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POINTWISE SECOND-ORDER NECESSARY CONDITIONS FOR
STOCHASTIC OPTIMAL CONTROLS, PART I: THE CASE OF

CONVEX CONTROL CONSTRAINT∗

HAISEN ZHANG† AND XU ZHANG‡

Abstract. This paper is the first part of our series work to establish pointwise second-order
necessary conditions for stochastic optimal controls. In this part, both drift and diffusion terms may
contain the control variable but the control region is assumed to be convex. Under some assumptions
in terms of Malliavin calculus, we establish the desired necessary condition for stochastic singular
optimal controls in the classical sense.

Key words. Stochastic optimal control, Malliavin calculus, pointwise second-order necessary
condition, variational equation, adjoint equation.
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1. Introduction. Let T > 0 and (Ω,F ,F, P ) be a complete filtered probability
space (satisfying the usual conditions), on which a 1-dimensional standard Wiener
process W (·) is defined such that F = {Ft}0≤t≤T is the natural filtration generated
by W (·) (augmented by all of the P -null sets).

In this paper, we shall consider the following controlled stochastic differential
equation

{

dx(t) = b(t, x(t), u(t))dt + σ(t, x(t), u(t))dW (t), t ∈ [0, T ],
x(0) = x0,

(1.1)

with a cost functional

J(u(·)) = E

[

∫ T

0

f(t, x(t), u(t))dt+ h(x(T ))
]

.(1.2)

Here u(·) is the control variable valued in a set U ⊂ Rm (for some m ∈ N), x(·) is the
state variable valued in Rn (for some n ∈ N), and b, σ : [0, T ] × Rn × U × Ω → Rn,
f : [0, T ]×Rn ×U ×Ω → R and h : Rn ×Ω → R are given functions (satisfying some
conditions to be given later). As usual, when the context is clear, we omit the ω(∈ Ω)
argument in the defined functions.

Denote by B(X ) the Borel σ-field of a metric space X , and by Uad the set of
B([0, T ])⊗F -measurable and F-adapted stochastic processes valued in U . Any u(·) ∈
Uad is called an admissible control. The stochastic optimal control problem considered
in this paper is to find a control ū(·) ∈ Uad such that

J(ū(·)) = inf
u(·)∈Uad

J(u(·)).(1.3)

Any ū(·) ∈ Uad satisfying (1.3) is called an optimal control. The corresponding state
x̄(·) (to (1.1)) is called an optimal state, and (x̄(·), ū(·)) is called an optimal pair.
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In optimal control theory, one of the central topics is to establish the first-order
necessary condition for optimal controls. We refer to [15] for an early study on the
first-order necessary condition for stochastic optimal controls. After that, many au-
thors contributed on this topic, see [2, 3, 12] and references cited therein. Compared
to the deterministic setting, new phenomenon and difficulties appear when the dif-
fusion term of the stochastic control system contains the control variable and the
control region is nonconvex. The corresponding first-order necessary condition for
this general case was established in [18].

For some optimal controls, it may happen that the first-order necessary condi-
tions turn out to be trivial. For deterministic control systems, there are two types
of such optimal controls. One of them, called the singular optimal control in the
classical sense, is the optimal control for which the gradient and the Hessian of the
corresponding Hamiltonian with respect to the control variable vanish/degenerate.
The other one, called the singular optimal control in the sense of Pontryagin-type
maximum principle, is the optimal control for which the corresponding Hamiltonian
is equal to a constant in the control region. When an optimal control is singular, the
first-order necessary condition cannot provide enough information for the theoretical
analysis and numerical computing, and therefore one needs to study the second-order
necessary conditions. In the deterministic setting, one can find many references in
this direction (See [1, 7, 9, 10, 11, 13, 14, 16] and references cited therein).

Compared to the deterministic control systems, there are only two papers ([4, 19])
addressed to the second-order necessary condition for stochastic optimal controls.
In [19], a pointwise second-order maximum principle for stochastic singular optimal
controls in the sense of Pontryagin-type maximum principle was established for the
case that the diffusion term σ(t, x, u) is independent of the control u; while in [4],
an integral-type second-order necessary condition for stochastic optimal controls was
derived under the assumption that the control region U is convex.

The main purpose of this paper is to establish a pointwise second-order necessary
condition for stochastic optimal controls. In this work, both drift and diffusion terms,
i.e., b(t, x, u) and σ(t, x, u), may contain the control variable u, and we assume that
the control region U is convex. The key difference between [4] and our work is that
we consider here the pointwise second-order necessary condition, which is easier to be
verified in practical applications. We remark that, quite different from the determin-
istic setting, there exist some essential difficulties to derive the pointwise second-order
necessary condition from an integral-type one when the diffusion term of the control
system contains the control variable, even for the case of convex control constraint
(See the first 4 paragraphs of Subsection 3.2 for a detailed explanation). We overcome
these difficulties by means of some technique from the Malliavin calculus. The method
developed in this work can be adopted to establish a pointwise second-order necessary
condition for stochastic optimal controls for the general case when the control region
is nonconvex but the analysis is much more complicated, and therefore we shall give
the details in another paper [21].

The rest of this paper is organized as follows. In Section 2, we list some notations,
spaces and preliminary results from Malliavin calculus. In Section 3, we introduce
the main results of this paper and give some examples. Finally, in Section 4 we give
the proofs of the main results.

2. Some preliminaries. In this section, we present some preliminaries.

2.1. Some notations and spaces. We introduce some notations and spaces
which will be used in the sequel.
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Denote by 〈·, ·〉 and |·| respectively the inner product and norm in Rn or Rm, which
can be identified from the contexts. Let Rn×m be the space of all n × m-matrices.
For any A ∈ Rn×m, denote by A⊤ the transpose of A and by |A| =

√

tr{AA⊤} the
norm of A. Also, write Sn :=

{

A ∈ Rn×n
∣

∣ A⊤ = A
}

.
Let ϕ : [0, T ]×R

n×U×Ω → R
d be a given function. For a.e. (t, ω) ∈ [0, T ]×Ω, we

denote by ϕx(t, x, u), ϕu(t, x, u) the first order partial derivatives of ϕ with respect
to x and u at (t, x, u, ω), by ϕ(x,u)2(t, x, u) the Hessian of ϕ with respect to (x, u)
at (t, x, u, ω), and by ϕxx(t, x, u), ϕxu(t, x, u), ϕuu(t, x, u) the second order partial
derivatives of ϕ with respect to x and u at (t, x, u, ω).

For any α, β ∈ [1,+∞) and t ∈ [0, T ], we denote by L
β
Ft
(Ω;Rn) the space of

Rn-valued, Ft measurable random variables ξ such that E |ξ|β < +∞; by Lβ([0, T ]×
Ω;Rn) the space of Rn-valued, B([0, T ])⊗F -measurable processes ϕ such that ‖ϕ‖β :=
[

E
∫ T

0 |ϕ(t)|βdt
]

1
β < +∞; by L

β
F
(Ω;Lα(0, T ;Rn)) the space of Rn-valued, B([0, T ])⊗

F -measurable, F-adapted processes ϕ such that ‖ϕ‖α,β :=
[

E
( ∫ T

0
|ϕ(t)|αdt

)

β
α
]

1
β <

+∞; by L
β
F
(Ω;C([0, T ];Rn)) the space of Rn-valued, B([0, T ])⊗F -measurable, and F-

adapted continuous processes ϕ such that ‖ϕ‖∞,β :=
[

E
(

supt∈[0,T ] |ϕ(t)|β
)]

1
β < +∞,

by L∞([0, T ]× Ω;Rn) the space of Rn-valued, B([0, T ])⊗ F -measurable processes ϕ

such that ‖ϕ‖∞ := ess sup(t,ω)∈[0,T ]×Ω|ϕ(t, ω)| < +∞; and by Lβ(0, T ;Lβ
F
([0, T ] ×

Ω;Rn)) the Rn-valued, B([0, T ])⊗B([0, T ])⊗F measurable functions ϕ such that for

any t ∈ [0, T ], ϕ(·, t) is F-adapted and ‖ϕ‖β :=
[

E
∫ T

0

∫ T

0
|ϕ(s, t)|βdsdt

]
1
β

< +∞.

2.2. Some concepts and results from Malliavin calculus. In this sub-
section, we recall some concepts and results from Malliavin calculus (See [17] for a
detailed discussion on this topic).

Denote by C∞
b (Rd;Rn) the set of C∞-smooth functions with bounded partial

derivatives. For any h ∈ L2(0, T ), write W (h) =
∫ T

0
h(t)dW (t). Define

S :=
{

ζ = ϕ(W (h1), W (h2), · · · , W (hd))
∣

∣

∣
ϕ ∈ C∞

b (Rd;Rn), d ∈ N,

h1, h2, · · · , hd ∈ L2(0, T )
}

.
(2.1)

Clearly, S is a linear subspace of L2
FT

(Ω;Rn). For any ζ ∈ S (in the form of that in
(2.1)), its Malliavin derivative is defined as follows:

Dsζ :=

d
∑

i=1

hi(s)
∂ϕ

∂xi

(W (h1), W (h2), · · · , W (hd)), s ∈ [0, T ].

Write

|||ζ|||2 :=
[

E |ζ|2 + E

∫ T

0

|Dsζ|2ds
]

1
2

.

Obviously, ||| · |||2 is a norm on S. It is shown in [17] that the operator D has a closed
extension to the space D1,2(Rn), the completion of S with respect to the norm ||| · |||2.
When ζ ∈ D1,2(Rn), the following Clark-Ocone representation formula holds:

ζ = E ζ +

∫ T

0

E (Dsζ | Fs)dW (s).(2.2)

Furthermore, if ζ is Ft-measurable, then Dsζ = 0 for any s ∈ (t, T ].
Define L1,2(Rn) to be the space of processes ϕ ∈ L2([0, T ]× Ω;Rn) such that
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(i) For a.e. t ∈ [0, T ], ϕ(t, ·) ∈ D1,2(Rn);
(ii) The function Dsϕ(t, ω) : [0, T ]× [0, T ]× Ω → Rn admits a measurable version;

and

(iii) |||ϕ|||1,2 :=
[

E

∫ T

0

|ϕ(t)|2dt+ E

∫ T

0

∫ T

0

|Dsϕ(t)|2dsdt
]

1
2

< +∞.

Denote by L
1,2
F

(Rn) the set of all adapted processes in L1,2(Rn).
In addition, write

L
1,2
2+ (R

n) :=
{

ϕ(·) ∈ L
1,2(Rn)

∣

∣

∣
∃ D+ϕ(·) ∈ L2([0, T ]× Ω;Rn) such that

fε(s) := sup
s<t<(s+ε)∧T

E
∣

∣Dsϕ(t)− D+ϕ(s)
∣

∣

2
< ∞, a.e. s ∈ [0, T ],

fε(·) is measurable on [0, T ] for any ε > 0, and lim
ε→0+

∫ T

0

fε(s)ds = 0
}

;

L
1,2
2− (R

n) :=
{

ϕ(·) ∈ L
1,2(Rn)

∣

∣

∣
∃ D−ϕ(·) ∈ L2([0, T ]× Ω;Rn) such that

gε(s) := sup
(s−ε)∨0<t<s

E
∣

∣Dsϕ(t)−D−ϕ(s)
∣

∣

2
< ∞, a.e. s ∈ [0, T ],

gε(·) is measurable on [0, T ] for any ε > 0, and lim
ε→0+

∫ T

0

gε(s)ds = 0
}

.

Denote

L
1,2
2 (Rn) = L

1,2
2+ (R

n) ∩ L
1,2
2− (R

n).

For any ϕ(·) ∈ L
1,2
2 (Rn), denote ∇ϕ(·) = D+ϕ(·) +D−ϕ(·).

When ϕ is adapted, Dsϕ(t) = 0 for any t < s. In this case, D−ϕ(·) = 0, and
∇ϕ(·) = D+ϕ(·). Denote by L

1,2
2,F(R

n) the set of all adapted processes in L
1,2
2 (Rn).

Roughly speaking, an element ϕ ∈ L
1,2
2 (Rn) is a stochastic process whose Malli-

avin derivative has suitable continuity on some neighbourhood of {(t, t) | t ∈ [0, T ]}.
Examples of such process can be found in [17]. Especially, if (s, t) 7→ Dsϕ(t) is con-
tinuous from Vδ := {(s, t)

∣

∣ |s − t| < δ, s, t ∈ [0, T ]} (for some δ > 0) to L2
FT

(Ω;Rn),

then ϕ ∈ L
1,2
2 (Rn) and, D+ϕ(t) = D−ϕ(t) = Dtϕ(t).

To end this section, we show the following technical result which will be use in
the sequel.

Lemma 2.1. Let ϕ(·) ∈ L
1,2
2,F(R

n). Then, there exists a sequence {θn}∞n=1 of

positive numbers such that θn → 0+ as n → ∞ and

lim
n→∞

1

θ2n

∫ τ+θn

τ

∫ t

τ

E
∣

∣Dsϕ(t)−∇ϕ(s)
∣

∣

2
dsdt = 0, a.e. τ ∈ [0, T ].(2.3)

Proof. For any τ, θ ∈ [0,∞), we take the convention that

sup
t∈[τ,τ+θ]∩[0,T ]

E
∣

∣Dτϕ(t) −∇ϕ(τ)
∣

∣

2
= 0

whenever [τ, τ + θ] ∩ [0, T ] = ∅. From the definition of L1,2
2,F(R

m), it follows that

lim
θ→0+

1

θ2

∫ T

0

∫ τ+θ

τ

∫ t

τ

E
∣

∣Dsϕ(t) −∇ϕ(s)
∣

∣

2
dsdtdτ
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= lim
θ→0+

1

θ2

∫ T

0

∫ τ+θ

τ

∫ τ+θ

s

E
∣

∣Dsϕ(t)−∇ϕ(s)
∣

∣

2
dtdsdτ

≤ lim
θ→0+

1

θ

∫ T

0

∫ τ+θ

τ

[

sup
t∈[s,s+θ]∩[0,T ]

E
∣

∣Dsϕ(t)−∇ϕ(s)
∣

∣

2
]

dsdτ

≤ lim
θ→0+

1

θ

∫ T

0

∫ θ

0

[

sup
t∈[s+τ,s+τ+θ]∩[0,T ]

E
∣

∣Ds+τϕ(t)−∇ϕ(s+ τ)
∣

∣

2
]

dsdτ

≤ lim
θ→0+

1

θ

∫ θ

0

∫ T

0

[

sup
t∈[s+τ,s+τ+θ]∩[0,T ]

E
∣

∣Ds+τϕ(t)−∇ϕ(s+ τ)
∣

∣

2
]

dτds

≤ lim
θ→0+

1

θ

∫ θ

0

∫ T

s

[

sup
t∈[τ,τ+θ]∩[0,T ]

E
∣

∣Dτϕ(t)−∇ϕ(τ)
∣

∣

2
]

dτds

≤ lim
θ→0+

1

θ

∫ θ

0

∫ T

0

[

sup
t∈[τ,τ+θ]∩[0,T ]

E
∣

∣Dτϕ(t)−∇ϕ(τ)
∣

∣

2
]

dτds

≤ lim
θ→0+

∫ T

0

[

sup
t∈[τ,τ+θ]∩[0,T ]

E
∣

∣Dτϕ(t)−∇ϕ(τ)
∣

∣

2
]

dτ

= 0,

which implies (2.3).

3. Second-order necessary conditions. In this section, we shall present sev-
eral second-order necessary conditions for stochastic optimal controls.

To begin with, we assume that
(C1) The control region U is nonempty, bounded, and convex.
(C2) The functions b, σ, f , and h satisfy the following:

(i) For any (x, u) ∈ Rn×U , the stochastic processes b(·, x, u) : [0, T ]×Ω →
Rn and σ(·, x, u) : [0, T ] × Ω → Rn are B([0, T ]) ⊗ F-measurable and
F-adapted. For a.e. (t, ω) ∈ [0, T ]×Ω, the functions b(t, ·, ·) : Rn×U →
R

n and σ(t, ·, ·) : R
n × U → R

n are continuously differentiable up to
order 2, and all of their partial derivatives are uniformly bounded (with
respect to (t, ω) ∈ [0, T ]× Ω). There exists a constant L > 0 such that
for a.e. (t, ω) ∈ [0, T ]× Ω and for any x, x̃ ∈ Rn and u, ũ ∈ U ,







|b(t, 0, u)|+ |σ(t, 0, u)| ≤ L,

|b(x,u)2(t, x, u)− b(x,u)2(t, x̃, ũ)| ≤ L(|x− x̃|+ |u− ũ|),
|σ(x,u)2(t, x, u)− σ(x,u)2(t, x̃, ũ)| ≤ L(|x− x̃|+ |u− ũ|).

(ii) For any (x, u) ∈ Rn×U , the stochastic process f(·, x, u) : [0, T ]×Ω → R

is B([0, T ])⊗F-measurable and F-adapted, and the random variable h(x)
is FT -measurable. For a.e. (t, ω) ∈ [0, T ] × Ω, the functions f(t, ·, ·) :
Rn × U → R and h(·) : Rn → R are continuously differentiable up to
order 2, and for any x, x̃ ∈ Rn and u, ũ ∈ U ,































|f(t, x, u)| ≤ L(1 + |x|2 + |u|2),
|fx(t, x, u)|+ |fu(t, x, u)| ≤ L(1 + |x|+ |u|),
|fxx(t, x, u)|+ |fxu(t, x, u)|+ |fuu(t, x, u)| ≤ L,

|f(x,u)2(t, x, u)− f(x,u)2(t, x̃, ũ)| ≤ L(|x− x̃|+ |u− ũ|),
|h(x)| ≤ L(1 + |x|2), |hx(x)| ≤ L(1 + |x|),
|hxx(x)| ≤ L, |hxx(x) − hxx(x̃)| ≤ L|x− x̃|.
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When the condition (C2) is satisfied, the state x(·) (of (1.1)) is uniquely defined
by any given initial datum x0 ∈ Rn and admissible control u(·) ∈ Uad, and the
cost functional (1.2) is well-defined on Uad. In what follows, C represents a generic
constant, depending on T and L, but independent of any other parameter, which can
be different from line to line.

3.1. Integral-type second-order conditions. Let (x̄(·), ū(·)) be an optimal
pair, and u(·) ∈ Uad be any given admissible control. Let ε ∈ (0, 1), and write

v(·) = u(·)− ū(·), uε(·) = ū(·) + εv(·).(3.1)

Since U is convex, uε(·) ∈ Uad. Denote by xε(·) the state of (1.1) with respect to the
control uε(·), and put δx(·) = xε(·)− x̄(·). For ϕ = b, σ, f , denote

ϕx(t) = ϕx(t, x̄(t), ū(t)), ϕu(t) = ϕu(t, x̄(t), ū(t)),
ϕxx(t) = ϕxx(t, x̄(t), ū(t)), ϕxu(t) = ϕxu(t, x̄(t), ū(t)),
ϕuu(t) = ϕuu(t, x̄(t), ū(t)).

First, similar to [4], we introduce the following two variational equations:














dy1(t) =
[

bx(t)y1(t) + bu(t)v(t)
]

dt

+
[

σx(t)y1(t) + σu(t)v(t)
]

dW (t), t ∈ [0, T ],

y1(0) = 0

(3.2)

and


























dy2(t) =
[

bx(t)y2(t) + y1(t)
⊤bxx(t)y1(t) + 2v(t)⊤bxu(t)y1(t)

+v(t)⊤buu(t)v(t)
]

dt+
[

σx(t)y2(t) + y1(t)
⊤σxx(t)y1(t)

+2v(t)⊤σxu(t)y1(t) + v(t)⊤σuu(t)v(t)
]

dW (t), t ∈ [0, T ],

y2(0) = 0.

(3.3)

By (3.2)–(3.3) and similar to [4, Lemmas 3.5 and 3.11], one has the following
estimates.

Proposition 3.1. Let (C2) hold. Then, for any κ ≥ 2,

‖y1‖κ∞,κ ≤ C, ‖y2‖κ∞,κ ≤ C, ‖δx‖κ∞,κ ≤ Cεκ,

‖δx− εy1‖κ∞,κ ≤ Cε2κ, ‖δx− εy1 −
ε2

2
y2‖κ∞,κ ≤ Cε3κ.

Proof. The proof is very close to that of [4, Lemmas 3.5 and 3.11], and therefore,
we omit the details.

Next, define the Hamiltonian

H(t, x, u, y1, z1) := 〈y1, b(t, x, u)〉+ 〈z1, σ(t, x, u)〉 − f(t, x, u),(3.4)

(t, x, u, y1, z1) ∈ [0, T ]× Rn × U × Rn × Rn. We introduce respectively the following
two adjoint equations for (3.2)–(3.3):















dP1(t) = −
[

bx(t)
⊤P1(t)

+σx(t)
⊤Q1(t)− fx(t)

]

dt+Q1(t)dW (t), t ∈ [0, T ],

P1(T ) = −hx(x̄(T ))

(3.5)



Pointwise second-order necessary conditions 7

and














dP2(t) = −
[

bx(t)
⊤P2(t) + P2(t)bx(t) + σx(t)

⊤P2(t)σx(t) + σx(t)
⊤Q2(t)

+Q2(t)σx(t) +Hxx(t)
]

dt+Q2(t)dW (t), t ∈ [0, T ],

P2(T ) = −hxx(x̄(T )),

(3.6)

where Hxx(t) = Hxx(t, x̄(t), ū(t), P1(t), Q1(t)).
From [8], it is easy to check that, for any β ≥ 1, the equation (3.5) admits

a unique strong solution (P1(·), Q1(·)) ∈ L
β
F
(Ω;C([0, T ];Rn)) × L

β
F
(Ω;L2(0, T ;Rn)),

and (3.6) admits a unique strong solution (P2(·), Q2(·)) ∈ L
β
F
(Ω;C([0, T ];Sn)) ×

L
β
F
(Ω;L2(0, T ;Sn)).
Also, we define

S(t, x, u, y1, z1, y2, z2) := Hxu(t, x, u, y1, z1) + bu(t, x, u)
⊤y2(3.7)

+σu(t, x, u)
⊤z2 + σu(t, x, u)

⊤y2σx(t, x, u),

(t, x, u, y1, z1, y2, z2) ∈ [0, T ]× Rn × U × Rn × Rn × Sn × Sn, and denote

S(t) = S(t, x̄(t), ū(t), P1(t), Q1(t), P2(t), Q2(t)), t ∈ [0, T ].(3.8)

We have the following result.
Proposition 3.2. Let (C1)–(C2) hold. Then, the following variational equality

holds for any u(·) ∈ Uad:

J(uε(·)) − J(ū(·))(3.9)

= −E

∫ T

0

[

ε 〈Hu(t), v(t)〉 +
ε2

2
〈Huu(t)v(t), v(t)〉

+
ε2

2
〈P2(t)σu(t)v(t), σu(t)v(t)〉 + ε2 〈S(t)y1(t), v(t)〉

]

dt+ o(ε2), (ε → 0+),

where Hu(t)=Hu(t, x̄(t), ū(t), P1(t), Q1(t)), Huu(t)=Huu(t, x̄(t), ū(t), P1(t), Q1(t)).
Proof. By (3.1), using Taylor’s formula and Proposition 3.1, similar to [4, Sub-

section 3.2], we have

J(uε)− J(ū)(3.10)

= E

∫ T

0

[

〈fx(t), δx(t)〉 + ε 〈fu(t), v(t)〉 +
1

2
〈fxx(t)δx(t), δx(t)〉

+ε 〈fxu(t)δx(t), v(t)〉 +
ε2

2
〈fuu(t)v(t), v(t)〉

]

dt

+E

[

〈hx(x̄(T )), δx(T )〉+
1

2
〈hxx(x̄(T ))δx(T ), δx(T )〉

]

+ o(ε2) (ε → 0+)

= E

∫ T

0

[

ε 〈fx(t), y1(t)〉+
ε2

2
〈fx(t), y2(t)〉+ ε 〈fu(t), v(t)〉

+
ε2

2

(

〈fxx(t)y1(t), y1(t)〉+ 2 〈fxu(t)y1(t), v(t)〉 + 〈fuu(t)v(t), v(t)〉
)]

dt

+E

[

ε 〈hx(x̄(T )), y1(T )〉+
ε2

2
〈hx(x̄(T )), y2(T )〉

+
ε2

2
〈hxx(x̄(T ))y1(T ), y1(T )〉

]

+ o(ε2), (ε → 0+).
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By Itô’s formula, we have

E 〈hx(x̄(T )), y1(T )〉 = −E 〈P1(T ), y1(T )〉(3.11)

= −E

∫ T

0

[

〈P1(t), bu(t)v(t)〉 + 〈Q1(t), σu(t)v(t)〉 + 〈fx(t), y1(t)〉
]

dt,

E 〈hx(x̄(T )), y2(T )〉 = −E 〈P1(T ), y2(T )〉(3.12)

= −E

∫ T

0

[

〈

P1(t), y1(t)
⊤bxx(t)y1(t)

〉

+ 2
〈

P1(t), v(t)
⊤bxu(t)y1(t)

〉

+
〈

P1(t), v(t)
⊤buu(t)v(t)

〉

+
〈

Q1(t), y1(t)
⊤σxx(t)y1(t)

〉

+2
〈

Q1(t), v(t)
⊤σxu(t)y1(t)

〉

+
〈

Q1(t), v(t)
⊤σuu(t)v(t)

〉

+ 〈fx(t), y2(t)〉
]

dt,

and (noting that P2(t)
⊤ = P2(t) and Q2(t)

⊤ = Q2(t))

E 〈hxx(x̄(T ))y1(T ), y1(T )〉 = −E 〈P2(T )y1(T ), y1(T )〉(3.13)

= −E

∫ T

0

[

〈P2(t)y1(t), bu(t)v(t)〉 + 〈P2(t)bu(t)v(t), y1(t)〉

+ 〈P2(t)σx(t)y1(t), σu(t)v(t)〉 + 〈P2(t)σu(t)v(t), σx(t)y1(t)〉
+ 〈P2(t)σu(t)v(t), σu(t)v(t)〉 + 〈Q2(t)σu(t)v(s), y1(t)〉
+ 〈Q2(t)y1(t), σu(t)v(t)〉 − 〈Hxx(t)y1(t), y1(t)〉

]

dt

= −E

∫ T

0

[

2 〈P2(t)y1(t), bu(t)v(t)〉 + 2 〈P2(t)σx(t)y1(t), σu(t)v(t)〉

+ 〈P2(t)σu(t)v(t), σu(t)v(t)〉 + 2 〈Q2(t)σu(t)v(s), y1(t)〉
− 〈Hxx(t)y1(t), y1(t)〉

]

dt.

Substituting (3.11), (3.12) and (3.13) into (3.10), we obtain that

J(uε)− J(ū)

= −E

∫ T

0

[

ε
(

〈P1(t), bu(t)v(t)〉 + 〈Q1(t), σu(t)v(t)〉 − 〈fu(t), v(t)〉
)

+
ε2

2

(

〈

P1(t), v(t)
⊤buu(t)v(t)

〉

+
〈

Q1(t), v(t)
⊤σuu(t)v(t)

〉

−〈fuu(t)v(t), v(t)〉
)

+
ε2

2
〈P2(t)σu(t)v(t), σu(t)v(t)〉

+ε2
(

〈

P1(t), v(t)
⊤bxu(t)y1(t)

〉

+
〈

Q1(t), v(t)
⊤σxu(t)y1(t)

〉

−〈fxu(t)y1(t), v(t)〉 +
〈

bu(t)
⊤P2(t)y1(t), v(t)

〉

+
〈

σu(t)
⊤P2(t)σx(t)y1(t), v(t)

〉

+
〈

σu(t)
⊤Q2(t)y1(t), v(t)

〉

)]

dt+ o(ε2) (ε → 0+)

= −E

∫ T

0

[

ε 〈Hu(t), v(t)〉 +
ε2

2
〈Huu(t)v(t), v(t)〉
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+
ε2

2
〈P2(t)σu(t)v(t), σu(t)v(t)〉

+ε2 〈S(t)y1(t), v(t)〉
]

dt+ o(ε2), (ε → 0+).

This completes the proof of Proposition 3.2.
Now, we establish an integral-type second-order necessary condition for stochastic

optimal controls. Stimulated by [10], we introduce the following notion.
Definition 3.3. We call a control ũ(·) ∈ Uad a singular control in the classical

sense if ũ(·) satisfies






Hu(t, x̃(t), ũ(t), P̃1(t), Q̃1(t)) = 0, a.s., a.e. t ∈ [0, T ],

Huu(t, x̃(t), ũ(t), P̃1(t), Q̃1(t)) + σu(t, x̃(t), ũ(t))
⊤P̃2(t)σu(t, x̃(t), ũ(t)) = 0,

a.s., a.e. t ∈ [0, T ],
(3.14)
where x̃(·) is the state with respect to ũ(·), and (P̃1(·), Q̃1(·)) and (P̃2(·), Q̃2(·)) be
the adjoint processes given respectively by (3.5) and (3.6) with (x̄(·), ū(·)) replaced by
(x̃(·), ũ(·)).

Remark 3.1. Since the diffusion term σ(t, x, u) contains the control variable u,
in order to represent the stochastic maximum principle, one needs to introduce the
following H-function:

H(t, x, u) := H(t, x, u, P̃1(t), Q̃1(t)) −
1

2

〈

P̃2(t)σ(t, x̃(t), ũ(t)), σ(t, x̃(t), ũ(t))
〉

+
1

2

〈

P̃2(t)
(

σ(t, x, u)− σ(t, x̃(t), ũ(t))
)

, σ(t, x, u)− σ(t, x̃(t), ũ(t))
〉

.

The stochastic maximum principle (see [18]) says, if (x̃(·), ũ(·)) is an optimal pair,
then

H(t, x̃(t), ũ(t)) = max
v∈U

H(t, x̃(t), v), a.s., a.e. t ∈ [0, T ].(3.15)

A singular control in the classical sense is the one that satisfies trivially the first-
and second-order necessary conditions in optimization theory for the maximization
problem (3.15), i.e.,

{

Hu(t, x̃(t), ũ(t)) = 0, a.s., a.e. t ∈ [0, T ],
Huu(t, x̃(t), ũ(t) = 0, a.s., a.e. t ∈ [0, T ].

(3.16)

It is easy to see that (3.16) is equivalent to (3.14). On the other hand, one can
consider (stochastic) singular optimal controls in other senses, say in the sense of
Pontryagin-type maximum principle. Due to the space limitation, we shall present
our results in this respect elsewhere.

By Proposition 3.2, we obtain the following integral-type second-order necessary
condition.

Theorem 3.4. Let (C1)–(C2) hold. If ū(·) is a singular optimal control in the
classical sense, then

E

∫ T

0

〈S(t)y1(t), v(t)〉 dt ≤ 0,(3.17)

for any v(·) = u(·)− ū(·), u(·) ∈ Uad.
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Proof. By (3.9) and Definition 3.3, we have

0 ≤ lim
ε→0+

J(uε)− J(ū)

ε2
= −E

∫ T

0

〈S(t)y1(t), v(t)〉 dt,(3.18)

as stated.
In [4], the authors obtained the following integral-type first- and second-order

necessary conditions for stochastic optimal controls:
Theorem 3.5. Let (C1)–(C2) hold. If ū(·) is an optimal control, then

∫ T

0

〈Hu(t), w(t)〉 dt ≤ 0, ∀ w(·) ∈ cl2,2
(

RUad
(ū) ∩ L4

F
(Ω;L4(0, T ;Rm))

)

.

Furthermore, for any w(·) ∈ cl4,4
(

RUad
(ū)∩L∞([0, T ]×Ω;Rm)∩Υ(ū)

)

the following
second-order necessary condition holds:

E

∫ T

0

[

〈Hxx(t)y1(t), y1(t)〉 + 2 〈Hxu(t)y1(t), w(t)〉

+ 〈Huu(t)w(t), w(t)〉
]

dt+ E 〈hxx(x̄(T ))y1(T ), y1(T )〉 ≤ 0.(3.19)

Here,

RUad
(ū) :=

{

αu(·)− αū(·)
∣

∣

∣
u(·) ∈ Uad, α > 0

}

,

Υ(ū) :=
{

w(·) ∈ L2
F
(Ω;L2(0, T ;Rm))

∣

∣

∣

∫ T

0

〈Hu(t), w(t)〉 dt = 0
}

and, cl2,2(A) and cl4,4(A) are the closure of a set A under the norms ‖ · ‖2,2 and
‖ · ‖4,4, respectively.

There are some second-order terms with respect to y1(·) in (3.19). These terms
are eliminated in (3.17) by introducing the second-order adjoint process (P2(·), Q2(·)).
Note also that, the second-order necessary condition we consider in this paper is for
the singular optimal controls in the classical sense, hence the second order terms
〈Huu(t)v(t), v(t)〉 and 〈P2(t)σu(t)v(t), σu(t)v(t)〉 appearing in the variational formu-
lation (3.9) do not enter into (3.17).

3.2. Second-order necessary condition in term of martingale represen-
tation. Let us recall that, in order to derive pointwise necessary conditions for opti-
mal controls, one needs to establish first some suitable integral-type necessary condi-
tions. It is well-known that there is no difficulty to establish the pointwise first-order
necessary condition for optimal controls whenever an integral-type one is obtained.
However, the classical method of deriving the pointwise condition from the integral-
type one cannot be used directly to establish the pointwise second-order condition in
the general stochastic setting.

Note that the solution y1(·) to the first variational equation (3.2) appears in
the integral-type second-order condition (3.17). By [20, Theorem 1.6.14, p.47], y1(·)
enjoys an explicit representation:

y1(t) = Φ(t)

∫ t

0

Φ(s)−1
(

bu(s)− σx(s)σu(s)
)

v(s)ds

+Φ(t)

∫ t

0

Φ(s)−1σu(s)v(s)dW (s),(3.20)
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where Φ(·) is the solution to the following matrix-valued stochastic differential equa-
tion

{

dΦ(t) = bx(t)Φ(t)dt + σx(t)Φ(t)dW (t), t ∈ [0, T ],
Φ(0) = I,

(3.21)

and I stands for the identity matrix in Rn×n. Substituting the explicit representation
(3.20) of y1(·) into (3.17), we see that there will appear a “bad” term of the following
form:

E

∫ T

0

〈

S(t)Φ(t)

∫ t

0

Φ(s)−1σu(s)v(s)dW (s), v(t)
〉

dt.(3.22)

To see (3.22) is “bad”, let us choose τ ∈ [0, T ), v ∈ U , Eθ = [τ, τ + θ) such
that θ > 0 and τ + θ ≤ T . Denote by χEθ

(·) the characteristic function of the set
Eθ. As usual, though the control region U is convex, in order to derive a pointwise
second-order necessary condition from the integral one (3.17), people need to choose
the following needle variation for the optimal control ū(·):

u(t) =

{

v, t ∈ Eθ,

ū(t), t ∈ [0, T ] \ Eθ.
(3.23)

For this u(·), it is clear that v(·) = u(·)− ū(·) = (v− ū(·))χEθ
(·), and (3.22) is reduced

to

E

∫ τ+θ

τ

〈

S(t)Φ(t)

∫ t

τ

Φ(s)−1σu(s)(v − ū(s))dW (s), v − ū(t)
〉

dt.(3.24)

Since an Itô integral appears in (3.24), we have

E

∫ τ+θ

τ

〈

S(t)Φ(t)

∫ t

τ

Φ(s)−1σu(s)(v − ū(s))dW (s), v − ū(t)
〉

dt

≤
[

E

∫ τ+θ

τ

∣

∣

∣

(

S(t)Φ(t)
)⊤(

v − ū(t)
)

∣

∣

∣

2

dt
]

1
2
[

E

∫ τ+θ

τ

∫ t

τ

∣

∣

∣
Φ(s)−1σu(s)(v − ū(s))

∣

∣

∣

2

dsdt
]

1
2

= O(θ
3
2 ), (θ → 0+).

Because of this, it seems that (3.24) is not an infinitesimal of order 2 but only that
of order 3

2 with respect to θ (as θ → 0+).
However, by the properties of Itô’s integral, we find that

lim
θ→0+

∣

∣

∣

1

θ
3
2

E

∫ τ+θ

τ

〈

S(t)Φ(t)

∫ t

τ

Φ(s)−1σu(s)(v − ū(s))dW (s), v − ū(t)
〉

dt
∣

∣

∣

≤ lim
θ→0+

∣

∣

∣

1

θ
3
2

E

∫ τ+θ

τ

〈

(

S(t)Φ(t)
)⊤(

v − ū(t)
)

−
(

S(τ)Φ(τ)
)⊤(

v − ū(τ)
)

,

∫ t

τ

Φ(s)−1σu(s)(v − ū(s))dW (s)
〉

dt
∣

∣

∣

+ lim
θ→0+

∣

∣

∣

1

θ
3
2

E

∫ τ+θ

τ

〈

(

S(τ)Φ(τ)
)⊤(

v − ū(τ)
)

,

∫ t

τ

Φ(s)−1σu(s)(v − ū(s))dW (s)
〉

dt
∣

∣

∣

≤ lim
θ→0+

1

θ
3
2

[

E

∫ τ+θ

τ

∣

∣

∣

(

S(t)Φ(t)
)⊤(

v − ū(t)
)

−
(

S(τ)Φ(τ)
)⊤(

v − ū(τ)
)

∣

∣

∣

2

dt
]

1
2 ·

[

E

∫ τ+θ

τ

∫ t

τ

∣

∣

∣
Φ(s)−1σu(s)(v − ū(s))

∣

∣

∣

2

dsdt
]

1
2

= 0, a.e. τ ∈ [0, T ).
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This indicates that, (3.22) is actually a higher order infinitesimal of θ
3
2 (as θ → 0+).

Essentially, the above problem is caused by the Itô integral. Indeed, one cannot
use the Lebesgue differentiation theorem directly to treat the Itô integral appeared
in (3.24). In this subsection, we shall reduce the Itô-Lebesgue integral term (3.24) to
a double Lebesgue integral term by means of the property of Itô’s integrals and the
martingale representation theorem, and obtain a second-order necessary condition for
singular optimal controls.

We need the following technical result (which should be known but we do not find
an exact reference).

Lemma 3.6. Let ϕ(·) ∈ L2
F
(Ω;L2(0, T ;Rn)). Then, there exists a φ(·, ·) ∈ L2(0, T ;

L2
F
([0, T ]× Ω;Rn)) such that

ϕ(t) = Eϕ(t) +

∫ t

0

φ(s, t)dW (s), a.s., a.e. t ∈ [0, T ].(3.25)

Proof. Let {ϕj(·)}∞j=1 be a sequence in L2
F
(Ω;L2(0, T ;Rn)) such that

E

∫ T

0

∣

∣ϕj(t)− ϕ(t)
∣

∣

2
dt → 0, as j → ∞,

where ϕj(·) =
∑Kj

k=0 ξ
k
j χ[tk,tk+1)(t), Kj ∈ N, 0 = t0 < t1 < · · · < tKj+1 = T is a

partition of [0, T ], and ξkj ∈ L2
Ftk

(Ω;Rn).

For any fixed j and k, since ξkj ∈ L2
Ftk

(Ω;Rn), by the martingale representation

theorem, there exists a stochastic process φk
j (·) ∈ L2

F
(Ω;L2(0, T ; Rn)) such that

ξkj = E ξkj +

∫ tk

0

φk
j (s)dW (s), a.s.

Define

φj(s, t) =

Kj
∑

k=0

φk
j (s)χ[0,tk](s)χ[tk,tk+1)(t), (s, t) ∈ [0, T ]× [0, T ].

Clearly, ϕj(·) can be represented as

ϕj(t) = E ϕj(t) +

∫ t

0

φj(s, t)dW (s), a.s., a.e. t ∈ [0, T ].

Consequently, we have

E

∫ T

0

∫ T

0

∣

∣

∣
φj(s, t)− φm(s, t)

∣

∣

∣

2

dsdt = E

∫ T

0

∫ t

0

∣

∣

∣
φj(s, t)− φm(s, t)

∣

∣

∣

2

dsdt

=

∫ T

0

E

∣

∣

∣

∫ t

0

[

φj(s, t)− φm(s, t)
]

dW (s)
∣

∣

∣

2

dt

=

∫ T

0

E

∣

∣

∣
ϕj(t)− ϕm(t)− E

[

ϕj(t)− ϕm(t)
]

∣

∣

∣

2

dt ≤ 4E

∫ T

0

∣

∣

∣
ϕj(t)− ϕm(t)

∣

∣

∣

2

dt.

Since ϕj(·) converges strongly to ϕ(·), {φj(·, ·)}∞j=1 is a Cauchy sequence in L2(0, T ;

L2
F
([0, T ] × Ω;Rn)). Hence, there exists a φ(·, ·) ∈ L2(0, T ;L2

F
([0, T ] × Ω;Rn)) such

that

E

∫ T

0

∫ T

0

∣

∣

∣
φj(s, t)− φ(s, t)

∣

∣

∣

2

dsdt → 0, as j → ∞,
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and

E

∫ T

0

∣

∣

∣
ϕ(t)− E ϕ(t) −

∫ t

0

φ(s, t)dW (s)
∣

∣

∣

2

dt

= E

∫ T

0

∣

∣

∣
ϕ(t)− ϕj(t) + ϕj(t)− E ϕ(t) + E ϕj(t)− E ϕj(t)

−
∫ t

0

φ(s, t)dW (s) +

∫ t

0

φj(s, t)dW (s) −
∫ t

0

φj(s, t)dW (s)
∣

∣

∣

2

dt

≤ CE

∫ T

0

∣

∣

∣
ϕ(t) − ϕj(t)

∣

∣

∣

2

dt+ C

∫ T

0

∣

∣

∣
E ϕ(t)− E ϕj(t)

∣

∣

∣

2

dt

+CE

∫ T

0

∣

∣

∣

∫ t

0

φ(s, t)dW (s) −
∫ t

0

φj(s, t)dW (s)
∣

∣

∣

2

dt

+CE

∫ T

0

∣

∣

∣
ϕj(t)− E ϕj(t)−

∫ t

0

φj(s, t)dW (s)
∣

∣

∣

2

dt

≤ CE

∫ T

0

∣

∣

∣
ϕ(t) − ϕj(t)

∣

∣

∣

2

dt+ CE

∫ T

0

∫ T

0

∣

∣

∣
φ(s, t)− φj(s, t)

∣

∣

∣

2

dsdt

→ 0, as j → ∞.

Therefore, (3.25) holds.
Also, we need the following simple result.
Lemma 3.7. Let (C1)–(C2) hold. Then S(·) ∈ L4

F
(Ω;L2(0, T ;Rm×n)).

Proof. We only need to prove that

E

[

∫ T

0

∣

∣S(t)
∣

∣

2
dt
]2

< ∞.

By (C1)–(C2),

|fxu(t)| ≤ C, a.s., a.e. t ∈ [0, T ],

and, for ϕ = b, σ,

|ϕx(t)| + |ϕu(t)|+ |ϕxu(t)| ≤ C, a.s., a.e. t ∈ [0, T ].

Therefore,

E

[

∫ T

0

∣

∣S(t)
∣

∣

2
dt
]2

= E

[

∫ T

0

∣

∣Hxu(t, x̄(t), ū(t), P1(t), Q1(t)) + bu(t, x̄(t), ū(t))
⊤P2(t)

+σu(t, x̄(t), ū(t))
⊤Q2(t) + σu(t, x̄(t), ū(t))

⊤P2(t)σx(t, x̄(t), ū(t))
∣

∣

2
dt
]2

≤ C + CE

[

∫ T

0

(

|P1(t)|2 + |Q1(t)|2 + |P2(t)|2 + |Q2(t)|2
)

dt
]2

≤ C + C
(

‖P1‖4∞,4 + ‖Q1‖42,4 + ‖P2‖4∞,4 + ‖Q2‖42,4
)

< ∞,

which completes the proof of Lemma 3.7.
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By Lemma 3.7, S(·) ∈ L2
F
(Ω;L2(0, T ;Rm×n)). Then, by our assumption (C1) and

Lemma 3.6, for any v ∈ U , there exists a φv(·, ·) ∈ L2(0, T ;L2
F
([0, T ] × Ω;Rn)) such

that for a.e. t ∈ [0, T ],

S(t)⊤(v − ū(t)) = E

[

S(t)⊤(v − ū(t))
]

+

∫ t

0

φv(s, t)dW (s), a.s.(3.26)

Using (3.26), we obtain the following second-order necessary condition, which is
pointwise with respect to the time variable (but it is still in the integral form with
respect to the sample point ω).

Theorem 3.8. Let (C1)–(C2) hold. If ū(·) is a singular optimal control in the
classical sense, then for any v ∈ U , it holds that

E 〈S(τ)bu(τ)(v − ū(τ)), v − ū(τ)〉
+∂+

τ

(

S(τ)⊤(v − ū(τ)), σu(τ)(v − ū(τ))
)

≤ 0, a.e. τ ∈ [0, T ],(3.27)

where,

∂+
τ

(

S(τ)⊤(v − ū(τ)), σu(τ)(v − ū(τ))
)

:= 2 lim sup
θ→0+

1

θ2
E

∫ τ+θ

τ

∫ t

τ

〈

φv(s, t),Φ(τ)Φ(s)
−1σu(s)(v − ū(s))

〉

dsdt,
(3.28)

φv(·, ·) is determined by (3.26), and Φ(·) is the solution to the stochastic differential
equation (3.21).

The proof of Theorem 3.8 will be given in Subsection 4.1.

3.3. Second-order necessary condition in term of Malliavin derivative.
In Theorem 3.8 we obtain a second-order necessary condition in term of martingale
representation. From the martingale representation theorem, we only know that, for
any v ∈ U , φv(·, ·) ∈ L2(0, T ;L2

F
([0, T ] × Ω;Rn)), and hence, for each τ ∈ [0, T ], the

function

ϕ(s, t) := E
〈

φv(s, t),Φ(τ)Φ(s)
−1σu(s)(v − ū(s))

〉

, (s, t) ∈ [0, T ]× [0, T ]

is in L1([0, T ] × [0, T ]). However, the condition ϕ(·, ·) ∈ L1([0, T ] × [0, T ]) is not
sufficient to ensure that, for a.e. τ ∈ [0, T ], the limit

lim
θ→0+

1

θ2

∫ τ+θ

τ

∫ t

τ

ϕ(s, t)dsdt(3.29)

exists.
Example 3.1. Let an = 2

3n , n = 0, 1, 2, · · ·. Then, ∑∞
n=1 an = 1 and

∑∞
k=n+1 ak =

an

2 . Let T =
√
2 and define ϕ(·, ·) ∈ L1([0,

√
2]× [0,

√
2]) as follows:

ϕ(s, t) =











1, (s, t) ∈
(

[0,
√
2]× [0,

√
2]
)
⋂
{

an

2 ≤ t−s√
2
< an, n = 1, 2, · · ·

}

,

−1, (s, t) ∈
(

[0,
√
2]× [0,

√
2]
)
⋂
{

an ≤ t−s√
2
<

an−1

2 , n = 1, 2, · · ·
}

,

0, otherwise.

Fixed a τ ∈ [0,
√
2) arbitrarily. If θn =

√
2an−1

2 , τ + θn ≤
√
2, then

lim
n→∞

1

θ2n

∫ τ+θn

τ

∫ t

τ

ϕ(s, t)dsdt = lim
n→∞

∑∞
k=n(

√
2ak

2 )2

(
√
2an−1

2 )2
= lim

n→∞

1
4·9n−1

2
9n−1

=
1

8
.
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On the other hand, if θn =
√
2an, τ + θn ≤

√
2, then

lim
n→∞

1

θ2n

∫ τ+θn

τ

∫ t

τ

ϕ(s, t)dsdt = lim
n→∞

1
2 (

√
2an

2 )2 +
∑∞

k=n(
√
2ak+1

2 )2

(
√
2an)2

= lim
n→∞

5
4·9n
8
9n

=
5

32
.

Example 3.2. Let T = 1. Define

ϕ(s, t) =

{

0, t ≤ s, s, t ∈ [0, 1],
− 1

(t−s)
1
2

, t > s, s, t ∈ [0, 1].

Obviously, ϕ ∈ L1([0, 1]× [0, 1]). But, for any τ ∈ [0, 1) and θ > 0 satisfying τ+θ ≤ 1,

∫ τ+θ

τ

∫ t

τ
ϕ(s, t)dsdt

θ2
=

−
∫ τ+θ

τ
2(t− τ)

1
2 dt

θ2
=

− 4
3θ

3
2

θ2
→ −∞, (θ → 0+).

The above two examples show that, in general, the superior limit

lim sup
θ→0+

1

θ2
E

∫ τ+θ

τ

∫ t

τ

〈

φv(s, t),Φ(τ)Φ(s)
−1σu(s)(v − ū(s))

〉

dsdt

(in (3.28)) cannot be refined to be the limit, and even worse, this superior limit may
be equal to −∞. If the superior limit in (3.28) is equal to −∞ for a.e. τ ∈ [0, T ], the
second-order necessary condition (3.27) turns out to be trivial. On the other hand,
even this superior limit is finite for a.e. τ ∈ [0, T ], it is still difficult to obtain the
continuity of the function

v 7→ ∂+
τ

(

S(τ)⊤(v − ū(τ)), σu(τ)(v − ū(τ))
)

.

All the problems mentioned in the above are caused by the lack of further infor-
mation for φv(·, ·). If both S(·) and ū(·) are regular enough, the function φv(·, ·) has
an explicit representation and then we can improve the result obtained in Theorem
3.8. To this end, we assume that
(C3)

ū(·) ∈ L
1,2
2,F(R

m), S(·) ∈ L
1,2
2,F(R

m×n) ∩ L∞([0, T ]× Ω;Rm×n).

We have the following pointwise second-order necessary condition for singular
optimal controls.

Theorem 3.9. Let (C1)–(C3) hold. If ū(·) is a singular optimal control in the
classical sense, then for a.e. τ ∈ [0, T ], it holds that

〈S(τ)bu(τ)(v − ū(τ)), v − ū(τ)〉
+ 〈∇S(τ)σu(τ)(v − ū(τ)), v − ū(τ)〉(3.30)

−〈S(τ)σu(τ)(v − ū(τ)),∇ū(τ)〉 ≤ 0, ∀ v ∈ U, a.s.

The proof of Theorem 3.9 will be given in Subsection 4.2.
Remark 3.2. In some special cases, the regularity assumption on S(·) holds au-

tomatically. One of them is the linear quadratic optimal control problem with convex
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control constraints. In this case, the functions b, σ, f and h in (1.1)-(1.2) are given
as follows:

b(t, x, u) = A(t)x +B(t)u, σ(t, x, u) = C(t)x+D(t)u, h(x) =
1

2
〈Gx, x〉 ,

f(t, x, u) =
1

2

[

〈R(t)x, x〉 + 2 〈M(t)x, u〉+ 〈N(t)u, u〉
]

, (t, x, u) ∈ [0, T ]× R
n × R

m,

where A(·), C(·) ∈ C([0, T ];Rn×n), B(·), D(·) ∈ C([0, T ];Rn×m), R(·) ∈ C([0, T ]; Sn),
M(·) ∈ C([0, T ];Rm×n) and N(·) ∈ C([0, T ];Sm) are deterministic matrix-valued
functions, and G ∈ Sn is a (deterministic) matrix.

Indeed, for this problem, the second-order adjoint equation is














dP2(t) = −
[

A(t)⊤P2(t) + P2(t)A(t) + C(t)⊤P2(t)C(t) + C(t)⊤Q2(t)

+Q2(t)C(t) −R(t)
]

dt+Q2(t)dW (t), t ∈ [0, T ],

P2(T ) = −G.

(3.31)

Since A(·), B(·), C(·), D(·), R(·), M(·), N(·) and G are deterministic, the equa-
tio(3.31) admits a unique deterministic solution (P2(·), 0), where P2(·) is the solution
to the following differential equation

{

Ṗ2(t) = −A(t)⊤P2(t)− P2(t)A(t) − C(t)⊤P2(t)C(t) +R(t), t ∈ [0, T ],
P2(T ) = −G.

(3.32)

Hence, for this case,

S(·) = −M(·) +B(·)⊤P2(·) +D(·)⊤P2(·)C(·)
is a deterministic continuous matrix-valued function, hence it belongs to the space
L
1,2
2,F(R

m×n) ∩ L∞([0, T ]× Ω;Rm×n).
In general, to obtain the regularity of S(·), we need the regularity of (ū(·), x̄(·)),

(P1(·), Q1(·)) and (P2(·), Q2(·)). From the regularity results for solutions to stochastic
differential equations (see [8] and [17]), the optimal control ū(·) needs to be regular
enough. In the deterministic setting, the regularity of optimal controls has been studied
by many authors (see [5, 6] and references cited therein). However, to the best of our
knowledge, there exists no reference addressing the regularity of stochastic optimal
controls. We will discuss this topic in our forthcoming paper.

To end this section, we give two examples to explain how to distinguish singular
optimal controls from others by using the pointwise second-order necessary conditions
established in Theorem 3.9.

Example 3.3. Let n = m = 1, T = 1, U = [−1, 1]. Consider the following
one-dimensional control system

{

dx(t) = u(t)dt+ u(t)dW (t), t ∈ [0, 1],
x(0) = 0

(3.33)

and the cost functional

J(u(·)) = 1

2
E

∫ 1

0

|u(t)|2dt− 1

2
E |x(1)|2.

For this optimal control problem, the Hamiltonian is given by

H(t, x, u, y1, z1) = y1u+ z1u− 1

2
u2, (t, x, u, y1, z1) ∈ [0, 1]× R× U × R× R.
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Let (x̄(t), ū(t)) ≡ (0, 0). The corresponding two adjoint equations are

{

dP1(t) = Q1(t)dW (t), t ∈ [0, 1],
P1(1) = 0,

(3.34)

and
{

dP2(t) = Q2(t)dW (t), t ∈ [0, 1],
P2(1) = 1.

(3.35)

Obviously,

(P1(t), Q1(t)) ≡ (0, 0), (P2(t), Q2(t)) ≡ (1, 0).

Then, we have for all (t, ω) ∈ [0, 1]× Ω,

Hu(t, x̄(t), ū(t), P1(t), Q1(t)) = 0,

and

Huu(t, x̄(t), ū(t), P1(t), Q1(t)) + σu(t, x̄(t), ū(t))
⊤P2(t)σu(t, x̄(t), ū(t)) = 0.

That is, ū(t) ≡ 0 is a singular control in the classical sense. Let û(t) ≡ −1, we have

−1

2
= J(û(·)) < J(ū(·)) = 0.

Therefore, ū(t) ≡ 0 is not an optimal control.
Now, we show that ū(t) ≡ 0 does not satisfy the second-order necessary condition

(3.30). Actually,

S(t) ≡ 1, ∇S(t) ≡ 0, ∇ū(t) ≡ 0.

Let v = 1, we find that

〈S(τ)bu(τ)(v − ū(τ)), v − ū(τ)〉
+ 〈∇S(τ)σu(τ)(v − ū(τ)), v − ū(τ)〉
− 〈S(τ)σu(τ)(v − ū(τ)),∇ū(τ)〉

= 1 > 0, ∀ (τ, ω) ∈ [0, 1]× Ω.

Hence, the condition (3.30) fails at v = 1.
Example 3.4. Let n = m = 1, U = [−1, 1]× [−1, 1]. Consider the control system

{

dx(t) = Bu(t)dt+Du(t)dW (t), t ∈ [0, T ],
x(0) = 0

(3.36)

with the following cost functional

J(u(·)) = 1

2
E 〈Gx(T ), x(T )〉 ,

where

B =

[

1 0
0 0

]

, D =

[

0 0
0 1

]

, G =

[

1 0
0 0

]

.
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For this optimal control problem, the Hamiltonian is given by

H(t, x, u, y1, z1)=〈y1, Bu〉+〈z1, Du〉 , (t, x, u, y1, z1)∈ [0, T ]×R
2×U×R

2×R
2.

Clearly, (x̄(t), ū(t)) ≡ (0, 0) is an optimal pair, and the corresponding adjoint
equations are respecitvely

{

dP1(t) = Q1(t)dW (t), t ∈ [0, T ],
P1(T ) = 0

(3.37)

and
{

dP2(t) = Q2(t)dW (t), t ∈ [0, T ],
P2(T ) = −G.

(3.38)

Obviously, (P1(t), Q1(t)) ≡ (0, 0), (P2(t), Q2(t)) ≡ (−G, 0), and

Hu(t, x̄(t), ū(t), P1(t), Q1(t)) ≡ 0,

Huu(t, x̄(t), ū(t), P1(t), Q1(t)) +D⊤P2(t)D ≡ 0.

Therefore, x̄(t) ≡ 0 is a singular optimal control in the classical sense.
Since for this case,

S(t) ≡ −B⊤G, ∇S(t) ≡ 0, ∇ū(t) ≡ 0,

we have

〈S(τ)bu(τ)(v − ū(τ)), v − ū(τ)〉
+ 〈∇S(τ)σu(τ)(v − ū(τ)), v − ū(τ)〉
− 〈S(τ)σu(τ)(v − ū(τ)),∇ū(τ)〉

= −
〈

B⊤GBv, v
〉

≤ 0, ∀ v ∈ U, ∀ (t, ω) ∈ [0, T ]× Ω.

That is, the necessary condition (3.30) holds.

4. Proofs of the main results. This section is devoted to proving Theorems
3.8 and 3.9. Firstly, we show a technical result.

Lemma 4.1. Let Φ(·), Ψ(·) ∈ L2
F
(Ω;L2(0, T ;Rn)). Then, for a.e. τ ∈ [0, T ),

lim
θ→0+

1

θ2
E

∫ τ+θ

τ

〈

Φ(τ),

∫ t

τ

Ψ(s)ds
〉

dt =
1

2
E 〈Φ(τ),Ψ(τ)〉 ,(4.1)

lim
θ→0+

1

θ2
E

∫ τ+θ

τ

〈

Φ(t),

∫ t

τ

Ψ(s)ds
〉

dt =
1

2
E 〈Φ(τ),Ψ(τ)〉 .(4.2)

Proof. The equality (4.1) is a corollary of the Lebesgue differentiation theorem.
Now, we prove (4.2). For any τ ∈ [0, T ), let θ > 0 and τ + θ < T . By the Lebesgue
differentiation theorem, we have

lim
θ→0+

1

θ

∫ τ+θ

τ

E
∣

∣Φ(t)− Φ(τ)
∣

∣

2
dt = 0, a.e. τ ∈ [0, T ),
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and

lim
θ→0+

1

θ2
E

∫ τ+θ

τ

∫ t

τ

∣

∣Ψ(s)
∣

∣

2
dsdt =

1

2
E
∣

∣Ψ(τ)
∣

∣

2
, a.e. τ ∈ [0, T ).

Therefore,

lim
θ→0+

∣

∣

∣

1

θ2
E

∫ τ+θ

τ

〈

Φ(t)− Φ(τ),

∫ t

τ

Ψ(s)ds
〉

dt
∣

∣

∣
(4.3)

≤ lim
θ→0+

1

θ2

[

∫ τ+θ

τ

E
∣

∣Φ(t)− Φ(τ)
∣

∣

2
dt
]

1
2
[

∫ τ+θ

τ

(t− τ)E

∫ t

τ

∣

∣Ψ(s)
∣

∣

2
dsdt

]
1
2

≤ lim
θ→0+

1

θ
3
2

[

∫ τ+θ

τ

E
∣

∣Φ(t)− Φ(τ)
∣

∣

2
dt
]

1
2
[

∫ τ+θ

τ

E

∫ t

τ

∣

∣Ψ(s)
∣

∣

2
dsdt

]
1
2

= 0, a.e. τ ∈ [0, T ).

Combining (4.3) and (4.1), we obtain (4.2). This completes the proof of Lemma 4.1.

4.1. Proof of Theorem 3.8. For any v ∈ U , τ ∈ [0, T ) and θ ∈ (0, T − τ), let
Eθ = [τ, τ+θ) and u(·) be defined by (3.23). Then, v(·) = u(·)−ū(·) = (v−ū(·))χEθ

(·)
and the corresponding solution y1(·) to the equation (3.2) is given by

y1(t) = Φ(t)

∫ t

0

Φ(s)−1
(

bu(s)− σx(s)σu(s)
)(

v − ū(s)
)

χEθ
(s)ds(4.4)

+Φ(t)

∫ t

0

Φ(s)−1σu(s)(v − ū(s))χEθ
(s)dW (s).

Substituting v(·) = (v − ū(·))χEθ
(·) and (4.4) into (3.17), we have

0 ≥ 1

θ2
E

∫ τ+θ

τ

〈S(t)y1(t), v − ū(t)〉 dt

=
1

θ2
E

∫ τ+θ

τ

〈

S(t)Φ(t)

∫ t

τ

Φ(s)−1
(

bu(s)− σx(s)σu(s)
)

·

(v − ū(s))ds, v − ū(t)
〉

dt(4.5)

+
1

θ2
E

∫ τ+θ

τ

〈

S(t)Φ(t)

∫ t

τ

Φ(s)−1σu(s) ·

(v − ū(s))dW (s), v − ū(t)
〉

dt.

By Lemma 4.1, we have, for a.e. τ ∈ [0, T ),

lim
θ→0+

1

θ2
E

∫ τ+θ

τ

〈

S(t)Φ(t)

∫ t

τ

Φ(s)−1
(

bu(s)− σx(s)σu(s)
)

·

(v − ū(s))ds, v − ū(t)
〉

dt

=
1

2
E
〈

S(τ)
(

bu(τ) − σx(τ)σu(τ)
)

(v − ū(τ)), v − ū(τ)
〉

.(4.6)

On the other hand, by (3.21), we have

1

θ2

∫ τ+θ

τ

E

〈

S(t)Φ(t)

∫ t

τ

Φ(s)−1σu(s)(v − ū(s))dW (s), v − ū(t)
〉

dt(4.7)
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=
1

θ2

∫ τ+θ

τ

E

〈

S(t)Φ(τ)

∫ t

τ

Φ(s)−1σu(s)(v − ū(s))dW (s), v − ū(t)
〉

dt

+
1

θ2

∫ τ+θ

τ

E

〈

S(t)

∫ t

τ

bx(s)Φ(s)ds ·
∫ t

τ

Φ(s)−1σu(s)(v − ū(s))dW (s), v − ū(t)
〉

dt

+
1

θ2

∫ τ+θ

τ

E

〈

S(t)

∫ t

τ

σx(s)Φ(s)dW (s) ·
∫ t

τ

Φ(s)−1σu(s)(v − ū(s))dW (s), v − ū(t)
〉

dt.

Substituting (3.26) into the fist term of the right hand of (4.7), we get that

lim sup
θ→0+

1

θ2

∫ τ+θ

τ

E

〈

S(t)Φ(τ)

∫ t

τ

Φ(s)−1σu(s)(v − ū(s))dW (s), v − ū(t)
〉

dt(4.8)

= lim sup
θ→0+

1

θ2

∫ τ+θ

τ

E

〈

∫ t

τ

Φ(τ)Φ(s)−1σu(s)(v − ū(s))dW (s),

E
[

S(t)⊤(v − ū(t))
]

〉

dt

+ lim sup
θ→0+

1

θ2

∫ τ+θ

τ

E

〈

∫ t

τ

Φ(τ)Φ(s)−1σu(s)(v − ū(s))dW (s),

∫ t

0

φv(s, t)dW (s)
〉

dt

= lim sup
θ→0+

1

θ2

∫ τ+θ

τ

∫ t

τ

E

〈

Φ(τ)Φ(s)−1σu(s)(v − ū(s)), φv(s, t)
〉

dsdt

=
1

2
∂+
τ

(

S(τ)⊤(v − ū(τ)), σu(τ)(v − ū(τ))
)

, ∀ τ ∈ [0, T ).

Next, by Lemma 3.7, S(·) ∈ L4(Ω;L2(0, T ;Rm×n)) ⊂ L2(Ω;L2(0, T ;Rm×n)).
Then, by Condition (C1), we have

lim
θ→0+

∣

∣

∣

1

θ2

∫ τ+θ

τ

E

〈

S(t)

∫ t

τ

bx(s)Φ(s)ds ·
∫ t

τ

Φ(s)−1σu(s)(v − ū(s))dW (s), v − ū(t)
〉

dt
∣

∣

∣

≤ lim
θ→0+

C

θ2

∫ τ+θ

τ

E

∣

∣

∣
S(t)

∫ t

τ

bx(s)Φ(s)ds

∫ t

τ

Φ(s)−1σu(s)(v − ū(s))dW (s)
∣

∣

∣
dt

≤ lim
θ→0+

C

θ2

∫ τ+θ

τ

{[

E
∣

∣S(t)
∣

∣

2
]

1
2 ·

[

E

∣

∣

∣

∫ t

τ

bx(s)Φ(s)ds
∣

∣

∣

4] 1
4 ·

[

E

∣

∣

∣

∫ t

τ

[

Φ(s)−1σu(s)(v − ū(s))
]

dW (s)
∣

∣

∣

4] 1
4
}

dt

≤ lim
θ→0+

C

θ2

∫ τ+θ

τ

{[

E
∣

∣S(t)
∣

∣

2
]

1
2 ·

[

E

∣

∣

∣

∫ t

τ

bx(s)Φ(s)ds
∣

∣

∣

4] 1
4 ·

[

E

(

∫ t

τ

∣

∣Φ(s)−1σu(s)(v − ū(s))
∣

∣

2
ds
)2] 1

4
}

dt
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≤ lim
θ→0+

C

θ2

∫ τ+θ

τ

(t− τ)
3
2

[

E
∣

∣S(t)
∣

∣

2
]

1
2

dt

= 0, a.e. τ ∈ [0, T ).

This implies that

lim
θ→0+

1

θ2

∫ τ+θ

τ

E

〈

S(t)

∫ t

τ

bx(s)Φ(s)ds ·(4.9)

∫ t

τ

Φ(s)−1σu(s)(v − ū(s))dW (s), v − ū(t)
〉

dt

= 0 a.e. τ ∈ [0, T ).

Furthermore, since

lim
θ→0+

1

θ2

∫ τ+θ

τ

E

〈

S(t)

∫ t

τ

σx(s)Φ(s)dW (s) ·
∫ t

τ

Φ(s)−1σu(s)(v − ū(s))dW (s), v − ū(t)
〉

dt

= lim
θ→0+

1

θ2

∫ τ+θ

τ

E

〈

∫ t

τ

σx(s)Φ(s)dW (s)

∫ t

τ

Φ(s)−1σu(s)(v − ū(s))dW (s),

S(t)⊤
(

v − ū(t)
)

− S(τ)⊤
(

v − ū(τ)
)

〉

dt

+ lim
θ→0+

1

θ2

∫ τ+θ

τ

E

〈

S(τ)

∫ t

τ

σx(s)Φ(s)dW (s) ·
∫ t

τ

Φ(s)−1σu(s)(v − ū(s))dW (s), v − ū(τ)
〉

dt,

and

lim
θ→0+

1

θ2

∣

∣

∣

∫ τ+θ

τ

E

〈

∫ t

τ

σx(s)Φ(s)dW (s)

∫ t

τ

Φ(s)−1σu(s)(v − ū(s))dW (s),

S(t)⊤
(

v − ū(t)
)

− S(τ)⊤
(

v − ū(τ)
)

〉

dt
∣

∣

∣

≤ lim
θ→0+

1

θ2

∫ τ+θ

τ

[

E

∣

∣

∣

∫ t

τ

∣

∣σx(s)Φ(s)
∣

∣

∣

2

ds
∣

∣

∣

2] 1
4 ·

[

E

∣

∣

∣

∫ t

τ

∣

∣Φ(s)−1σu(s)(v − ū(s))
∣

∣

2
ds
∣

∣

∣

2] 1
4 ·

[

E
∣

∣S(t)⊤
(

v − ū(t)
)

− S(τ)⊤
(

v − ū(τ)
)∣

∣

2
]

1
2

dt

≤ lim
θ→0+

C

θ
1
2

[

∫ τ+θ

τ

E
∣

∣S(t)⊤
(

v − ū(t)
)

− S(τ)⊤
(

v − ū(τ)
)∣

∣

2
dt
]

1
2

= 0, a.e. τ ∈ [0, T ),

then, by Lemma 4.1, we have,

lim
θ→0+

1

θ2

∫ τ+θ

τ

E

〈

S(t)

∫ t

τ

σx(s)Φ(s)dW (s) ·(4.10)
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∫ t

τ

Φ(s)−1σu(s)(v − ū(s))dW (s), v − ū(t)
〉

dt

= lim
θ→0+

1

θ2

∫ τ+θ

τ

E

〈

S(τ)

∫ t

τ

σx(s)σu(s)(v − ū(s))ds, v − ū(τ)
〉

dt

=
1

2
E 〈S(τ)σx(τ)σu(τ)(v − ū(τ)), v − ū(τ)〉 , a.e. τ ∈ [0, T ).

Therefore, by (4.7)–(4.10), we have, for a.e. τ ∈ [0, T ),

lim sup
θ→0+

1

θ2
E

∫ τ+θ

τ

〈

S(t)Φ(t)

∫ t

τ

Φ(s)−1σu(s)(v − ū(s))dW (s), v − ū(t)
〉

dt(4.11)

=
1

2
∂+
τ

(

S(τ)⊤(v − ū(τ)), σu(τ)(v − ū(τ))
)

+
1

2
E 〈S(τ)σx(τ)σu(τ)(v − ū(τ)), v − ū(τ)〉 .

Finally, by (4.5), (4.6) and (4.11), we obtain that

0 ≥ lim sup
θ→0+

1

θ2
E

∫ τ+θ

τ

〈S(t)y1(t), v − ū(t)〉 dt

=
1

2
E
〈

S(τ)
(

bu(τ)− σx(τ)σu(τ)
)

(v − ū(τ)), v − ū(τ)
〉

+
1

2
∂+
τ

(

S(τ)⊤(v − ū(τ)), σu(τ)(v − ū(τ))
)

+
1

2
E 〈S(τ)σx(τ)σu(τ)(v − ū(τ)), v − ū(τ)〉

=
1

2
E 〈S(τ)bu(τ)(v − ū(τ)), v − ū(τ)〉

+
1

2
∂+
τ

(

S(τ)⊤(v − ū(τ)), σu(τ)(v − ū(τ))
)

, a.e. τ ∈ [0, T ),

which gives (3.27). This completes the proof of Theorem 3.8.

4.2. Proof of Theorem 3.9. SinceW (·) is a continuous stochastic process, Ft is
countably generated for any t ∈ [0, T ]. Hence, one can fined a sequence {Al}∞l=1 ⊂ Ft

such that for any A ∈ Ft, there exists a subsequence {Aln}∞n=1 ⊂ {Al}∞l=1 such that
limn→∞ P (A∆Aln) = 0, where A∆Aln = (A \ Aln)

⋃

(Aln \ A). Ft is also said to be
generated by the sequence {Al}∞l=1.

Denote by {ti}∞i=1 the sequence of rational numbers in [0, T ), by {vk}∞k=1 a dense
subset of U . As in [12, 19], we choose {Aij}∞j=1(⊂ Fti) to be a sequence generating
Fti (for each i ∈ N). Fix i, j, k ∈ N arbitrarily. For any τ ∈ [ti, T ) and θ ∈ (0, T − τ),
write Ei

θ = [τ, τ + θ), and define

uk
ij(t, ω) =

{

vk, (t, ω) ∈ Ei
θ ×Aij ,

ū(t, ω), (t, ω) ∈
(

[0, T ]× Ω
)

\
(

Ei
θ ×Aij

)

.

Clearly, uk
ij(·) ∈ Uad. Choosing a “test” function v(·) in (3.17) as

vkij(t, ω) = uk
ij(t, ω)− ū(t, ω) =

(

vk − ū(t, ω)
)

χAij
(ω)χEi

θ
(t), (t, ω) ∈ [0, T ]× Ω,

we obtain that

E

∫ τ+θ

τ

〈

S(t)ykij(t), v
k − ū(t)

〉

χAij
(ω)dt ≤ 0,(4.12)
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where ykij(·) is the solution to the variational equation (3.2) with v(·) replaced by

vkij(·). By (3.20),

ykij(t) = Φ(t)

∫ t

0

Φ(s)−1
(

bu(s)− σx(s)σu(s)
)(

vk − ū(s)
)

χEi
θ
(s)χAij

(ω)ds(4.13)

+Φ(t)

∫ t

0

Φ(s)−1σu(s)
(

vk − ū(s)
)

χEi
θ
(s)χAij

(ω)dW (s).

Substituting (4.13) into (4.12), we have

0 ≥ 1

θ2
E

∫ τ+θ

τ

〈

S(t)Φ(t)

∫ t

τ

[

Φ(s)−1
(

bu(s)− σx(s)σu(s)
)

·(4.14)

(vk − ū(s))χAij
(ω)

]

ds, vk − ū(t)
〉

χAij
(ω)dt

+
1

θ2
E

∫ τ+θ

τ

〈

S(t)Φ(t)

∫ t

τ

[

Φ(s)−1σu(s) ·

(vk − ū(s))χAij
(ω)

]

dW (s), vk − ū(t)
〉

χAij
(ω)dt.

By Lemma 4.1, it is immediate that for a.e. τ ∈ [ti, T ),

lim
θ→0+

1

θ2
E

∫ τ+θ

τ

〈

S(t)Φ(t)

∫ t

τ

[

Φ(s)−1
(

bu(s)− σx(s)σu(s)
)

·

(vk − ū(s))χAij
(ω)

]

ds, vk − ū(t)
〉

χAij
(ω)dt(4.15)

=
1

2
E

[

〈

S(τ)
(

bu(τ) − σx(τ)σu(τ)
)

(vk − ū(τ)), vk − ū(τ)
〉

χAij
(ω)

]

.

Next, we prove that there exists a sequence {θn}∞n=1 such that θn → 0+ as n → ∞
and

lim
n→∞

1

θ2n
E

∫ τ+θn

τ

〈

S(t)Φ(t)

∫ t

τ

[

Φ(s)−1σu(s) ·(4.16)

(vk − ū(s))χAij
(ω)

]

dW (s), vk − ū(t)
〉

χAij
(ω)dt

=
1

2
E

[

〈

∇S(τ)σu(τ)(v
k − ū(τ)), vk − ū(τ)

〉

χAij
(ω)

]

−1

2
E

[

〈

S(τ)σu(τ)(v
k − ū(τ)),∇ū(τ)

〉

χAij
(ω)

]

+
1

2
E

[

〈

S(τ)σx(τ)σu(τ)(v
k − ū(τ)), vk − ū(τ)

〉

χAij
(ω)

]

, a.e. τ ∈ [ti, T ).

By (3.21),

1

θ2

∫ τ+θ

τ

E

{〈

S(t)Φ(t)

∫ t

τ

[

Φ(s)−1σu(s) ·(4.17)

(vk − ū(s))χAij
(ω)

]

dW (s), vk − ū(t)
〉

χAij
(ω)

}

dt

=
1

θ2

∫ τ+θ

τ

E

{〈

S(t)Φ(τ)

∫ t

τ

[

Φ(s)−1σu(s) ·
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(vk − ū(s))χAij
(ω)

]

dW (s), vk − ū(t)
〉

χAij
(ω)

}

dt

+
1

θ2

∫ τ+θ

τ

E

{〈

S(t)

∫ t

τ

bx(s)Φ(s)ds

∫ t

τ

[

Φ(s)−1σu(s) ·

(vk − ū(s))χAij
(ω)

]

dW (s), vk − ū(t)
〉

χAij
(ω)

}

dt

+
1

θ2

∫ τ+θ

τ

E

{〈

S(t)

∫ t

τ

σx(s)Φ(s)dW (s)

∫ t

τ

[

Φ(s)−1σu(s) ·

(vk − ū(s))χAij
(ω)

]

dW (s), vk − ū(t)
〉

χAij
(ω)

}

dt.

Therefore, we can divide the computation for the left hand side of (4.16) into three
parts.

Similar to respectively (4.9) and (4.10) (in the proof of Theorem 3.8), we get that

lim
θ→0+

1

θ2

∫ τ+θ

τ

E

{〈

S(t)

∫ t

τ

bx(s)Φ(s)ds

∫ t

τ

[

Φ(s)−1σu(s) ·(4.18)

(vk − ū(s))χAij
(ω)

]

dW (s), vk − ū(t)
〉

χAij
(ω)

}

dt

= 0, a.e. τ ∈ [ti, T ),

and

lim
θ→0+

1

θ2

∫ τ+θ

τ

E

{〈

S(t)

∫ t

τ

σx(s)Φ(s)dW (s)

∫ t

τ

[

Φ(s)−1σu(s) ·(4.19)

(vk − ū(s))χAij
(ω)

]

dW (s), vk − ū(t)
〉

χAij
(ω)

}

dt

=
1

2
E

[

〈

S(τ)σx(τ)σu(τ)(v
k − ū(τ), vk − ū(τ)

〉

χAij
(ω)

]

, a.e. τ ∈ [ti, T ).

It remains to prove that there exists a sequence {θn}∞n=1 such that θn → 0+ as
n → ∞ and

lim
n→∞

1

θ2n

∫ τ+θn

τ

E

{〈

S(t)Φ(τ)

∫ t

τ

[

Φ(s)−1σu(s) ·(4.20)

(vk − ū(s))χAij
(ω)

]

dW (s), vk − ū(t)
〉

χAij
(ω)

}

dt

=
1

2
E

[

〈

∇S(τ)σu(τ)(v
k − ū(τ)), vk − ū(τ)

〉

χAij
(ω)

]

−1

2
E

[

〈

S(τ)σu(τ)(v
k − ū(τ)),∇ū(τ)

〉

χAij
(ω)

]

, a.e. τ ∈ [ti, T ).

By the boundness of U and the regularity assumption (C3), it holds that

S(·)⊤(vk − ū(·)) ∈ L
1,2
F

(Rn) ∩ L∞([0, T ]× Ω;Rn),

Then, by the Clark-Ocone formula, for a.e. t ∈ [0, T ],

S(t)⊤(vk − ū(t)) = E

[

S(t)⊤(vk − ū(t))
]

+

∫ t

0

E

[

Ds

(

S(t)⊤(vk − ū(t))
)

∣

∣

∣
Fs

]

dW (s).(4.21)
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Substituting (4.21) into the first term of the right hand of (4.17), we obtain that

1

θ2

∫ τ+θ

τ

E

{〈

S(t)Φ(τ)

∫ t

τ

[

Φ(s)−1σu(s)(4.22)

(vk − ū(s))χAij
(ω)

]

dW (s), vk − ū(t)
〉

χAij
(ω)

}

dt

=
1

θ2

∫ τ+θ

τ

E

{〈

∫ t

τ

Φ(τ)Φ(s)−1σu(s)(v
k − ū(s))χAij

(ω)dW (s),

E
[

S(t)⊤(vk − ū(t))
]

〉

χAij
(ω)

}

dt

+
1

θ2

∫ τ+θ

τ

E

{〈

∫ t

τ

Φ(τ)Φ(s)−1σu(s)(v
k − ū(s))χAij

(ω)dW (s),

∫ t

0

E

[

Ds

(

S(t)⊤(vk − ū(t))
)

∣

∣

∣
Fs

]

dW (s)
〉

χAij
(ω)

}

dt

=
1

θ2

∫ τ+θ

τ

∫ t

τ

E

[〈

Φ(τ)Φ(s)−1σu(s)(v
k − ū(s)),

Ds

(

S(t)⊤(vk − ū(t))
)

〉

χAij
(ω)

]

dsdt.

The last equality in (4.22) follows from the fact that Aij ∈ Fti ⊂ Fτ and

E

{〈

∫ t

τ

Φ(τ)Φ(s)−1σu(s)(v
k − ū(s))χAij

(ω)dW (s),

∫ t

0

E

[

Ds

(

S(t)⊤(vk − ū(t))
)

∣

∣

∣
Fs

]

dW (s)
〉

χAij
(ω)

}

= E

{

χAij
(ω)E

(〈

∫ t

τ

Φ(τ)Φ(s)−1σu(s)(v
k − ū(s))χAij

(ω)dW (s),

∫ t

τ

E

[

Ds

(

S(t)⊤(vk − ū(t))
)

∣

∣

∣
Fs

]

dW (s)
〉 ∣

∣

∣
Fτ

)}

= E

{

χAij
(ω)E

(

∫ t

τ

〈

Φ(τ)Φ(s)−1σu(s)(v
k − ū(s))χAij

(ω),

E

[

Ds

(

S(t)⊤(vk − ū(t))
)

∣

∣

∣
Fs

]〉

ds
∣

∣

∣
Fτ

)}

= E

∫ t

τ

〈

Φ(τ)Φ(s)−1σu(s)(v
k − ū(s))χAij

(ω),

E

[

Ds

(

S(t)⊤(vk − ū(t))
)

∣

∣

∣
Fs

]〉

χAij
(ω)ds

=

∫ t

τ

E

[〈

Φ(τ)Φ(s)−1σu(s)(v
k − ū(s)),Ds

(

S(t)⊤(vk − ū(t))
)

〉

χAij
(ω)

]

ds.

Note that

Ds

(

S(t)⊤(vk − ū(t))
)

= DsS(t)
⊤(vk − ū(t))− S(t)⊤Dsū(t).

We have,

1

θ2

∫ τ+θ

τ

∫ t

τ

E

[〈

Φ(τ)Φ(s)−1σu(s)(v
k − ū(s)),(4.23)
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Ds

(

S(t)⊤(vk − ū(t))
)

〉

χAij
(ω)

]

dsdt

=
1

θ2

∫ τ+θ

τ

∫ t

τ

E

[〈

Φ(τ)Φ(s)−1σu(s)(v
k − ū(s)),

DsS(t)
⊤(vk − ū(t))

〉

χAij
(ω)

]

dsdt

− 1

θ2

∫ τ+θ

τ

∫ t

τ

E

[

〈

Φ(τ)Φ(s)−1σu(s)(v
k − ū(s)), S(t)⊤Dsū(t)

〉

χAij
(ω)

]

dsdt.

For the first part in the right hand side of (4.23),

1

θ2

∫ τ+θ

τ

∫ t

τ

E

[〈

Φ(τ)Φ(s)−1σu(s)(v
k − ū(s)),(4.24)

DsS(t)
⊤(vk − ū(t))

〉

χAij
(ω)

]

dsdt

=
1

θ2

∫ τ+θ

τ

∫ t

τ

E

[〈

Φ(τ)Φ(s)−1σu(s)(v
k − ū(s)),

(

DsS(t) −∇S(s)
)⊤

(vk − ū(t))
〉

χAij
(ω)

]

dsdt

+
1

θ2

∫ τ+θ

τ

∫ t

τ

E

[〈

Φ(τ)Φ(s)−1σu(s)(v
k − ū(s)),

∇S(s)⊤(vk − ū(t))
〉

χAij
(ω)

]

dsdt.

Since

∣

∣

∣

1

θ2

∫ τ+θ

τ

∫ t

τ

E

[〈

Φ(τ)Φ(s)−1σu(s)(v
k − ū(s)),

(

DsS(t)−∇S(s)
)⊤

(vk − ū(t))
〉

χAij
(ω)

]

dsdt
∣

∣

∣

≤ C

θ2

∫ τ+θ

τ

∫ t

τ

E

[

∣

∣Φ(τ)Φ(s)−1σu(s)(v
k − ū(s))

∣

∣ ·
∣

∣DsS(t)−∇S(s)
∣

∣

]

dsdt

≤ C

θ

[

E

(

sup
s∈[τ,T ]

|Φ(τ)Φ(s)−1|2
)]

1
2 ·

[

E

∫ τ+θ

τ

∫ t

τ

∣

∣

∣
DsS(t) −∇S(s)

∣

∣

∣

2

dsdt
]

1
2

≤ C

θ

[

E

∫ τ+θ

τ

∫ t

τ

∣

∣

∣
DsS(t)−∇S(s)

∣

∣

∣

2

dsdt
]

1
2

,

by Lemma 2.1, there exists a sequence {θn}∞n=1 such that θn → 0+ as n → ∞ and

lim
n→∞

1

θ2n

∫ τ+θn

τ

∫ t

τ

E

[〈

Φ(τ)Φ(s)−1σu(s)(v
k − ū(s)),(4.25)

(

DsS(t)−∇S(s)
)⊤

(vk − ū(t))
〉

χAij
(ω)

]

dsdt

= 0 a.e.τ ∈ [0, T ).

For the second part in the right hand side of (4.24), by Lemma 4.1 it follows that

lim
θ→0+

1

θ2

∫ τ+θ

τ

∫ t

τ

E

[〈

Φ(τ)Φ(s)−1σu(s)(v
k − ū(s)),(4.26)
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∇S(s)⊤(vk − ū(t))
〉

χAij
(ω)

]

dsdt

=
1

2
E

[

〈

∇S(τ)σu(τ)(v
k − ū(τ)), vk − ū(τ)

〉

χAij
(ω)

]

, a.e. τ ∈ [ti, T ).

Therefore, by (4.24)–(4.26), we conclude that

lim
n→∞

1

θ2n

∫ τ+θn

τ

∫ t

τ

E

[〈

Φ(τ)Φ(s)−1σu(s)(v
k − ū(s)),(4.27)

DsS(t)
⊤(vk − ū(t))

〉

χAij
(ω)

]

dsdt

=
1

2
E

[

〈

∇S(τ)σu(τ)(v
k − ū(τ)), vk − ū(τ)

〉

χAij

]

, a.e. τ ∈ [ti, T ).

In a similar way, we can prove that there exists a subsequence {θnl
}∞l=1 of {θn}∞n=1

such that

lim
l→∞

1

θ2nl

∫ τ+θnl

τ

∫ t

τ

E

[

〈

Φ(τ)Φ(s)−1σu(s)(v
k − ū(s)), S(t)⊤Dsū(t)

〉

χAij
(ω)

]

dsdt

=
1

2
E

[

〈

S(τ)σu(τ)(v
k − ū(τ)),∇ū(τ)

〉

χAij
(ω)

]

, a.e. τ ∈ [ti, T ).

To simplify the notation, we assume that the above {θnl
}∞l=1 is {θn}∞n=1 itself, that is

lim
n→∞

1

θ2n

∫ τ+θn

τ

∫ t

τ

E

[

〈

Φ(τ)Φ(s)−1σu(s)(v
k − ū(s)), S(t)⊤Dsū(t)

〉

χAij
(ω)

]

dsdt

=
1

2
E

[

〈

S(τ)σu(τ)(v
k − ū(τ)),∇ū(τ)

〉

χAij
(ω)

]

, a.e. τ ∈ [ti, T ).

(4.28)

Combining (4.22), (4.23), (4.27) and (4.28), we obtain (4.20). Then, by (4.17)–
(4.20), we obtain (4.16).

Finally, by (4.14), (4.15) and (4.16) we conclude that, for any i, j, k ∈ N, there
exists a Lebesgue measurable set Ek

i,j ⊂ [ti, T ) with |Ek
i,j | = 0 such that

0 ≥ 1

2
E

[

〈

S(τ)bu(τ)(v
k − ū(τ)), vk − ū(τ)

〉

χAij
(ω)

]

(4.29)

+
1

2
E

[

〈

∇S(τ)σu(τ)(v
k − ū(τ)), vk − ū(τ)

〉

χAij
(ω)

]

−1

2
E

[

〈

S(τ)σu(τ)(v
k − ū(τ)),∇ū(τ)

〉

χAij
(ω)

]

, ∀ τ ∈ [ti, T ) \ Ek
i,j .

Let E0 =
⋃

i,j,k∈N
Ek

i,j , then |E0| = 0, and for any i, j, k ∈ N,

E

[

〈

S(τ)bu(τ)(v
k − ū(τ)), vk − ū(τ)

〉

χAij
(ω)

]

+E

[

〈

∇S(τ)σu(τ)(v
k − ū(τ)), vk − ū(τ)

〉

χAij
(ω)

]

−E

[

〈

S(τ)σu(τ)(v
k − ū(τ)),∇ū(τ)

〉

χAij
(ω)

]

≤ 0, ∀ τ ∈ [ti, T ) \ E0.
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By the construction of {Aij}∞i=1, the continuity of the filter F and the density of
{vk}∞k=1, we conclude that

〈S(τ)bu(τ)(v − ū(τ)), v − ū(τ)〉
+ 〈∇S(τ)σu(τ)(v − ū(τ)), v − ū(τ)〉
− 〈S(τ)σu(τ)(v − ū(τ)),∇ū(τ)〉

≤ 0, a.s., ∀ (τ, v) ∈ ([0, T ] \ E0)× U.

This completes the proof of Theorem 3.9.
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