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POINTWISE SECOND-ORDER NECESSARY CONDITIONS FOR
STOCHASTIC OPTIMAL CONTROLS, PART I: THE CASE OF
CONVEX CONTROL CONSTRAINT*

HAISEN ZHANG! AND XU ZHANGH

Abstract. This paper is the first part of our series work to establish pointwise second-order
necessary conditions for stochastic optimal controls. In this part, both drift and diffusion terms may
contain the control variable but the control region is assumed to be convex. Under some assumptions
in terms of Malliavin calculus, we establish the desired necessary condition for stochastic singular
optimal controls in the classical sense.
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1. Introduction. Let T' > 0 and (9, F,F, P) be a complete filtered probability
space (satisfying the usual conditions), on which a 1-dimensional standard Wiener
process W(-) is defined such that F = {F;}o<i<7 is the natural filtration generated
by W (-) (augmented by all of the P-null sets).

In this paper, we shall consider the following controlled stochastic differential
equation

(1.1)

{ dz(t) = b(t, x(t), u(t))dt + o(t,x(t), u(t))dW(t), te][0,T],
z(0) = wo,

with a cost functional

(1.2) J(u() = E[/O (b, (e) u(®)dt + h(a(T))].

Here u(-) is the control variable valued in a set U C R™ (for some m € N), x(-) is the
state variable valued in R™ (for some n € N), and b,0 : [0,T] x R" x U x Q — R",
F:0,T]xR"x U xQ— Rand h:R"xQ — R are given functions (satisfying some
conditions to be given later). As usual, when the context is clear, we omit the w(€ Q)
argument in the defined functions.

Denote by B(X) the Borel o-field of a metric space X, and by U,q the set of
B([0,T]) ® F-measurable and F-adapted stochastic processes valued in U. Any u(-) €
U,q is called an admissible control. The stochastic optimal control problem considered
in this paper is to find a control @(-) € U,q such that

(1.3) J(u() = u(_i)relaad J(u(-).

Any u(-) € U,q satisfying (1.3) is called an optimal control. The corresponding state
Z(+) (to (1.1)) is called an optimal state, and (Z(-), @(-)) is called an optimal pair.
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In optimal control theory, one of the central topics is to establish the first-order
necessary condition for optimal controls. We refer to [15] for an early study on the
first-order necessary condition for stochastic optimal controls. After that, many au-
thors contributed on this topic, see [2, 3, 12] and references cited therein. Compared
to the deterministic setting, new phenomenon and difficulties appear when the dif-
fusion term of the stochastic control system contains the control variable and the
control region is nonconvex. The corresponding first-order necessary condition for
this general case was established in [18].

For some optimal controls, it may happen that the first-order necessary condi-
tions turn out to be trivial. For deterministic control systems, there are two types
of such optimal controls. One of them, called the singular optimal control in the
classical sense, is the optimal control for which the gradient and the Hessian of the
corresponding Hamiltonian with respect to the control variable vanish/degenerate.
The other one, called the singular optimal control in the sense of Pontryagin-type
maximum principle, is the optimal control for which the corresponding Hamiltonian
is equal to a constant in the control region. When an optimal control is singular, the
first-order necessary condition cannot provide enough information for the theoretical
analysis and numerical computing, and therefore one needs to study the second-order
necessary conditions. In the deterministic setting, one can find many references in
this direction (See [1, 7,9, 10, 11, 13, 14, 16] and references cited therein).

Compared to the deterministic control systems, there are only two papers ([4, 19])
addressed to the second-order necessary condition for stochastic optimal controls.
In [19], a pointwise second-order maximum principle for stochastic singular optimal
controls in the sense of Pontryagin-type maximum principle was established for the
case that the diffusion term o(t,z,u) is independent of the control u; while in [4],
an integral-type second-order necessary condition for stochastic optimal controls was
derived under the assumption that the control region U is convex.

The main purpose of this paper is to establish a pointwise second-order necessary
condition for stochastic optimal controls. In this work, both drift and diffusion terms,
ie, b(t,z,u) and o(t,z,u), may contain the control variable u, and we assume that
the control region U is convex. The key difference between [4] and our work is that
we consider here the pointwise second-order necessary condition, which is easier to be
verified in practical applications. We remark that, quite different from the determin-
istic setting, there exist some essential difficulties to derive the pointwise second-order
necessary condition from an integral-type one when the diffusion term of the control
system contains the control variable, even for the case of convexr control constraint
(See the first 4 paragraphs of Subsection 3.2 for a detailed explanation). We overcome
these difficulties by means of some technique from the Malliavin calculus. The method
developed in this work can be adopted to establish a pointwise second-order necessary
condition for stochastic optimal controls for the general case when the control region
is nonconvex but the analysis is much more complicated, and therefore we shall give
the details in another paper [21].

The rest of this paper is organized as follows. In Section 2, we list some notations,
spaces and preliminary results from Malliavin calculus. In Section 3, we introduce
the main results of this paper and give some examples. Finally, in Section 4 we give
the proofs of the main results.

2. Some preliminaries. In this section, we present some preliminaries.

2.1. Some notations and spaces. We introduce some notations and spaces
which will be used in the sequel.
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Denote by (-, -) and |-| respectively the inner product and norm in R™ or R™, which
can be identified from the contexts. Let R™*™ be the space of all n x m-matrices.
For any A € R"*™_ denote by AT the transpose of A and by |A| = \/tr{AAT} the
norm of A. Also, write 8™ := {A € R"X"‘ AT = A}.

Let ¢ : [0, T]xR"xU xQ — R? be a given function. For a.e. (t,w) € [0,T] %, we
denote by ¢ (t,x,u), p,.(t,x,u) the first order partial derivatives of ¢ with respect
to x and w at (t,2,u,w), by ©(zu)2(t, z,u) the Hessian of ¢ with respect to (z,u)
at (t,x,u,w), and by @ (t, 2,u), ©ru(t, z,u), ouu(t,2,u) the second order partial
derivatives of ¢ with respect to  and u at (¢, z, u,w).

For any o, € [1,400) and t € [0,T], we denote by L% (©; R™) the space of
R™-valued, F; measurable random variables ¢ such that E [£]# < +o0; by L?(]0,T] x
Q; R™) the space of R™-valued, B([0, T'])® F-measurable processes ¢ such that |||/ :=
[E fOT |<p(t)|6dt]% < +o0; by LE(Q; L*(0, T;R™)) the space of R™-valued, B([0,T]) ®

5.1
F-measurable, F-adapted processes ¢ such that ||¢[a,s = [E (fOT l(t)|*dt) |7 <

+0o0; by Lﬁf(Q; C(]0,T]; R™)) the space of R"-valued, 5([0, T]) ® F-measurable, and F-
1
adapted continuous processes ¢ such that [|¢]|sc,s := [E (SUPte[o,T] lp(t)P)] 7 < +o0,
by L>([0,T] x Q;R™) the space of R"-valued, B([0,T]) ® F-measurable processes ¢
such that [[¢lles = ess supy , (0 1x0lP(t;w)| < +00; and by LB(O,T;LE@([O,T] X
Q;R™)) the R"-valued, B([0,T]) ® B([0,T]) ® F measurable functions ¢ such that for
1
any t € [0,7], o(-,t) is F-adapted and [|p||s := [E fOT fOT |<p(s,t)|ﬁdsdt} " < 4o

2.2. Some concepts and results from Malliavin calculus. In this sub-
section, we recall some concepts and results from Malliavin calculus (See [17] for a
detailed discussion on this topic).

Denote by Cg°(R%R™) the set of C*-smooth functions with bounded partial

derivatives. For any h € L2(0,T), write W (h) = [ h(t)dW (t). Define

S = {C = @(W(hl)v W(h2)7 ) W(hd)) ‘ pe CZ?O(Rd7Rn)7 de N,

2.1
( ) hl;hQa"'vh’deLQ(OaT)}'

Clearly, S is a linear subspace of L%—T (;R™). For any ¢ € S (in the form of that in
(2.1)), its Malliavin derivative is defined as follows:

d
Iy
D= h W(hi), W(ha), -, W(ha)), 0,7).
= 3o g W), W) (ha)), s € [0.T]
Write
T 3
el = [B 1P +E [ Ducias] "
0
Obviously, ||| ]|z is @ norm on S. It is shown in [17] that the operator D has a closed
extension to the space D'?(R™), the completion of S with respect to the norm ||| - |||z

When ¢ € DV2(R™), the following Clark-Ocone representation formula holds:

T
(2.2) ¢(=E C+/O E (DsC | Fs)dW (s).

Furthermore, if ¢ is Fi-measurable, then D¢ = 0 for any s € (¢, T).
Define L1?(R") to be the space of processes ¢ € L([0,7] x Q;R") such that
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(i) For a.e. t € [0,T], o(t,-) € DM2(R™);
(ii) The function Dsp(t,w) : [0,T] x [0,T] x @ — R™ admits a measurable version;
and

T T T %
i) Wiellle = [E [ lotPa+E [ [ pptoPasat]” < o

Denote by Ly®(R™) the set of all adapted processes in L12(R™).
In addition, write

LY (R™) = {30(-) e LY2(R™)| 3 Dt y() € L2([0,T] x Q; R™) such that

fe(s) := sup B |Dyp(t) — ’D+cp(s)‘2 < o0, a.e. s € [0,T],
s<t<(s+e)AT

T
fe(+) is measurable on [0,T] for any € > 0, and lim / fe(s)ds = O};
0

e—0t

Ly?(R") := {o() € L"*(R")

3D () € L*([0,T] x ©;R™) such that

9:(8) == sup B |Dsp(t) — D_go(s)|2 < 00, a.e. s € [0,T],
(s—e)VO<t<s
T
g=(+) is measurable on [0, T] for any € > 0, and lim g=(s)ds = 0}.
e—0t 0

Denote
Ly*(R™) = L2 (R™) N Ly%(R™).

For any ¢(-) € Ly?(R™), denote Vip(-) = DT p(-) + D~ (-).

When ¢ is adapted, Dyp(t) = 0 for any ¢t < s. In this case, D~ p(-) = 0, and
V() = Dt y(). Denote by L;:]%(R") the set of all adapted processes in Lj*(R™).

Roughly speaking, an element ¢ € L;’2(R") is a stochastic process whose Malli-
avin derivative has suitable continuity on some neighbourhood of {(¢,¢) | t € [0,T]}.
Examples of such process can be found in [17]. Especially, if (s,t) — Dsp(t) is con-
tinuous from Vs := {(s,t)| [s —t| < 4, s,t € [0,T]} (for some § > 0) to L% (;R™),
then ¢ € Ly?(R") and, DT o(t) = D~ (t) = Dyp(t).

To end this section, we show the following technical result which will be use in
the sequel.

LEMMA 2.1. Let ¢(-) € L;:?F(R”). Then, there exists a sequence {0,}°2, of
positive numbers such that 8,, — 0% as n — oo and

1 T+6, t
(23)  lim 9—2/ / E |Dyp(t) — Vip(s)|*dsdt = 0, a.e. 7 € [0,T].
Proof. For any 7,6 € [0,00), we take the convention that
2

sup E|D-¢(t) = Vo(r)|" =0
te|r,7+0]N[0,T]

whenever [7,7+ 0] N [0,T] = 0. From the definition of L;:]%(Rm), it follows that

1 T T4+6 t 9
lim / / / E|Dsp(t) — V(s)| dsdtdr
0 T T

0—0+ 02
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T+6
0%0+ 92/ / / E|Ds<p — V(s | dtdsdr

9£%1+5/3 /T Le[s,sil;?ﬂ[o, ]E|DS@ Vel )‘ }deT

1 /T 0.
< lim —/ / sup E|Dsiro(t) — V(s + 7')‘2} dsdr
0—0+ 6 Jo Jo Liclstrstrt0)n[0,T]
1 70 (T )
< lim —/ / sup E|Dyyrp(t) — V(s +7)| }des
0—0+ 0 Jo Jo Liclstrstr+0)n[0,7]
10 T )
< lim —/ / sup E|D-p(t) — Vo(7)| }des
0—0+ 6 Jo Js Lieprrrono,1)
1 0 T - 2
< lim —/ / sup E|D-¢(t) — Vo (7)| }des
6—0t 0 Jo Jo Licirrroino,1]

sup E}DTgo(t) — ch(T)ﬂ dr

A Le[r,r+e}m[o,T]

:0,

which implies (2.3). O

3. Second-order necessary conditions. In this section, we shall present sev-
eral second-order necessary conditions for stochastic optimal controls.
To begin with, we assume that

(C1) The
(C2) The
(i)

(i)

control region U is nonempty, bounded, and convex.

functions b, o, f, and h satisfy the following:

For any (x,u) € R"x U, the stochastic processes b(-,x,u) : [0,T]xQ —
R™ and o(-,z,u) : [0,T] x @ = R™ are B([0,T]) ® F-measurable and
F-adapted. For a.e. (t,w) € [0, T]|xQ, the functions b(t,-,-) : R*"xU —
R™ and o(t,-,-) : R™ x U — R" are continuously differentiable up to
order 2, and all of their partial derivatives are uniformly bounded (with
respect to (t,w) € [0,T] x Q). There exists a constant L > 0 such that
for a.e. (t,w) €1[0,T] x Q and for any x, T € R™ and u, & € U,

Ib(t,0,u)| +|o(t,0,u)| < L,
|b(m,u)2 (t,x,u) - b(LE ) (t z, )

| < Llz — 2| + [u —al),
|U(1,u)2(t7$7u)_o'(mu ( I )|

<
< L(lz — 2] + [u — al).

For any (z,u) € R"xU, the stochastic process f(-,z,u) : [0,T]xQ — R
is B([0, T])®F -measurable and F-adapted, and the random variable h(x)
is Fr-measurable. For a.e. (t,w) € [0,T] x Q, the functions f(t,-,-) :
R" x U = R and h(-) : R™ = R are continuously differentiable up to
order 2, and for any x, T € R"™ and u, u € U,

[f(t,2,u)] < L1+ [f? + [ul?),

|fa(t, 2, u)| + | fu(t, 2, u)| < L1+ [2] + |ul),

| few(t 2 w)| + | fou(t, 2, u)| + | fuu(t, 7, u)| < L,
|f(m,u)2(t7$7u) - f(m,u)2(tvjaﬁ)| < L(|‘T - 57| + |u - ﬁDa
(@) < L1+ |2]?), |ha(z)] < L1+ |z]),

|haw ()] < L, |hge(2) — heo ()] < Lz — 2.
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When the condition (C2) is satisfied, the state x(-) (of (1.1)) is uniquely defined
by any given initial datum zy € R"™ and admissible control u(-) € U,q, and the
cost functional (1.2) is well-defined on U,q. In what follows, C' represents a generic
constant, depending on 7" and L, but independent of any other parameter, which can
be different from line to line.

3.1. Integral-type second-order conditions. Let (Z(-),a(-)) be an optimal
pair, and u(-) € Uyq be any given admissible control. Let € € (0, 1), and write

(3.1) v() =ul) —ul),  w() =u()+ev().
Since U is convex, u®(-) € Ugq. Denote by 2°(-) the state of (1.1) with respect to the
control u°(-), and put dz(-) = 2°(-) — Z(-). For ¢ = b, 0, f, denote

(Pw(t) = P (t7 i'(t)v ﬂ(t))v QPU(t) = Spu(tv ‘i'(t)v ﬁ(t)),
Pz (t) = @ua(t, T(1),u(?)), Pru(t) = @au(t, 2(t), u(t)),
Puu(t) = uult, 2(t), a(t)).

First, similar to [4], we introduce the following two variational equations:

dy1 (1) = [bz )y (1) + bu(t)v(t)] dt
(3:2) +[am(t)y1(t)+au(t)v(t)}dW(t), te 0,7,
y1(0) =0
and
dya(t) = (b (OY2(8) +91(8) T (1 (1) + 20(8) b (11 (1)
(3.3) +0() b (0(0)]dt + [00(Dy2(8) + 11(0) 02 (B (1)
+20(0) 0w (O (1) + v(1) T o (V) | W (D), e [0,T),
y2(0) = 0.

By (3.2)-(3.3) and similar to [4, Lemmas 3.5 and 3.11], one has the following
estimates.

PROPOSITION 3.1. Let (C2) hold. Then, for any k > 2,

191l5e,s <Cs lyellse,s <€ 1025, < Ce”,

2
”6‘T - Eyngo,n < CE2N7 ”6‘T —E&Y1 — _y2Hoo K < C€3N

Proof. The proof is very close to that of [4, Lemmas 3.5 and 3.11], and therefore,
we omit the details. O

Next, define the Hamiltonian
(3.4) H(t,x,u,y1,21) = (y1, b(t, z,w)) + (21, 0(t, x,u)) — f(¢, 2, u),

(t,z,u,y1,21) € [0,T] x R" x U x R™ x R™. We introduce respectively the following
two adjoint equations for (3.2)—(3.3):

dPi(t) = = |b.() Pi(1)

(3.5) o, (T Q1) — fo(t)|dt + Q1 (t)daW (¢), t € [0,T),
P(T) = —h,(2(T))
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and

APy (t) = —|be(t) T Po(t) + Po(t)by(t) + 04 (t) T Po(t) o, (t) + 04 (t) T Qa(t)
(3.6) +Q2(t)oe () + Hm(t)] dt + Q2(t)dW (1), t € 0,77,
P2(T) = _hm(j(T))a

where Hy, (t) = Hyo (¢, T(t), u(t), Pi(t), Q1()).

From [8], it is easy to check that, for any 8 > 1, the equation (3.5) admits
a unique strong solution (P;(-),Q1(-)) € Lg(Q;C([O,T];R”)) X Lg(Q;LQ(O,T;Rn)),
and (3.6) admits a unique strong solution (Pa(:),Q2(+)) € Lg(Q;C([O,T];S")) X
LE(Q; L2(0,T;S™)).

Also, we define

T
(37) S(ta T, u,y1,%1,Y2, 22) = Hmu(tv T, u,y1, Zl) + bu(ta xz, u) Y2
+Uu(ta z, U)TZQ + Uu(ta z, U)TyQUI(ta z, U),

(t,z,u,y1,21,Y2,22) € [0,T] x R* x U x R™ x R"™ x S™ x S™, and denote

(3'8) S(t) = S(tvj(t)va(t)uPl(t)vQl(t)up2(t)vQ2(t))v te [OvT]'

We have the following result.
PROPOSITION 3.2. Let (C1)-(C2) hold. Then, the following variational equality
holds for any u(-) € Uaq:

(3.9) J(u () - J(a())

——EAT%@umwu»+i

5 (Huu(t)v(t), v(t))

82
+ 5 (PaOau(t)olt), ou(B)0(t) + 2 (S(E) (1), 0(0) [ dt + 0(=2), (£ = 0),

where Hy, (t)=H, (t,Z(t),u(t), P1(t), Q1(t)), Hyw(t)=Hyuy(t, Z(t), a(t), P1(t), Q1(t)).
Proof. By (3.1), using Taylor’s formula and Proposition 3.1, similar to [4, Sub-
section 3.2], we have

(3.10) J(u) — J(u)
T 1
= E/ [<fm(t)a dx(t)) + e (ful(t),v(t)) + 3 (fex(t)ox(t), 62(t))
0

82
e (L300, 0(0) + T (Fuu(O0(8), (1)) |
1

+E| (1o (#(1)), 02(T)) + 5 (hao(@(T))2(T), 62(T)) | +0(c?) (e = 07)

T 52
:Eé[dh@wﬁﬁ+5@mmmm+dh@m@>

2
+5 (a1 (0.1 (0) + 2 Fau D1 (1), 0(0) + (FuaDe(t), 0 (1)) ) |t

52

+E [z (ha (3(1)), 11 (1)) + 5 (ha(3(T)), 2(T)

2

+5 (hao (@(T))y1(T), y1(T)) +o(e?), (e —=07).
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By Ito’s formula, we have

(3.11) E (he(2(T)), 12(T)) = —=E (PL(T), 52 (T))

(3.13) E (heo(@(T))y(T), 11(T)) = —E (Po(T)y1(T), y1(T))
T
=B [ [(Pan(2):bule)ole) + (Pa0b000). 11 )
(t)v Oy (t)’l)(t)> + <P2 (t)au (t)’U t)7 Ox (t)yl (t)>
t), ou(t)o(t)) + (Q2(t)ou(t)v(s), y1(t))
Q2(D)y1 (1), ou(t)v(t)) — (Hax(t)y1 (), y1(2)) |dt
T
= _E‘/O {2 <P2 (t)yl (t)7 bu (t)’l)(t)) +2 <P2 (t)am (t)yl (t)v Oy (t)’l)(t)>
+(P(t)ou(t)v(t), ou(t)v(t)) + 2(Q2(t)ou(t)v(s), y1(t))
— (Hyu(H)y1(t), y1 (1)) |dt.

Substituting (3.11), (3.12) and (3.13) into (3.10), we obtain that

O]
[N
/N
7~
o
—
~
—~ ~
[~
—~
~
=
4|
(=
8
<
—
~
=
<
=
— —~
o~
N
T~
(=
—
~
=
[~
—
~
=
S)
8
S
—
~
=
<
=
—
~
=
~
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&_2

5 (B ()ou(t)u(t), ou(t)o(t))
+e2(S(H)yr(t), v(t)) |dt + o(?), (e — 0T).

This completes the proof of Proposition 3.2. O

Now, we establish an integral-type second-order necessary condition for stochastic
optimal controls. Stimulated by [10], we introduce the following notion.

DEFINITION 3.3. We call a control () € Uaq a singular control in the classical
sense if u(-) satisfies

(1), 5(1), Po(1), G
Ho (t,2(t), a(t ,Pl(t) Q

(3.14)
where &(-) is the state with respect to a(-), and (Py(-),Q1(-)) and (
the adjoint processes given respectively by (3.5) and (3.6) with (Z(-), a(-
(@), a(-)).

Remark 3.1. Since the diffusion term o(t,z,u) contains the control variable u,
in order to represent the stochastic mazximum principle, one needs to introduce the
following H-function:

(),Q2() be

2
)) replaced by

Mt 2,u) = Ht,w P2, Ga(0) — 5 { Poo(t, 2(0), 5(0)), o (1, 5(0), (1))
+%<132(t) (o(t,z,u) — o(t, 2(t), a(t)), o(t, z,u) — o(t, 2(t), a(t))).

The stochastic mazimum principle (see [18]) says, if (Z(-),u(:)) is an optimal pair,
then

(3.15) H(t, Z(t),a(t)) = mea[}(’H(t z(t),v), a.s., a.e. te0,T].
A singular control in the classical sense is the one that satisfies trivially the first-

and second-order necessary conditions in optimization theory for the maximization
problem (3.15), i.e.,

Ho(t, 2(t), a(t)) = a.s., a.e. t€[0,T],
(3.16) {’Huu(t F0),0(t) =0, as. ae tel0,T].

It is easy to see that (3.16) is equivalent to (3.14). On the other hand, one can
consider (stochastic) singular optimal controls in other senses, say in the sense of
Pontryagin-type maximum principle. Due to the space limitation, we shall present
our results in this respect elsewhere.

By Proposition 3.2, we obtain the following integral-type second-order necessary
condition.

THEOREM 3.4. Let (C1)-(C2) hold. If u(-) is a singular optimal control in the
classical sense, then

(3.17) E /O Sty (1), 0(0)) dt < 0,

for any v(-) = u(-) — a(), u() € Una.
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Proof. By (3.9) and Definition 3.3, we have

(3.18) 0 < lim J(w) = J(@)

e—0t g2

T
- E / (S(t)yn (), o(t)) dt.

as stated. O

In [4], the authors obtained the following integral-type first- and second-order
necessary conditions for stochastic optimal controls:

THEOREM 3.5. Let (C1)-(C2) hold. If u(-) is an optimal control, then

/ D HO @) dE <0,V w() € dlaa(Ru,(3) 0 LA(Q: L0, T E")).
0

Furthermore, for any w(-) € cly,a(Ru,, (@) NL>([0,T] x Q;R™) N Y (a)) the following
second-order necessary condition holds:

T
B[ (e (00,50 (0) + 2T 01 0,00
(319) -+ {H(tw(t) w(t) |t + E (e (2(T)) (1), (1)) <0
Here,

Ru,, (@) := {au(-) — au(-) ‘ u() € Upg, o > O},

Y(a) = {w(-) € L(Q; L2(0, T; R™)) ‘ /OT (Ho(t), w(t)) dt = o}

and, cla2(A) and cly 4(A) are the closure of a set A under the norms || - |22 and
I - |la,a, respectively.

There are some second-order terms with respect to y1(+) in (3.19). These terms
are eliminated in (3.17) by introducing the second-order adjoint process (Pa(-), Q2(-)).
Note also that, the second-order necessary condition we consider in this paper is for
the singular optimal controls in the classical sense, hence the second order terms
(Hyu (t)v(t),v(t)) and (Pa(t)oy(t)v(t), ou(t)v(t)) appearing in the variational formu-
lation (3.9) do not enter into (3.17).

3.2. Second-order necessary condition in term of martingale represen-
tation. Let us recall that, in order to derive pointwise necessary conditions for opti-
mal controls, one needs to establish first some suitable integral-type necessary condi-
tions. It is well-known that there is no difficulty to establish the pointwise first-order
necessary condition for optimal controls whenever an integral-type one is obtained.
However, the classical method of deriving the pointwise condition from the integral-
type one cannot be used directly to establish the pointwise second-order condition in
the general stochastic setting.

Note that the solution y;(-) to the first variational equation (3.2) appears in
the integral-type second-order condition (3.17). By [20, Theorem 1.6.14, p.47], y1(-)
enjoys an explicit representation:

n(t) = CI)(t)/O ®(s) " (bu(s) — 0 (s)ou(s))v(s)ds

(3.20) +a(1) /0 B(s) " Lou (s)o(s)dW (),



Pointwise second-order necessary conditions 11

where ®(+) is the solution to the following matrix-valued stochastic differential equa-
tion

dP(t) = by (t)P(t)dt + o, (£)P(£)dW (1), te0,T],
(3.21) ®(0) = I

and [ stands for the identity matrix in R™*™. Substituting the explicit representation
(3.20) of y1(-) into (3.17), we see that there will appear a “bad” term of the following
form:

(3.22) E /O ' (s /0 t@(s)*lau(s)u(s)dms),v(t)>dt.

To see (3.22) is “bad”, let us choose 7 € [0,T), v € U, Ep = [1,7 + 0) such
that @ > 0 and 7 4+ 6 < T. Denote by xg,(-) the characteristic function of the set
Ey. As usual, though the control region U is convex, in order to derive a pointwise
second-order necessary condition from the integral one (3.17), people need to choose
the following needle variation for the optimal control a(-):

(3.23) u(t) = { o 0, te[0,7T]\ Ep.

For this u(-), it is clear that v(-) = u(-) —a(-) = (v—2a(-))xg, (-), and (3.22) is reduced
to

(3.24) E/TT+9 <S(t)<1>(t) /Tt B(s) Loy (s) (v — als))dW (s),v — ﬁ(t)>dt.

Since an It6 integral appears in (3.24), we have

1E[+0 (sta) /: @) ous) (v — 0(s))dW ()0 — (1) )t
< [E[H ‘(S(t)@(t)f(v—u(t))fdt]%[E/TTH) /Tt

=0(6%), (6—0").

Because of this, it seems that (3.24) is not an infinitesimal of order 2 but only that
of order 3 with respect to 6 (as 6 — 07).
However, by the properties of It6’s integral, we find that

®(s) Loy (s)(v —u(s)) dsdt} :

7460 t
Jim HLE/ <S(t)<1>(t)/T B(s) L ou(s) (v — als))dW (s),v — ﬁ(t)>dt’
T+6
< Jlim, HLE/ (sWom)" (v-aw) - (SM@() " (v -a(r),

+ lim i]E[H ((sm2() " (v - u(T)),/th)(s)lou(s)(U — ()W (s) ) |

#—0+ 9%

[N

T+0
< lim [E / }(S(t)@(t))T(v —a(t)) - (S(N®(r) " (v —a(r))

= 00+ 03
T4+6 t
=[]

2
®(s) Lo (s) (v — ﬂ(s))‘ dsdt]

=0, a.e.T € [0,T).
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This indicates that, (3.22) is actually a higher order infinitesimal of #2 (as § — 07).

Essentially, the above problem is caused by the It6 integral. Indeed, one cannot
use the Lebesgue differentiation theorem directly to treat the It6 integral appeared
n (3.24). In this subsection, we shall reduce the It6-Lebesgue integral term (3.24) to
a double Lebesgue integral term by means of the property of It6’s integrals and the
martingale representation theorem, and obtain a second-order necessary condition for
singular optimal controls.

We need the following technical result (which should be known but we do not find
an exact reference).

LEMMA 3.6. Let ¢(-) € L2(Q; L?(0,T;R™)). Then, there exists a ¢(-,-) € L*(0,T;
LA([0,T] x ;R™)) such that

t
(3.25) o(t) =Ep(t) +/ (s, t)dW(s), a.s., a.e. t€0,T].
0
Proof. Let {¢;(-)}52, be a sequence in Lg(§2; L*(0,T;R™)) such that

T
IE/ l0i () —p(t)]’dt -0,  asj — oo,
0

where p;(+) = ZkKioﬁfX[thl)(t), K; eNO=ty <t < - <tg;p1=Tisa
partition of [0, 7], and £} € L%_—tk (€ R™).
For any fixed j and k, since 5]]? € L%_—tk (€;R™), by the martingale representation
theorem, there exists a stochastic process ¢%(-) € L3(; L?(0,T; R™)) such that
tr
5;-“ =E f;-“ —l—/o qS;?(s)dW(s), a.s.

Define
K

¢j(57t) = Z(b?(S)X[O,tk](S)X[tk,tk+1)(t)7 (Svt) € [OvT] X [OvT]

k=0

Clearly, ¢;(-) can be represented as

0;i(t) =E p;(t / ¢i(s,t)dW (s), a.s., a.e. t €[0,T].

Consequently, we have

// b;(s,t) ¢m(st dsdt //
:/E’/ 65(5.1) — O (s.)] W (s)|
T

2 T
=/ E |pi(t) — om(t) —E [cpj(t)—som(t)]‘ dt < 4R /
0 0

Since ;(-) converges strongly to ¢(-), {¢;(-,-)}32, is a Cauchy sequence in L*(0,T;
L3([0,T] x Q;R™)). Hence, there exists a ¢(-,-) € L?(0,T; L4([0,T] x Q;R")) such

that
T T
s [
o Jo

i(5,1) — dml(s, t)‘ dsdt

dt

23(1) ~ om(®)] .

2
oi(s,t) — o(s, t)‘ dsdt — 0, as j — oo,
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E /OT’ga(t)—]Egp(t)—/otqﬁ(s,t)dW(s) dt

T
=B [ [e® - 0s0)+ 250 ~E pl)) +E () ~E 0500

/gbstdW /¢Jstdw /qﬁjstdW ‘

SCE/ ’s@( %()‘ dt+C/ ‘Ecp Ewg()‘d

—l—CIE/‘/qutdW /¢7stdW ‘

+O]E/O ‘%-( ~E ;1) /(bjstdW ‘

and

< CE /()T‘gp(t)—cpj(t)‘ dt+C]E/O /O ¢(s,t)—¢j(s,t)fdsdt

— 0, as j — o0.

Therefore, (3.25) holds. O
Also, we need the following simple result.
LEMMA 3.7. Let (C1)-(C2) hold. Then S(-) € Lg(Q; L*(0, T; R™*™)).
Proof. We only need to prove that

E [/OT ]S(t)]zdtr < .
By (C1)-(C2),
|fou®)] < C,  a.s., ae. t €[0,T],
and, for ¢ = b, o,
|0 ()] + [u(t)] + |@zu(t)] < C,  a.s., ae. t €[0,T].
Therefore,

r 2
E [/O s(0)]*at]
T
=B [ [ 300, 050), P10 @) + bult.7(0). () Pa(0)
Fou(t, 20, 5(0))T Qa(1) + 0u(t, 7(0), 8(1)) T Pa(tora 1, 2(0), a(1)) "]

2

T
<C+CE [ [ (ROF +1QuOF + Pa(0) +1Qa(0)) et
0
SCHC(IPillgos + 1Q1l13.4 + I1P2l1% 4 + 1Q2115.4)

< 00,

which completes the proof of Lemma 3.7. O
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By Lemma 3.7, S(-) € L&(2; L2(0, T; R™*™)). Then, by our assumption (C1) and
Lemma 3.6, for any v € U, there exists a ¢,(-,-) € L*(0,T; LZ([0,T] x £;R™)) such
that for a.e. t € (0,77,

(3.26)  SMt)T(v—a(t)) =E |S@®)T (v _a(t))} +/O bo(s,8)dW (), a.s.

Using (3.26), we obtain the following second-order necessary condition, which is
pointwise with respect to the time variable (but it is still in the integral form with
respect to the sample point w).

THEOREM 3.8. Let (C1)-(C2) hold. If u(-) is a singular optimal control in the
classical sense, then for any v € U, it holds that

E (S(m)bu(7)(v — a(7)),v — u(7))
(3.27) +0} (S ) (v —a(7)), ou (1) (v — a(r))) <0, a.e. 7 €[0,7],

where,

g

OF(S(r)" (v — (7)), 0u(7)(v — u(7)))

u(
(3.28) 40
= 2lim sup H%E/ / <¢)v(s, 1), ®(1)®(s) Loy (s) (v — ﬁ(s))>dsdt,

0—0+

¢u(+,+) is determined by (3.26), and ®(-) is the solution to the stochastic differential
equation (3.21).

The proof of Theorem 3.8 will be given in Subsection 4.1.

3.3. Second-order necessary condition in term of Malliavin derivative.
In Theorem 3.8 we obtain a second-order necessary condition in term of martingale
representation. From the martingale representation theorem, we only know that, for
any v € U, ¢y(+,-) € L2(0,T; L2([0,T] x Q;R™)), and hence, for each 7 € [0,T], the
function

o(s,t) :=E <¢U(s,t),fb(T)(I)(s)*lau(s)(v - ﬁ(s))>, (s,t) € [0,T] x [0,T]

is in LY([0,7] x [0,T]). However, the condition ¢(-,-) € L'([0,T] x [0,7]) is not
sufficient to ensure that, for a.e. 7 € [0,T], the limit

1 T4+6 t
(3.29) lim 9—2/ / (s, t)dsdt

0—0t

exists.
Ezample 3.1. Letay, = &, n=0,1,2,---. Then, Y .>° an =1 and Y32, ., ar =
% Let T = /2 and define ¢(-,-) € L*([0,v2] x [0,v/2]) as follows:

Lo (s1) € ((0,v2) x [0,V2) N{% < 5% <an, n=1, 2, -},
ps,t) = =1, (s,t) € ([0,v2 x [0,V2) N {an <2 < 252, n=1, 2, -},

0, otherwise.

Fized a T € [0, \/5) arbitrarily. If 6, = V2an_, LT+ 0, < V2, then

2
1 O gt S0 (Va2 go=r _ 1
lim — t)dsdt = lim =F=f- 2 — = lim 4% — =
P 93/T /T Plot)dsdt = i, (Lopyy now gk 8
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On the other hand, if 6,, = \/Qan, T+ 60, < \/5, then

1 T+0, ,t 1/ 2an 2+ OO_ V2ak11\2
lim —2/ /cp(s,t)dsdt: lim 305)" + D= ()
n— 00 971 - - n— 00 (\/ian)Q
5
= lim £ = 3
n—o00 o 32

Example 3.2. Let T'=1. Define
0, t<s, s,tel0,1],
p(s,t) = -1 t>s, s, tel0,1].
(1—s)%
Obviously, p € L*([0,1]x[0,1]). But, for any T € [0,1) and 6 > 0 satisfying 7+60 < 1,

J7 [Lo(s,tydsdt  — [TT02(t—7)zdt  —463

02 0 gz % (6 —0").

The above two examples show that, in general, the superior limit

T4+6 t
lim sup iE/ / <¢v(s,t),@(T)Q)(s)_lau(s)(v - a(s))>dsdt
0—0+ 02 T T

(in (3.28)) cannot be refined to be the limit, and even worse, this superior limit may
be equal to —oo. If the superior limit in (3.28) is equal to —oo for a.e. 7 € [0,T], the
second-order necessary condition (3.27) turns out to be trivial. On the other hand,
even this superior limit is finite for a.e. 7 € [0,T], it is still difficult to obtain the
continuity of the function

v 0 (S(r) T (v —a(r)), ou () (v — (7).

All the problems mentioned in the above are caused by the lack of further infor-
mation for ¢,(-,-). If both S(-) and u(-) are regular enough, the function ¢, (-, -) has
an explicit representation and then we can improve the result obtained in Theorem
3.8. To this end, we assume that

(C3)

u(-) € Lyp(R™), S() € Lyg(R™™) N L=([0,T] x Q;R™™).

We have the following pointwise second-order necessary condition for singular
optimal controls.

THEOREM 3.9. Let (C1)-(C3) hold. If u(-) is a singular optimal control in the
classical sense, then for a.e. T € [0,T], it holds that

(S(1)bu(r)(v — u(r)),v — u(r))
(3.30) + (VS(T)ow (1) (v — (7)), v — a(r))

(
—(S(1)ou(r)(v —a(r)),Vu(r)) <0, Vwvel, as.

The proof of Theorem 3.9 will be given in Subsection 4.2.
Remark 3.2. In some special cases, the regularity assumption on S(-) holds au-
tomatically. One of them is the linear quadratic optimal control problem with convex
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control constraints. In this case, the functions b, o, f and h in (1.1)-(1.2) are given
as follows:

b(t,x,u) = A(t)x + B(t)u, o(t,z,u)=C(t)x+ D(t)u, h(x)= % (Gz, )
1
t = —
f( ,I, u) 2
where A()7 C() € O([Ov T]a Rnxn), B()v D() € C([Oa T]7 Rnxm)’ R() € O([Ov T]a Sn):
M() € C([0,T);R™*™) and N(-) € C([0,T];S™) are deterministic matriz-valued
functions, and G € S™ is a (deterministic) matriz.
Indeed, for this problem, the second-order adjoint equation is

[(R(t):z:, x) + 2(M(t)x,u) + (N(t)u,u)}, (t,z,u) € [0,T] x R" x R™,

dP(t) = — [A(t) T Pa(t) + P2(t)A(t) + C(t) T Pa(t)O(t) + C(1) T Q2(t)
(3.31) +Qu(t)C(t) — R(t)] dt + Qa()dW (1), € [0,T),
Py(T) = —G.

Since A(+), B(:), C(-), D(-), R(-), M(:), N(-) and G are deterministic, the equa-
ti0(3.31) admits a unique deterministic solution (Pa(+),0), where Py(-) is the solution
to the following differential equation

o) Po(t) = AT Pa(t) = Po)A(t) = C(O)T Po)C(1) + R(Y), t € [0,T),
' Py(T) = -G.

Hence, for this case,
S(-) = =M(-)+ B(-)" P2(-) + D(-) " P2(-)C()

is a deterministic continuous matriz-valued function, hence it belongs to the space
Ly g (R™*™) N L([0,T] x Q;R™*™).

In general, to obtain the regularity of S(-), we need the regularity of (u(-),z(-)),
(Pi(+),Q1(+)) and (Pa(-), Q2(+)). From the regularity results for solutions to stochastic
differential equations (see [8] and [17]), the optimal control u(-) needs to be regular
enough. In the deterministic setting, the regularity of optimal controls has been studied
by many authors (see [5, 6] and references cited therein). However, to the best of our
knowledge, there exists no reference addressing the regqularity of stochastic optimal
controls. We will discuss this topic in our forthcoming paper.

To end this section, we give two examples to explain how to distinguish singular
optimal controls from others by using the pointwise second-order necessary conditions
established in Theorem 3.9.

Ezample 3.3. Letn = m =1, T =1, U = [-1,1]. Consider the following
one-dimensional control system

(3.33) { iﬂ(ﬂé?;ou(t)dwu(t)dW<t>, teo,1],

and the cost functional
1 ' 2 1 2
Tu()) = 5B [ Ju(e)Pdt - JE ()]
0
For this optimal control problem, the Hamiltonian is given by

1
H(t,x,u,y1,21) = yau + 210 — §u2, (t,z,u,y1,21) €[0,1] x Rx U xR x R.
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Let (z(t),u(t)) = (0,0). The corresponding two adjoint equations are

(3.34) { dPil(i):o?l(t)dW(t)’ teo.1],

and

APy (t) = Qo()dW (1), t € [0,1],
(3.35) { Py(1) = 1.

Obviously,
(Pl(t)le(t)) = (0,0), (PQ(t)7Q2(t)) = (170)
Then, we have for all (t,w) € [0,1] x Q,
Hu(ta f(t% ﬁ(t)v Py (t)v Ql(t)) - 07
and
Huu(tv j(t)v a(ﬂa Py (t>a Ql (t)) + O'u(ta j(t)a ﬁ(t))TPQ (t)au(ta j(t)v ’U’(t)) =0.
That is, u(t) = 0 is a singular control in the classical sense. Let G(t) = —1, we have
—5 = Ja() < J(u()) = 0.

Therefore, u(t) =0 is not an optimal control.
Now, we show that u(t) = 0 does not satisfy the second-order necessary condition
(3.30). Actually,

Let v =1, we find that

(S(T)bu(r)(v = u(1)),v — u(r))

=1>0, V(r,w)el0,1]xQ.

Hence, the condition (3.30) fails at v =1.
Ezample 3.4. Let n=m =1, U = [-1,1] x [-1,1]. Consider the control system

(3.36) { ig(céi)joBU(f)dHDu(t)dW(tL teo,T),

with the following cost functional
1
Tu()) = 3E(G(T), 2(T)

where
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For this optimal control problem, the Hamiltonian is given by
H(t,z,u,y1,21)=(y1, Bu)+(z1, Du), (t,z,u,y1,21)€[0, T] xR?x U x R? x R,

Clearly, (Z(t),u(t)) = (0,0) is an optimal pair, and the corresponding adjoint
equations are respecitvely

(3.37) { dP(l()) 52 1 (H)dW (1), te0,7],
and
(3.38) { dPI: fg)): f%(lt)dW(t), te 0,7,

Obuviously, (P1(t),@Q1(t)) = (0,0), (P(t), Q2(t)) = (=G, 0), and
Hy (8, 2(t),u(t), Pi(t), Q1(t)) =0

Hyo(t,Z(t),a(t), Pi(t),Q1(t)) + DT Py(t)D = 0.

Therefore, T(t) = 0 is a singular optimal control in the classical sense.
Since for this case,

S(t)=-B'G, VS(t)=0, Va(t)=0,
we have
(S(T)bu(r)(v — u(7)),v — u(7))
+(VS(r)ou(r)(v —u(r)),v — u
— (S(r)ou(r)(v —u(7)), Va(r))
=—(B'GBu,v) <0, YveU V(tw)el0,T]xQ.
That is, the necessary condition (3.30) holds.

4. Proofs of the main results. This section is devoted to proving Theorems
3.8 and 3.9. Firstly, we show a technical result.
LEMMA 4.1. Let ®(-), ¥(-) € LZ(Q; L*(0,T;R™)). Then, for a.e. 7 € [0,T),

(4.1) Jim, H%E/:H <<I>(7—),/Tt\11(s)ds>dt - %E@(T),\p(m,
(4.2) Jim, H%E/:H <<I>(t),/:\11(s)ds>dt - %E (®(), U (7)) .

Proof. The equality (4.1) is a corollary of the Lebesgue differentiation theorem.
Now, we prove (4.2). For any 7 € [0,7), let § > 0 and 7 + 6 < T. By the Lebesgue
differentiation theorem, we have

1 7460
lim 5/ E |®(t) — (I)(T)‘2dt =0, ae 7€][0,7T),
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and
7460
lim 92 / /‘\IJ |dsdt —E|\IJ |, ae. 7€[0,T).

Therefore,

(4.3)  lim ‘92 /TH <<I>(t)—<1>(7),/:\11(s)ds>dt‘

0—0t

1 T+6 5 1 T+6 t 9 3
<lm—{/ E‘@t—@r’dt} [/ t—TIE/‘\I/s‘dsdt}
9%0*6‘2 T

IR
< lim —3[/ E |®(t) - o(r)["at] / /\\If )[*asat]
0—0t g2 L /.

=0, a.e. 7 €[0,7T).

Combining (4.3) and (4.1), we obtain (4.2). This completes the proof of Lemma 4.1.
a

4.1. Proof of Theorem 3.8. For any v € U, 7 € [0,T) and 6 € (0,T — 7), let
Ey = [r,7+6) and u(-) be defined by (3.23). Then, U( y=u(-)—u(-) = (v=u())xm, ()
and the corresponding solution y;(-) to the equation (3.2) is given by

@ ) =20 [ )7 (buls) = () () (0 = 5(s)) xr ()
+‘I’(t)/0 O(s) " ouls) (v — uls))xE, (s)AW (s).
Substituting v(-) = (v — @(-))xg, (-) and (4.4) into (3.17), we have

740
0> B [ SOm .0 a(t)

By Lemma 4.1, we have, for a.e. 7€ [0,7T),

Jm e [ (5000 [ 867 0u(9) -~ 9ou(s)-
(v — a(s))ds, v — u(t)>dt
(16) = JB(SE)(bu(r) ~ 0(r)ou() (v — a(r)), v — (7))
On the other hand, by (3.21), we have

1 7460

CRO E <S(t)<1>(t)/ B(5) Lou(s) (v — a(s))dW (s),v — ﬂ(t)>dt
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+9i2 /Tr+9E <S(t) /Tt 0.(5)®(s)dW (s) -
/Tt ®(s) oy (s) (v —u(s)dW(s),v — ﬂ(t)>dt'

Substituting (3.26) into the fist term of the right hand of (4.7), we get that

T+6 t
(4.8)  limsup 912 / E <S(t)<1>(7')/ ®(s) Loy (s) (v —a(s))dW(s),v — a(t)>dt

0—0+t
— Jim sup — /THE </:<I)(7')<I>(s)10u(s)(v —a(s))dW (s),

0—0+t 62
E [St) (v —a(t))] >dt
+ hﬁ?ﬁp L /t ou(s)(v —u(s))dW (s),
/t (s, t)dW(s)>dt
_ 11msup9—2/7+9/ (v —1u(s)), Py (s,t)>dsdt

0—»04r

= 58;?( ()" (v = (7)), ou (1) (v —u(T))), v reloT).

Next, by Lemma 3.7, S(-) € L*(Q;L?(0,T;R™>™)) C L2(; L?(0,T;R™*")).
Then, by Condition (C1), we have

lim eiz/:H]E <S(t) /Tt be(5)®(s)ds -

o0+
/T ®(s) Lo (s) (v — als))dW (s), v — a(t) >dt’

< lim g/T+0E ‘S(t)/:bw( )@ (s )ds/tfb(s) Lo (s)(v — a(s))dW (s ‘dt

60+ 02

<Jm & [ [EIs0r] | r/

<) |s<t>rr-@\/ﬁm@@@ﬂsﬂ’
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T+6 1
< lim 9/ (t_T)%[E ‘S(t)ﬂzdt

~ 90+ 02
=0, ae. T€[0,7T).

This implies that

(4.9) lim /T e <S(t) / t by (5)®(5)ds -

/ @) ou(s) (v — 6())dW (), v — (1) )t
=0 ae. T€[0,T).

Furthermore, since

and

[locmofaf}
B] [ ot toutsno -t asf]

1 T4+6
< lim — {E
< Jim 5 [

|:E ‘S(t)T (’U _ ’a(t)) _ S(T)T (’U — ’17,(7')) ‘2:| %dt

< lim & [ / e ()" (v —a(t)) — S(r) T (v — a(r)) yzdt} :

T 9—0t 03

=0, ae. T€10,T),

then, by Lemma 4.1, we have,

(4.10)  lim i/:HE <S(t) /Tt 04 (5) B (s)dW () -

9—0+ 02
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B(5) Lou(s) (v — a(s))dW (s),v — ﬂ(t)>dt

/
lim ! /TT+9E <S(T) /Tt 0z (8)oy(s)(v —a(s))ds,v — a(7)>dt

9—0+ 02

= %IE (S(r)ou(T)ou(T)(v — u(r)),v —a(r)), ae 7€l0,T).

Therefore, by (4.7)—(4.10), we have, for a.e. 7 € [0,T),

T+6 t
(4.11) limsup 91_21@/ <S(t)<1>(t)/ B(s) " ou(s) (v — a(s))dW (s),v — a(t)>dt

0—0+

F5E (S (Pou(r) (o — a(r), v~ a(r)

Finally, by (4.5), (4.6) and (4.11), we obtain that

. Lo _
0 > limsup Q_ZE/ (S)y1(t),v —a(t)) dt
0—0+ T

= SE(S()(bu(7) — 02 (r)ow(r)) (v — a(7)), v — (7))

508 (8(r)T (v = (7)), au(r)(v — (7))

+3E (8(1)o (row(r)(v — a(r)),v — a(r)
= JE{S(rbu(r)(v — a(r), v — a(r))
—|—%3;r (S(T)T(v —a(r)),ou(r)(v — ﬁ(T))), a.e. T €[0,7T),

which gives (3.27). This completes the proof of Theorem 3.8.

4.2. Proof of Theorem 3.9. Since W (-) is a continuous stochastic process, F; is
countably generated for any ¢ € [0,7]. Hence, one can fined a sequence {4;}°, C F;
such that for any A € Fy, there exists a subsequence {A4;, }52, C {A4;}7°, such that
lim,, oo P(AAA;,) =0, where AAA;, = (A\ A1) U(A;, \ A). F; is also said to be
generated by the sequence {4;}7°,.

Denote by {t;}22; the sequence of rational numbers in [0, 7), by {v*}22, a dense
subset of U. As in [12, 19], we choose {4;;}32,(C Fy,) to be a sequence generating
Fi; (for each ¢ € N). Fix i, 4,k € N arbitrarily. For any 7 € [¢t;,7) and § € (0,7 — 1),
write B} = [r,7 + 0), and define

k + - ’Uk, (t,W) S Eé X Aij7
uig(tw) = { it w), (t.0) € (10.T] x )\ (Ej x Aiy).

Clearly, uf;(-) € Uaq. Choosing a “test” function v(-) in (3.17) as
’Ufj (t,W) = u;ﬂj (t,(U) - a(tuw) = (Uk - a(t7w))XAij (W)XEé (t)7 (t,(U) € [07 T] X Qa

we obtain that

T+60
(4.12) E / (SO (), 0" — a(t)) xa,, (@)dt < 0,
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where yfj() is the solution to the variational equation (3.2) with v(:) replaced by
vf5(+). By (3.20),

(4.13)  y(t) = ‘1>(f)/0 @(s) " (buls) — 0a(s)ou(s)) (V" —als)) xp; (s)xa,, (w)ds
+‘1>(t)/0 ©(s) "L ou(s) (v — als)) xmy ()X, (W)W (s).

Substituting (4.13) into (4.12), we have

414) 0> %E/TH (sta) /: [2(5) " (bu(s) ~ 0a(s)oru(s)) -
(’Uk —u(s))x A, (w)} ds,v® — ﬂ(t)>x,4ij (w)dt
+9i2E /TTH <S(t)<1>(t) /: [fb(s)_lou(s) :
(0% = (), (@) | AW (5), 0F = (1) )xa, (@)dt.

By Lemma 4.1, it is immediate that for a.e. 7 € [t;,T),

s e 5080 o000
(1.15) (v* = a(s)xa, (@ >] ds, o — (1) )xa, (@)t
= %E [<S(T) (bu(T) — 04 (T)ou(T)) (v* —a(r)),v* — ﬂ(7)> XA (w)]

Next, we prove that there exists a sequence {6, }5°; such that 6,, — 0" asn — o
and

(4.16)  lim éE/:H}" <S(t)<1>(t) /Tt [cb(s)*lgu(s).

(0" = (), (@) | AW (5), 0% = a(t) Yxa,, (w)dt

—%E [(8()ou(r) ¥ —a(r), Va(r) xa, )]
+%E [<S<T)aw<7)ou<7)(v’“ — (7)), v* —a<T)>><AJ<w>] ae. 7€ [ti,T)
By (3.21),

(4.17) 91—2/:%1@ {<S(t)<1>(t) /t [@(s)*lau(s).

T

(0% = a(s))xa,, (@) | ATV (), 0% = () ), ()
_ ;_Q/TTHE {(swe) /t [@(5) 20 (5)

T
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(vF = ()X, (@) | AWV (5), 0 = () }xa, ()

+9%/TT+9E {{s) /Ttbw(s)Q(s)ds/: [0(5) o (s)-
(0% = a(s))xa, (@) |dW (), 0" = a(t) )xa,, ()

+9—12/TT+9E {{s /Ttam(s)@(s)dW(s) /: [@(5) " 0u(s)
(v* = ()X, (@) | AV (5), 0" = a(t) ), () f .

Therefore, we can divide the computation for the left hand side of (4.16) into three
parts.
Similar to respectively (4.9) and (4.10) (in the proof of Theorem 3.8), we get that

(4.18) lim 9_12/:”1@ {<S(t) /Ttbm(s)@(s)ds/t {@(3)—1%(5).

0—0t T

(v* = () xa, (@) AW (5), 0" = () }xa, () f
=0, ae TEIT),

(4.19) 913&9% / e {{st) / s ()8 (s)dW (5) /T t [0(s) 0(s)
(v* = ()X, (@) AW (5), 0" = () ), () flt

= 2B [(80)rMou ) — (), o —a(r)) xa, )], ace. 7€ [, T).

It remains to prove that there exists a sequence {6,,}5°; such that 6, — 0 as
n — oo and

(420)  Tim é /T e {{sta(r) /T t [@(5) ou(s)
(vF = () xa,, (@) AW (5), 0" = (1) ) xa, () flt
= 2B [(VS(mou(n)(e* — a(r)), v* — a(r)) xa,,()]
—3E [S0ou (e —a(r), Va(r) xa, )], ae 7€ [1:,T).
By the boundness of U and the regularity assumption (C%), it holds that
S() T (v* —a()) € Ly (R™) N L=([0,T] x & R™),

Then, by the Clark-Ocone formula, for a.e. ¢ € [0,T],

(4.21) +/Ot]E [DS(S(t)T(U’f — a(t))) ‘fs]dvv(s).
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Substituting (4.21) into the first term of the right hand of (4.17), we obtain that

(4.22) oiz/:wza {{stye() /Tt [#(s)0u(s)

(v* = () xa, (@) AW (5), 0" = () }xa, () flt

D.(S(t)T (0" — u(t))) >><A”- (w)] dsdt.
The last equality in (4.22) follows from the fact that 4;; € F, C F, and
E{(/ BB (0 — a5, V()
/O B [DS (ST (" —a(t)) } fs] dW(s)>XA” (o.))}
= E {xa, WE (( / B(r)B(s) 0w ()0 — a(3))xa, (AW (s),
/:E {DS(S(t)T(u’f — a(t))) ’ }'S}dW(s)>

7))
=& {x0a, @ ( [ (20106 0600 ~ 16, ),

E [DS (St)T (" —a(t)) \ ]—"sts
=& [ (2000 0u(6)0* ~ 06D, ),

E [Dy(S0)T (0" —a(t)) | F] Jra, (w)ds

_ /TtIE [<q>(r)<p(s)*1au(s)(vk — (s)), Dy (S(t) T (vF — a(t)))>x,4ij (w)}ds.

7))

Note that
D,(S() T (WF — a(t))) = DS(M)T (W* — a(t)) — S Dalt).

We have,

(4.23) %[H /Tt]E [(2(r)2() () (0* — (s)),
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D (S(1) " (0" = (1)) )xa,, ()] dsdt
[ [ B [(ee o o
DS (v — a(t)) ) xa,, ()| dsdt
[ [ (@ et — at), SO D0 xa, )]s
For the first part in the right hand side of (4.23),

(4.24) 9%/:” /:E [<q>(r)<p(s)*1au(s)(vk —a(s)),

D,S(1) (0" — a(t)) )xa,, ()| dsdt
[ B [(ee o o
(DS(t) = V() (v — (1)) ) xa,, ()| st
v [ [ R (20 oo o),

VS(s) T (v* — ﬂ(t))>x,4ij (w)] dsdt.

Since
‘9&2/7”9 /TtEK(I)(T)(I)(s)lUU(S)(vk (),
(DS(t) — VS(s)) T (vF — a(t))>x,4” (w)}dsdt’
SQQ/T”/ s) (0 —as HDS — VS(s )”dsdt
g%[E( sup [2(r / o — VS(s dsdt
g% /T+0/T }DSS —vss) dsdt ,

by Lemma 2.1, there exists a sequence {6,,}5°; such that 6,, — 0" as n — co and

T4+6, .
(4.25) 15209_2/ / (v® —a(s)),

(DS(t) = VS(5) ' (0F = a(t)) )xa,, ()| dsdt
=0 a.er €[0,T).

For the second part in the right hand side of (4.24), by Lemma 4.1 it follows that

T+460
(4.26) ‘gli)rél+ 9—2/ / s)(v® — a(s)),
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VS(s) (0" — a(t)) Jxa,, (@) dsdt
= 2B [(V8(ou(n)(w* — a(r)), o* — a(r)) xa, )], @ 7€ [1:,7T).
Therefore, by (4.24)(4.26), we conclude that
@) g [ o / B [(2(18(s) () — )
DS() " (0F = a(t)) )xa,, ()| dsdt
_ %E [(VS(Mou @ —a(r), o —a(r)) xa,], ae. 7€ lt:T).

In a similar way, we can prove that there exists a subsequence {6, }7°, of {0,,}5%;
such that

T+0nl t
lim —— / / E [(2(r)8(s) " 0u(s)(0* — 0(s)).5() Duii(1)) xa,, ()] dsd

—_E [(S(r)au(r)(vk —a(r)), Va(r)) xa,, (w)}, ae. € [t:,T).

To simplify the notation, we assume that the above {6,,,}7°, is {0, }52, itself, that is

T+6, t
lim 9i2 / / E [(8(r)8(s) " 0u(s)(0" — 0(s)).5() Duii(1)) xa,, ()] dsdt
= 2B [(80)ou(n)(e* — a(r)), Va(r)) xa, )], ae. 7€ [1:,T).
(4.28)

Combining (4.22), (4.23), (4.27) and (4.28), we obtain (4.20). Then, by (4.17)—
(4.20), we obtain (4.16).

Finally, by (4.14), (4.15) and (4.16) we conclude that, for any 4,7,k € N, there
exists a Lebesgue measurable set Ef; C [t;,T) with |Ef;| = 0 such that

(429) 0> 3 [(Srhu(r)0* — a(r)), o* — a(r)) xa,, ()]
—i—%]E [(VS(r)ou (R (0" = a(r)),v* = a(r)) xa,, )]
—%E [(8(r)ou(r) 0" — (), Va(r) xa, )], V7€ [t:,T)\ B

Let By = Ui,j,keN Eﬁj, then |Ey| = 0, and for any i, j,k € N,

E [ (S(bu(r)(v* = a(r), v* = a(r)) xa,, ()]
+E [(VS(rou ()" — (1)), v* — (7)) xa,, @)]

<0, Vte [ti,T)\EQ.
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By the construction of {4;;}$2,, the continuity of the filter F and the density of
{v*}7° ,, we conclude that

This completes the proof of Theorem 3.9.
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