dat)−1 are the multiplicative inverses of the eigenvalues
of Dat, (Dat)−1 has one negative eigenvalue with the rest being positive. We now apply
Cauchy’s Interlacing Theorem to the matrices (Dat)−1 and (Dcg)−1 to place bounds on

9



the eigenvalues of (Dcg)−1. Let λat denote the single negative eigenvalue of Dat. It is
important to note that (λat)−1 is less than all of the other eigenvalues of (Dat)−1 due
to its sign. Since we are given that Dcg possesses a negative eigenvalue and thus that
(Dcg)−1 possesses a negative eigenvalue, Cauchy’s Interlacing Theorem immediately implies
that the remaining eigenvalues of (Dcg)−1 are positive by (3.10). Let (λcg)−1 denote the
single negative eigenvalue of (Dcg)−1. Cauchy’s Interlacing Theorem implies that (λat)−1 ≤
(λcg)−1. Keeping in mind that these eigenvalues are negative, this inequality implies the
result

|λcg| ≥ |λat|. (3.13)

Inverting the eigenvalues of (Dcg)−1 to arrive at the eigenvalues of Dcg does not change
their sign, so we have finished the proof that the spectrum of Dcg has the properties as
claimed in the statement of the theorem.

In order to finish the proof, observe that (3.12) implies that the determinant of C is
positive as the determinant of Dat and Dcg are both negative. Cauchy’s Interlacing Theorem
applied to Dat and C implies that C may have at most one negative eigenvalue according
to (3.10). As having just one negative eigenvalue would force the determinant of C to be
negative and contradict our determinant identity, we must have that all of the eigenvalues
of C are in fact positive.

This theorem proves that qrs is indeed a saddle point, assuming the repatom region to
be appropriately selected. In particular, it shows that no additional transition pathways
are introduced in the coarsened system and that if the coarsened system has a transition
pathway, it uniquely corresponds to a transition pathway in the fully atomistic system. Most
interestingly, this result implies that coarse-graining the system never decreases the absolute
curvature of the actual transition pathway at the barrier in the potential energy surface due
to the inequality in the negative eigenvalues of the dynamical matrices. Equivalently, this
implies that the magnitude of the imaginary eigenmode frequency for the coarsened system
is never less than the magnitude of the imaginary eigenmode frequency in the fully atomistic
system. This will have implications for the TST rate in the coarsened system that will be
made clear over the course of the analysis of the TST rate approximation in the next section.

Finally, we may now provide our explicit definition of the dividing surface Γcg
AB in the

coarse-grained system assuming that the repatom region was appropriately chosen. We
define this surface to be the hyperplane that passes through the saddle point qrs and has as
its normal vector the unstable eigenmode of Dcg. The dynamical matrix Dcg takes the form
of a repatom Hessian with a correction due to the interaction between the representative and
constrained atoms. This correction can easily be understood from a physical point of view
after considering the implications of (3.7) and (3.9). Given a displacement of the repatoms
ur, the matrix −C−1BT in the definition of Dcg applied to ur will give the displacement
of the constrained atoms that will yield a minimized energy for the fully atomistic system
in the context of HTST. In other words, −C−1BT finds the relaxed constrained atom
configuration for the problem. The application of the B matrix is necessary for determining
the force such a configuration would then exert on the repatoms. Thus, the correction to
the repatom Hessian is due to the constrained atoms in their relaxed state.

4 TST Rate Error Analysis

With this dividing surface now defined, we may analyze the error in the TST rate made
by coarse-graining the system. For this, an absolute error analysis is not useful as most
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classical transition rates vanish in the zero temperature limit. Therefore, convergence is
essentially already guaranteed by the exponentiation of the energy in the Gibbs measure.
In order to conduct a more meaningful analysis, the relative error in the TST rate will be
examined instead. Using the definitions from (3.1) and (3.2), the relative error is seen to be∣∣∣∣RTSTA→B −R

cg
A→B

RTSTA→B

∣∣∣∣ =

∣∣∣∣∣1− ZV
Zcg
V

Zcg,6=
V

Z 6=V

∣∣∣∣∣ . (4.1)

This relative error can be computed by calculating the two ratios ZV/Z
cg
V and Zcg,6=

V /Z 6=V
separately. The first ratio ZV/Z

cg
V is trivial: as was shown in (2.3), this ratio is simply

ZV/Z
cg
V = 1, by construction.

Turning our attention to the second ratio, let us compute the dividing surface partition
function for the coarsened system first. By definition,

Zcg,6=
V =

∫
Γcg
AB

e−βV
cg
s (qr,β)dSr.

Using the result for Vcg
s from (3.6), we have that

Zcg,6=
V = e−βV(qs)

√
(2π/β)dNc

detC

∫
Γcg
AB

e−
β
2 ur·Dcgurdur. (4.2)

Now, Dcg is a real, symmetric matrix. Let λcg denote the single negative eigenvalue of Dcg,
and let vcg denote its corresponding normalized eigenvector. Let λcg

i for 2 ≤ i ≤ dNr denote
the remaining positive eigenvalues of the matrix with vcg

i being their associated normalized
eigenvectors which we may choose so that they are orthonormal with respect to one another.
Now, for any qr ∈ Γcg

AB , the displacement ur = qr − qrs ∈ RdNr must be orthogonal to vcg

as the normal vector to the dividing surface is parallel to this unstable eigenmode. Thus,

the displacement ur may be written as ur =
∑dNr

i=2 αiv
cg
i for some real constants αi. Hence,

ur ·Dcgur =

(
dNr∑
i=2

αiv
cg
i

)
·

(
dNr∑
i=2

αiD
cgvcg

i

)
=

dNr∑
i=2

α2
iλ

cg
i .

All of the eigenvalues in the sum are positive. Therefore,∫
Γcg
AB

e−
β
2 ur·Dcgurdur =

∫
RdNr−1

e−
β
2

∑dNr

i=2 λiα
2
i dα2 · · · dαdNr

=

(
2π

β

) dNr−1
2 1√

ΠdNr
i=2 λ

cg
i

=

(
2π

β

) dNr−1
2

√
|λcg|
|detDcg|

.

Substituting this result into (4.2), we see that

Zcg,6=
V = e−βV(qs)

(
2π

β

) dN−1
2

√
|λcg|

detC |detDcg|
.

A similar computation for Z 6=V yields

Z 6=V = e−βV(qs)

(
2π

β

) dN−1
2

√
|λat|
|detDat|

,
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where λat is the single negative eigenvalue of Dat. With this result and the block-matrix
identity from (3.12), the desired ratio is

Zcg,6=
V

Z 6=V
=

√
λcg

λat
.

Since ZV/Z
cg
V = 1 and since we proved in Theorem 3.2 that λcg/λat ≥ 1, the relative

error for the TST rate approximation made by the coarsened system can be shown to satisfy

Rcg
A→B −RTSTA→B
RTSTA→B

=
Zcg,6=
V

Z 6=V
− 1 =

√
λcg

λat
− 1 ≥ 0. (4.3)

Thus, the relative error in the TST rate computation is entirely dependent upon the imag-
inary eigenfrequencies of the two dynamical matrices. In addition, we have that

Rcg
A→B ≥ R

TST
A→B .

To better understand this error, we will further investigate the eigenvalue λcg.

Remark. The relative error in the TST rate found above has no dependence on tempera-
ture. This is a consequence of the harmonic approximation of the potential energy used in
the beginning of the analysis. If higher order terms in the potential energy approximation
are included, a temperature dependence in the relative error will result. This dependence
on the thermodynamic temperature β will be O(β−2) so that this additional error term goes
to zero in the zero temperature limit.

5 Coarse-Grained Eigenvalue Analysis

In the previous section, it was shown that the relative error in the TST rate is entirely
dependent upon the negative eigenvalues of the dynamical matrices for the fully atomistic
and coarse-grained systems at their respective transition states. To better understand this
error, it is important to understand how the negative eigenvalue for the fully atomistic
system is affected by the coarsening process. This analysis will provide greater insight into
how the coarsened system relates to the original system as well as for which situations the
coarse-grained approximation of the TST rate will be most accurate. This insight will be
useful in that it will be suggestive of optimal approaches to coarse-graining a given problem.

In this section, we will again let Dat and Dcg represent the dynamical matrices as defined
previously for the fully atomistic and coarse-grained systems. We will let λat denote the sin-
gle negative eigenvalue of Dat while uat will denote a normalized eigenvector corresponding
to λat. As before, we will also let λcg denote the sole negative eigenvalue of Dcg, and we
will let vcg denote a normalized eigenvector associated with this eigenvalue. The sign of vcg

will be chosen so that uat,r ·vcg ≥ 0. Here, uat,r ∈ RdNr denotes a vector consisting of only
the repatom elements from the fully atomistic unstable eigenmode. Note that this element
does not have the same dimension as uat. Such a convention will be used throughout the
remainder of the paper when we wish to consider only the repatom or constrained portion
of a given variable. To be clear, when using c as a superscript, it implies that the vector
under consideration is an element of RdNc .

To begin the analysis, let us determine the conditions necessary for λat = λcg, which
would imply no error in the coarse-grained approximation of the TST rate.
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Theorem 5.1 If λat = λcg, then uat,r/‖uat,r‖ = vcg. In addition, we have that

B(uat,c
min − uat,c) = 0, (5.1)

where uat,c
min := −C−1BTuat,r.

Proof. Suppose that λat = λcg and that uat,c
min is as defined in the statement of the theorem.

From the definition of Dat in (3.4), we see that Datuat = λatuat implies that

Ruat,r + Buat,c = λatuat,r.

Using this fact, we have from the definition of Dcg in (3.8) that

Dcguat,r = Ruat,r + Buat,c
min = λatuat,r + B(uat,c

min − uat,c). (5.2)

It will be shown later in the proof that uat,r ·B(uat,c
min−uat,c) ≤ 0 and that ‖uat,r‖ 6= 0. For

now, let us assume that these two statements are true. As λcg is the absolute minimum of
the quadratic form v ·Dcgv subject to the constraint ‖v‖ = 1, we may use (5.2) and our
recent assumptions to show that

λcg ≤ uat,r ·Dcguat,r

‖uat,r‖2
= λat +

uat,r ·B(uat,c
min − uat,c)

‖uat,r‖2
≤ λat. (5.3)

Since λat = λcg, all of the inequalities in the above result are equalities. The first inequal-
ity that is now an equality implies that uat,r/‖uat,r‖ is a normalized eigenvector of Dcg

associated with λcg. The choice vcg := uat,r/‖uat,r‖ satisfies uat,r · vcg ≥ 0. Making the
appropriate substitutions into (5.2), we now have that

Dcgvcg = λcgvcg +
B(uat,c

min − uat,c)

‖uat,r‖

from which we immediately see that B(uat,c
min − uat,c) = 0.

To finish the proof, we will now prove the two claims made earlier in the proof. Observe
that

uat,r ·Buat,c
min = −uat,r ·BC−1BTuat,r = −BTuat,r ·C−1BTuat,r. (5.4)

Now, we may use the definition of Dat and the equation Datuat = λatuat to show that
BTuat,r+Cuat,c = λatuat,c. If uat,r were a zero vector, we would arrive at the contradictory
conclusion that C has a negative eigenvalue. As this is not the case, uat,r is not a zero vector
so that ‖uat,r‖ 6= 0. Rearranging the equation arising from the definition of Dat, we have
that

BTuat,r + (C− λatI)uat,c = 0, (5.5)

where I is an identity matrix of the appropriate dimensions. The eigenvalues of (C− λatI)
may easily be shown to be the eigenvalues of C plus |λat| with the same corresponding
eigenvectors as we are only adding a scalar multiple of the identity matrix to C. Since C is
a positive-definite matrix and all of its eigenvalues are positive, adding the positive number
|λat| to the eigenvalues of C does not change their sign. Hence, the eigenvalues of (C−λatI)
are all positive, so this matrix is invertible. Thus, after some further manipulation of (5.5),
we can show that

Buat,c = −B(C− λatI)−1BTuat,r. (5.6)
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Combining (5.4) with (5.6), we can obtain

uat,r ·B(uat,c
min − uat,c) = −BTuat,r · (C−1 − (C− λatI)−1)BTuat,r.

From the earlier comment regarding the eigenvalues and eigenvectors of (C− λatI), we see
that the matrix (C−1 − (C− λatI)−1) is in fact positive definite. Note that this statement
follows from the assumption that λat is strictly negative, but allowing λat = 0 does not
change the following result as the aforementioned matrix would still be positive semi-definite.
In either case,

uat,r ·B(uat,c
min − uat,c) ≤ 0.

The claims are proven, so the proof is complete.

The converse of the above theorem is true as well; that is, if (5.1) holds and uat,r is an
eigenvector of Dcg, then λat = λcg. A simple proof of this statement is to substitute the
assumption of the form of uat,r and (5.1) into (5.2). In fact, (5.1) alone is sufficient to
prove that the eigenvalues must be identical. The theorem, then, shows that in order for no
error to be made in the coarse-graining approximation of the TST rate that the constrained
atoms in the unstable eigenmode must interact with the repatom region as if the constrained
atoms were in their relaxed configuration. Note that the result does not necessarily imply
that uat,c

min = uat,c as the kernel of B may be non-trivial. As B is affected by the range of
interactions among the constituents in a system, it is not difficult to construct an example
where the kernel of this matrix would be non-trivial.

One particular case of interest for an exact coarse-grained approximation of the TST
rate occurs when the only non-zero components in the unstable eigenmode are those that lie
in the chosen repatom region, or equivalently, when uat,c = 0. In such a case, the behavior
of interest is extremely localized, so we should not be surprised that we do not lose any
information by coarse-graining the components of the system that have no involvement in
the transition. This implies that the coarse-graining method works well when the unstable
eigenmode is localized; that is, we should expect the coarse-graining scheme to be accurate
when the repatom region contains the atoms which have the largest contribution to the norm
of the unstable eigenmode uat. Accurately approximating the TST rate in such an instance
was the primary motivation for the development of this method. It is also interesting to
note that (5.3) provides another proof that λcg ≤ λat.

The presence of uat,c
min in the above condition for no error to be made in the coarse-graining

approximation can be explained through the following theorem:

Theorem 5.2 Let v ∈ RdNr and let

vmin :=

[
v

−C−1BTv

]
.

Then,

Datvmin =

[
Dcgv
0

]
.

Thus, v ·Dcgv = vmin ·Datv min. In particular, λcg = vcg ·Dcgvcg = vcg
min ·Datvcg

min, where

vcg
min :=

[
vcg

−C−1BTvcg

]
.
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Proof. Let the vectors be as defined in the problem statement. Then,

Datvmin =

[
R B
BT C

] [
v

−C−1BTv

]
=

[
(R−BC−1BT)v

0

]
=

[
Dcgv
0

]
.

The remaining results are immediate consequences of the above equation.

Recall from (3.7) that the matrix −C−1BT yields the relaxed constrained atom config-
uration for a given repatom configuration; that is, the matrix finds the displacement vector
for the constrained atoms that minimizes the total energy of the configuration. Thus, using
the notation in the above theorem, it has been shown that v 7→ vmin is a linear, one-to-
one mapping of the coarse-grained phase space into a subspace of the fully atomistic phase
space that preserves energy differences between configurations as well as forces. We see
then that the coarse-graining method removes the constrained degrees of freedom while still
taking into account their presence by always considering the constrained atoms to be in
their energy-minimizing state. The vector B(uat,c

min − uat,c) tells how much the constrained
system’s actual behavior through the transition state deviates from this energy-minimizing
assumption. This difference could also be interpreted as a measure of how well the coars-
ened system captures the boundary conditions for the repatom region due to the long-range
effect of the constrained atoms. Note that this result was a consequence of the form of the
dynamical matrix as was discussed at the end of the derivation of the dividing surface for
the coarse-grained system. Also, recall that the range of the function v 7→ vmin which came
about from the use of this method is extremely similar to the subspace of the fully atomistic
phase space utilized in the static version of the hot-QC methods.

We can use elements of the first theorem in this section to derive an expression for the
difference between λat and λcg:

Theorem 5.3 In general,

λcg − λat =
vcg ·B(uat,c

min − uat,c)

vcg · uat,r
. (5.7)

Proof. Recall from (5.2) that

Dcguat,r = λatuat,r + B(uat,c
min − uat,c).

Taking the dot product of both sides of the equation with vcg, we have that

λcgvcg · uat,r = vcg ·Dcguat,r = λatvcg · uat,r + vcg ·B(uat,c
min − uat,c).

The result (5.7) follows if vcg · uat,r 6= 0. To show this, note that if vcg · uat,r = 0, then
uat,r · Dcguat,r ≥ 0 as vcg is the only eigenvector of the symmetric matrix Dcg with a
negative eigenvalue. However, by (3.9) we have that

uat,r ·Dcguat,r ≤ uat ·Datuat = λat < 0.

Thus, we have a contradiction, so the claim is proven.

The above error (5.7) can be broken down into three components: namely, the error
in the approximation of λat by λcg is affected by the rotation of the dividing surface in
the coarse-grained phase space, how much of the essential components of the transition are
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captured in the repatom region, and how well the unstable eigenmode is approximated by
the coarsened system. We have already mentioned that the B(uat,c

min − uat,c) quantity is a
measure of this third error. The dot product of this quantity with vcg picks out the portion
of the resulting force that impacts the transition. The remaining errors are reflected in the
uat,r · vcg term. Recall that uat,r is the repatom component of the normal vector to the
dividing surface in the fully atomistic phase space while vcg is the normal vector to the
coarse-grained dividing surface. The geometric definition of the dot product states that

uat,r · vcg = ‖uat,r‖ cos(θ),

where θ is the angle between uat,r and vcg. The angle θ represents how much the dividing
surface is rotated as it is projected into the coarse-grained phase space. As the mismatch
between the direction of the vectors uat,r and vcg increases, the error in the coarse-grained
approximation of the TST rate will increase. Physically, this increase is caused by the
coarse-grained dividing surface passing through a lower-energy region of the phase space as
a result of the rotation. The remaining portion of the error term, ‖uat,r‖−1, characterizes
how much of the essential components of the transition are captured within the repatom
region as has been mentioned earlier. Note that the magnitude of an individual component
of the unstable eigenmode determines the relative importance of that component to the
transition. With these three errors in mind, we could also write the error (5.7) found in the
theorem as

λat − λcg =
vcg ·B(uat,c

min − uat,c)

‖uat,r‖ cos(θ)
.

Above, it was shown that by including all of the atoms that contribute significantly to the
localized transition, the coarse-grained approximation of the TST rate would be accurate.
The error derived in Theorem 5.3 suggests that the error in the coarse-grained approximation
can be further reduced by choosing the repatom region in such a way so as to minimize the
error due to vcg ·B(uat,c

min−uat,c). Additional refinement of the repatom region to minimize
this error contribution would be similar to what is already done in the quasicontinuum
methods when choosing a mesh for the continuum region and will be demonstrated in the
next section on numerical results. More interestingly, this error formulation seems to imply
the possibility that the coarse-graining problem may be approached with the primary goal
of minimizing vcg · B(uat,c

min − uat,c). In such an approach, it may not be as necessary to
fully capture the localized region of interest in the repatom region provided this boundary
condition norm can be made sufficiently small. This perspective on the error suggests that
there might be problems for which this strategy is well-suited. The tradeoff between these
two terms will be further discussed below.

The relative error between the two transition rates depends on the ratio between λcg

and λat. We can, of course, use the above theorem to write this ratio as

λcg

λat
= 1 +

1

|λat|
vcg ·B(uat,c

min − uat,c)

uat,r · vcg
.

6 Numerical Results

In this section, we seek to verify through numerical experiments that the coarse-graining
method described in this paper is indeed able to accurately reproduce the fully atomistic
TST rate and to compare the error between qualitatively different approaches to coarsening a
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Figure 2: The unstable eigenmode for the fully atomistic 1D chain for two different tensile
strains determined by the scalar s.

  

... ...

  

... ...

Figure 3: Illustration of the localized and delocalized coarse-graining schemes for a core
region containing 6 atoms. Circles represent atoms in the system: filled circles represent
repatoms while the empty circles represent constrained atoms. The core region is the col-
lection of the 6 contiguous repatoms in the center of the chain. The weakened bond is
represented by the set of two lines connecting the two central atoms in the figure.

system with a localized region of interest. For the first coarse-graining scheme, the repatom
region will be chosen with the intent of maximizing the magnitude of the projection of
the unstable eigenmode onto the repatom space. As the region of interest is localized,
this approach implies that the repatoms should be concentrated in this region as well. In
the second coarse-graining scheme, the repatom region will consist of a core region in the
localized region of interest with additional repatoms placed throughout the remainder of
the system so as to better capture the long-range effect that the constrained region has on
the repatoms. We will refer to these coarse-graining schemes as the localized repatom mesh
and delocalized repatom mesh schemes, respectively.

The system that will be considered in the numerical experiments is a 1-D chain of atoms
with fixed endpoints. Only nearest-neighbor interactions are considered. All of the atoms in
the chain interact through the same potential except for those atoms which form the central
bond, whose interaction potential is made weaker. We are interested in the rate at which
this weakened bond breaks, causing the fracture of the chain. The process is expected to
primarily involve the atoms nearest to the central bond, resulting in a localized transition.
The localized nature of this transition will be demonstrated in the numerical experiments.
Note that this system is closely related to that studied in [8].

The 1-D chain consists of 202 atoms. The energy contribution due to the central bond
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Figure 4: Comparison of the fully atomistic unstable eigenmode and the coarse-grained
unstable eigenmodes computed for the localized and delocalized coarse-graining schemes for
the two different tensile strains. The repatoms for each of the coarse-graining schemes are
indicated by the markers. The localized and delocalized coarse-graining schemes contain
the same number of degrees of freedom in both graphs.

in this chain will take the form of a Lennard-Jones potential:

Vc(r) = 4ε

((σ
r

)12

−
(σ
r

)6
)
,

where ε = 1, σ = 1
21/6 , and r is the length of the bond. The remaining bonds in the chain

are treated as harmonic springs; i.e., the potential energy contribution of a single bond is
of the form:

V(r) =
1

2
(r − 1)2.

Note that the equilibrium bond length for this potential is 1. Letting q = (qi)
201
i=0 denote

the position of the atoms in the chain (qi indicating the position of the (i+ 1)-th atom), the
total energy of the chain is

Vchain(q) = Vc(q101 − q100) +

201∑
i=1,i6=101

V(qi − qi−1).

We set the boundary conditions for the endpoints of the chain so that q0 = 0 and q201 = 201s,
where s = 1.02 or s = 1.035. The purpose of the scalar s is to impose a tensile strain on
the chain and make fracture energetically favorable. Changing the tensile strain affects the
degree of locality of the transition region.

The accuracy of the approximation of the TST rate will be discussed in terms of (4.3),
so we need only compute the negative eigenvalues of the dynamical matrices discussed in
the previous sections. Note that we use the same notation for the dynamical matrices,
eigenmodes, eigenvalues, etc., in this section as we have before. To determine the negative
eigenvalue belonging to Dat, we first compute the saddle point or transition state, qs, of the
system just described. In our numerical simulations, we found the saddle point by slowly
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Figure 5: Relative error in the TST rate approximation, computed from
√
λcg/λat − 1, for

the localized and delocalized coarse-graining schemes for two different tensile strains.

stretching the weakened bond at the center of the chain while simultaneously relaxing the
remaining atoms until all of the forces in the chain were found to be zero within a given
tolerance. We then numerically compute Dat and diagonalize it to determine both λat and
uat. The unstable eigenmode uat is shown in Figure 2 for the two different tensile strains.
It is clear from the picture that this transition is fairly well localized in both cases, as the
atoms closest to the central bond are the largest contributors to the norm of uat. Physically,
this unstable eigenmode simply shows that as the unbroken chain crosses over to the broken
state, the central atoms in the two regions move away from one another as indicated by the
displacements in the eigenvector. When the strain is greater, the fracture of the chain is
more localized.

For this problem, it is possible to analytically determine the saddle point. Before we
begin with the derivation of the saddle point, recall that the length of the chain under
consideration is 201s. For clarity, the length of the chain will be denoted by L in this section
of the analysis. Now, due to the symmetry of the system about the central bond, we expect
the saddle point to display a similar symmetry. That is, we expect that qi−q0 = q201−q201−i
for 0 ≤ i ≤ 100. As a consequence of this result, we can write the central bond length solely
in terms of q100. Explicitly, q101 − q100 = L − 2q100. Because of the strictly convex nature
of the spring potential and the symmetry in the atomic positions, it is also possible to show
that every bond length governed by the spring potential, there are 200 such bonds, is equal
to the same value. The bond lengths partition the length of the chain minus the central

bond length, so we may compute the bond length to be L−(L−2q100)
200 = q100

100 . With this
result and the alternate formula for the central bond length, we have reduced the problem
of computing the saddle point down to simply computing q100. To compute this value, let
us consider the balance of the forces on the 100th atom in the chain. This atom is part of
the central bond and interacts via the Lennard-Jones potential with the 101st atom, but it
interacts by the spring potential with the atom with index 99. At the saddle point, these
forces should cancel. Thus, the force balance equation is

(q100 − q99) + 4ε

(
12

σ12

(q101 − q100)13
− 6

σ6

(q101 − q100)7

)
= 0.
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Figure 6: The denominator of the error term from Theorem 5.3 for the localized and de-
localized approaches to coarse graining for two different tensile strains that measure the
rotation of the dividing surface and the relevant portions of the transition captured in the
repatom region. Ideally, this term should be equal to 1.

Substituting our results for the spring bond length and the central bond length, this equation
becomes

q100

100
+ 4ε

(
12

σ12

(L− 2q100)13
− 6

σ6

(L− 2q100)7

)
= 0

This non-linear equation can be turned into a 14-degree polynomial. The roots of this
resulting polynomial that lie in (0, 1

2L) give the possible values of q100 in the saddle point.
As this is the only position necessary to determine the location of every atom in the saddle
point, the roots of the polynomial give the transition state of the problem.

Note that with the bond lengths between the atoms in the chain known, we can derive
an analytical expression for the unstable eigenvector uat in terms of the negative eigenvalue
λat. To see this, let uat

100 be the displacement of the 100th atom, which is the leftmost atom
that interacts via the Lennard-Jones potential, and recall that the endpoints of the chain
are fixed, so we can take the displacement uat

0 = 0. Applying Dat to the unstable eigenmode
uat and assuming that uat

100 is known, we see that the displacements in the eigenmode for
uat
i for 0 < i < 100 may be determined from a second-order difference equation with two

boundary conditions given by uat
0 and uat

100. Specifically, we have that

−uat
i−1 + 2uat

i − uat
i+1 = λatuat

i for 0 < i < 100

with uat
100 taken to be some constant to be determined from normalization and uat

0 = 0.
Solving this difference equation yields the solution

uat
i = αri+ + βri− for 0 ≤ i ≤ 100,

where

α =
−uat

100

r100
− − r100

+

, β =
uat

100

r100
− − r100

+

,
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Figure 7: Long-range elastic contribution to the error from Theorem 5.3 for the localized
and delocalized approaches to coarse-graining for two different tensile strains.

and

r± = 1− λat

2
±

√
λat

2

(
λat

2
− 2

)
.

Note that r+ > 1 while r− < 1. Due to the symmetry of the problem, we can get a similar
equation for the displacements on the right-hand side of the chain. The displacements of
the two central atoms that interact via the Lennard-Jones potential are determined from
the normalization of the eigenmode and the fact that uat

100 = −uat
101, which is due to the

symmetry intrinsic to the problem.
As stated previously, the localized repatom coarse-graining scheme intends to maximize

‖uat,r‖. This was accomplished in the numerical experiments by constraining a continuous
line of atoms at one end of the chain and the mirror image of this grouping at the chain’s
other end, leaving a contiguous repatom region at the center of the chain. The total number
of repatoms was then varied. For the delocalized coarse-graining scheme, the selection of
the repatom region began with the inclusion of a contiguous region of repatoms centered
around the central bond. Additional repatoms were placed in the periphery with the spacing
between them increasing geometrically moving away from the core region. Specifically, the
spacing was doubled after starting with a single constrained atom between the core region
and the first repatom in the periphery. Following this, there would be two, then four,
eight, etc., constrained atoms between each pair of repatoms until the end of the chain was
reached. In symbols, we may write the set of indices for the N repatoms in the localized
coarse-graining scheme in the following way:

Localized Indices(N) =

{
100− ` : 0 ≤ ` ≤ 1

2
N − 1

}⋃{
101 + ` : 0 ≤ ` ≤ 1

2
N − 1

}
.

Of course, here, N must be an even integer with 2 ≤ N ≤ 200. In symbols, we may write the
set of indices for the repatoms in the delocalized coarse-graining scheme with N repatoms
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in the core in the following way:

De-localized Indices(N) = Localized Indices(N)⋃{
100−

(
1

2
N − 1

)
− 2` − (`− 1) : ` ≥ 1 and 100−

(
1

2
N − 1

)
− 2` − (`− 1) > 0

}
⋃{

101 +

(
1

2
N − 1

)
+ 2` + (`− 1) : ` ≥ 1 and 101 +

(
1

2
N − 1

)
+ 2` + (`− 1) < 201

}
.

The repatom configuration generated by this method is symmetric about the central bond
for the delocalized coarse-graining scheme. The number of repatoms in the core region was
then also varied. An illustration of these two coarse-graining schemes is provided in Figure
3.

Once a repatom set was defined for the experiment, Dat and (3.8) were used to directly
compute Dcg. A diagonalization of this matrix then yielded λcg and vcg. A comparison
of the unstable eigenmodes for the two coarse-graining schemes and the fully atomistic
unstable eigenmode for a given resolution are shown in Figure 4. The markers in the graph
denote which atoms were included in the repatom region for the experiments and provide
another illustration of the difference between the repatom regions used in the localized and
delocalized repatom mesh methods.

The relative error of the HTST approximation, or
√

λcg

λat − 1, is shown in Figure 5 for

varying numbers of repatoms and for the two tensile strains. The results show that the
relative rate error decreases extremely rapidly, i.e., roughly exponentially in this case, with
increasing numbers of repatoms. Achieving relative rate errors of less than 1% requires
only about 40 to 50 degrees of freedom for both cases for s = 1.035. Further, the localized
coarse-graining scheme is seen to outperform the delocalized coarse-graining scheme for all
meshes we investigated although the difference is smaller for the more delocalized transition.

To understand the cause of the difference in the accuracy of the two methods, we look
to Theorem 5.3 for the principle components of the error. In Figure 6, we see a combination
of the error due to not fully resolving some of the more essential atoms in the transition
and of the rotation of the dividing surface in the coarse-grained phase space, reflected in
the term uat,r · vcg, while the the error due to the long-range elastic contributions, given
by vcg ·B(uat,c

min − uat,c), is shown in Figure 7. In both cases, the localized coarse-graining
scheme is seen to be preferable. That the localized coarse-graining scheme had a lower
error contribution from the uat,r · vcg term was expected given that the aim of this coarse-
graining scheme is the maximization of ‖uat,r‖ by concentrating the repatoms in the region
where the components of uat are the largest in terms of absolute value. In contrast, the
delocalized coarse-graining scheme distributes some repatoms away from the fracture point,
where the components of the unstable eigenmode are smaller in norm, hence leading to
suboptimal performance in this case. The better performance of the localized method over
the delocalized method in the case of the long-range error is much more surprising and
deserves extra attention as the delocalized method was meant to reduce this error specifically.

To that end, let us consider the vcg ·B(uat,c
min − uat,c) term in more detail by first consider-

ing the relaxed constrained configuration, or uat,c
min, for the two coarse-graining schemes. The

relaxed constrained configuration is especially easy to determine for the present potential
in both cases as the potential is strictly convex in the periphery. For a line of constrained
atoms between two repatoms in this 1-D system, the relaxed configuration is simply given
by a linear interpolation of the displacement between the two repatoms. Therefore, we can
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compute uat,c
min through a simple linear interpolation between the nodes in the two coarse-

graining schemes in the periphery. This allows for an easy comparison of uat,c
min and uat,c.

The linear interpolation between the repatom components of the coarse-grained unstable
eigenmode is reported in Figure 4. It is quite evident from this viewpoint that the approxi-
mation of the constrained region by the localized method is worse than the approximation
due to the delocalized repatom coarse-graining scheme. The additional nodes in the periph-
ery for the delocalized coarse-graining scheme help better capture the long-range behavior
of the system. This difference is, however, mitigated by the fact that we are here only
considering nearest-neighbor interactions. Therefore, the only difference in the constrained
region approximation that truly matters is the difference for the constrained atoms that
directly interact with the repatom region. This is reflected in the error derived in Theorem
5.3 through the kernel of B. For systems with longer-range interactions, it is conceivable
that this long-range effect error may become considerably more important. With all this in
mind, the delocalized method should still perform better than the localized method in terms
of the ‖B(uat,c

min − uat,c)‖ norm. This is, in fact, the case. The localized method however
performs better in the long-range error due to the contribution of the dot product with
vcg. As mentioned above, in the localized case, the atoms with the largest values of vcg do
not contribute to the error as they are not coupled to the constrained atoms through B.
They are thus effectively shielded by the core region and only a small number of rep-atoms
eventually contribute to the error. In contrast, in the delocalized case, a larger number of
repatoms with significant values of vcg contribute, tilting the balance in favor of the localized
coarse-graining scheme.

Another key point to keep in mind when considering the long-range error is the mesh used
in the periphery. The mesh used in the example above is not the optimal mesh for this system
and was chosen instead as a realistic coarse-graining scheme to use without knowing exactly
the unstable eigenmode. For this problem, many of the degrees of freedom in the coarse-
graining scheme do not contribute much to reducing the long-range error, and this negatively
affects the delocalized coarse-graining scheme in a degree of freedom comparison against the
localized coarse-graining scheme. A more optimum choice of repatoms in the periphery for
the delocalized coarse-graining scheme would make the comparison more favorable. Theorem
5.3 could be used as a starting point for a derivation of an optimal mesh as is done in [11]
for quasicontinuum methods, but the dot products in the error present challenges to the
derivation. Using the Cauchy-Schwarz inequality could help to alleviate this issue; however,
the resulting bound is not a good approximation to the actual result and the resulting
mesh is suboptimal. We can still consider better, if not optimal, meshes though to see if
the delocalized coarse-graining scheme will better handle the long-range error contribution.
For the simple delocalized coarse-graining scheme with a single repatom in the periphery
on either side of the chain with only a single constrained atom between these peripheral
atoms and the core, the delocalized method does indeed become superior compared to the
localized mesh in the long-range error for small core regions. However, the localized coarse-
graining scheme still ultimately had a lower relative error even in this case. The localized
coarse-graining scheme was found to always have a lower relative error than the delocalized
coarse-graining scheme in all of the meshes examined in the numerical experiments. Note
that in actual implementations, the delocalized coarse-graining scheme might possess other
practical advantages. For example, in 1D with nearest-neighbor interactions, C would
exhibit a block structure that could potentially be exploited.

Overall, for the original system considered here, the localized method is superior in
all aspects of the error. Consequently, choosing repatoms so as to increase ‖uat,r‖ is the
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optimal strategy. In higher dimensions, this may change as the boundary region between
the localized repatom and periphery becomes more significant.

7 Conclusions and Future Considerations

In this paper, we have demonstrated that the CGMD approach to atomistic coarse-graining
can produce an accurate approximation to the TST rate of the fully atomistic system. Over
the course of the analysis, we verified that the coarsened system is well-behaved in that
no spurious behaviors are introduced through the coarsening process, and we described the
projection of the dividing surface into the coarse-grained phase space. The error analysis was
extended to show under which circumstances the coarse-grained approximation of the TST
rate would be most accurate and highlighted the significant contributions to the error in this
estimation. Our numerical results demonstrated the accuracy of two different approaches to
the coarse-graining approximation in the context of a 1-D chain undergoing fracture. The
success of these approaches demonstrated that the number of degrees of freedom taken into
account to approximate the TST rate could be significantly reduced while still maintaining
a highly accurate approximation. While the localized method proved to be superior in the
numerical experiments performed here, the accuracy of the approximations made by the
two methods were comparable. This is important to note because the implementation of
the delocalized method may be more efficient in certain situations.

It is interesting to note that the analysis and error calculations for this method are
independent of the basis that is chosen for the problem. While it is certainly natural to
consider a basis consisting solely of individual atoms, it may be possible in certain situations
to choose a basis for the problem that further decreases the relevant number of degrees of
freedom such as the continuous, piecewise linear basis functions used in [14] and [8, 15].
Theoretically, it is possible to initially choose an ideal basis consisting of the eigenvectors
for the dynamical matrix at the saddle point as described earlier in the paper. In such a
situation, only a single basis element would contribute in any way to the TST rate allowing
for a coarsening of the system down to a single element while still maintaining a perfect
approximation of the TST rate. While computing such an ideal basis is usually not practical,
especially if the point of the simulation is to discover the appropriate escape transition [13],
there may be alternative choices for a basis that are relatively easy to work with, apply to
certain classes of problems, and still make the behavior of interest increasingly localized. For
future consideration, it would also be interesting to investigate the effect that longer-range
interactions have on the constrained region’s contribution to the overall error, as discussed
in the numerical results section.
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