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Abstract

A sequential programming method for constrained optimization, which is referred
to as SP method, is presented. It is based on a sequence of linearized constrained
problems. Convergence and convergence rate of the method are analyzed based on
solutions of the first order optimality conditions and on Lagrange multiplier theory.
Unlike the SQP method, the SP method does not rely on an approximation of the
Hessian of the Lagrange functional and consequently avoids instabilities due to possible
indefiniteness of its Hessian.

The method can be used for non-smooth problems and it can efficiently be imple-
mented by the use of saddle point solvers. The implementation of the algorithms is
less involved when compared to the SQP method. The cost of performing each sequen-
tial step is very similar to the one for the gradient method with doubling number of
unknowns and the method is stable when using damped updates. We also develop a
second order convergent version which again be based only on sequential linearization
of the equality constraints. The proposed methods are numerically tested for control
in the coefficient problems or equivalently of bilinear optimal control problems.

Key words: Sequential linearization, mathematical programming, non-smooth opti-
mization, optimal control.

1 Introduction

In this paper we develop a sequential programming method (SP method) for constraint
minimization in Hilbert spaces. The method uses a linearization of the constraints. It is
a distinctive feature that it does not rely on second order derivatives. It can be used for
non-smooth problems and in many problems of practical interest it avoids instabilities due to
possible indefiniteness of the Hessian of the Lagrange functional. The established methods
to solve the class of problems that we aim for include the gradient- and conjugate gradient
methods, the SQP (Sequential Quadratic Programming) method, and variants thereof.
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The SQP (Sequential Quadratic Programming) method solves a sequence of optimiza-
tion subproblems, each of which optimizes a quadratic model for the Lagrangian functional
subject to a linearization of the constraints. If the problem has only equality constraints,
then the method is equivalent to applying Newton’s method to the first-order optimality
conditions, or the Karush-Kuhn-Tucker conditions. Like for the Newton method the objec-
tive function and the constraints are assumed to be twice continuously differentiable for the
SQP method. SQP is quadratically convergent but requires evaluations of the second order
derivatives and globalization methods for a stable implementation.

On the other hand gradient based methods (for optimal control problems) use an equation
and an adjoint solver to compute the gradient in each step. The cost per step for the gradient
method is much less than for the SQP-method but it requires a large number of iterations,
in general. These facts motivate us to develop the middle ground between SQP and gradient
methods.

The proposed method involves solving a sequence of first-order optimality conditions
utilizing linearized equality constraints. We also develop a variant which, under appropriate
conditions, can be shown to have second order convergence. The efficiency of the methods
depends on the availability of a good saddle point solver. The saddle point systems which
need to be solved for the SP and the SQP methods differ by the appearance of off-diagonal
terms which involve the current Lagrange multiplier associated to the equality constraints.
The SP method is therefor more stable than the SQP method for the class of control problems
that is our main motivation. The approach is also applicable for a general class of non-smooth
PDE constrained optimization problems. In summary the method offers an alternative to
existing methods when the performance should be improved over the gradient method and
difficulties involving second order realization should be avoided.

The paper is written in the Hilbert space setup but all discussions are applied to the
finite dimensional nonlinear programming. Examples are presented to demonstrate the ap-
plicability of the SP method for optimal control problems and an inverse medium problem.
Our tests show that the proposed SP method is more stable than the SQP method, and still
rapidly convergent.

The literature on iterative solutions to optimization problems in infinite dimensions is
by now very rich. We therefore quote only very selectively. In particular we mention the
following monographs which mainly focus on mathematical programming problems which
arise from PDE-constrained optimization problems, [AN, BGHKW, G, HPUU, IK, T]. We
believe that a systematic investigation of the approach that we present has not been carried
out before.

In Section 2 we introduce the (basic) SP method for constrained optimization and analyze
its convergence and convergence rate. Also, we discuss most relevant saddle point solvers
for the SP method. In Section 3 we propose and analyze a second order SP method. A
predictor-corrector method is developed based on the saddle point problem. The application
of the SP method to non-smooth problems is discussed in Section 4. Numerical examples
are given in Section 5.
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2 Sequential programming

In this section we introduce a sequential method for mathematical programming. Through-
out X and Y denote real Hilbert spaces. We consider the constrained optimization problem
for x ∈ X:

min F (x) subject to E(x) = 0, x ∈ C, (P)

where C is a closed convex set in X and F : X → R and E : X → Y are continuously
differentiable with locally Lipschitz continuous derivatives. Let x∗ denote a solution to (P).
The analysis will be given in a neighborhood Uε(x

∗) of x∗ with radius ε ∈ (0, 1) to be
determined below. Throughout it is assumed that

E ′(x) ∈ L(X, Y ) is surjective for all x ∈ Uε(x∗). (H1)

Proceeding iteratively the equality constraint E is linearized at xn ∈ Uε(x∗) and a con-
strained optimization problem is solved in the subsequent iteration. This is followed by a
damped updating step resulting in the following algorithm.

Algorithm 1: Sequential Programming I

1. Choose x0 ∈ Uε(x∗)

2. Given xn ∈ C, solve for x̄

min
x∈C

F (x) subject to E ′(xn)(x− xn) + E(xn) = 0, (2.1)

and associated multiplier λ̄.

3. Update xn+1 = (1− α)xn + α x̄, α ∈ (0, 1). Iterate until convergence.

It is assumed that (2.1) admit solutions x̄, which depends on n, of course. Assumption
(H1) implies that there exist Lagrange multipliers λ∗ ∈ Y and λ̄ ∈ Y such that the first
order necessary optimality conditions for (P) and (2.1) are given by

(F ′(x∗) + E ′(x∗)∗λ∗, x̃− x∗) ≥ 0 for all x̃ ∈ C

E(x∗) = 0.
(2.2)

and 
(F ′(x̄) + E ′(xn)∗λ̄, x̃− x̄) ≥ 0 for all x̃ ∈ C

E ′(xn)(x̄− xn) + E(xn) = 0
(2.3)

respectively. Note that the necessary condition to (P) can be written alternatively as
(F ′(x∗) + E ′(xn)∗λ∗ − (E ′(xn)∗ − E ′(x∗)∗)λ∗, x̃− x∗) ≥ 0 for all x̃ ∈ C

E ′(xn)(x∗ − xn) + E(xn) = E ′(xn)(x∗ − xn) + E(xn)− E(x∗).
(2.4)
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Consequently (2.2), and hence (2.4), are a perturbed form of problem (2.3) with perturba-
tions (∆1,∆2) ∈ X × Y given by

∆1 = (E ′(xn)∗ − E ′(x∗)∗)λ∗ and ∆2 = E ′(xn)(x∗ − xn) + E(xn)− E(x∗). (2.5)

To describe the main assumption let (xξ, λξ) for ξ ∈ Uε(x∗), denote the solution to
(F ′(xξ) + E ′(ξ)∗λξ, x̃− xξ) ≥ 0 for all x̃ ∈ C

E ′(ξ)(xξ − ξ) + E(ξ) = 0,
(2.6)

and let (x∆̃, λ∆̃) be the solution of the perturbed problem
(F ′(x∆̃) + E ′(ξ)∗λ∆̃ − ∆̃1, x̃− x∆̃) ≥ 0 for all x̃ ∈ C

E ′(ξ)(x∆̃ − ξ) + E(ξ) = ∆̃2,

(2.7)

where ∆̃ = (∆̃1, ∆̃2) ∈ X × Y . We assume Lipschitz continuity of the solution (2.6) with
respect to additive perturbations, i.e.

|xξ − x∆̃|X ≤ c |(∆̃1, ∆̃2)|X×Y , (H2)

for a constant c independent of ξ ∈ Uε(x
∗) and (∆̃1, ∆̃2) ∈ X × Y . Assumption (H2) is

well-investigated in the literature, see e.g. [IK] Chapter 2.4, and the references given there.
We shall also address a special case below, to highlight the dependence of c on the problem
data.

Assuming that xn ∈ Uε(x∗) we obtain for the damped update:

xn+1 = (1− α)xn + α x̄, α ∈ (0, 1], (2.8)

by applying (H2), with ξ = xn, (xξ, λξ) = (x̄, λ̄), (x∆̃, λ∆̃) = (x∗, λ∗) and for the perturbation
given in (2.5), that

|xn+1 − x∗| ≤ (1− α + c αL|λ∗|Y )|xn − x∗|+ c α
L

2
|xn − x∗|2, (2.9)

where L is the Lipschitz constant of E ′ on Uε(x
∗). In fact, we can estimate

|xn+1 − x∗| ≤ (1− α)|xn − x∗|+ α|x̄− x∗| ≤ (1− α)|xn − x∗|+ αc(|∆1|X + |∆2|Y )

≤ (1− α)|xn − x∗|+ αc(L|λ∗|Y |xx − x∗|+ |∆2|Y )

Moreover

|∆2| = |E ′(xn)(x∗ − xn) + E(xn)− E(x∗)|

= |
∫ 1

0

(
E ′(xn)− E ′(xn + s(x∗ − xn))

)
(x∗ − xn) ds| ≤ L

2
|xn − x∗|2.

Combining these estimates, (2.9) follows. If xn ∈ Uε(x∗) we have

|xn+1 − x∗| ≤ (1− α + c αL|λ∗|Y + ε c α
L

2
)|xn − x∗|. (2.10)

Thus, if cL(|λ∗|Y ∗ + ε
2
) < 1, then xn+1 ∈ Uε(x∗) and the iteration can proceed. We summarize

the discussion so far in the following proposition.
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Proposition 2.1. Assume that (H1) and (H2) hold, and that ρ1 := cL(|λ∗|Y + ε
2
) < 1. Then

Algorithm 1 is well-defined and it converges linearly with rate (1− α(1− ρ1)).

Remark 2.1. Let us consider (H2) for the case C = X and assume that F is uniformly
convex and Lipschitz continuous, i.e. there exist constants γ > 0 and LF > 0 such that

γ|x− x∗|2 ≤ (F ′(x)− F ′(x∗), x− x∗), |F ′(x)− F ′(x∗)| ≤ LF |x− x∗| for all x ∈ X. (2.11)

The error equations are:{
F ′(x)− F ′(x∗) + E ′(xn)∗(λ− λ∗) = −∆1

E ′(xn)(x− x∗) = −∆2.
(2.12)

Setting E†n = (E ′(xn)E ′(xn)∗)−1E ′(xn) we obtain from the first equation

|λ− λ∗| ≤ |E†n∆1|+ LF‖E†n‖ |x− x∗|.

Moreover (2.12) implies that

γ|x− x∗|2 ≤ |∆1| |x− x∗|+ |∆2|(|E†n∆1|+ LF‖E†n‖ |x− x∗|).

This further implies that

γ

2
|x− x∗|2 ≤ 1

2γ
(|∆1|+ LF |∆2| ‖E†n‖)2 + |∆2| |E†n∆1|

and hence

|x− x∗|2 ≤ 1

γ2
(|∆1|+ LF |∆2| ‖E†n‖)2 +

2

γ
|∆2| |E†n∆1|.

Thus we obtain

|x− x∗| ≤ 1

γ
(|∆1|+ LF |∆2| ‖E†n‖) +

1

γ
|∆2|+

1

2
|E†n∆1|,

and

|x− x∗| ≤ 1

γ
|∆1|+

1

2
|E†n∆1|+ (

LF
γ
‖E†n‖+

1

γ
|)|∆2|,

as desired.

Next we consider case where E and F are more regular, and C = X. In particular
E and F are assumed to be once respectively twice continuously differentiable, with first,
respectively second derivative Lipschitz continuous on Uε(x

∗) with Lipschitz constant L̃. We
define the saddle point operators

G(x) =

(
F ′′(x) E ′(x)∗

E ′(x) 0

)
. (2.13)

and assume that for some κ > 0

(x,G(x∗)x) ≥ κ|x|2, for all x ∈ kerE ′(x∗). (H3)
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This implies that for ε sufficiently small we have

(x,G(x̃)x) ≥ κ

2
|x|2, for all x ∈ kerE ′(x̃).

for all x̃ ∈ U(x∗).
Proceeding iteratively we set zn = (xn, λn), z∗ = (x∗, λ∗) and assume that (xn, λn) ∈

Uε(x
∗) × Uε(λ∗), where Uε(λ

∗) is an ε neighborhood of λ∗. For convenience we further set
Gn = G(xn). Then for the update

zn+1 = (1− α)zn + α zn, α ∈ (0, 1]

we find

zn+1 − z∗ = (1− α) (zn − z∗) + αG−1
n

( ( −(E ′(xn)∗ − E ′(x∗)∗)λ∗
0

)
+ δn

)
(2.14)

with

δn =

(
F ′(x∗)− F ′(x̄)− F ′′(xn)(x∗ − x̄)
E(x∗)− E ′(xn)(x∗ − xn)− E(xn)

)
.

Thus we have

|zn+1 − z∗| ≤ (1− α + αγ) |zn − z∗|+ αc̃‖G−1
n ‖ |zn − z∗|2

≤ (1− α + αγ + αc̃‖G−1
n ‖) |zn − z∗|,

(2.15)

where we use that ε < 1, and |x̄− x∗| ≤ cL(|λ∗|+ ε
2
)|xn − x∗|, c̃ depends on L and L̃, and

|G−1
n

(
(E ′(xn)∗ − E ′(x∗)∗)λ∗

0

)
| ≤ γ |xn − x∗|. (2.16)

The constant γ is small if either |λ∗| is small or if the quadratic variation of E is dominated
by the linearization E ′ of E. The latter will be addressed in Remark 2.2 below. Before that
we summarize the above discussion as a proposition.

Proposition 2.2. Assume that F and E are twice, respectively once, continuously differ-
entiable with locally Lipschitz continuous derivatives, that (H1) and (H3) hold, and that
ρ2 = γ + εL̃ supx∈Uε(x∗) ‖G(x)‖ < 1. Then Algorithm 1 is well-defined and it converges

linearly with rate (1− α(1− ρ)).

Remark 2.2. (1) To illustrate the dependence of γ onG(x), E ′ and λ∗ we consider a situation
which is typical for stationary optimal control problems: Let x = (y, u) ∈ X1×X2, with X1

and X2 Hilbert spaces, and

E(y, u) = e(y) +Bu, B ∈ L(X1, X2), F (y, u) = F1(y) + F2(u),

where F2(u)′′ is a positive multiple of the identity for each u ∈ X2, and F1(y)′′ is positive
definite, e′(y) ∈ L(X1, Y ) is an isomorphism for each y ∈ X1, and otherwise E and F satisfy
the regularity properties of Proposition 2.2. For these choices the expression

Gn

(
δx
δλ

)
=

(
(E ′(xn)∗ − E ′(x∗)∗)λ∗

0

)
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is found to be  F ′′1 0 e∗y
0 F ′′2 B∗

ey B 0

 δy
δu
δλ

 =

 r
0
0

 , (2.17)

where all expressions are evaluated at (yn, un) and r = (e′(xn)∗ − e′(x∗)∗)λ∗.
From this system we obtain

δλ = e−∗y (r − F ′′1 δy), δu = −(F ′′2 )−1B∗δλ, δy = −(ey)
−1Bδu,

and consequently

δu+ (F ′′2 )−1B∗e−∗y F ′′1 e
−1
y B δu+ (F ′′2 )−1B∗e−∗y r = 0.

From these equalities we conclude that

|δu| ≤ ‖(F ′′2 )−1B∗‖ |ey(yn)−∗r|, |δy| ≤ ‖Be−1
y (F ′′2 )−1B∗‖ |ey(yn)−∗r|, |δλ| ≤ const |ey(yn)−∗r|.

Loosely speaking these estimates imply that the constant γ in (2.16) is small if |λ|∞ is small
and, in appropriately chosen norms, |E ′′| is small compared to |E ′|.

From the expressions for δu, δy, δλ it can be seen that the sequences in (2.14)

G−1
n (E ′(xn)∗ − E ′(x∗)∗)λ∗ and G−1

n δn

are compact sequences in X in many PDE constrained optimal control problems involving
diffusion processes. This implies that the high frequency component of the iterates can be
expected to be rapidly convergent.

(2) One can allow an incomplete solution to (2.2). In this case we have(
F ′(x) + E ′(xn)∗λ

E ′(xn)(x− xn) + E(xn)

)
= δ̃n,

and the error term in (2.14) must be replaced by δn + δ̃n.

2.1 Comparison to gradient method and SQP

We briefly compare the SP approach with the projected gradient and SQP methods. For
this purpose we consider as in Remark 2.2 problems of the form

min F (x) = F1(y) + F2(u) subject to E(y, u) = 0 and u ∈ C, (2.18)

where x = (y, u) and Ey(x) is bounded invertible. The projected gradient method for this
this problem can be expressed as

1. Given un, we solve for yn
E(y, un) = 0.

2. Given xn = (yn, un) solve for λn

Ey(xn)∗λ+ F ′1(yn) = 0.
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3. Update u by
un+1 = PC(un − α (F ′2(un) + Eu(xn)∗λ),

where ProjC denotes the orthogonal projection onto C. Thus, the gradient method requires
an equation solver for yn and an adjoint equation solver for λ.

The SP update can be expressed as: given xn obtain xn+1 by solving the reduced problem

min F2(u) + (Eu(xn)∗λ, u− un)X2 over u ∈ C

where (y, λ) = (y(u), λ(u)) solve the saddle point problem:{
Ey(xn)(y − yn) + Eu(xn)(u− un) + E(xn) = 0

Ey(xn)∗λ+ F ′1(y) = 0.

(2.19)

The solution of the minimization step in (2.19) will depend on the specific problem under
consideration. In the case there are no constraints on u, the minimization in (2.19) gives
F ′2(u) + Eu(xn)∗λ = 0. If F2 is quadratic in u this allows to expresses u as a function of λ
and eliminate u from the saddle point problem.

Thus, the SP method requires to solve saddle point problems for (y, λ) while the gradient
method uses a nonlinear solver for y and a linear adjoint solver for λ. That is, there are
twice the number of unknowns for the SP method compared to the gradient method.

The SQP update x = (y, u) solves

minx=(y,u) F1(yn) + F2(un) + F ′1(yn)(y − yn) + F ′2(un)(u− un)

+1
2
(x− xn),Lxx((xn, λn)(x− xn))X

subject to Ey(xn)(y − yn) + Eu(xn)(u− un) + E(xn) = 0 and u ∈ C,

where Lxx(xn, λn) is the Hessian of the Lagrangian functional given by

L(x, λ) = F1(y) + F2(u) + 〈E(x), λ〉.

For large scale problems it is a nontrivial task to evaluate the Hessian of the Lagrangian or to
obtain a good approximation to it. Moreover, to benefit from this second order information
it is crucial that the Hessian is positive definite on the kernel of E ′(x) and that the updates
are in the region of attraction. As we shall point out below this can be a mayor difficulty
for the SQP method.

2.2 The saddle point problem

Here we consider the case that C = X. Then the necessary condition (2.3) for the SP method
is the following the saddle point problem

F ′(x) + E ′(xn)∗λ = 0

E ′(xn)(x− xn) + E(xn) = 0.
(2.20)
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Applying a Newton step to (2.20) we obtain(
F ′′(xn) E ′(xn)∗

E ′(xn) 0

)(
x− xn

λ

)
= −

(
F ′(xn)

E(xn)

)
. (2.21)

Alternatively the SQP step described at the end of the previous subsection results in(
Lxx(xn, λn) E ′(xn)∗

E ′(xn) 0

)(
x− xn

λ

)
= −

(
F ′(xn)

E(xn)

)
. (2.22)

If F ′′(xn) is positive definite on the kernel of E ′(xn) (and in particular if F ′′(xn) is positive
definite on all of X, compare (2.17)), then system (2.21) is solvable and the direction that is
obtained is a decent direction for F , which follow by taking the inner product of the first row
in (2.21) with x−xn. Turning to the 1−1 block in (2.22), it is given by Lxx(x, λ) = F ′′(xn)+
(E ′(xn)∗λn)′. Even if F ′′ is positive definite on all of X this expression may lack positiveness,
unless the iterates are very close to a strict local minimum. As a special case consider the
bilinear control problem with E(y, u) = −∆y + uy and F (y, u) = 1

2
|y − yd|2 + β

2
|u|2, in

X = H1
0 × L2 with given yd ∈ L2. Then

Lxx(y, u, λ) =

(
I λ

λ βI

)
.

and this expression is not positive definite on the kernel of E ′(y, u) for arbitrary (y, u, λ).
Let us now return to (2.20) and comment on possible numerical approaches. First consider

the case that F ′ is strictly monotone, i.e.,

〈F ′(x)− F ′(z), x− z〉X∗×X ≥ ω |x− z|2, x, z ∈ X.

for some ω > 0. The preconditioned Uzawa algorithm (explicit method) [G] is given by
xk+1 − xk

αk
= P (F ′(xk) + E ′(xn)∗λk)

λk+1 − λk

βk
= E ′(xn)(xk+1 − xn) + E(xn)

(2.23)

for step-sizes αk, βk, where P is a pre-conditioner. For PDE optimization F ′(xk)+E ′(xk)∗λk ∈
X∗, where X∗ is the dual space of a Hilbert space X and P : X∗ → X can be chosen as the
Riesz map of X∗. Alternatively the augmented Lagrangian method (implicit method) can
be chosen, see eg. [IK]. For sufficiently large c > 0 the iteration step is given by{

F ′(xk+1) + E ′(xn)∗λk+1 = 0,

λk+1 = λk + c (E ′(xn)(xk+1 − xn) + E(xn))
(2.24)

The second case we consider is that of a control problem with x = (y, u) ∈ X1 × X2,
E(y, u) = e(y) + Bu = 0 with B ∈ L(X2, Y ), and F (x) = 1

2
((y − z,Q(y − z)) + |u|2), with

Q positive definite on X1 and z ∈ X1. That is, we consider

min
1

2
((y − z,Q(y − z)) + |u|2) subject to e(y) +Bu = 0.
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The saddle point problem for obtaining the update (y, u, λ) reduces to solving Q e′(yn)∗

e′(yn) −BB∗

 y

λ

 =

 f

g

 ,

where (f, g) = (Qz,−e(yn) + e′(yn)yn), and and setting u = −B∗λ. If e′(yn) is bounded
invertible, then from the second equation y = e′(yn)−1(g− 1

α
Bu), and from the first equation

λ = e′(yn)−∗(f −Qe′(yn)−1(g − 1

α
Bu)).

Thus, we obtain the following equation for the update u:

(I +
1

α
B∗e′(yn)−∗Qe′(yn)−1B)u =

1

α
B∗e′(yn)−∗(Qe′(yn)−1g − f), (2.25)

which can efficiently be solved by the conjugate gradient method. Equation (2.25) is well-
posed with moderate condition number if e′(y)−1 is compact. A forward and an adjoint
solver involving e′(yn)−1 and its adjoint are necessary per evaluation of the left hand side.

2.3 Inequality constraints and primal-dual active set method

We consider a nonlinear programming problem with functional description of the inequality
constraint:

min F (x) subject to E(x) = 0, G(x) ≤ 0,

where the range space of G is either L2(Ω) or Rm. The SP method involves the linearization
of the constraints and is given by

min F (x) subject to E ′(xn)(x− xn) + E(xn) = 0, G′(xn)(x− xn) +G(xn) ≤ 0.

The necessary optimality is
F ′(x) + E ′(xn)∗λ+G′(xn)∗µ = 0

E ′(xn)(x− xn) + E(xn) = 0

µ = max(0, µ+ c (G′(xn)(x− xn) +G(xn))).

where µ ≥ 0 is the Lagrange multiplier for the inequality constraint G(x) ≤ 0 and the last
equality is the complementarity condition. The max− operation must be interpreted either
point-wise for a.e. x ∈ Ω if the image of G is L2(Ω) or coordinate-wise, if the image of G is
Rm.

This problem can efficiently be solved by the primal-dual active method [IK] which iter-
atively solves the following system for (xk, λk, µk)

F ′(xk) + E ′(xn)∗λk +G′(xn)∗µk = 0

E ′(xn)(xk − xn) + E(xn) = 0

G′(xn)(xk − xn) +G(xn) = 0 on the active set {x : (µk−1 + c(G′(xn)(xk−1 − xn) +G(xn)))(x) > 0}

µk = 0 on the inactive set {x : (µk−1 + c (G′(xn)(xk−1 − xn) +G(xn)))(x)0 = 0}.
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If the image space of G is a coordinate space, then the active and inactive sets have to be
defined coordinate-wise rather than pointwise-wise.

3 Second order sequential programming

In this section we discuss a second order sequential programming method. As in Section 2
let x∗ denote a local minimum to (P) and assume that (H1) holds. Moreover let Uε(x

∗, λ∗) =
Uε(x

∗)× Uε(λ∗) denote a neighborhood of radius ε ∈ (0, 1) in X × Y ∗.
In order to obtain a second order method it is necessary to incorporate the term (E ′(xn)∗−

E ′(x∗)∗)λ∗ to the update. Thus we consider

min F (x) + 〈λn, E(x)− (E ′(xn)(x− xn) + E(xn))〉

subject to E ′(xn)(x− xn) + E(xn) = 0 and x ∈ C.
(3.1)

We observe that the term 〈λn, E(x) − (E ′(xn)(x − xn) + E(xn))〉 can be understood as

approximation to 1
2
〈λn, E ′′(xn)(x− xn, x− xn)〉 which appears as second summand of 1

2
(x−

xn),Lxx((xn, λn)(x− xn))X in the SQP method.
The update according to (3.1) results in the following algorithm.

Algorithm 2: Sequential Programming II

1. Choose (x0, λ0) ∈ Uε(x∗, λ∗).

2. Given (xn, λn), solve (3.1) for (x, λ).

3. Update (xn+1, λn+1) = (x, λ). Iterate until convergence.

Condition (H4) below will guarantee that the iterates of Algorithm 2 lie in Uε(x
∗, λ∗).

The necessary optimality condition for (3.1) is given by
(F ′(x) + (E ′(x)∗ − E ′(xn)∗)λn + E ′(xn)∗λ, x̃− x) ≥ 0 for all x̃ ∈ C

E ′(xn)(x− xn) + E(xn) = 0.
(3.2)

When compared to (2.3) this is the saddle problem involving the linearized equation
where F ′(x) is replaced by F ′(x) +E ′(x)∗λn. The necessary optimality condition to (P) can
be expressed to follow the structure of (3.2) as

(F ′(x∗) + (E ′(x∗)∗ − E ′(xn)∗)λn + E ′(xn)∗λ∗ −∆1, x̃− x∗) ≥ 0 for all x̃ ∈ C

E ′(xn)(x∗ − xn) + E(xn) = ∆2,
(3.3)

where

∆1 = (E ′(x∗)∗ − E ′(xn)∗)(λn − λ∗) and ∆2 = E ′(xn)(x∗ − xn) + E(xn)− E(x∗). (3.4)
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As in Section 2 we consider a perturbed system which for the second order case is given by
(F ′(x∆̃) + E ′(x∆̃)∗µ+ E ′(ξ)∗(λ∆̃ − µ)− ∆̃1, x̃− x∆̃) ≥ 0 for all x̃ ∈ C

E ′(ξ)(x∆̃ − ξ) + E(ξ) = ∆̃2,

(3.5)

for (ξ, µ) ∈ Uε(x∗, λ∗), and ∆̃ = (∆̃1, ∆̃2) ∈ X × Y . We assume Lipschitz continuity of the
solutions to (3.5) with respect perturbations ∆̃ = (∆̃1, ∆̃2) ∈ X × Y . i.e. that there exists c
such that

|x(ξ,µ) − x∆̃|X + |λ(ξ,µ) − λ∆̃|Y ∗ ≤ c |(∆̃1, ∆̃2)|X×Y , (H4)

where (x(ξ,µ), λ(ξ,µ)) denotes the solution to (3.5) with (∆̃1, ∆̃2) = 0.

Proposition 3.1. Assume that (H1) and (H4) hold. Then Algorithm 2 is locally quadrati-
cally convergent.

This follows by applying (H4) with (ξ, µ) = (xn, λn)) to (3.2) and (3.3), and using local
Lipschitz continuity of x→ E ′(x) to estimate ∆1 and ∆2.

Remark 3.1. Concerning condition (H4) we return to the special case of Remark 2.1. In
the present case the error equations turn out to be{

F ′(x) + E ′(x)∗λn − (F ′(x∗) + E ′(x∗)∗λn) + E ′(xn)∗(λ− λ∗) = −∆1

E ′(xn)(x− x∗) = −∆2.
(3.6)

Replacing (2.11) by

γ|x− x∗|2 ≤ (F ′(x) + E ′(x)∗µ− (F ′(x∗) + E ′(x∗)∗µ), x− x∗),

|F ′(x) + E ′(x∗)∗µ− (F ′(x∗) + E ′(x∗)∗µ)| ≤ LF |x− x∗| for all x ∈ X,µ ∈ Uε(λ∗),
(3.7)

we can proceed as in Remark 2.1 to argue that

|(x, λ)− (x∗, λ∗)| ≤ C |(∆1,∆2)|

for a constant C independent of λn ∈ U(λ∗).

From Remark 2.1 and Remark 3.1 it is apparent that existence and Lipschitz continuous
dependence of solutions with respect to perturbations of equations (2.3) and (3.2) involve
the behavior of x → F ′(x), respectively x → F ′(x) + E ′(x)∗µ for µ ∈ Y ∗, on ker E ′(x).
Monotonicity is more likely to hold for x → F ′(x) than for x → F ′(x) + E ′(x)∗µ. This
suggests the following predictor-corrector strategy to solve (3.2).

3.1 Predictor-Corrector method

We propose a solution method for (3.2) using the first order update x̂n+1 based on (2.2) as
a predictor step, followed by the corrector step

(F ′(x) + (E ′(x̂n+1)∗ − E ′(xn)∗)λn + E ′(xn)∗λ, x̃− x) ≥ 0 for all x̃ ∈ C

E ′(xn)(x− xn) + E(xn) = 0,

(3.8)
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which arises from replacing the first x in (3.2) by x̂n+1. The corrector step involves the same
saddle point problem of the linearized problem at xn as the predictor step, with (E ′(x̂n+1)∗−
E ′(xn)∗)λn as perturbation. The corrector step avoids evaluating second derivatives and a
possible indefiniteness due to the term F ′(x) +E ′∗(x)λn, which appears in the second order
method.

To obtain insight into the convergence properties of this predictor-corrector strategy, we
put ourselves into the situation with F ∈ C2(X,R), E ∈ C1(X, Y ), and C = X, as described
just above (2.13).

Let us denote

z∗ = (x∗, λ∗), zn = (xn, λn), ẑn = (x̂n, λn), z = (x, λ).

From (2.15) with α = 1 we have that

|ẑn+1 − z∗| ≤ γ|zn − z∗|+ c̃‖G−1
n ‖ |zn − z∗|2. (3.9)

Turning to the corrector step, we first need to obtain a linear bound on |z − z∗|. For this
purpose we express the necessary optimality condition for (P) as (F ′(x∗) + E ′(xn)∗λ∗ − ∆̂1 + (E ′(x̂n+1)∗ − E ′(xn)∗)λn, x̃− x∗) ≥ 0 for all x̃ ∈ C

E ′(xn)(x∗ − xn) + E(xn) = ∆2,

(3.10)

where ∆2 was defined in (2.5) and −∆̂1 = (E ′(x∗)∗−E ′(x̂n+1)∗)λn+(E ′(x∗)∗−E ′(xn)∗)(λ∗−
λn). Now we require a condition which is slightly more general than (H2), namely that c
can be chosen such that

|z∆̃ − zΞ|X ≤ c |∆̃− Ξ|X×Y , (H2’)

where z∆̃ = (x∆̃, λ∆̃) is the solution to (2.7) and analogously for zΞ. Applying (H2’) to (3.8)

and (3.10) with ξ = xn, −∆̃1 = (E ′(x̂n+1)∗ − E ′(xn)∗)λn, ∆̃2 = 0, Ξ1 = −∆̂1 + (E ′(x̂n+1)∗ −
E ′(xn)∗)λn, Ξ2 = ∆2, we obtain

|z − z∗| ≤ c(|∆̂1|+ |∆2|),

which together with (3.9) implies the existence of a constant c1 such that

|z − z∗| ≤ c1|zn − z∗|. (3.11)

Next we use the error equation
Gn(z − z∗) = δ̃n

where

δ̃n =

(
−∆̂1 + F ′(x∗)− F ′(x)− F ′′(xn)(x∗ − x)

−∆2.

)
.

We obtain by (3.11) that

|z − z∗| = |G−1
n

(
(E ′(x∗)∗ − E ′(x̂n)∗)λn

0

)
|+ ĉ |zn − z∗|2.
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Assuming that (2.16) holds uniformly in a neighborhood Uε(x
∗, λ∗) = Uε(x

∗) × Uε(λ
∗) of

(x∗, λ∗), in the sense that

|G(x̃)−1

(
(E ′(x)∗ − E ′(x∗)∗)λ

0

)
| ≤ γ |x− x∗|, (3.12)

for all x̃ ∈ Uε(x∗), (x, λ) ∈ Uε(x∗, λ∗), we have for some constant ĉ

|z − z∗| ≤ γ|x̂n+1 − x∗|+ ĉ |zn − z∗|2.

Combining this estimate with (3.9) we find for yet another constant c̃ that

|z − z∗| ≤ γ2|zn − z∗|+ c̃|zn − z∗|2,

if (H1), (H2’), (H3), and (3.12) hold. Thus, while we cannot obtain quadratic convergence
anymore, the constant γ from the first order update is improved to γ2 by the predictor-
corrector method. Note that for the predictor corrector method the system matrix need not
be updated.

3.2 Non-smooth optimization

We return to the optimization problem in separable form

min F1(y) + F2(u) subject to E(y, u) = 0 and u ∈ C, (3.13)

where F1 ∈ C1(X1,R), E ∈ C1(X, Y ), with locally Lipschitz continuous derivatives, and F2

is locally Lipschitz continuous and convex, but not necessarily C1 on X2. As in the previous
section we consider an iterative second order SP method which on each iteration level solves,
for given xn = (yn, un), the following problem:

minu∈C F1(y) + F2(u) + 〈λn, E(y, u)− (E ′(yn, un)(y − yn, u− un) + E(yn, un)〉

subject to E ′(yn, un)(y − yn, u− un) + E(yn, un) = 0.
(3.14)

Note that if (y∗, u∗) is an optimizer of (3.13), then it is a solution to a perturbation of
problem (3.14):

min F1(y) + F2(u) + 〈λn, E(y, u)− (E ′(xn)(y − yn, u− un)) + E(xn)〉X∗,X − (∆1, x)X

subject to E ′(xn)(y − yn, u− un) + E(xn) = ∆2,
(3.15)

where x = (y, u), and ∆ = (∆1,∆2) ∈ X × Y was defined in (3.4).
Let (yn+1, un+1) be the solution of (3.14), with associated multiplier λn+1, and let λ∗ be a

multiplier for the equality constraint in (3.13). We assume Lipschitz continuity of solutions
to (3.15), i.e. we assume the existence of a constant C such that:

|yn+1 − y∗|+ |un+1 − u∗|+ |λn+1 − λ∗| ≤ C |∆| (3.16)
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for all n. An example, illustrating the feasibility of this assumption is given at the end of the
section. From the definition of ∆ and assumption (3.16) we have local quadratic convergence
of the sequential programming method (3.14):

|yn+1 − y∗|+ |un+1 − u∗|+ |λn+1 − λ∗| ≤M (|yn − y∗|2 + |un − u∗|2 + |λn − λ∗|). (3.17)

Utilizing the convexity assumption on F2, the necessary optimality for (3.14) is given by
F ′1(y) + (Ey(y, u)∗ − Ey(yn, un)∗)λn + Ey(yn, un)∗λ = 0

Ey(yn, un)(y − yn) + Eu(yn, un)(u− un) + E(yn, un) = 0.

F2(v)− F2(u) + ((Eu(y, u)∗ − Eu(yn, un)∗)λn + Eu(yn, un)∗λ, v − u) ≥ 0 for all v ∈ C
(3.18)

One can eliminate (y, λ) as a function of u by solving the first two equation for (y, λ),
given u. This results in the following algorithm, for which a concrete special case is given in
Example 4.5.

Algorithm 3: Sequential Programming III

1. Given u ∈ C, solve the first two equations of (3.18) for (y(u), λ(u)).

2. Solve the variational inequality for u ∈ C:

F2(v)− F2(u) + ((Eu(y(u), u)∗ −Eu(yn, un)∗)λn +Eu(yn, un)∗λ(u), v− u) ≥ 0, (3.19)

for all v ∈ C.

3. Set un+1 = u. Iterate until convergence.

Example 3.1. Here we give a simple example illustrating assumption (3.16) and consider
min 1

2
|y − z|2L2 + β1

2
|u|2L2 + β2|u|L1

subject to

−∆y = u on Ω, y = 0 on ∂Ω,

(3.20)

where β1 > 0, β2 > 0, and Ω is bounded domain with Lipschitz continuous boundary condi-
tion. We set X = H1

0 (Ω)×L2(Ω) and Y = H−1(Ω). Setting ∆1 = (∆1
1,∆

2
1) ∈ H1

0 (Ω)×L2(Ω)
problem (3.15) can be expressed as

min 1
2
|y − z|2L2 + β1

2
|u|2L2 + β2|u|L1 + (∆1

1,∆y)L2 − (∆2
1, u)L2

subject to

−∆y − u = ∆2 on Ω, y = 0 on ∂Ω,
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and further, setting ∆s
1 = ∆1

1 + ∆2
1, and ζ = ∆−1∆2 + z, where ∆ denotes the Laplacian

with Dirichlet boundary conditions,

min
1

2
|(−∆)−1u− ζ|2L2 +

β1

2
|u|2L2 + β2|u|L1 − (∆s

1, u)L2 − (∆1
1,∆2)L2 .

The first order optimality condition for this problem is given by

((β1 + ∆−2)u+ (−∆1 + ∆−1ζ), v − u)L2 + β2|v|L1 − β2|u|L1 ≥ 0 for all v ∈ L2(Ω). (3.21)

Let (∆̄1, ∆̄2) ∈ X × Y denote another perturbation and let ū be the associated solution to
(3.21) with (∆1,∆2) replaced by (∆̄1, ∆̄2). From (3.21) used for u and ū it follows that

β1|u− ū|2L2 ≤ (|∆s
1 − ∆̄s

1|L2 + |(−∆)−1(ζ − ζ̄)|L2)|u− ū|L2 .

Consequently there exists a constant C, independent of the perturbations, such that

β1 |u− ū|L2 ≤ C|∆− ∆̄|X×Y .

Using the primal equations, and the adjoint equations, which are given by

−∆λ = −(y − z), in Ω, λ = 0 on ∂Ω, −∆λ̄ = −(ȳ − z), in Ω, λ̄ = 0 on ∂Ω,

we obtain
β1 |(y, u, λ)− (ȳ, ū, λ̄)|X×Y ∗ ≤ C|∆− ∆̄|X×Y ,

for another constant C, independent of the perturbations. This is the desired Lipschitz
continuous dependence.

4 Applications and numerical examples

In this section we first briefly describe the SP methods for two specific applications. Subse-
quently numerical results are presented.

Application 4.1. (ODE Optimal Control Problem) Let x = (y, u) ∈ X = H1(0, T ;Rn) ×
L2(0, T ;Rm) and consider the optimal control problem:

min
∫ T

0
(`(y(t)) + h(u(t))) dt,

subject to the dynamical constraint

E(y, u) = − d
dt
y(t) + f(y(t)) +Bu(t) = 0, y(0) = y0,

and the control constraint u ∈ C = {u(t) ∈ U, a.e.},

(4.1)

where U is a closed convex set in Rm. Then, the necessary optimality condition for the
linearized problem is given by

E ′(yn, un)(y − yn, u− un) + E(yn, un) = − d

dt
y + f ′(yn)(y − yn) + f(yn) +Bu = 0, y(0) = y0,

F ′(y) + Ey(yn, un)λ =
d

dt
λ+ f ′(yn)tλ+ `′(y) = 0, λ(T ) = 0,

u(t) = argminv∈U{h(v) + (Btλ(t), v)}.
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If h(u) = α
2
|u|2 and U = Rm, then u(t) = −Btλ(t)

α
. Thus, (2.2) is equivalent to solving the

two point boundary value for (y, λ):
d

dt
y = f ′(yn)(y − yn) + f(yn)− 1

α
BBtλ, y(0) = y0,

− d

dt
λ = f ′(yn)∗λ+ `′(y), λ(T ) = 0.

Similarly, the second order update is equivalent to
d

dt
y = f ′(yn)(y − yn) + f(yn)− 1

α
BBtλ, y(0) = y0,

− d

dt
λ = f ′(yn)∗λ+ (f ′(y)− f ′(yn))∗λn + `′(y), λ(T ) = 0.

Application 4.2. (Nonlinear control in the coefficient problem) For the state variable y and
the control variable u we consider

min
1

2

∫
Ω

|y − z|2 dx+
β

2

∫
Ω

|u|2 dx+ F2(u),

subject to

− µ∆y + g(y) + uy = 0 in Ω, y = 0 on ∂Ω,

where Ω is a bounded domain with boundary ∂Ω, µ > 0, β > 0, z ∈ L2(Ω) is given, g
is a possibly nonlinear mapping. At first the not necessarily quadratic term F2 is mainly
considered to illustrate how it effects different iterative algorithm. We shall return to it
in Example 4.5 below. We next present the formalism for the first and second order SP
methods.

The first order SP step solves

Gn(yn, un)

yu
λ

 =

 z
0

g′(yn)yn − g(yn) + ynun

 , (4.2)

for (y, u, λ), where

Gn(yn, un) =


I 0 −µ∆D + (g′(yn) + un)I

0 βI + F ′2(·) ynI

−µ∆D + (g′(yn) + un)I ynI 0

 ,

and ∆D denotes the Laplace operators with Dirichlet. In the case of the predictor-corrector
method the predictor solves (4.2) for (ŷ, û, λ̂) and in the corrector step (4.2) is solved with
the new right hand side 

(g′(yn)− g′(ŷn))λn + (un − ûn)λn + z

(yn − ŷn)λn

g′(yn)yn − g(yn) + ynun

 .
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The second order update is given by

Ĝn(yn, un, λn)

yu
λ

 =

 (g′(yn) + un)λn + z
ynλn

g′(yn)yn − g(yn) + ynun

 ,

where

Ĝn(yn, un, λn) =


I + λng

′(·)I λnI −µ∆D + (g′(yn) + un)I

λnI βI + F ′2(·) ynI

−µ∆D + (g′(yn) + un)I ynI 0

 .

It can be checked that for g = 0, the second order step coincides with the SQP-update.
It is worthwhile to compare the second order SP update with the SQP method. Assuming

C2 regularity of g and F2 its update form is given by

GSQP n(yn, un, λn)

yu
λ

 =

 (g′′(yn)yn + un)λn + z
ynλn − F ′(un) + F ′′(un)un
g′(yn)yn − g(yn) + ynun

 ,

where

GSQP n(yn, un, λn) =


I + λng

′′(yn)I λnI −µ∆D + (g′(yn) + un)I

λnI βI + F ′′2 (un) ynI

−µ∆D + (g′(yn) + un)I ynI 0

 .

The system matrices Gn(yn, un), Ĝn(yn, un, λn) and GSQP n(yn, un, λn), differ foremost
by the fact that λn does not appear in Gn(yn, un). The second-order SP method and the
SQP method differ in the first equation, where the term λn(g′(yn+1)− g′(yn)) is replaced by
λng

′′(yn)(yn+1 − yn), and in the second equation, where F ′2(un+1) is replaced by F ′2(un) +
F ′′(un)(un+1 − un) in the SQP step. In case that g′ and F ′2 are affine, these two methods
coincide.

Partial second order SP-method Concerning the second order derivatives g′′ and
F ′′2 in GSQP n, respectively the nonlinear terms g′ and F ′2 in Ĝn, we shall investigate the
following procedures in our numerical tests: Delete the λng

′ respectively λng
′′ terms, and

the corresponding term on the right hand side, if they lead to conditioning problems or are
too complex. In the case that F2 is a pointwise and convex operator, and not necessarily
C2, replace F ′′2 by

F ′′2 (un) ∼ F ′(un)− F ′(un−1)

un − un−1

. (4.3)

We refer to this procedure as partial second order SP-method.

Next we turn to describing numerical experiments with the SP algorithms that we pro-
posed. Most of the calculations were performed for variants of Application 4.2. In all the
cases the we present results which are obtained without line searches. Unless specified oth-
erwise, the step length is fixed to be α = .9 and F2 = 0. We monitored the evolution of the
cost during the iteration to ensure that a local minimum rather than a genuine critical point
is attained. All computations are initialized with y0 = z, u0 = 0, and λ0 = 0, if needed.
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Example 4.1. Here we consider the bilinear control problem in Application 4.2 with g = 0,
β = 10−4, µ = 10−2, and the damping parameter was set to be α = .9. The computations
were carried out on a uniform 64×64 grid of the unit square, discretizing the control problem
by a standard finite difference method and using a five point stencil for the Laplacian. In
examples 4.1 - 4.3 we chose Neumann boundary conditions which allow to construct test cases
which distinguish between states y which are uniformly bounded away from zero or not. Note
that due to the bilinear structure of u and y in the state equation, the set S = {x : y(x) = 0}
plays an important role, since on S the influence of u on the state is only given implicitly
through other quantities of the control problem. At first we chose

z = cosπx1 · cos πx2 + 2 + δ sin 4x1 · sin 3x2, g = −(1 + µπ2) cosπx1 cos πx2 − 2. (4.4)

For this choice of g, and u ≡ 1, the solution to the state equals z with δ = 0, and hence
the term δ sin 4x1 · sin 3x2 can be considered as noise in the data. In this case the set S is
empty. We denote by e the maximum of the L2 error in the system of equations describing
optimality, namely primal and adjoint equations and the optimality condition. For this
example e was less than 10−8 in 8 iterations for the first order SP-method for δ = .5. The
first order convergence-rate-constant is less than .1.

For the next test we changed z and g to be

z = cosπx1 · cosπx2 + δ sin 4x1 · sin 3x2, g = −(1 + µπ2) cosπx1 cos πx2. (4.5)

In this case S is not empty anymore. The error e was found to be below 10−7 in 13 iterations
with rate constant bounded by .51. To obtain e < 10−8 the algorithm required 16 iterations.

Example 4.2. Here we compare the first and the second order SP-methods. First we
computed with the second order method for the same specifications as in Example 4.1 with
(4.5). The method converges q-quadratically and reaches a residue error level ≤ 10−13 in five
iterations. If δ is changed from δ = .5 to δ = 2 seven iterations are required for the same
stopping criterion. Next we changed β and µ to be β = .01 and µ = 10−4, expecting that
|λ| would increase compared to the earlier parameter settings. This is in fact the case, with
the norm of the converged λ increasing from .001 to .033 as the pair (β, µ) is changed from
(.0001, .01) to (.01, .0001). The second order method did not converge anymore even when
reducing the (constant) step size as much as to α = .2. The first order method converged
with rate approximately .7. If β is further reduced to β = .1, then |λ| = .1461. The first
order algorithm converges if the step-size parameter is reduced to α = .5. Termination with
e < 10−8 is reached in 41 iterations.

Example 4.3. As before we use the default settings as in Example 4.1 with z as in (4.5),
but now we change g to be g(y) = |y| − (1 + µπ2) cosπx1 cos πx2, so that the state equation
becomes

−µ∆y + |y|+ uy = (1 + µπ2) cosπx1 cos πx2 in Ω, y = 0 on ∂Ω.

Strictly speaking, the theory is not applicable for this nonlinearity but the example serves
well the purpose that the proposed first order scheme can handle nonsmooth nonlinearities.
In fact, convergence is reached after 17 iterations with rate constant bounded by .48. We also
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tested the predictor corrector version of the SP algorithm for the same problem and found
convergence in 11 iterations with linear rate constant about .27. This improved convergence
rate is consistent with the theoretical considerations in Section 3.1.

The second order partial SP-method, as explained at the end of Application 5.2 converges
with linearly with rate constant .01 within 6 iterations for the generic choice α = .9, and it
converges quadratically within 4 iterations. If, however, µ is decreased to .0001 we cannot
obtain convergence with the second order partial SP method, whereas the predictor corrector
SP method converges within 33 iterations for α = .5.

Example 4.4. Here we change from Neumann to Dirichlet boundary conditions and con-
sider the case of the cubic nonlinearity with anti-monotone sign, specifically g(y) = −y3 −
sin(π(x1 + x2)), and F2 = 0. The equation constraint is therefore given by

−µ∆y − y3 + uy = sin(π(x1 + x2)) in Ω, y = 0 on ∂Ω.

Further z is chosen as the solution to −∆z + (1 + sin(π(x1 + x2))z = sin(π(x1 + x2)). Note
that on purpose the ’data’ z are generated with a different diffusion coefficient, and without
the nonlinear term. As above, unless specified otherwise, α = .9, µ = .01, and the grid size
is 64× 64.

We first tested with β = 10−4. In this case the partial second order SP iteration converges
( with the default α = .9) in 8 iterations with linear convergence constant ∼ .13. For this
choice also SQP converges using full steps (almost) quadratically within 5 iterates.

We also carried out tests with β = .05, which leads to larger values of the iterates of the
adjoint variables. In this case the partial second order SP method still converges with the
default step length. This is not the case for the full SQP method which diverges unless a
step size control is utilized or the fixed step length is reduzed to ≤ .4.

Example 4.5. To illustrate Algorithm 3 we consider
min

1

2

∫
Ω

|y − z|2 dx+

∫
ω

(
β1

2
|u|2 + β2|u|) dx

subject to

− µ∆y + yu = g in Ω,
∂y

∂n
= 0 on ∂Ω,

(4.6)

where g = g(x). Subproblem (3.19) of Algorithm 3 is the necessary optimality condition for

min
β1

2
|u|2L2 + β2|u|L1 + (ff, u) (4.7)

where ff = ff(y, λ) = λn(y(u)− yn) + λ(u)yn and y = y(u), λ = λ(u) are the solutions to

− µ∆y + uny + ynu = g + ynun in Ω,
∂y

∂n
= 0 on ∂Ω,

− µ∆λ+ unλ+ uλn = z − y + unλ in Ω,
∂λ

∂n
= 0 on ∂Ω.
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We propose to solve (4.7) by a primal dual active set strategy. For this purpose we note that
(4.7) is equivalent to {

0 = β1u+ β2p+ ff

p ∈ ∂|u|,
(4.8)

where the inclusion is equivalent to u ∈ ∂IK(p), with IK to indicator function of the set
K = {p ∈ L2(Ω) : −1 ≤ p(x) ≤ 1}. Thus (4.8) can be expressed as{

0 = β1u+ β2p+ ff

u = max(0, u+ p− 1) + min(0, u+ p+ 1),
(4.9)

where the max and min operations act pointwise with respect to x ∈ Ω. Thus u is the
Lagrangian multiplier for the bilateral constraint −1 ≤ p(x) ≤ 1.

Given (yn, un, λn) we use an iterative algorithm with variables (ykn+1, u
k
n+1, λ

k
n+1) to obtain

(yn+1, un+1, λn+1). For the description of the algorithm the index n+ 1 is not used.

Algorithm 3 (applied)

1. Choose a damping parameter α ∈ (0, 1], and set (y0, u0, λ0) = (yn, un, λn), and p0 =
1
β2

(β1u
0 + ff(yn, λn)) = − 1

β2
(β1u

0 + λnyn).

2. For k = 0, . . . , maxit:
set

Ak+ = {uk + pk − 1 > 0}, Ak− = {uk + pk + 1 < 0}, Ah = Ak+ ∪ Ak−,
I = {uk + pk − 1 ≤ 0} ∪ {uk + pk + 1 ≥ 0}.

Set

û =


0 on Ik

− 1

β1

(λny
k + ynλ

k − λnyn)− β2

β1

onAk+

− 1

β1

(λny
k + ynλ

k − λnyn) +
β2

β1

onAk−

p̂ =


− 1

β2

(λn(yk − yn) + λkyn) on Ik

1 onAk+
− 1 onAk−.

Solve for (ŷ, λ̂)−µ∆ + (un − ynλn
β1

χAk)I
−y2n
β1
χAk

I − λ2n
β1
χAkI −µ∆ + (un − ynλn

β1
)χAk

(y
λ

)
= RHS,
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where

RHS =

 g + ynun −
1

β1

λny
2
nχAk +

β2

β1

ynχAk+ −
β2

β1

ynχAk−

z + unλn −
1

β1

λ2
nynχAk +

β2

β1

λnχAk+ −
β2

β1

λnχAk−

 ,

with χA the characteristic function of the set A.

Set (yk+1, uk+1, λk+1, pk+1) = α(ŷ, û, λ̂, p̂) + (1− α)(yk, uk, λk, pk).

Set k = k + 1.

3. Set (yn+1, un+1, λn+1) = (ymaxit, umaxit, λmaxit).

Above Ak+ is shorthand for Ak+ = {x : uk(x) + pk(x) − 1 > 0}. To initialize at level n = 0
we use (y0, u0, λ0) = (z, 1, 0). For the numerical example to be given below we chose maxit
= 3. Further we updated the active/inactive sets and (uk, pk) 5 times per iteration without
updating (y, λ), i.e. without solving (2).

We present a numerical result for the choice

z = cosπx1 cosπx2 + x1x2 + δ sin 4x1 sin 3x2, g = (1 + µπ2) cosπtx1 cos πx2 + x1x2,

with µ = .01, δ = .5. For δ = 0 we have −µ∆z+ uz = g for u ≡ 1. Moreover, β1 = 0.01, and
β2 = 0.05. The outer (n-) iteration was terminated after 12 iterations when the numerical
error defined as the maximum over the L2−norms of the primal and adjoint equations, and
the two equations in (4.9) representing the complementarity condition, was smaller than
10−8. For the damping parameter α = .7 the linear convergence rate constant was ∼ .3. The
numerical solution for the control u is depicted in Figure 1. As expected due to the L1−
cost it has sparsity structure. Similar convergence properties were observed for the choice
(β1, β2) = 10−5, 5 · 10−5, for example.
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