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Abstract

Mean-field systems have been recently derived that adequately predict the behaviors of large networks
of coupled integrate-and-fire neurons [14]. The mean-field system for a network of neurons with spike
frequency adaptation is typically a pair of differential equations for the mean adaptation and mean
synaptic gating variable of the network. These differential equations are non-smooth, and in particular
are piecewise smooth continuous (PWSC). Here, we analyze the smooth and non-smooth bifurcation
structure of these equations and show that the system is organized around a pair of co-dimension two
bifurcations that involve, respectively, the collision between a Hopf equilibrium point and a switching
manifold, and a saddle-node equilibrium point and a switching manifold. These two co-dimension 2
bifurcations can coalesce into a co-dimension 3 non-smooth bifurcation. As the mean-field system we
study is a non-generic piecewise smooth continuous system, we discuss possible regularizations of this
system and how the bifurcations which occur are related to non-smooth bifurcations displayed by generic
PWSC systems.
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1 Introduction

Recently, a class of two-dimensional integrate and fire type models have been developed which can be fit
to properties of real neurons. This class of models includes the adapting, leaky integrate and fire neuron
(LIF) [18] , the Izhikevich model [10], the quartic integrate and fire model [17], and the adaptive exponential
integrate and fire model (AdEx) [1, 12]. The models in this class are far simpler to fit and simulate than
traditional conductance based models. Nevertheless, these models still replicate the more complex behaviors
of real neurons [10]. These models have been fit to several different neuron types so that the behavior of
large networks of these neuron models may be studied through numerical exploration of the parameter space.
For example, this approach has been used to determine the role of various parameters in the generation of
adaptation induced bursting in networks of CA3 pyramidal neurons [9, 14] While the numerical simulation
of integrate and fire networks is far simpler and faster than that of conductance based models, numerical
exploration of the parameter space is still a time-consuming process. Furthermore, one cannot easily perform
direct bifurcation analysis on large networks.

Fortunately, a system of mean field equations has been derived for these large networks of two-dimensional
integrate and fire neurons [14]. This derivation assumes that the networks are all-to-all coupled and the
neuronal parameters are homogeneous within the network. The resulting mean field system is a set of
non-smooth differential equations governing the first moments of the adaptation variable and the synaptic
coupling variable. The mean field system of equations is analytically derived from the original network,
without any further fitting. Thus, one can conduct bifurcation analysis (either analytically or numerically)
on the mean field system with confidence that the results are representative of the behavior of the original
network of model neurons, and possibly the original network of actual neurons. Such a level of correspondence
between the parameters for the individual neurons, and the resulting behavior of the full network is currently
not possible with more sophisticated types of neuron models.

However, analysis of the derived mean field system has an added level of difficulty as the system of
equations is non-smooth. Both classical bifurcation theory and the newer field of non-smooth bifurcation
theory must be used to adequately understand the behavior of the mean field system, and thus the full
network.

Here we explore, both analytically and numerically, many of the non-smooth bifurcations and phenomena
that occur in the mean field system of equations from [14]. The primary mean field system we use is that of
the Izhikevich model, with the neuronal models fit to hippocampal area CA3 pyramidal neuron data [6]. We
modify the parameters slightly as the neuronal model used in [6] was an alteration of the default Izhikevich
model to better fit the action potential half-width observed in the data. We use this model primarily for two
reasons: it is the most analytically tractable and the parameters have been fit to neuronal data. However,
as we will see, many of the non-smooth bifurcations are present in the other models in the general class of
two-dimensional adapting integrate and fire neurons. Whenever possible we present our results in terms of
this general class.

2 The Mean Field System

2.1 The Full Network

We consider two-dimensional integrate and fire models of the form

v̇ = F (v)− w + I (1)

ẇ = a(bv − w), (2)

where v represents the nondimensionalized membrane potential, and w serves as an adaptation variable.
Time has also been non-dimensionalized. The dynamical equations (1)-(2) are supplemented by the following
discontinuities

v(t−spike) = vpeak →
v(t+spike) = vreset
w(t+spike) = w(t−spike) + ŵ.

(3)
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This particular notation was formally introduced in [17], along with a full bifurcation analysis of this general
family of adapting integrate and fire neurons. Members of this family include the Izhikevich model, the
adaptive exponential (AdEx) integrate and fire model, and the quartic integrate and fire model [17].

These neurons can be coupled together via a synaptic gating variable, s(t). The gating variable typically
takes the form

sij(t) =
∑

tj,k<t

E(t− tj,k). (4)

where tj,k is the time that the jth neuron fires its kth spike, j is the index of the presynaptic neuron, and i is
the index of the postsynaptic neuron. The function E(t) varies depending on which synaptic pulse function is
used. Examples include the exponential synapse, the double exponential synapse, and the alpha synapse
[14, 7]. For simplicity we restrict our attention to the exponential synapse, however the analysis can be
extended to the other synaptic types without much difficulty. For the exponential synapse, E(t) is given by :

E(t) = ŝ exp

(−t
τs

)

Given the form for E(t), one can derive a differential equation for si(t) =
∑N
j=1 sij(t), the total synaptic

input to the ith neuron [7, 14]. For example, for the exponential synapse the differential equation for si(t) is

dsi(t)

dt
= − si

τs
+

ŝ

N

N∑

j=1

∑

tj,k<t

δ(t− tj,k). (5)

For all-to-all coupling, the function si(t) becomes identical for all the neurons, and can be replaced by a single
variable s(t), the global synaptic coupling function. In this case, the equations for the entire network are:

v̇i = F (vi)− w + I + gs(t)(er − vi) (6)

ẇi = a(bvi − wi) (7)

ṡ = − s

τs
+

ŝ

N

N∑

j=1

∑

tj,k<t

δ(t− tj,k) (8)

vi(t
−
spike) = vpeak →

vi(t
+
spike) = vreset

wi(t
+
spike) = wi(t

−
spike) + ŵ,

(9)

The specific forms of F (v) we consider are:

F (v) = − v

τm
(Leaky Integrate and Fire)

F (v) = v(v − α) (Izhikevich Model)

F (v) = ev − v (Adaptive Exponential Model)

F (v) = v4 − 2av (Quartic Model)

These forms can be arrived at through a suitable non-dimensionalization of the original equations for these
models [17]. Note that the non-dimensionalization for the Izhikevich model differs from the one used by [17]
and is from [14].

These networks often display bursting, a oscillatory behaviour where the individual neurons alternate
between firing and quiescence [6, 14]. The other common behaviour is tonic firing, where the neurons all
fire at a constant rate. The transition between these two behaviours is a bifurcation of the full network. An
example of this transition for a network of 1000 Izhikevich neurons with all-to-all coupling is shown in Figure
1. The parameters for this network can be found in Table 1. In Figure 1(a), the neurons in the network fire
spikes, and the mean-adaptation variable, w, and the synaptic coupling variable, s both converge to a stable
steady state. In Figure 1(b), the neurons fire synchronized bursts, and the pair of variables (w, s) converge
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to a steady state limit cycle, representing the oscillation between firing and quiescence that the individual
neurons undergo. This occurs as the current I is decreased from I = 0.4260 in Figure 1(a) to I = 0.1893 in
Figure 1(b).

As seen in Figure 1, the network variables s and w can capture a great deal of information about the
behavior of the entire network. Further, their steady state behaviour undergoes a qualitative change as the
parameter I is decreased. Thus, it would be advantageous to have a closed set of differential equations for
these variables, as any qualitative change in the behavior of the full network should manifest itself as a
bifurcation of the dynamical system for (s, w). In the following subsection, we derive such a system for these
network variables.

2.2 The Mean Field System

To derive the mean field system one begins by defining the population density function, ρ(v, w, t), which
is a probability density function for the location of of the variables v, w in the phase space. That is, the
probability of finding a neuron in the region Ω of phase space is given by integrating ρ over Ω. Starting from
the full network model, one can derive (in the limit that N →∞) a partial differential equation that governs
the evolution of the probability density function ρ(v, w, t) and predicts the large network dynamics of the
original model [15, 16]. This partial differential equation, called the population density equation, takes the
form

∂ρ(v, w, t)

∂t
= −∇ · J(v, w, t)

J(v, w, t) =

(
JV (v, w, t)
JW (v, w, t)

)
= ρ(v, w, t)

(
F (v)− w + I + gs(er − v)

a(bv − w)

)

where the term J(v, w, t) is referred to as the flux. The discontinuities and discrete jumps in the model
neurons impose a boundary condition on the flux:

JV (vpeak, w, t) = JV (vreset, w + ŵ, t).

This PDE is coupled to an ODE for s, given by

s′ = − s

τs
+ ŝ

∫

W

JV (vpeak, w, t) dw (10)

In order to reduce this system to a small, closed set of ordinary differential equations, one has to apply a
series of approximations. The derivation is somewhat lengthy thus we refer the reader to [14] for the exact
details. After the approximations are made, the resulting mean field system is given by:

s′ = − s

τs
+ ŝ〈Ri(t)〉 (11)

w′ = − w

τw
+ ŵ〈Ri(t)〉 (12)

〈Ri(t)〉 =





[∫
V

dv
F (v)−w+I+g(er−v)s

]−1
if H(w, s) > 0

0 if H(w, s) ≤ 0
(13)

Here s and w correspond to the mean network adaptation and global synaptic coupling variable. Note that
we have omitted the 〈〉 brackets denoting the average value of w present in [14] for simplicity and clarity. The
function 〈Ri(t)〉 is the instantaneous network averaged firing rate, as a function of s and w. The function
H defines when the integral in (13) makes sense. It defines switching manifold of the nonsmooth system
(11)–(13).
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One can derive an expression for the switching manifold equation by determining when the denominator
in (13)

F (v)− w + I + gs(er − v)
def
= G(v, s, w)

first becomes zero somewhere in the s, w phase space. To do this we find the minimum of G(v, s, w), for
v ∈ [vreset, vpeak], regarding s and w as fixed parameters. For the general class of models studied in [17],
the function F (v) is assumed to be strictly convex, that is F ′′(v) > 0, and at least three times continuously
differentiable. It follows that G(v, s, w) is also strictly convex as a function of v, and hence its minimum on
[vreset, vpeak] occurs at a critical point. The critical points (as a function of v) are given by solving

∂G

∂v
= F ′(v)− gs = 0⇒

F ′(v∗(s)) = gs (14)

Thus v∗(s) is the value of v at which G has a minimum.
The leaky integrate-and-fire neuron is not strictly convex. In fact F ′(v) < 0 for this model, thus the

minimum of G occurs at the right endpoint of the interval.
In either case, the minimum value defines the function H

H(s, w) = G(v∗(s), s, w) = F (v∗(s))− w + gs(er − v∗(s)) + I, (15)

and the switching manifold equation

0 = H(s, w) = I − w + F (v∗(s)) + gs(er − v∗(s)) = I − I∗(s, w).

This latter expression is useful as we can think of I∗ as an s− and w− dependent rheobase current. Anywhere
in the phase space where I − I∗(s, w) > 0 the network is firing with mean firing rate given by

〈Ri(t)〉 =

[∫

V

dv

F (v)− w + I + g(er − v)s

]−1
. (16)

Anywhere that I − I∗(s, w) ≤ 0 the network is quiescent and the mean firing rate is 0.
There are a couple of important facts to note before we proceed further. First of all, I∗(0, 0) = Irh, the

rheobase current for the uncoupled, nonadapting neuron, which is governed by the equation

v̇ = F (v) + I.

Based on the assumptions made on F (v) in [17], then this model neuron has a type-I firing profile. Additionally,
given that I∗(0, 0) = −F (v∗(0)), we also have the following equation

F (v∗(0)) = −Irh.

These two facts will prove important for our later analysis.
To conclude we display some expressions for specific models. The rheobase currents are given by

I∗(s, w) = w − gser + vpeak

(
1

τm
+ gs

)
(Leaky Integrate and Fir)

I∗(s, w) = w − gser +
(α+ gs)2

4
(Izhikevich)

I∗(s, w) = w − gser + (1 + gs)(log(1 + gs)− 1) (AdEx)

I∗(s, w) = w − gser + 3

(
gs+ 2a

4

) 4
3

(Quartic)
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with corresponding minimum values of G:

v∗(s) = vpeak

v∗(s) =
α+ gs

2
v∗(s) = log(1 + gs)

v∗(s) =

(
gs+ 2a

4

)1/3

For both the LIF model and Izhikevich model, the mean firing rate can be evaluated analytically:

〈Ri(t)〉 =
1
τm

+ gs

log

(
−vr( 1

τm
+gs)+I+gser−w

−vp( 1
τm

+gs)+I+gser−w

) (LIF firing rate)

〈Ri(t)〉 =

√
I − I∗(s, w)

arctan

(
vpeak− 1

2 (α+gs)√
I−I∗(s,w)

)
− arctan

(
vreset− 1

2 (α+gs)√
I−I∗(s,w)

) (Izhikevich Firing Rate)

For the other models, the firing rate must be evaluated numerically. This can be done by integrating equation
(16) over [vreset, vpeak] treating w, and s as fixed parameters at each time step. This approach can be used to
numerically analyze the bifurcation types of these equations using numerical bifurcation software, such as
MATCONT, among others [5]. However, the numerical integration method should be of high enough order
accuracy for the numerical continuation results to be trusted.

Given the mean field system described above, one should consider whether numerical bifurcation results
or analytical approaches should be taken. Numerical bifurcation analysis can yield results which are accurate
throughout the phase space, but require choosing a particular model and determining which parameters to
fix and which to vary. Analytical methods can yield model independent results and give insight into the role
of various parameters in system behaviour, however, they are often restricted to particular regions of the
parameter space and/or phase space, as we shall see.

3 Analytical Results

In order to proceed analytically, we need to sacrifice some of the complexity of the original mean field system.
In particular, as the usual formulas of 〈Ri(t)〉 are difficult to deal with analytically, we approximate the firing
rate for all the two dimensional integrate and fire models as follows:

〈Ri(t)〉 ≈ f(I − I∗(s, w))

where the form of f varies from model to model.
There are two approaches to justify this particular approximation, one local and one global. The local

method relies on the fact that all the neuron models fire with a type I profile, and as such, they have a
characteristic firing rate near the switching manifold that is proportional to

〈Ri(t)〉 ∝
√
I − I∗(s, w) (17)

This basic result follows from the normal form for a saddle node bifurcation. This reduction is valid when
I − I∗(s, w) is small. This occurs when w and gs are small and I is close to Irh. We note that this
approximation and very similar differential equations appear in [7, 8]. For example, equations (3.6)-(3.7) in
[8] are similar to ours however the interpretation for those particular equations was for the firing rate of an
E/I coupled pair of neurons. Additionally, the non-smooth nature of those equations is not explored to the
best our knowledge in any source.
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For a more global approximation, one can fit a function f(I − I∗(s, w)) to 〈Ri(t)〉. For example, we have
found that for the Izhikevich network, the approximation

〈Ri(t)〉 =

[∫ vpeak

vreset

dv

v(v − α) + I − w + gs(er − v)

]−1
≈ 1

2

√
I − I∗(s, w) (18)

is much better globally than the local approximation for type I firing neurons, which is given by:

〈Ri(t)〉 ≈
1

π

√
I − I∗(s, w)

as shown in figure 2. As equations (17) and (18) only differ by a multiplicative constant, we take the firing
rate to be in the form

√
I − I∗(s, w), which is valid for the Izhikevich network globally, and for the other

networks locally in the phase and parameter space. Note that whichever constant is used, it can be merely
absorbed into the ŝ and ŵ terms in the mean field dynamical equations.

This particular approximation turns out to yield a system that is tractable to analysis of both the smooth
and non-smooth bifurcations displayed by this system, and shows a considerable degree of accuracy with
both the actual network, and the original mean-field system, as shown in figure 1. We reiterate that the
non-smooth nature of these equations is often not considered. However, we will show that recent developments
in non-smooth bifurcation theory allow us to analyze these equations more fully.

With the above simplification, the approximate mean field system that we analyze is given by

ṡ = f(s, w) = − s

τs
+ ŝ 〈Ri(t)〉 (19)

ẇ = g(s, w) = − w

τw
+ ŵ 〈Ri(t)〉 (20)

〈Ri(t)〉 =

{√
I − I∗(s, w) I − I∗(s, w) > 0

0 I − I∗(s, w) ≤ 0
(21)

where the switching manifold varies depending on which neuron model is used. The terms ŝ and ŵ are
rescaled to absorb any constant term in (17) or (18). We will refer to equations (19)-(21) from here on as the
reduced mean-field system.

We first classify the type of non-smoothness that this system exhibits. The system is smooth and has
derivatives of all orders everywhere except on the switching manifold, i.e., when I − I∗(s, w) = 0. On
the switching manifold, the system is continuous but not differentiable. Thus, this is a piecewise-smooth
continuous (PWSC) system. Equivalently, it has a uniform order of discontinuity of 1 [4].

In contrast, the order of discontinuity for the full (non-simplified) Izhikevich mean field system is
non-uniform. To see this, rewrite I − I∗(w, s) = h(I, s)− w and consider the limit

lim
w→h(I,s)

〈Ri(t)〉 = lim
w→h(I,s)

√
h(I, s)− w

arctan

(
vpeak− 1

2 (α+gs)√
h(I,s)−w

)
− arctan

(
vreset− 1

2 (α+gs)√
h(I,s)−w

)

Straightforward calculations show that this limit is 0, and hence the order of discontinuity of the model is 1,
only if

2vreset − α < gs < 2vpeak − α.
Outside of this region the order of discontinuity is not 1. In general 2vreset − α < 0 for physical reasons, so
the order of discontinuity of the full Izhikevich model is 1 if gs is sufficiently small. Thus the approximation
simplifies the analysis as it has a uniform order of discontinuity, however, it will likely be a reasonable
approximation of the Izhikevich model only when this latter model has order of discontinuity 1, i.e., if gs is
sufficiently small.

To summarize, for all the neuron models we consider the firing rate to be approximated by
√
I − I∗(s, w)

based on the type I profile for all the models, where I∗(s, w) varies depending on which model is used. These
approximations are only local in nature, being valid only when I ≈ I∗(s, w), aside from the Izhikevich model,
as one can fit a more global approximation to the network averaged firing rate, as stated earlier.
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3.1 Existence and Linear Stability of Equilibria

The equilibria of the mean field equations (19)-(20) depend on the sign of I − I∗(s, w) ≤ 0.
If I − I∗(s, w) ≤ 0 then the only equilibrium point is the trivial solution, e0 = (0, 0), which is a stable

node. This equilibrium corresponds to all the neurons being quiescent, 〈Ri(t)〉 = 0, thus we will refer to
it as the non-firing solution. It will only exist when the origin of the phase space lies in the region where
I − I∗(0, 0) ≤ 0, which corresponds to I ≤ Irh. Alternatively, in the language of non-smooth dynamical
systems theory, e0 is virtual if I > Irh and real if I ≤ Irh [4].

If I − I∗(s, w) > 0, nontrivial equilibria (s, w) may exist. If they do then s, w must satisfy

s = λs
√
I − I∗(s, w) (22)

w = λw
√
I − I∗(s, w) (23)

where λs = τsŝ, and a similar equation holds for λw. Equations (22) and (23) yield the following relationship

w =
λw
λs

= ηs. (24)

Thus the equilibria are given by (s, ηs) where s satisfies the nonlinear equation

s = λs
√
I − I∗(s, ηs). (25)

Note that equation (22) implies that s = λs〈Ri(t)〉 ≥ 0. Thus for an equilibrium to be a valid, it must satisfy
s ≥ 0 (which implies w ≥ 0).

The equilibrium condition (25) for the quartic and AdEx models yield nonlinear equations without analytic
closed form solutions. However, one can apply a power series (assuming that gs is small) to come up with an
approximation to the steady solutions. Note that v∗ is actually always a function of gs, as opposed to just s,
as it is given by solving the algebraic equation (14). Thus, we can write down the following expansions for
v∗(s) and F (v∗(s))

v∗(s) = v∗(0) + v∗′(0)gs+O((gs)2) (26)

F (v∗(s)) = F (v∗(0)) + v∗′(0)
(gs)2

2
+O((gs)3)

= −Irh + v∗′(0)
(gs)2

2
(27)

where (27) can be derived from using the relationship (14). Since these expansions are valid if gs is sufficiently
small, we will refer to them as the weak coupling expansions. If we use only the initial terms shown in
equations (26)-(27), then the approximate solution obtained is exact in the case of the Izhikevich model as all
higher order terms vanish, and is the simplest analytical approximation to the other models. Using these
terms, we arrive at the following equation for the weak-coupling expansion to the equilibrium points:

s2

λ2s
= I − Irh − v∗′(0)

(gs)2

2
+ gs(er − v∗(0))− ηs

0 = s2
(

1

λ2s
+ v∗′(0)

g2

2

)
+ s (η − g(er − v∗(0))) + Irh − I

0 = A2(g)s2 +A1(g)s+A0.

This equation can be solved, yielding two solution branches:

s± = − A1(g)

2A2(g)
±
√

A1(g)2

4A2(g)2
− A0

A2(g)
.
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We will denote the corresponding equilibria as e± = (s±, w±) = (s±, ηs±). Defining the new parameters

Ĩ = − A0

A2(g)
=
I − Irh
A2(g)

(28)

β = − A1(g)

2A2(g)
=
g(er − v∗(0))− η

2A2(g)
(29)

=
(er − v∗(0))

2A2(g)

(
g − η

er − v∗(0)

)
= M(g)(g − g∗) (30)

the s variable of the solution branches may be written

s±(β, Ĩ) = β ±
√
β2 + Ĩ . (31)

Note that A2(g) > 0. Further, since v∗(0) is the minimum of F (v) and the reversal potential for an excitatory
synapse is above the resting membrane potential, vr, we have er > vr > v∗(0). It follows that M(g) is a
strictly positive function.

In a similar way, one can solve for the equilibrium values of the full Izhikevich model analytically. Two
equilibria e± of the same form are obtained with s± given by:

s+(g, I) =
−(η − g(er − α

2 )) +
√

(η − g(er − α
2 ))2 + 4(I − α2

4 )( 1
λ2
s

+ g2

4 )

1
λ2
s

+ g2

4

s−(g, I) =
−(η − g(er − α

2 ))−
√

(η − g(er − α
2 ))2 + 4(I − α2

4 )( 1
λ2
s

+ g2

4 )

1
λ2
s

+ g2

4

Introducing the parameters

Ĩ =
(I − α2

4 )
1
λ2
s

+ g2

4

(32)

β = − (η − g(er − α
2 ))

2( 1
λ2
s

+ g2

4 )
(33)

the steady states can again be written in the form (31). Note, as a check of consistency, that Irh = α2

4 , and
v∗(0) = α

2 for the Izhikevich model.
Based on the form (31) and the fact that A2(g) > 0, it is straightforward to show the signs of s± are as

shown in Figure 3(a). Since we require the equilibrium solutions to be positive, e± will have different regions
of existence depending on the values of β and Ĩ. In particular, both equilibrium points exist when I < Irh and
g > η

er−v∗(0) in a wedge shaped region given by β2 + Ĩ > 0 . Only e+ exists when I > Irh. Neither solution

exists in other parts of the parameter space. The regions of existence of e± and the non-firing solution are
show for the Izhikevich model in Figure 3(b).

Away from the switching manifold, we can analyze the smooth bifurcations of the equilibria via linearization.
The non-firing solution does not undergo any smooth bifurcations, as it lies in the region of phase space
governed by the equations

s′ = − s

τs

w′ = − w

τw

Thus the non-firing solution is asymptotically stable when it exists and does not lie on the switching manifold,
i.e., for I < Irh. To analyze the nontrivial equilibrium points, consider the Jacobian of the mean field system

9



in the region of phase space where I − I∗(s, w) > 0

J(s, w) =



− 1
τs
− ŝ

∂I∗(s,w)
∂s

2
√
I−I∗(s,w)

− ŝ
∂I∗(s,w)

∂w

2
√
I−I∗(s,w)

− ŵ
∂I∗(s,w)

∂s

2
√
I−I∗(s,w)

− 1
τw
− ŵ

∂I∗(s,w)
∂w

2
√
I−I∗(s,w)


 .

We can simplify the Jacobian by imposing the steady state condition
√
I − I∗(s, w) = s/λs. Additionally,

one can note that:

∂I∗(s, w)

∂w
= 1

∂I∗(s, w)

∂s
= −g(er − v∗(s)).

Applying these formulas yields the following simplified Jacobian

J(s) =

(
− 1
τs

+ λsŝg(er−v∗(s))
2s −λsŝ2s

λsŵg(er−v∗(s))
2s − 1

τw
− λsŵ

2s

)
,

which has trace and determinant given by

tr(J) = −
(

1

τs
+

1

τw

)
+
λs
2s

(ŝg(er − v∗(s))− ŵ)

det(J) =
1

τsτw

(
1− λ2s

2s
(g(er − v∗(s))− η)

)
.

We can now discuss the stability of each equilibrium in its region of existence. First we apply the weak
coupling expansion (26) to the determinant:

det(J) =
1

τsτw

(
1 + λ2s

g2

2
v∗′(0) +

λ2s
2s

(g(er − v∗(0))− η)

)

=
A2(g)λ2s
τsτw

(
1 +

A1(g)

2sA2(g)

)
.

Upon substitution of the equilibrium values of s and using the definition (29) of β, we obtain

det(J)|s± =
As(g)λ2s
τsτw


1− β

β ±
√
β2 + Ĩ


 . (34)

Since the sign of
As(g)λ

2
s

τsτw
is strictly positive, and the equilibria are only defined when β ±

√
β2 + Ĩ ≥ 0, we

can immediately conclude that

det(J)|s+ ≥ 0

det(J)|s− ≤ 0

Now, this implies that the equilibrium e− is always an unstable saddle. The equilibrium e+, however, can
be a node or a focus and its stability is determined by the trace. We will discuss this further in section 3.3.
Note that these results are only valid when gs− is small for the QIF and AdEx models, but are globally valid
for the Izhikevich model.

We can use the equations for the trace and determinant to formulate necessary conditions for the equilibria
to display certain smooth bifurcations. In particular, det(J) = 0 and tr(J) 6= 0 are necessary conditions for an
equilibrium to undergo a saddle-node bifurcation, while det(J) > 0 and tr(J) = 0 are necessary conditions for
a Hopf bifurcation. Having both det(J) = 0 and tr(J) = 0, is a necessary condition for a Bogdanov-Takens
bifurcation. Of course, to determine if these bifurcations actually occur requires checking additional genericity
conditions. In the following section, we check these conditions where possible.
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3.2 The Saddle Node Bifurcation Condition

As described above, necessary conditions for a saddle-node bifurcation are det(J) = 0 and tr(J) 6= 0. It is
easy to see from (34) that the first condition is satisfied for both e± when β2 + Ĩ = 0. It can be shown that
the second condition is satisfied except at isolated points in the (g, I) parameter space as determined in
section 3.3. In the following we will assume that we exclude these points.

To pursue this further, we study the existence of the equilibria. From the previous subsection, we know
that e± both exist if β2 + Ĩ > 0 and neither exists if β2 + Ĩ < 0. When β2 + Ĩ = 0, the two equilibria collapse
into a single equilibrium, with s = β. We thus conclude that Ĩ = −β2 corresponds to a two-parameter
curve of saddle-node bifurcation. Rewriting this in terms of the original parameters yields the two-parameter
bifurcation curve in terms of (g, I) :

I = Irh −A2(g)M(g)2(g − g∗)2 def= ISN (g). (35)

Thus, for fixed g, ISN (g) is the value of the current that corresponds to a saddle-node bifurcation point.
There are two things to note about ISN . First, since A2(g) is a strictly positive function, then ISN (g) ≤ Irh
with ISN (g) = Irh only if g = g∗. Also, this curve is only defined for g ≥ g∗. To see this, note that the
saddle-node equilibrium, given by sSN = β = M(g)(g − g∗) only exists if β > 0. Since M(g) > 0, sSN only
exists if g ≥ g∗. We shall see later that g = g∗ actually corresponds to a non-smooth co-dimension two
bifurcation point.

3.3 The Andronov-Hopf Bifurcation Condition

From the analysis of subsection 3.1, we know that only e+ may undergo a Hopf bifurcation and that
det(J)|s+ > 0 if β2 + Ĩ 6= 0. We thus conclude that the determinant condition for the Hopf bifurcation is

given by I 6= ISN (g). To determine a necessary condition for the Hopf bifurcation, we begin by applying the
weak coupling expansion (26) to the trace associated with s+:

Tr (J)|s+ = −
(

1

τs
+

1

τw

)
+

λs
2s+

(
ŝg(er − v∗(0))− ŝg2v∗′(0)s+ − ŵ

)

= −
(

1

τs
+

1

τw
+ λsŝ

g2

2
v∗′(0)

)
+
λsŝ(er − v∗(0))

2s+

(
g − ŵ

ŝ(er − v∗(0))

)

= −
(

1
τs

+ 1
τw

+ λsŝ
g2

2 v
∗′(0)

s+

)
(s+ −N(g)(g − ḡ)). (36)

Note that the first term is strictly negative and N(g) is a strictly positive function.
Setting the trace to zero and using equations (28)-(31) which define Ĩ , β and s+ yields

s+ = N(g)(g − ḡ)

β +

√
β2 + Ĩ = N(g)(g − ḡ)

M(g)(g − g∗) +

√
M(g)2(g − g∗)2 +

I − Irh
A2(g)

= N(g)(g − ḡ)

M(g)2(g − g∗)2 +
I − Irh
A2(g)

= (N(g)(g − ḡ)−M(g)(g − g∗))2

Solving for I gives

I = Irh +A2(g)
[
N(g)2(g − ḡ)2 − 2M(g)N(g)(g − ḡ)(g − g∗)

] def
= IAH(g) (37)
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We thus conclude that if I = IAH(g) and I 6= ISN (g) then the equilibrium s+ has a pair of pure imaginary
eigenvalues.

Recall that N(g), M(g), and A2(g), are positive functions. Further, it is easy to check that N(g) < M(g).
This leads to several observations. First, since the third equation in the sequence above can only be satisfied
if N(g)(g − ḡ) > M(g)(g − g∗), it follows that if g∗ ≤ ḡ then no Hopf bifurcation occurs. Second, from the
first equation in the sequence above we must have g ≥ ḡ in order for the equilibrium s+ to exist at the
Hopf bifurcation. When g = ḡ s+ = 0 and IAH = Irh. We shall see later that the point I = Irh, g = ḡ is a
codimension-2 non-smooth bifurcation point. Finally, if ḡ ≤ g ≤ g∗, then IAH ≥ Irh with IAH = Irh only if
g = ḡ. If g > g∗, then it is possible for I = IAH(g) to intersect I = Irh. We denote by ĝ the value of g at the
intersection point, if it exists.

We can now determine the stability of the equilibrium e+ by studying the trace equation (36). Since the
first term in this equation is strictly negative wherever it is defined (when e+ exists), the sign of the trace is
determined by s+ −N(g)(g− ḡ). Since s+ and N(g) are positive, it follows from the discussion above that in
the case g∗ ≤ ḡ the trace negative, and hence e+ is asymptotically stable, wherever e+ exists. If ḡ ≤ g∗ then
that the trace is negative (and e+ is asymptotically stable) if g < ḡ or g > ḡ and I > IAH(g). The trace is
positive (and e+ is unstable) if g > ḡ and I < IAH . Note that if I is sufficiently close to IAH then e+ will
have a pair of complex conjugate eigenvalues.

In summary, for fixed g with g > ḡ and ḡ < g∗, the equilibrium e+ undergoes a Hopf bifurcation at
I = IAH(g) if I 6= ISN (g). We do not attempt to determine the criticality of this bifurcation analytically,
but will study it numerically in a later section. Further, we can now state completely the conditions for the
saddle-node bifurcation: for fixed g with g > g∗, the equilibria e+ and e− undergo a saddle-node bifurcation
when I = ISN (g) if I 6= IAH(g).

3.4 The Bogdanov-Takens Bifurcation Condition

Recall that necessary conditions for a Bogdanov-Takens bifurcation are det(J) = 0 and tr(J) = 0. Thus, from
the analysis of the last two subsections, Bogdanov-Takens bifurcations (if they exist) will occur at intersection
point of the curves of saddle node and Hopf bifurcations in the g, I parameter space, i.e., at values of g such
that IAH(g) = ISN (g), with g > max(g∗, ḡ). Using the expressions for these curves gives

Irh −A2(g)M(g)2(g − g∗)2 = Irh +A2(g)
[
N(g)2(g − ḡ)2 − 2M(g)N(g)(g − ḡ)](g − g∗)

]

0 = A2(g) (N(g)(g − ḡ)−M(g)(g − g∗))2

m
0 = N(g)(g − ḡ)−M(g)(g − g∗)

This latter equation may be simplified to a quadratic in g:

a2g
2 + a1g + a0 = 0

where

a2 =
ŝŵv∗′(0)

er − v∗(0)
(τw − τs)

a1 = − 2

τw

a0 =
2η

τs(er − v∗(0))
.

Analysis of the quadratic equation shows that if τw < τs or τw >> τs then there are no roots with
g > max(g∗, ḡ). However, if τw > τs and τw is not too large then there can be up to two roots. Thus there
may be up to two Bogdanov-Takens points.

The case τw = τs is degenerate. There is a single root which is given by g = g∗ = ḡ. This is not a
standard/smooth Bogdanov-Takens point as the points ISN (g∗) and IAH(ḡ) are not standard saddle-node
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and Hopf points. We shall show later that this point arises at the collision of two codimension-2 non-smooth
bifurcations, and thus corresponds to a codimension-3 non-smooth bifurcation.

Figure 4 shows the smooth bifurcations for the mean field system corresponding to a network of Izhikevich
neurons with a the parameter values from [6]. Note that the Hopf-bifurcation for both the full and reduced
mean-field systems corresponds closely to the onset of bursting in the actual network, as noted in [14].
For these parameter values, τw >> τs and no Bogdanov-Takens’ points are observed. Figure 5 shows the
smooth bifurcations for the mean field system corresponding to networks of quartic integrate-and-fire neurons
and AdEx neurons. In all figures the bifurcation curves derived from the weak coupling approximation of
the model, i.e. equations (35) and (37), are compared with curves for the full mean field model generated
numerically in MATCONT [5].

4 Non-Smooth Bifurcations

To study the non-smooth bifurcations for the mean field system (11)–(13), we will use the terminology and
bifurcation classification for piecewise smooth continuous systems proposed in [4]. We note that some care
must be used when applying these ideas to our system. Letting x = [s, w]T and recalling the definition (15)
of the switching manifold, our system may be written in the general form used by [4]:

ẋ =

{
F1(x, I), if H(x, I) < 0
F2(x, I), if H(x, I) > 0

where

F1(x, I) =

( − s
τs
− w
τw

)

F2(x, I) = F1(x, I) +
√
H(x, I)

(
ŝ
ŵ

)

However, F2 is only defined for H(x, I) > 0. In contrast, the work of [4] assumes that both F1 and F2 are
defined throughout the phase space. Nevertheless, we able to classify a number of bifurcations in our system
by analogy with the results in [4]

We will supplement our analysis with numerical studies of our example systems. In particular, we will
perform a detailed study of the mean field system corresponding to a network of Izhikevich neurons with
parameters given in Table 1.

4.1 Boundary Equilibrium Bifurcations (I = Irh)

Recall that all the models we are considering have an equilibrium e0 = (0, 0) which exists (and is a stable
node) if I < I∗(0, 0) = Irh. When I = Irh this equilibrium lies on the switching manifold I − I∗(s, w) = 0.
When I > Irh, this equilibrium no longer exists as the origin is not an equilibrium of part of the mean field
system corresponding to I − I∗(w, s) > 0. In the terminology of non-smooth systems, the origin is a virtual
equilibrium of the system for I > Irh and undergoes a boundary equilibrium bifurcation (BEB) when I = Irh.
The exact nature of this bifurcation depends on the value of g, in particular, its relationship to g∗, ḡ and ĝ.

To determine the nature of the boundary equilibrium bifurcation, we begin by studying the nontrivial
equilibria e± = (s±, ηs±) when I = Irh. Recalling the form (31) for s± and noting that Ĩ = 0 when I = Irh,
we find

s+(β, 0) =

{
0 β < 0

2β β ≥ 0

s−(β, 0) =

{
2β β < 0

0 β ≥ 0
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Thus for g < g∗, e+ collides with e0 at I = Irh, and for g > g∗, e− collides with e0.
Consider first the case g∗ < ḡ (which corresponds to τw < τs). In this case there is no Hopf bifurcation, so

the results are straight forward. When g < g∗ e+ is a sink which exists for I > Irh. It collides with e0 when
I = Irh and ceases to exist when I < Irh. Putting this together with the description of the existence and
stability results for e0, we conclude that, for this range of g values, the system undergoes a persistence BEB
at I = Irh. This will be either a focus/node or node/node persistence BEB depending on the classification of
e+. When g > g∗, recall that the equilibrium e− is a saddle when it exists (for ISN < I < Irh). Since e0 also
exists for I < Irh and is a stable node, we conclude that for g > g∗ there is a non-smooth saddle node BEB
at I = Irh.

Now consider the case ḡ < g∗. For g < ḡ, analysis similar to that above shows the system undergoes a
persistence BEB at I = Irh. Figure 6(a) shows this bifurcation for the mean field system corresponding to
the Izhikevich network with parameters as in Table 1.

The situation for ḡ < g < g∗ is similar, except that e+ is now an unstable focus for I > Irh. Thus for this
range of g values, there is a focus/node persistence BEB at I = Irh. Since e+ is a source and e0 is a sink, we
may expect (by analogy with the results in [4]) that a stable non-smooth limit cycle surrounding e+ will
be created as I increases through Irh. Figure 6(b) confirms this for the mean field system corresponding to
the Izhikevich network. Note that in this example, the amplitude of the limit cycle does not got to zero as
I approaches Irh. (See also in Figure 8(c)) Further, the period of the limit cycle diverges as I → I+rh. See
Figure 8(a). Thus the limit cycle appears to be created in homoclinic-like bifurcation as I increases through
Irh. We will thus refer to this as a homoclinic persistence BEB.

When g > g∗, analysis similar to that above shows that there is a non-smooth saddle node BEB at I = Irh.
Based on the analysis of the equilibrium points, there is no reason to expect anything more to occur with this
bifurcation. However, our numerical examples show two cases. Figure 6(d) shows that a simple non-smooth
saddle-node BEB occurs for the mean field system corresponding to the Izhikevich network with g � ĝ.
Figure 6(c) shows the bifurcation for the same system with g∗ < g < ĝ. In this case there is a non-smooth
limit cycle for I > Irh that appears to be destroyed when I = Irh. Thus this bifurcation appears to be a
non-smooth version of the Saddle-node on an invariant circle (SNIC) bifurcation. We will refer to it as a
SNIC BEB. The transition between the two types of BEBs that occur for g > g∗ will be discussed in a later
section.

Based on our numerical results we hypothesize that a non-smooth limit cycle may be destroyed in a
homoclinic-like bifurcation as I decreases through Irh. We support this hypothesis in two ways.

First, consider the vector field in the neighbourhood of the origin. Recall that the origin is always an
attractor when it lies in the region where H(s, w) < 0. In the region where H(s, w) > 0, setting I = Irh and
retaining only the highest order terms in s and w gives:

s′ = − s

τs
+ ŝ
√
gs(er − v∗(0))− v∗′(0)(gs)2/2− w ≈ ŝ

√
gs(er − v∗(0))− w

w′ = − w

τw
+ ŝ
√
gs(er − v∗(0))− v∗′(0)(gs)2/2− w ≈ ŵ

√
gs(er − v∗(0))− w

Thus, for 0 < s,w � 1, and I > I∗(s, w) the vector field point away from the origin and the boundary
equilibrium (0, 0) is a repeller in this region. Since the boundary equilibrium point is as a repeller on one side
of the switching manifold and and an attractor on the other, it is possible for a non-smooth homoclinic orbit
to this equilibrium point to exist when I = Irh.

Second, we show that under certain parameter conditions, if a non-smooth limit cycle surrounds the
equilibrium e+, it must be destroyed when I = Irh. To do this we show that trajectories that cross the
switching manifold when Irh lie within the basin of attraction of the origin. Thus any non-smooth limit cycle
must become homoclinic to the origin at I = Irh. Note that if I − I∗(s, w) < 0, then

dw

ds
=
τs
τw

w

s
= γ

w

s

and thus w = Csγ for some constant C. Assuming that the trajectory starts with (s0, w0) on the switching

manifold then w = w0

(
s
s0

)γ
where w0 = gs0(er − v∗(0))− v∗′(0) (gs)2

2 . Now suppose this trajectory crosses
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the switching manifold again at (s, w). Then

w0

(
s

s0

)γ
= gs(er − v∗(0))− v∗′(0)

(gs)2

2

Clearly two solutions of this equation are (s0, w0) and (0, 0). Dividing through by s and simplifying one
obtains

(1− ks0)
sγ−1

sγ−10

= 1− ks (38)

where k = gv∗′(0)
2(er−v∗(0)) .

If γ > 1 the left hand side of (38) is monotonically increasing while the right hand side is a line with
negative slope. Hence (s0, w0) is the unique intersection point. This means every trajectory that enters
the region I − I∗(s, w) < 0 when I = Irh is attracted to the origin. If γ < 1, the left side of (38) is
now monotonically decreasing. Unless the line is tangent the curve at (s0, 1) there will always be another
intersection point. Rearranging the equation shows that this intersection point will occur for s < s0 if gs0
is sufficiently small. For fixed g, this means that any trajectory that starts on the switching manifold at
(w0, s0) with s0 sufficiently small will be attracted to the origin. Thus all non-smooth limit cycles that are
close enough to the origin for I > Irh will become homoclinic to the origin when I = Irh.

Given how g = ḡ, and g = g∗ delimit the different types of BEB bifurcations, it should be clear that
these special points represent higher codimension bifurcations along the I = Irh line. We shall explore these
bifurcations further below, in addition to determining the geometrical meaning of these points.

4.2 Saddle-Node Boundary Equilibrium Bifurcation (I = Irh, g = g∗)

From the previous section, we concluded that the point I = Irh, g = g∗ is a special codimension-two bifurcation
point where the boundary equilibrium bifurcation (BEB) changes from a persistence BEB to a non-smooth
saddle-node. Note that the smooth branch of saddle-node bifurcations found earlier actually emanates out
from the codimension-2 point (g∗, Irh). We will show here that it does so in a highly non-generic way as the
saddle-node equilibrium hits switching manifold tangentially at the BEB, and is the only equilibrium point
that interacts with the switching manifold in this way.

We have seen that regardless of the parameter values, all the nontrivial equilibria lie on the curve w = ηs.
Thus as any parameter is varied the nontrivial equilibrium will follow this curve, which has slope

w′(s) = η. (39)

Further, the only equilibrium that can be boundary equilibrium point is e0 = (0, 0), the non-firing solution.
Now the switching manifold can be written as

w(s) = I + F (v∗(s)) + gs(er − v∗(s))

Thus, at the slope of the switching manifold at the BEB is

w′(0) = g(er − v∗(0)) (40)

Equating (39) and (40) shows that the nontrivial equilibrium undergoing the BEB will hit the switching
manifold tangentially only if g = g∗ = η

er−v∗(0) . From this it is straightforward to show that with g = g∗ fixed,

the nontrivial equilibrium e+ hits the switching manifold tangentially as I → Irh s+ → 0. More interesting is
to consider what happens when g is varied. From our previous analysis we know that at the saddle-node
bifurcation point, the saddle-node equilibrium, eSN = (sSN(g), ηsSN(g)) is defined by

sSN (g) = M(g)(g − g∗)

Thus, as g → g∗, sSN (g) → 0. This implies that the saddle-node equilibrium hits the switching manifold
tangentially at g = g∗, I = Irh.
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In summary the point g = g∗, I = Irh is the collision between three branches of codimension-1 bifurcations:
a pair of non-smooth boundary equilibrium bifurcations and a smooth branch of saddle-node bifurcations.
The details of the BEB involve depend on the relationship between g∗ and ḡ. If g∗ < ḡ, BEBs are simple: a
simple node/focus or focus/focus persistence BEB occurs for g < g∗ and a non-smooth saddle-node BEB
occurs for g < g∗. The case ḡ < g∗ is more complex due to the possible presence of limit cycles associated
with the Hopf bifurcation. In the case we studied numerically and described in section 4.1, for g < g∗ we
observe a homoclinic persistence BEB and for g > g∗ we observe a SNIC BEB.

While this bifurcation may be complicated, the bifurcation point can be determined analytically for all
the models. Of particular interest is the underlying physical interpretation. Associated with this point is a
region in the g > g∗, I < Irh quadrant of the parameter space with both stable firing and non-firing solutions,
and hence bistability. This bifurcation point is shown in detail in figure 10(b).

4.3 Limit Cycle Grazing Bifurcation

The Andronov-Hopf bifurcation described in section 3.3 leads to the creation of a limit cycle. As I moves away
from the bifurcation point, the amplitude of the limit cycle may increase enough that it hits the switching
manifold tangentially, resulting in a grazing bifurcation. It is difficult to say much in general about the nature
of this bifurcation, however, analysis similar to that in the last section shows that if I < Irh then once a
trajectory enters the region I − I∗(s, w) < 0, it cannot leave, but will be attracted to the origin. Thus we
expect that if a grazing bifurcation occurs for I < Irh it will lead to the destruction of the limit cycle.

To gain more insight, we performed a numerical study of the mean field system corresponding to the
Izhikevich network with parameter values as in Table 1. We first confirmed that the Hopf bifurcation is
subcritical, using MATCONT and by numerically simulating the time reversed system. We then showed
that the unstable limit cycle generated by the Hopf can undergo two different types of grazing bifurcations,
depending on the value I. For I > Irh, the grazing bifurcation that occurs is a persistence type grazing,
i.e., the unstable limit cycle generated via the subcritical Hopf bifurcation just becomes non-smooth after
the grazing bifurcation. This is shown in Figure 7(a). Here, the limit cycle undergoes a grazing bifurcation
at I = 0.2680, and it persists past it. Its amplitude rapidly increases past the grazing bifurcation, and it
almost immediately undergoes a non-smooth saddle-node of limit cycles with a stable non-smooth limit cycle.
For I < Irh, the grazing bifurcation is a destruction type grazing as the limit cycle ceases to exist after the
grazing for the reason discussed above. This is shown in Figure 7(b).

If the Hopf were supercritical we would expect to see the same two types of grazing bifurcations. The
only difference would be that the grazing bifurcation would occur for I < IAH and we would not expect the
saddle-node of limit cycles bifurcation to occur.

4.4 Hopf Boundary Equilibrium Bifurcation (I = Irh, g = ḡ)

The analysis of section 4.1 showed that when ḡ < g∗ the point I = Irh, g = ḡ is a codimension-two bifurcation
point where the boundary equilibrium changes from a simple focus/node persistence BEB to a homoclinic
persistence BEB. Recall that the two parameter Hopf bifurcation curve is given by I = IAH(g) as defined in
section 3.3. From the analysis in that section, the equilibrium point on the Hopf curve is eAH = (sAH , ηsAH)
where sAH(g) = N(g)(g − ḡ). Setting I = IAH(g) we see that as g → ḡ, IAH → Irh and eAH → e0, that
is the Hopf equilibrium point undergoes a BEB at I = Irh, g = ḡ. We thus refer to this point as a Hopf
boundary equilibrium bifurcation (Hopf BEB).

An alternative way to characterize the Hopf BEB is to fix I = Irh and let g → ḡ+. On I = Irh, the mean
field system for the Izhikevich network may be approximated as follows:

s′ = − s

τs
+ ŝ

√
gs(er −

α

2
)− (gs)2

4
− w ≈ ŝ

√
gs(er −

α

2
)− w

w′ = − w

τw
+ ŵ

√
gs(er −

α

2
)− (gs)2

4
− w ≈ ŵ

√
gs(er −

α

2
)− w
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for (s, w) in the vicinity of the origin. Thus, we have

dw

ds
=

ŵ

ŝ
+H.O.T.

⇒ w =
ŵ

ŝ
s+H.O.T.

for the trajectory of the homoclinic limit cycle. Additionally, linearizing the switching manifold about the
origin yields;

w = gs
(
er −

α

2

)

Now, using these two equations we can solve for grazing bifurcations of the homoclinic limit cycle with the
switching manifold at the origin. Solving the grazing condition w′(0) = ŵ

ŝ yields

g =
ŵ

ŝ(er − α/2)
= ḡ

Thus, the Hopf BEB bifurcation can be seen as a grazing bifurcation which destroys the non-smooth homoclinic
limit cycle to the origin.

Our analysis so far shows three branches of bifurcation emanating from this codimension-two point: two
non-smooth BEB branches and a branch of Hopf bifurcation. As shown in Figure ??, for g < ḡ there is a
simple persistence BEB, while for ḡ < g < g∗ there is a homoclinic persistence BEB. We have numerically
studied the bifurcations that occur in a neighbourhood of this point for the Izhikevich model and find that
that two more branches of bifurcation appear to emanate from this point we describe below.

Let g be fixed with g > ḡ and consider the sequence of bifurcations involving limit cycles. At I = Irh
a stable non-smooth limit cycle is created in a homoclinic persistence BEB, at I = IAH > Irh an unstable
smooth limit cycle is created in a subcritical Hopf bifurcation. As I increases the smooth limit cycle becomes
non-smooth in a grazing bifurcation and then is destroyed along with the stable non-smooth limit cycle in a
saddle-node of limit cycles. We wish to determine how the grazing and saddle-node of limit cycles bifurcations
behave near g = ḡ.

To do this we followed the stable non-smooth limit cycle along the Hopf bifurcation curve. Specifically,
we numerically computed the amplitude and period of the limit cycle along the curve (g, IAH(g)) in the
(g, I) parameter space with g → ḡ. The results are shown in Figure 9, specifically figure 9(a). The stable
non-smooth limit cycle is computed using direct simulations of the ODE system, where the system is initialized
exterior to the limit cycle in the phase plane which ensures convergence. From this figure, we can see that
the amplitude of the stable non-smooth limit cycles goes to 0 as g → ḡ. This implies that this limit cycle
collapses to the origin (0, 0). But as this bursting limit cycle is one part of the saddle-node of limit cycles
bifurcation, then this bifurcation must also emerge from Hopf BEB. Since the grazing bifurcation lies between
the saddle-node of limit cycles and the Hopf bifurcation, the persistence grazing bifurcation must also emerge
from the point g = ḡ, I = Irh. The entire sequence of bifurcations near the Hopf BEB is shown in figures
10(a) and 10(d).

4.5 A Co-dimension 3 Non-smooth Bifurcation

We briefly note that if τw = τs, then we have
ḡ = g∗, (41)

which means that the Hopf and saddle-node BEB points coincide in a non-smooth codimension-3 bifurcation
point. This bifurcation point may be thought of as a Bogdanov-Takens equilibrium point lying on a switching
manifold. However, we note that there is no Bogdanov-Takens bifurcation (or for that matter saddle-node or
Hopf bifurcations) at this point in the classical sense, as the Jacobian of the system diverges, and hence the
conditions associated with these different smooth bifurcations cannot be satisfied.
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This point appears to act as an organizing center for the bifurcation diagram, with all the non-smooth
bifurcations emanating from it. Due to the complexity of this point, we will leave its analysis for future work.
However, it does illustrate how rich the non-smooth bifurcation sequence of this relatively simple PWSC
system is.

4.6 A Global Co-dimension 2 Non-smooth Bifurcation

In addition to the two local non-smooth bifurcations that occur at g = ḡ, and g = g∗, there appears to be a
global codimension-2 bifurcation that occurs for these mean field systems. Recall that there are two different
types of grazing bifurcations, a destruction type (which occurs for I < Irh) and a persistence type (which
occurs for I > Irh. These are shown in figure 7. Thus there is a co-dimension two point when the grazing
bifurcation crosses I = Irh. As for the other co-dimension two points, one may expect that would be a change
in the BEB bifurcations at this point. In the case we have studied numerically it appears that the BEB
changes from SNIC type before this transition to a regular non-smooth fold after. This is shown in figure 10(c)
and figure 10(d). Note that this transition occurs for g > ĝ, i.e., after the second intersection of the Hopf
curve with I = Irh. It also appears that the saddle-node of non-smooth limit cycles bifurcation emanates
from this point. Note that this does not imply that there is a second impact with the Hopf equilibrium
and the switching manifold, as sAH(g) = N(g)(g − ḡ) > 0. This bifurcation results in the destruction of
the homoclinic limit cycle that exists on I = Irh, and it is very difficult to analyze, as it is a non-local
co-dimension 2 non-smooth bifurcation. Geometrically, however it occurs when the unstable smooth limit
cycle (generated via the Hopf bifurcation) grazes the switching manifold at I = Irh. If the Hopf bifurcation
were supercritical instead of subcritical we would expect a similar codimension two point to occur (if a grazing
bifurcation occurred). However, it would occur for g < ĝ.

Again, due to the complexity of this particular bifurcation, further analysis is beyond the scope of this
paper, and we leave it for future work.

5 Non-Smooth Bifurcations Demonstrated in the Network Simu-
lations

While the preceding analysis revealed a great deal of novelty and non-smooth bifurcations for the reduced
mean-field system, in order for the non-smooth analysis to be useful, it has to be reflective of the phenomenon
displayed by the actual network. Here, we will demonstrate many of the non-smooth bifurcations predicted
in the analysis are present in a full network of neurons.

Unfortunately however, one cannot easily simulate the large network of neurons in such a way as to expose
unstable equilibria and limit cycles. For example, the equilibrium point e+ is a saddle in the mean-field,
and short of somehow initializing the network of neurons on the stable manifold of the saddle, it cannot be
resolved via direct simulations. However, the unstable node e+ can be resolved by modifying the network as
follows. Using the separation of time scales between the fast variable s, and the slow variable w, we replace
the full network (6)–(9) by the following:

v̇i = vi(vi − α)− wi + gs(er − vi)
ẇi = a(bvi − w)

s =
w̄

η
=

1

η

(
1

N

N∑

i=1

wi

)

vi(t
−
spike) = vpeak →

vi(t
+
spike) = vreset

wi(t
+
spike) = wi(t

−
spike) + ŵ,

for i = 1, 2, . . . N . Here the dynamics of s are replaced entirely by its steady state, large network solution:
τssjump〈R〉 ≈ w

sjumpτs
wjumpτs

= w/η, with w replaced by the finite mean w̄. We will refer to this network of

neurons as the slow network.
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The resulting mean-field system for the slow network is simply a one-dimensional non-smooth ODE, given
by:

ẇ = − w

τw
+ wjump〈R〉

〈R〉 =

{√
I − I∗(w/η,w) I ≥ I∗(w/η,w)

0 I < I∗(w/η,w)

The mean-field system for the slow network has the same steady states as the mean-field system for the
full network, the two solutions w±, in addition to the non firing solution, w0 = 0. However, being a one
dimensional system, no Hopf bifurcations (and thus oscillations) are present in the mean-field system for
the slow network. Additionally, one can show that w+ is always stable, and w− is always unstable as the
eigenvalue for the steady state is given by

λ(w±) = −λ
2
w

τw
A2(g)


1− M(g)(g − g∗)

M(g)(g − g∗)±
√
M(g)2(g − g∗)2 + Ĩ


 . (42)

The functions A2(g), and M(g) are identical to those for the mean-field system for the full network, thus we
should expect that the slow network has a stable steady state, and undergoes a saddle node bifurcation as
for the full network. As there can be no oscillations, we expect that w+ exists and is stable for g < g∗, and
I > Irh and g > g∗, and I > ISN . As the non-firing solution is also stable for I < Irh, then we should expect
bistability for ISN < I < Irh. Indeed, if we simulate the slow network with a slowly varying current that
either decreases from current values greater then Irh or increases from current values less then Irh, we get
bistability for g > g∗ and none for g < g∗. This is shown in Figure 11

Using the simulations of the slow network and the full network, we can piece together a pseudo-bifurcation
diagram for the full network. This is shown in figure 12. The boundary equilibrium bifurcations that occur
near the vicinity of g∗ are both present for the actual network. Given the similarities between the bifurcation
diagram for the actual network, and that predicted by the non-smooth mean-field equations, it would appear
that in order to understand the bifurcations that occur for these networks, one has to consider non-smooth
bifurcation theory.

One might wonder as to whether or not the non-smooth nature of the mean-field system is a direct result
of the non-smooth nature of the neurons, given the fact that they have discrete resets and jumps. However,
this is not the case. In particular, the firing rate of all type I neurons in the vicinity of the saddle-node on an
invariant circle bifurcation is always proportional to

√
I − Irh. Assuming that the dynamics of the neurons

voltage is much faster then the dynamics of the all the other intrinsic and synaptic currents, one could obtain
mean-field equations very similar to that obtained explicitly here. For example, this is done in the finite
network case in the work of [8]. Thus, one has to consider non-smooth bifurcations and bifurcation analysis
when working with mean-field systems for type I neurons. The same is true of type 2 neurons, however the
firing rate for these neurons changes discontinuously at Irh, and thus it is likely that the mean-field systems
for type 2 neurons would be completely non-smooth, as opposed to piecewise smooth continuous.

6 Discussion

Through our analysis of the mean field systems for large networks of coupled neurons, a number of new
non-smooth bifurcations have been discovered that have been previously been unknown in the literature.
These include two co-dimension 1 branches of boundary equilibrium bifurcations that have homoclinic limit
cycles at the bifurcation point, and can be thought of as generating/destroying non-smooth limit cycles.
Additionally, a pair of co-dimension 2 bifurcations have also been discovered that result from the collision of
classical smooth branches of bifurcations with non-smooth bifurcations. These occur when either a Hopf
equilibrium point, or a saddle-node equilibrium point collide with a switching manifold. We have determined
locally in a neighbourhood of these bifurcation points the resulting behavior of the system through analytical
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and numerical results. Additionally, a global-codimension 2 bifurcation and the collision of a Bogdanov-Takens
equilibrium point with a switching manifold was also discovered by analyzing these systems, however we leave
their analysis for later work.

Given the analysis we have performed, then there are several predictions we can make, using the bifurcation
curves for all the necessary branches. For example, it appears that the time scales τw and τs are crucial for
determining the presence of bursting. If τw < τs, then no bursting can occur, while if τw > τs, there is a
bell shaped region of bursting for I > Irh, and g > ḡ. Thus, if the adaptation time scale is smaller then the
time scale of the synapses, adapting, recurrently coupled networks would not burst. This can be the case for
example for weakly adapting neurons coupled together with NMDA synapses, which have a long time scale.

Unfortunately however, while much of these bifurcations can be at least derived, one cannot easily
determine whether or not even the smooth bifurcations are generic in any sense. This is due to the fact that
these particular systems cannot be diagonalized very easily, due to the presence of the

√
I − I∗(s, w) term,

which has an unbounded derivative as I → I∗(s, w). Thus, center manifold theory cannot be directly applied,
and many of the genericity conditions cannot be verified.

In addition to these problems with regards to smooth bifurcations, one cannot easily apply the existing
non-smooth theory to these systems. The systems in the form

ṡ = f(s, u) = − s

τs
+ ŝ〈Ri(t)〉 (43)

ẇ = g(s, u) = − w

τw
+ ŵ〈Ri(t)〉 (44)

〈Ri(t)〉 =

{√
I − I∗(s, w) I ≥ I∗(s, w)

0 I < I∗(s, w)
(45)

are clearly piecewise smooth continuous, however unlike the vast majority of PWSC systems discussed in
the literature, they fail to satisfy one critical constraint that these other systems have. In normal piecewise
smooth continuous systems, given by

ẋ =

{
f1(x) if H(x) ≥ 0

f2(x) if H(x) < 0

where f1(x) = f2(x) on H(x) = 0, it is assumed that both f1(x) and f2(x) exists everywhere, and are
smooth. In our system,

√
I − I∗(s, w) only exists when I ≥ I∗(s, w) and its first derivative only exists when

I > I∗(s, w). This renders much of the analysis on PWSC systems inapplicable. Indeed, this system cannot
even be regularized in the normal way, via a Teixeira type regularization scheme [2] due to the fact that√
I − I∗(s, w) is undefined when I < I∗(s, w).
However, there are alternate ways to apply both center manifold theory, and simultaneously regularize

this system. In particular, consider the three-dimensional system given by

ṡ = − s

τs
+ ŝR

ẇ = − w

τw
+ ŵR

εṘ = R(R2 − (I − I∗(s, w)))

where ε is a small constant. In this singularly perturbed system, one can show that as ε→ 0, one recovers the
piecewise smooth continuous system as when ε is small, we can regard s and w as fixed, and thus R rapidly
converges to the steady states 0, or

√
I − I∗(s, w), depending on the sign of I − I∗(s, w).

Using this type of embedded system, which is entirely polynomial for the Izhikevich mean field system,
one has regularized the non-smooth system in a sense by embedding it as the fast system in a singular
perturbation problem. Thus, to actually determine the genericity properties of the bifurcations displayed
above, in addition to how the non-smooth bifurcations discovered are related to the general smooth bifurcation
theory, one can analyze either directly or numerically the embedded system for finite ε.
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Preliminarily, we have found that the Hopf BEB bifurcation seems to be a Bautin point under the
regularization, and the saddle-node BEB bifurcation point seems to be a Bogdanov-Takens point under the
regularization. These are both co-dimension 2 smooth bifurcation, and they also explain the emergence of
the non-smooth saddle-node of periodics in the Hopf BEB, which has a smooth saddle-node of periodics.
Additionally, the regularized Bogdanov-Takens has (generically) a branch of homoclinic bifurcations, which
also exists in a non-smooth form for the saddle-node BEB. However, as the embedded system, and its
justification as a regularization are outside of the scope of this paper, we leave it for future work.

In addition to the embedded regularization, this system is also unusual in the sense that there is a natural
regularization for the mean-field system. Suppose we consider the voltage equations to be perturbed by white
noise:

v̇i = vi(vi − α)− wi + gs(er − vi) + I + ηi (46)

where 〈ηi(t)〉 = 0 and 〈ηi(t)ηi(t′)〉 = σ2δ(t− t′). In which case one can rigorously derive a mean-field system
for this network of equations which is identical to the original mean-field system given in equations (11)-(13)
only the firing rate is now given by:

〈R〉 =

[∫ vpeak

vreset

∫ vpeak

v′
exp

(
− 2

σ2
(M(v′, w, s)−M(v, w, s)

)
dv′dv

]−1
(47)

where M(v, w, s) is an anti-derivative (in v) of F (v)−w+ gs(er− v) + I. As we shall do in forthcoming work
[13] one can rigorously show that this expression for 〈R〉 is smooth with respect to s and w, and always defined,
and converges to (13) as σ → 0. Thus, the mean-field system for a network with noise parameterized by σ2,
the variance in the noise, converges to the system (11)-(13) as the variance of the noise becomes negligible.
But, since the mean-field system with noise is smooth, it can be thought of as a natural regularization for the
non-smooth mean-field system. We remark that this is unusual in the field of non-smooth theory as generally
a regularization is chosen or suggested, and is typically of the Teixeira form [2]. We leave the bifurcation
analysis of the system with noise for future work.

Finally, one may ask if the non-smooth bifurcations we analyze here appear in other non-smooth systems
or are generic in any way. To the best of our knowledge, the co-dimension 2 bifurcations are novel in the
literature, according to a recent review [3]. However, a Hopf-bifurcation occuring on a discontinuity boundary
(a co-dimension 2 non-smooth bifurcation) does occur in the example (in section 6) in [11] (see Figure 29.).
However, the system examined in [11] is a Fillipov system, and thus has a higher order of discontinuity.

As to whether these bifurcations occur in a more generic system, we intend to explore this further
with a more generic piecewise smooth continuous system that does not have undefined derivatives on the
switching manifolds. In particular, we note that with a quadratic PWSC system, one can show that as for
our saddle-node BEB bifurcation, at the intersection between generic branches of persistence and non-smooth
fold BEB bifurcations, the equilibrium of f2(x) must have a zero eigenvalue at this co-dimension 2 point. We
intend to explore all the possible cases and their possible relationships to the co-dimension 2 non-smooth
bifurcations we outline in this paper for future work.
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Figure 1: Actual Network versus mean field Equations. Simulations of a network of 1000 all-to-all coupled
Izhikevich neurons (blue) plotted together with simulations of the mean field equations given by equations
(11)-(13) (red) and of the mean field system resulting from using the simplified firing rate given by equation
(18) (green). Both mean field models are good approximations to the full system in either tonic firing (1(a))
or bursting regimes (1(b)).
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Figure 2: The approximations for 〈Ri(t)〉 (in red) using k
√
I − I∗(s, w) for k predicted from topological

normal form theory (k = 1/π, green), which is only locally valid near the transition to firing from quiescence,
or for a more global fit (k = 1/2, blue). The specific k used does not matter as it can be merely absorbed
into the ŝ and ŵ parameters and the final bifurcation analysis is the same.
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Figure 3: The existence of equilibria for the mean field system. (a) The sign of the s component of the
nontrivial equilibria, in the (β, Ĩ) parameter plane. s+ > is positive in the first two quadrants and in a
narrow wedge-shaped region in the fourth quadrant. s− is also positive in the wedge-shaped region. (b) The
existence of the trivial and nontrivial equilibria for the Izhikevich model in the I, g parameters space. The
nontrivial equilibrium e+(g, I) only exists in the regions I > α2/4, and for I < α2/4 in the wedge shaped
region of the fourth quadrant indicated. The nontrivial equilibrium e−(g, I) only exists in this wedge shaped
region. The trivial (non-firing) equilibrium e0 only exists for I ≤ α2/4.

25



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

g

I

 

 

I = Irh

Bursting Boundary, Network of 1000 Neurons

Hopf Curve, Reduced Mean-Field System

Saddle-Node Curve, Reduced Mean-Field System

Hopf Curve, Full Mean-Field System

Saddle-Node Curve, Full Mean-Field System

Figure 4: The smooth bifurcations displayed by a network of Izhikevich neurons. Shown in black is the
bursting boundary for a network of 1000 all-to-all coupled Izhikevich neurons. The green dashed and dotted
curve are the two-parameter Hopf and saddle-node manifolds (respectively) for the full mean field equations.
These were computed using MATCONT. The blue dashed and dotted curves are the two-parameter Hopf and
saddle-node manifolds (respectively) derived from the approximate mean field equations for the Izhikevich
network. These are given by equations (37) and (35), respectively.
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(b) Two Parameter Bifurcation Curves, Adaptive Exponential Integrate and Fire mean field Models

Figure 5: Shown above are the two-parameter Hopf bifurcation curves (in red, solid), the saddle-node
bifurcation curves (green, solid), in addition to the lowest order weak coupling expansion approximation to
these curves (dashed lines) for the mean field equations of the quartic integrate and fire model (a), and the
Adaptive exponential integrate and fire model (b). The mean field system considered is the approximate
system where 〈Ri(t)〉 ∝

√
I − I∗(s, w), where the value of I∗(s, w) varies according to the neuron model used.

The black curve in each graph is the two-parameter Hopf bifurcation curve for the full mean field system,
for comparison purposes. This is numerically computed using MATCONT. The bifurcation curves for the
saddle-node and Hopf bifurcations are computed using the MATLAB function fsolve on the determinant and
trace equations.
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Figure 6: Shown above are the four branches of boundary equilibrium bifurcations (BEB) that have been
found in the mean field system for the Izhikevich network. In all figures, the equilibria are e0 (black), e+
(blue) and e− (green), and solid lines indicate real equilibria, while dashed lines indicate virtual ones. The
magenta lines are the non-smooth limit cycles determined via direct numerical integration. (a) the equilibrium

e+ collides with e0 at I = α2

4 . This results in the disappearance of e+ for I < α2

4 , while e0 persists as a stable
node. The case is identical for (b), except however that the non-smooth limit cycle collides with the BEB
equilibrium point in a kind of non-smooth homoclinic bifurcation. (c) the equilibrium e− exists and is an

unstable saddle for I < α2

4 , as does the stable node e0. These equilibria collide in a boundary equilibrium

bifurcation at I = α2

4 , and e− is destroyed while e0 becomes virtual. The bifurcation diagram in (d) is
similar to that in (c) except for the emergence of a homoclinic limit cycle at the bifurcation point in a kind of
non-smooth SNIC bifurcation.
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e+(g, I)

e0 = (0, 0)

s

w

I = −0.03018
I=−0.030179

(b) Grazing Bifurcation, Destruction

Figure 7: Limit cycle grazing bifurcations for the Izhikevich system. (a) As we increase I above IAH(g),
for fixed g, the unstable limit cycle (shown in red) generated by the sub-critical Hopf bifurcation increases
in amplitude. For large enough I, the limit cycle grazes the switching manifold (shown in blue). After the
grazing, the limit cycle becomes non-smooth and subsequently collides with the non-smooth stable limit cycle
(shown in pink). The two limit cycles annihilate each other in a non-smooth saddle node of limit cycles. Note
that as we vary I, the switching manifold, the point e+, and the unstable limit cycle all vary. However, aside
from the unstable limit cycle, these other sets do not vary significantly. Thus, for clarity, we have only shown
the switching manifold and stable non-smooth limit cycle for I = 0.2690, and e+ for I = 0.2604. (b) For
I < Irh the grazing bifurcation destroys the limit cycle.

29



0.09 0.1 0.11 0.12 0.13 0.14 0.15
0

100

200

300

400

500

600

700

800

I

P
er
io
d
o
f
L
im

it
C
y
cl
e

I = Irh

(a) Amplitude of the Stable Non-smooth Limit Cycle

0.09 0.1 0.11 0.12 0.13 0.14 0.15
0

200

400

600

800

1000

I

P
er
io
d
o
f
L
im

it
C
y
cl
e

I = Irh

(b) Period of the Stable Non-smooth Limit Cycle

0.1 0.11 0.12 0.13 0.14

0.05

0.1

0.15

0.2

0.25

0.3

0.35

I

A
m
p
li
tu
d
e
o
f
L
im

it
C
y
cl
e

I = Irh

(c) Amplitude of the Stable Non-smooth Limit Cycle
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(d) Period of the Stable Non-smooth Limit Cycle

Figure 8: Shown above is the amplitude (a) and period (b) of the bursting limit cycle for fixed g with
ḡ < g < g∗ (left column) and g > g∗ (right column) as I → Irh. These two quantities are resolved via direct
numerical simulation of the limit cycle. Note the period diverges as I → Irh, while the amplitude is non-zero,
indicative of a homoclinic limit cycle. The amplitude is computed as the difference between the maximum
and minimum w component in the steady state limit cycle.
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(b) Period of the Stable Non-smooth Limit Cycle

Figure 9: Shown above is the amplitude (a) and period (b) of the bursting limit cycle followed along the
two-parameter Hopf bifurcation curve. The Hopf bifurcation curve is entirely parameterized by g, in the
(I, g) plane, and thus as we decrease g, we can compute the amplitude and period of the bursting limit cycle
via direct numerical simulations. As can be seen, the amplitude decreases towards 0 as g → ŵ

ŝ(er−α/2) = ḡ, as

does the period. As the bursting limit cycle is the exterior limit cycle in a non-smooth saddle node bifurcation
of limit cycles, this bifurcation must also emanate from ḡ. Additionally, as the saddle-node of limit cycles
occurs subsequent to a persistent grazing bifurcation of the unstable Hopf limit cycle, the grazing bifurcation
must also emerge from this point. Also note that this is the only point in the parameter space where the
homoclinic limit cycle generated does not have a divergent period as I → Irh. This is due to the fact that
the homoclinic limit cycle has collapsed down to a point exactly at g = ḡ, and thus does not exist at this
parameter value.
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(d) Total Bifurcation Diagram

Figure 10: Shown above is the entire bifurcation sequence for the Izhikevich model, including all known
non-smooth and smooth bifurcation points. (d) is the entire diagram in the two-parameter space. (a),
(b), and (c) are the bottom left, center, and bottom right regions, respectively. (a) The co-dimension two
bifurcation point involving the collision of a branch of Hopf bifurcations with the switching manifold. This
co-dimension two point also involves a collision with a branch of grazing bifurcations of the unstable limit
cycle generated by the sub-critical Hopf, in addition to a branch of saddle-node of limit cycles (not shown for
clarity). A non-smooth SNIC bifurcation, and BEB persistence bifurcation also collide simultaneously at the

codimension two point ( ŵ
ŝ(er−α/2) ,

α2

4 ). (b) The codimension two saddle-node grazing point, which occurs

when a saddle-node bifurcation grazes a switching manifold. The saddle-node branch of bifurcations collides

at the codimension-two point ( η
er−α/2 ,

α2

4 ) along with two branches of non-smooth SNIC bifurcations. (c) A

global codimension-two point. This bifurcation point involves the switching of a grazing bifurcation in the
unstable Hopf limit cycle from a persistence case, to a destruction case. The non-smooth SNIC bifurcation
also collides with a branch of BEB persistence bifurcations for the equilibrium e−(g, I).
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Figure 11: The slow network consisting of 100 neurons is simulated with a slow current ramp. The current
is either descending (red) or ascending (green). When g < g∗ − 1, no bistability is present and the steady
state solution for the network collides with the non-firing solution, as predicted by the mean-field analysis.
When g > g∗, the descending current results in firing for I < Irh, until the steady state falls off sharply near
I = ISN , as predicted by the mean-field analysis. The ascending current only results in firing when I = Irh is
reached. As there is bistability between these two stable states for the network for g > g∗, we should expect
an unstable steady state separating these two, which is what the mean-field system predicts.
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(a) g = g∗ − 1

(b) g = g∗ + 1

Figure 12: Using simulations of the slow network to converge to the non-bursting steady state, and the full
network to converge to the stable bursting limit cycle, we can piece together a pseudo-bifurcation diagram for
the full network of neurons that very closely mirrors the bifurcation diagram predicted from the non-smooth
mean-field equations. Indeed, it appears that the transitions that occur at I = Irh are well explained as
non-smooth boundary equilibrium bifurcations for the full network. This would seem to indicate the existence
of the co-dimension 2 non-smooth saddle-node BEB point for the actual network as well. Note that the
limit cycles have been smoothed out somewhat for clarity in the image, removing some of the high frequency
oscillations due to synchrony in the peaks.
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Parameter Izhikevich Network (from [6] ) AdEx Network (from [1]) QIF Network (from [17] )
g 0-4 0-1000 0-40
I 0-0.4 0 -60 0-40
τs 2.6 0.08 2
τw 130 3.63 50

sjump 0.8 0.5 1
wjump 0.0189 21.92 0.36
er 1 2.5 2
α 0.62 N/A N/A

vpeak 1.46 65 10
vreset 0.15 -1.25 0

Table 1: Parameters for various network types and the mean-field systems. Note that parameter above are
dimensionless, where as in some of the cited sources they are in dimensional form only.
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