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APPROXIMATING MATRICES WITH MULTIPLE SYMMETRIES

CHARLES F. VAN LOAN∗ AND JOSEPH P. VOKT†

Abstract. If a tensor with various symmetries is properly unfolded, then the resulting matrix
inherits those symmetries. As tensor computations become increasingly important it is imperative
that we develop efficient structure preserving methods for matrices with multiple symmetries. In
this paper we consider how to exploit and preserve structure in the pivoted Cholesky factorization
when approximating a matrix A that is both symmetric (A = AT ) and what we call perfect shuffle
symmetric, or perf-symmetric. The latter property means that A = ΠAΠ where Π is a permutation
with the property that Πv = v if v is the vec of a symmetric matrix and Πv = −v if v is the vec of a
skew-symmetric matrix. Matrices with this structure can arise when an order-4 tensor A is unfolded
and its elements satisfy A(i1, i2, i3, i4) = A(i2, i1, i3, i4) = A(i1, i2, i4, i3) = A(i3, i4, i1, i2). This is
the case in certain quantum chemistry applications where the tensor entries are electronic repulsion
integrals. Our technique involves a closed-form block diagonalization followed by one or two half-
sized pivoted Cholesky factorizations. This framework allows for a lazy evaluation feature that is
important if the entries in A are expensive to compute. In addition to being a structure preserving
rank reduction technique, we find that this approach for obtaining the Cholesky factorization reduces
the work by up to a factor of 4.
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1. Introduction. Low-rank approximation and the exploitation of structure are
important themes throughout matrix computations. This paper revolves around some
basic tensor calculations that reinforce this point. The tensors involved have multiple
symmetries and the same can be said of the matrices that arise if they are obtained
by a suitable unfolding.

1.1. Motivation. Our contribution is prompted by the following problem. Sup-
pose A ∈ IRn×n×n×n is an order-4 tensor with the property that its entries satisfy

A(i1, i2, i3, i4) =















A(i2, i1, i3, i4)

A(i1, i2, i4, i3)

A(i3, i4, i1, i2)

. (1.1)

We say that such a tensor is ((1,2),(3,4))-symmetric. See Fig 1.1 for an n = 3 example.

Given X ∈ IRn×n the challenge is to compute efficiently the tensor B ∈ IRn×n×n×n

defined by

B(i1, i2, i3, i4) =

n
∑

j1,j2,j3,j4=1

A(j1, j2, j3, j4)X(i1, j1)X(i2, j2)X(i3, j3)X(i4, j4). (1.2)

This is a highly structured multilinear product. As with many tensor computations,
(1.2) can be reformulated as a matrix computation. In particular, it can be shown
that

B = (X ⊗X)A(X ⊗X)T (1.3)

where A and B are n2-by-n2 matrices that are obtained by certain unfoldings of the
tensors A and B. Depending upon the chosen unfolding, the matrices A and B inherit
the tensor symmetries (1.1).
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Value Entries that Share that Value

1 (1,1,1,1)
2 (2,1,1,1) (1,2,1,1) (1,1,2,1) (1,1,1,2)
3 (3,1,1,1) (1,3,1,1) (1,1,3,1) (1,1,1,3)
4 (2,2,1,1) (1,1,2,2)
5 (3,2,1,1) (2,3,1,1) (1,1,3,2) (1,1,2,3)
6 (3,3,1,1) (1,1,3,3)
7 (2,1,2,1) (1,2,2,1) (2,1,1,2) (1,2,1,2)
8 (1,3,2,1) (3,1,2,1) (1,3,1,2) (3,1,1,2) (2,1,1,3) (1,2,1,3) (2,1,3,1) (1,2,3,1)
9 (2,2,2,1) (2,2,1,2) (2,1,2,2) (1,2,2,2)
10 (3,2,2,1) (2,3,2,1) (3,2,1,2) (2,3,1,2) (2,1,3,2) (1,2,3,2) (2,1,2,3) (1,2,2,3)
11 (3,3,2,1) (3,3,1,2) (2,1,3,3) (1,2,3,3)
12 (3,1,3,1) (1,3,3,1) (3,1,1,3) (1,3,1,3)
13 (2,2,3,1) (2,2,1,3) (3,1,2,2) (1,3,2,2)
14 (3,2,3,1) (2,3,3,1) (3,2,1,3) (2,3,1,3) (3,1,3,2) (1,3,3,2) (3,1,2,3) (1,3,2,3)
15 (3,3,3,2) (3,3,2,3) (3,2,3,3) (2,3,3,3)
16 (2,2,2,2)
17 (3,2,2,2) (2,3,2,2) (2,2,3,2) (2,2,2,3)
18 (3,3,2,2) (2,2,3,3)
19 (3,2,3,2) (2,3,3,2) (3,2,2,3) (2,3,2,3)
20 (3,2,3,3) (2,3,3,3) (3,3,3,2) (3,3,2,3)
21 (3,3,3,3)

Fig. 1.1. An example of a ((1,2),(3,4))-symmetric tensor (n = 3). It has at most 21 distinct
values. Equations (1.5) and (1.7) show what this tensor looks like when unfolded into a 9×9 matrix.
In general, the subspace of IRn×n×n×n defined by all ((1,2),(3,4))-symmetric tensors has dimension
(n4 + 2n3 + 3n2 + 2n)/8.

For example, suppose A = A[1,3]×[2,4] is the “[1, 3]× [2, 4] unfolding” defined by

A(i1, i2, i3, i4) → A(i1 + (i3 − 1)n, i2 + (i4 − 1)n). (1.4)

This n2-by-n2 matrix can be regarded as n-by-n block matrix A = (Apq) whose blocks
Apq are n-by-n matrices. It follows from (1.4) that

A(i1, i2, i3, i4) = [Ai3,i4 ]i1,i2 .

Combining this with (1.1) we conclude that Aqp = Apq = AT
pq. Note that this implies

AT = A. To visualize the structure associated with the [1, 3]×[2, 4] unfolding, suppose
that A ∈ IR3×3×3×3 is defined by Fig 1.1. It follows that

A[1,3]×[2,4] =







































1 2 3 2 7 8 3 8 12

2 4 5 17 19 10 8 13 14

3 5 6 8 10 11 12 14 15

2 7 8 4 9 13 5 10 14

7 9 10 9 16 17 10 17 19

8 10 11 13 17 18 14 19 20

3 8 12 5 10 14 6 11 15

8 13 14 10 17 19 11 18 20

12 14 15 14 19 20 15 20 21







































. (1.5)

On the other hand, the [ 1, 2 ]×[ 3, 4 ] unfolding A = A[1,2]×[3,4] defined by

A(i1, i2, i3, i4) → A(i1 + (i2 − 1)n, i3 + (i4 − 1)n) (1.6)
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results in a matrix A with different properties. Indeed, if we apply this mapping to
the tensor defined in Fig 1.1, then we obtain

A[1,2]×[3,4] =







































1 2 3 2 4 5 3 5 6

2 7 8 7 9 10 8 10 11

3 8 12 8 13 14 12 14 15

2 7 8 7 9 10 8 10 11

4 9 13 9 16 17 13 17 18

5 10 14 10 17 19 14 19 20

3 8 12 8 13 14 12 14 15

5 10 14 10 17 19 14 19 20

6 11 15 11 18 20 15 20 21







































. (1.7)

It is easy to prove that this unfolding is also symmetric. (Just combine (1.6) with
the observation that A(i1, i2, i3, i4) = A(i3, i4, i1, i2).) But it also satisfies a type of
symmetry that is related to a particular perfect shuffle permutation. To see this we
define the n2-by-n2 permutation matrix Πnn by

Πnn = In2(:, p), p = [ 1:n:n2 | 2:n:n2 | · · · | n:n:n2 ] (1.8)

where we are making use of the Matlab colon notation. Here is an example:

Π33 =



































1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1



































= I9( : , [ 1 4 7 2 5 8 3 6 9 ]). (1.9)

A matrix A ∈ IRn2×n2

is perfect shuffle invariant if

A = ΠnnAΠnn (1.10)

and PS-symmetric if it is both symmetric and perfect shuffle invariant.
In §2 we show how to construct a reduced rank approximation to a PS-symmetric

matrix that is also PS-symmetric. This is important in the evaluation of the multi-
linear product (1.2). In particular, it enables us to approximate the unfolding matrix
A in (1.4) with a relatively short sum of structured Kronecker products:

A ≈
r

∑

i=1

σi · Ci ⊗ Ci CT
i = Ci ∈ IRn×n, r << n2. (1.11)

It then follows from (1.3) that

B ≈
r

∑

i=1

σi · (X ⊗X)(Ci ⊗ Ci)(X ⊗X)T =

r
∑

i=1

σi(XCiX
T )⊗ (XCiX

T ). (1.12)
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The {σi, Ci, X} representation of B (and hence B) is an O(rn3) computation.
The expansion (1.11) looks like a Kronecker-product SVD of A [8, 14, 24]. How-

ever, the method that we propose in this paper is not based on expensive svd-like
computations but on a structured factorization that combines block diagonalization
with a pair of “half-size” pivoted Cholesky factorizations. Recall that ifM ∈ IRN×N is
symmetric and positive semidefinite with r ≤ N positive eigenvalues, then the pivoted
Cholesky factorization (in exact arithmetic) computes the factorization

PMPT = LLT

where P ∈ IRN×N is a permutation matrix and L ∈ IRN×r is lower triangular with
r = rank(A), It follows that if Y = PTL = [y1, . . . , yr] is a column partitioning, then

M = (PTL)(PTL)T = Y Y T =

r
∑

k=1

yky
T
k .

In practice, r is (numerically) determined during the factorization process. More on
this in §4.2. We mention that this rank-r representation requires Nr2−2r2/3+O(Nr)
flops. See [8, pp.165-66] for more details1.

1.2. Overview of the Paper. In §2 we discuss the properties of PS-symmetric
matrices. A key result is the derivation of a simple orthogonal matrix Q that can be
used to block-diagonalize a PS-symmetric matrix A: QTAQ = diag(A1, A2). Rank-
revealing pivoted Cholesky factorizations are then applied to the half-sized diagonal
blocks. The resulting factor matrices are then combined with Q to produce a rank-1
expansion for A with terms that are also PS-symmetric. In §3 we apply these results
to compute a structured multilinear product whose defining tensor A is ((1,2),(3,4))-
symmetric. An application from quantum chemistry is considered that has a dramatic
low-rank feature. Implementation details and benchmarks are provided in §4. Antic-
ipated future work and conclusions are offered in §5.

1.3. Centrosymmetry: An Instructive Preview. We conclude the introduc-
tion with a brief discussion of matrices that are centrosymmetric. These are matrices
that are symmetric about their diagonal and antidiagonal, e.g.,

A =









a b c d
b e f c
c f e b
d c b a









.

They are a particularly simple class of multi-symmetric matrices and because of that
they can be used to anticipate the main ideas that follow in §2 and §3. For a more
in-depth treatment of centrosymmetry, see Andrew [2], Datta and Morgera [5] and
Pressman [15].

Formally, a matrix A ∈ IRn×n is centrosymmetric if A = AT and A = EnAEn

where

En = In(:, n:−1:1) ∈ IRn×n

1 The connection between the pivoted LDL factorization PMPT = L̃DL̃T where L̃ is unit lower
triangular and the pivoted Cholesky factorization PMPT = LLT is simple. The lower triangular

Cholesky factor L is given by L = L̃ · diag(d
1/2
1 , . . . , d

1/2
r ). Virtually all of the rank-revealing

operations in this paper can be framed in “LDL” language. We use the Cholesky representation so
that readers can more easily relate our work to what has already been published and to existing
procedures in LAPACK.
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is the n-by-n exchange permutation. The redundancies among the elements of a
centrosymmetric matrix are nicely exposed through blocking. Assume for clarity that
n = 2m. (The odd-n case is basically the same.) If

A =

[

A11 A12

A21 A22

]

Aij ∈ IRm×m

is centrosymmetric, then by substituting

En =

[

0 Em

Em 0

]

into the equation A = EnAEn we see that A21 = EmA12Em and A22 = EmA11Em,
i.e.,

A =

[

A11 A12

EmA12Em EmA11Em

]

. (1.13)

Moreover, A11 and A12Em are each symmetric. Given this block structure it is easy
to confirm that the orthogonal matrix

QE =
1√
2

[

Im Im

Em −Em

]

≡
[

Q+ Q−

]

(1.14)

block diagonalizes A:

QT
E
AQE =

[

A11 +A12Em 0

0 A11 −A12Em

]

≡
[

A+ 0

0 A−

]

. (1.15)

If A is positive semidefinite, then the same can be said of A+ and A− and we can
compute the following half-sized pivoted Cholesky factorizations:

P+A+P
T
+

= L+L
T
+

(1.16)

P−A−P
T
−

= L−L
T
−
. (1.17)

If we define the matrices Y+ ∈ IRn×m and Y− ∈ IRn×m by

Y+ = Q+P
T
+
L+ = [ y

(1)
+ | · · · | y(m)

+ ] (1.18)

Y− = Q−P
T
−
L− = [ y

(1)
− | · · · | y(m)

− ], (1.19)

then it follows from (1.15)-(1.19) that

A = Y+Y
T
+

+ Y−Y
T
− =

m
∑

i=1

y
(i)
+ [y

(i)
+ ]T +

m
∑

i=1

y
(i)
−

[y
(i)
−
]T .
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Each of the rank-1 matrices in this expansion is centrosymmetric because EnY+ = Y+

and EnY− = −Y−. It follows that if r+ ≤ m and r− ≤ m, then

A{r+,r−} =

r+
∑

i=1

y
(i)
+ [y

(i)
+ ]T +

r−
∑

i=1

y
(i)
−

[y
(i)
−
]T (1.20)

is centrosymmetric and rank(A{r+,r−}) = r+ + r−. Thus, by combining the block
diagonalization (1.15) with the pivoted Cholesky factorizations (1.16)-(1.17) we can
approximate a given positive semidefinite centrosymmetric matrix with a matrix of
lower rank that is also centrosymmetric.

We briefly consider the efficiency of such a maneuver keeping in mind the “preview
nature” of this subsection. Here are some obvious implementation concerns:

1. What is the cost of the block diagonalization? The matrices A+ and A− are
simple enough, but is their formation a negligible overhead?

2. From the flop point of view, halving the dimension of an O(n3) factorization
reduces the volume of arithmetic by a factor of 8. Is the cost of computing
the pivoted Cholesky’s of A+ and A− one-fourth the cost of the single full-size
pivoted Cholesky of A?

3. If A is close to a matrix with very low rank and/or its entries aij are ex-
pensive to compute, then it may be preferable to work with a left-looking
implementation of pivoted Cholesky that computes matrix entries on a “need
to know” basis. How can one organize pivot determination in such a setting?

The table in Fig 1.2 sheds light on some of these issues by comparing the computation
of the structured approximation A{r+,r−} with the unstructured approximation Ar

based on PAPT = LLT , i.e.,

Ar =

r
∑

i=1

y(i)[y(i)]T

where PTL = [y(1), . . . , y(r)] and r = r+ + r−.

r+ = n/2 , r− = n/2 r+ = n/100 , r− = n/100

n Tu/Ts Tset-up/Ts Tu/Ts Tset-up/Ts

1500 1.93 0.32 0.53 0.66

3000 2.68 0.22 0.56 0.69

4500 2.89 0.17 0.83 0.64

6000 3.18 0.13 0.88 0.65

Fig. 1.2. Tu is the time required to compute the Cholesky factorization of A, Ts is the time
required to set up A+ and A− and compute their Cholesky factorizations, and Tset-up is the time
required to just set-up A+ and A−. The LAPACK procedures POTRF (unpivoted Cholesky calling
level-3 BLAS) and PSTRF (pivoted Cholesky calling level-3 BLAS) were used for full rank and low
rank cases respectively. Results are based on running numerous random trials for each combination
of n and (r+, r−). A single core of the Intel(R) Core(TM) i5-3210M CPU @ 2.50GHz was used.

In the full rank case (r+ = n/2 , r− = n/2), a flop-only analysis would predict a
speed-up factor of 4 since we are replacing one n-by-n Cholesky factorization (n3/3
flops) with a pair of 2 half-size factorizations (2 · (n/2)3/3 flops.) The ratios Tu/Ts
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are somewhat less than this because there is an O(n2) overhead associated with the
setting up of the matrices A+ and A−. This is quantified by the ratios Tset-up/Ts.

The low-rank results point to the importance of having a “lazy evaluation” strat-
egy when it comes to setting up the matrices A+ and A−. The LAPACK routines
that are used are right-looking and thus require the complete O(n2) set-up of these
half-sized matrices. However, the flop cost of the pivoted Cholesky factorizations of
these low rank matrices is O(nr2). Thus, the set-up costs dominate and there is
a serious tension between efficiency and structure preservation. What we need is a
left-looking pivoted Cholesky procedure that involves an O(nr) set-up cost. We shall
discuss just such a framework in §4.2 in the context of a highly structured low-rank
PS-symmetric approximation problem.

2. Perfect Shuffle Symmetry. Just as centrosymmetry is defined by the equa-
tion A = EnAEn, PS-symmetry is defined by the equation A = ΠnnAΠnn where Πnn

is a particular perfect shuffle permutation. We start by looking at the eigenvectors
of this permutation. This leads to the construction of a simple orthogonal matrix
(like QE in (1.14)) that can be used to block diagonalize a PS-symmetric matrix. A
framework for structured low-rank approximation follows.

2.1. Perfect Shuffle Properties. Perfect shuffle permutations relate matrix
transposition to vector permutation. Following Van Loan [25, p.78], if m = pr, then
the perfect shuffle permutation Πpr ∈ IRm×m is defined by

Πpr = In(:, [(1:r:m) (2:r:m) · · · (r:r:m)]).

The action of Πpr is best described using the Matlab reshape operator, e.g.,

x ∈ IR12 ⇒ reshape(x, 3, 4) =





x1 x4 x7 x10
x2 x5 x8 x11
x3 x6 x9 x12



 .

If x ∈ IRpr, then

y = Πprx ⇒ reshape(y, p, r) = reshape(x, r, p)T . (2.1)

In other words, if S ∈ IRr×p, then vec(ST ) = Πprvec(S).
We shall be interested in the case p = r = n. Using (2.1) it is easy to see that

ΠnnΠnn = I showing that Πnn = ΠT
nn
. Thus, if λ is an eigenvalue of Πnn, then λ = 1

or λ = −1. Using (2.1) again it follows that

Πnnx = +x ⇒ S = reshape(x, n, n) is symmetric

Πnnx = −x ⇒ S = reshape(x, n, n) is skew-symmetric

Thus, Πnnx = x if and only if S = ST . Likewise, Πnnx = −x if and only if S = −ST .
Using these observations about Πnn, it is easy to verify that the entries in a

PS-symmetric matrix A = ΠnnAΠnn satisfy

A(i1 + (i2 − 1)n, j1 + (j2 − 1)n)

= A(j1 + (j2 − 1)n, i1 + (i2 − 1)n)

= A(i2 + (i1 − 1)n, j2 + (j1 − 1)n)

= A(j2 + (j1 − 1)n, i2 + (i1 − 1)n)

(2.2)

where it is understood that the indices i1, i2, j1, and j2 range from 1 to n.
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2.2. Block Diagonalization. Define the subspaces S(sym)
nn

and S(skew)
nn

by

S(sym)
nn

= {x ∈ IRn2 |Πnnx = x } (2.3)

S(skew)
nn

= {x ∈ IRn2 |Πnnx = −x }. (2.4)

It is easy to verify that [S(sym)
nn

]⊥ = S(skew)
nn

. Moreover, if A ∈ IRn2×n2

is PS-symmetric
and x ∈ S(sym)

nn
, then

Ax = (ΠnnAΠnn)x = (ΠnnA)(Πnnx) = (ΠnnA)x = Πnn(Ax)

which shows that S(sym)
nn

is an invariant subspace for A. The subspace S(skew)
nn

is also
invariant for A by similar reasoning.

Using these facts we can construct a sparse orthogonal matrix Qnn that can be
used to block diagonalize a PS-symmetric matrix. Let In = [e1, . . . , en] be a column
partitioning and define the matrices

Q(sym)
nn

=
[

q
(sym)
1 · · · q

(sym)
nsym

]

nsym = n(n+ 1)/2

Q(skew)
nn

=
[

q
(skew)
1 · · · q

(skew)
nskew

]

nskew = n(n− 1)/2
(2.5)

as follows

k = 0

for j = 1:n

for i = j:n

k = k + 1

q
(sym)
k =

{

(ei ⊗ ej + ej ⊗ ei)/
√
2 if i > j

ei ⊗ ei if i = j
end

end (2.6)

k = 0

for j = 1:n− 1

for i = j + 1:n

k = k + 1

q
(skew)
k = (ej ⊗ ei − ei ⊗ ej)/

√
2

end
end

Since reshape(ei ⊗ ej , n, n) = eje
T
i , it is clear that the columns of Q(sym) reshape to

symmetric matrices while the columns of Q(skew) reshape to skew-symmetric matrices.
Define the n2-by-n2 matrix

Qnn =
[

Q(sym)
nn

|Q(skew)
nn

]

(2.7)
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e.g.,

Q33 =





































1 0 0 0 0 0 0 0 0

0 α 0 0 0 0 α 0 0

0 0 α 0 0 0 0 α 0

0 α 0 0 0 0 −α 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 α 0 0 0 α

0 0 α 0 0 0 0 −α 0

0 0 0 0 α 0 0 0 −α
0 0 0 0 0 1 0 0 0





































, α =
1√
2
.

It is clear that this matrix is orthogonal. Here is a formal proof together with a
verification that Qnn block diagonalizes a matrix with PS-symmetry.

Theorem 2.1. If A ∈ IRn2×n2

is PS-symmetric and Qnn is defined by (2.6), then
Qnn is orthogonal and

QT
nn
AQnn =

[

A(sym) 0

0 A(skew)

]

(2.8)

where A(sym) ∈ IRnsym×nsym and A(skew) ∈ IRnskew×nskew.
Proof. All the columns in Qnn have unit length so the problem is to estab-

lish that any pair of its columns are orthogonal to each other. It is obvious that
{e1 ⊗ e1, . . . , en ⊗ en} is an orthonormal set of vectors and that

(ei ⊗ ei)
T (ep ⊗ eq) = (eTi ep)(e

T
i eq) = 0

provided p 6= q. It follows that any column of the form ei ⊗ ei is orthogonal to all the
other columns in Qnn. Using the Kronecker delta δij , if i 6= j and p 6= q, then

(ei ⊗ ej + ej ⊗ ei)
T )(ep ⊗ eq − eq ⊗ ep) = δipδjq + δiqδjp − δiqδjp − δjqδip = 0.

This confirms that
[

Q(skew)
nn

]T

Q(sym)
nn

= 0. (2.9)

If (i, j), (j, i), (p, r) and (r, p) are distinct index pairs, then it is easy to show that

(ei ⊗ ej + ej ⊗ ei)
T )(ep ⊗ eq + eq ⊗ ep) = δipδjq + δiqδjp + δiqδjp + δjqδip = 0

(ei ⊗ ej − ej ⊗ ei)
T )(ep ⊗ eq − eq ⊗ ep) = δipδjq − δiqδjp − δiqδjp + δjqδip = 0.

These equations establish that the columns of bothQ(sym)
nn

and Q(skew)
nn

are orthonormal.
Combined with (2.9) we see that Qnn is an orthogonal matrix.

To confirm that this matrix block diagonalizes a PS-symmetric A we observe using
(2.7) that

QT
nn
AQnn =





[

Q(sym)
nn

]T
AQ(sym)

nn

[

Q(sym)
nn

]T
AQ(skew)

nn

[

Q(skew)
nn

]T
AQ(sym)

nn

[

Q(skew)
nn

]T
AQ(skew)

nn



 .
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Since ΠnnQ
(sym)
nn

= Q(sym)
nn

and ΠnnQ
(skew)
nn

= −Q(skew)
nn

it follows that

[Q(sym)
nn

]TAQ(skew)
nn

= [Q(sym)
nn

]TΠnnAΠnnQ
(skew)
nn

= −[Q(sym)
nn

]TAQ(skew)
nn

= 0.

Setting

A(sym) = Q(sym)
nn

T AQ(sym)
nn

(2.10)

A(skew) = Q(skew)
nn

T AQ(skew)
nn

(2.11)

completes the proof of the theorem.

The efficient formation of of A(sym) and A(skew) is critical to our method and to that
end we develop characterization of these blocks that is much more useful than (2.10)
and (2.11). Define the index vectors symn∈ IRnsym and skewn∈ IRnskew as follows:

k = 0
for j = 1:n

for i = j:n
k = k + 1
symn(k) = i+ (j − 1)n

end
end
k = 0 (2.12)
for j = 1:n

for i = j + 1:n
k = k + 1
skewn(k) = i+ (j − 1)n

end
end

If M ∈ IRn×n and v = vec(M), then v(symn) is the vector of M ’s lower triangular
entries and v(skewn) is the vector of M ’s strictly lower triangular entries. (Consider
the example sym3 = [1 2 3 5 6 9] and skew3 = [2 3 6]. ) Since

Πnn (ei ⊗ ej) = (ej ⊗ ei),

it follows from (2.6) that if

T (sym) =
In2 +Πnn

2
, (2.13)

then q
(sym)
k is a multiple of T (sym)(:, symn(k)) while if

T (skew) =
In2 −Πnn

2
, (2.14)

then q
(skew)
k is a multiple of T (skew)(:, skewn(k)). Indeed, if the n2-by-n2 diagonal

matrix ∆(sym) is defined by

∆
(sym)
i+(j−1)n,i+(j−1)n =

{ √
2 i 6= j

1 i = j
(2.15)
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where i and j each range from 1 to n, then it is easy to verify that the columns of
T (sym)∆(sym) have unit 2-norm and

Q(sym)
nn

= T (sym)(:, u) ·∆(sym)(u, u), u = symn. (2.16)

The scaling to obtain Q(skew)
nn

is simpler:

Q(skew)
nn

=
√
2 · T (skew)(:, v), v = skewn. (2.17)

Note that T (sym) is symmetric and T (sym)T (sym) = T (sym). Since x ∈ S(sym)
nn

implies
T (sym)x = x, it follows that T (sym) is the orthogonal projector associated with S(sym)

nn
.

Likewise, T (skew) is the orthogonal projector associated with S(skew)
nn

.
Since ΠnnAΠnn = A, it is easy to show that

T (sym)T AT (sym) = (In2 +Πnn)A(In2 +Πnn) = (A+AΠnn)/2

T (skew)T AT (skew) = (In2 −Πnn)A(In2 −Πnn) = (A−AΠnn)/2

When these equations are combined with (2.10), (2.11), (2.16), and (2.17) we obtain

A(sym) = ∆(sym)(u, u) · A(u, u) +A(u, :)Πnn(:, u)

2
·∆(sym)(u, u)

A(skew) = (A(v, v)−A(v, :)Πnn(:, v))

This can be rewritten as

A(sym) = ∆(sym)(u, u) · A(u, u) +A(u, p(u))

2
·∆(sym)(u, u) (2.18)

A(skew) = A(v, v) −A(v, p(v)) (2.19)

where p =
[

1:n:n2 2:n:n2 · · ·n:n:n2
]

is the index vector that defines Πnn, i.e., Πnn =
In2(:, p). See (1.18).

2.3. The Schur Decomposition and SVD of a PS-Symmetric Matrix. It
is not a surprise that the Schur decomposition of a PS-symmetric matrix involves a
highly structured eigenvector matrix. If

[U (sym)]TA(sym)U (sym) = Λ(sym) = diag(λ
(sym)
1 , . . . , λ(sym)

nsym
)

and

[U (skew)]TA(skew)U (skew) = Λ(skew) = diag(λ
(skew)
1 , . . . , λ(skew)nskew

)

are the Schur decompositions of the diagonal blocks in (2.8) and the orthogonal matrix
Q is defined by

Q = Qnn

[

U (sym) 0

0 U (skew)

]

=
[

Q(sym)
nn

U (sym) Q(skew)
nn

U (skew)
]

(2.20)
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then

QTAQ =

[

D(sym) 0

0 D(skew)

]

= diag(λ
(sym)
1 , . . . , λ(sym)

nsym
, λ

(skew)
1 , . . . , λ(skew)nskew

). (2.21)

By virtue of how we defined Qnn in (2.6), the columns of Q(sym)
nn

U (sym) (the “sym-
eigenvectors”) reshape to n-by-n symmetric matrices. Likewise, the the columns of
Q(skew)

nn
U (skew) (the “skew-eigenvectors”) reshape to n-by-n skew-symmetric matrices.

Note that this structured Schur decomposition is an unnormalized SVD of A. The
singular values of A are the absolute values of the λ’s. Reordering together with some
“minus one” scalings can turn equations (2.20) and (2.21) into a normalized SVD.

2.4. The Kronecker Product SVD of a PS-Symmetric matrix. A block
matrix with uniformly sized blocks has a Kronecker Product SVD (KPSVD), see [8,
p.712–14]. For example, if A an n-by-n is a block matrix with n-by-n blocks, then there
exist n-by-n matrices B1, . . . , Bn2 , and C1, . . . , Cn2 and scalars σ1 ≥ · · · ≥ σn2 ≥ 0
such that

A =

n2
∑

k=1

σ(k) (Bk ⊗ Ck).

The decomposition is related to the SVD of the n2-by-n2 matrix Ã defined by

Ã(i2 + (j2 − 1)n, i1 + (j1 − 1)n) = A(i1 + (i2 − 1)n, j1 + (j2 − 1)n) (2.22)

where the indices i1, i2, j1, and j2 range from 1 to n. In particular, if

Ã =
n2
∑

k=1

σk bkc
T
k

is the rank-1 SVD expansion of Ã, then

Bk = reshape(bk, n, n) (2.23)

Ck = reshape(ck, n, n) (2.24)

for k = 1:n2.
We show that KPSVD of a PS-symmetric matrix is highly structured. To begin

with, the matrix Ã defined by (2.22) is PS-symmetric. Indeed by combining (2.2) and
(2.22) we see that

Ã(i2 + (j2 − 1)n, i1 + (j1 − 1)n)

= Ã(j2 + (i2 − 1)n, j1 + (i1 − 1)n)

= Ã(i1 + (j1 − 1)n, i2 + (j2 − 1)n)

= Ã(j1 + (i1 − 1)n, j2 + (i2 − 1)n).

(2.25)

These equalities show that ÃT = Ã and Ã = ΠnnÃΠnn. In other words, Ã is PS-
symmetric. From (2.18) and (2.19) we know that Ã has a rank-1 Schur decomposition
expansion of the form

Ã =

nsym
∑

i=1

λ
(sym)
i b

(sym)
i [b

(sym)
i ]T +

nskew
∑

i=1

λ
(skew)
i b

(skew)
i [b

(skew)
i ]T
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where Πnnb
(sym)
i = b

(sym)
i and Πnnb

(skew)
i = −b(skew)i . We may assume

|λ(sym)
1 | ≥ · · · ≥ |λ(sym)

nsym
|

and

|λ(skew)1 | ≥ · · · ≥ |λ(skew)nskew
|.

To get an unnormalized KPSVD of A, we follow (2.23) and (2.24) and reshape the
eigenvectors of Ã into n-by-n matrices. The sym-eigenvectors give us symmetric ma-

trices B
(sym)
1 , . . . , B

(sym)
nsym while the skew-eigenvectors give us skew-symmetric matrices

B
(skew)
1 , . . . , B

(skew)
nskew . Overall we obtain

A =

nsym
∑

i=1

λ
(sym)
i (B

(sym)
i

⊗B
(sym)
i ) +

nskew
∑

i=1

λ
(skew)
i (B

(skew)
i

⊗B
(skew)
i )

which can be regarded as an unnormalized KPSVD of A.

2.5. A Structured Cholesky-Based Representation. Now assume that A is
PS-symmetric and positive semidefinite with rank r. Analogous to how we proceeded
in the centrosymmetric case, we develop a structured representation of A that is
based on pivoted Cholesky factorizations of the matrices A(sym) and A(skew) in (2.18)
and (2.19). We compute the pivoted Cholesky factorizations

P (sym)A(sym)P (sym)T = L(sym)L(sym)T (2.26)

P (skew)A(skew)P (skew)T = L(skew)L(skew)T (2.27)

where

L(sym) ∈ IRnsym×rsym, rsym = rank(A(sym)) (2.28)

L(skew) ∈ IRnskew×rskew, rskew = rank(A(skew)). (2.29)

The matrices {L(sym), P (sym), L(skew), P (skew)} collectively define a structured represen-
tation of A, for if

Y (sym) = Q(sym)P (sym)TL(sym) = [ y
(sym)
1 | · · · | y(sym)

rsym) ]

Y (skew) = Q(skew)P (skew)TL(skew) = [ y
(skew)
1 | · · · | y(skew)rskew ],

then it follows from A = Q(sym)A(sym)Q(sym)T + Q(skew)A(skew)Q(skew)T that

A =

rsym
∑

i=1

y
(sym)
i [y

(sym)
i ]T +

rskew
∑

i=1

y
(skew)
i [y

(skew)
i ]T . (2.30)

Each of the rank-1 matrices in this expansion is PS-symmetric because

ΠnnY
(sym) = (ΠnnQ

(sym))(P (sym)TL(sym)) = Q(sym)(P (sym)TL(sym)) = Y (sym)

ΠnnY
(skew) = (ΠnnQ

(skew))(P (skew)TL(skew)) = −Q(sym)(P (skew)TL(skew)) = −Y (skew).
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Thus, by combining the block diagonalization with pivoted Cholesky factorizations
we can efficiently represent a given positive semidefinite matrix with PS-symmetry.
Here is a summary of the procedure:

Representing a Positive Semidefinite PS-Symmetric A

1. Form A(sym) using (2.18).

2. Compute the pivoted Cholesky factorization of A(sym). See (2.26) and (2.28).

3. Form A(skew) using (2.19)

4. Compute the pivoted Cholesky factorization of A(skew). See (2.27) and (2.29).

Fig. 2.1. Computing the representation {L(sym), P (sym), L(skew), P (skew)}of a PS-Symmetric Matrix

By truncating the summations in (2.30) we can use this framework to construct low-
rank approximations that are also PS-symmetric. We shall have more to say about
this and related implementation issues in §4. To anticipate the discussion we share
some benchmarks in Fig. 2.2 The results are similar to what is reported in Fig

rsym = nsym , rskew = nskew rsym = n , rskew = n

n Tu/Ts Tset-up/Ts Tu/Ts Tset-up/Ts

39 1.69 0.44 0.65 0.75

55 2.33 0.32 0.69 0.78

67 2.48 0.28 0.67 0.69

77 2.81 0.22 0.75 0.69

Fig. 2.2. Tu is the time required to compute the Cholesky factorization of A, Ts is the time re-
quired to set up A(sym) and A(skew) and compute their Cholesky factorizations, and Tset-up is the time
required to just set-up A(sym) and A(skew). The LAPACK procedures POTRF (unpivoted Cholesky
calling level-3 BLAS) and PSTRF (pivoted Cholesky calling level-3 BLAS) were used for full rank
and low rank cases respectively. Results are based on running numerous random trials for each com-
bination of n and (rsym, rskew). A single core of the Intel(R) Core(TM) i5-3210M CPU @ 2.50GHz
was used.

1.2 for the centrosymmetric problem. In the full rank case we anticipate a four-fold
speed-up because the matrices A(sym) and A(skew) have dimension that is about half
the dimension of A. However, Tu/Ts is somewhat less than 4 because the set-up time
fraction Tset-up/Ts is nontrivial. In the low-rank case, this overhead rivals the cost
of the half-size factorizations because of the reliance upon traditional right-looking
procedures that force us to carry out the complete block diagonalization beforehand.

3. ((1,2),(3,4))-Symmetry. We now apply the results of the previous section
to the structured multilinear product (1.2). To drive the discussion we consider an
example that arises in quantum chemistry and related application areas. The under-
lying tensor is ((1,2),(3,4)))-symmetric and its [1, 2]× [3, 4] unfolding is near a matrix
with very low rank.

3.1. Unfolding a ((1,2),(3,4))-Symmetric Tensor. If A ∈ IRn×n×n×n is
((1,2),(3,4))-symmetric, then its [1, 2]× [3, 4] unfolding has three important properties
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Symmetry in A Implication for A = A[1,2]×[3,4]

A(i1, i2, i3, i4) = A(i3, i4, i1, i2) A = AT

A(i1, i2, i3, i4) = A(i2, i1, i3, i4) ΠnnA = A

A(i1, i2, i3, i4) = A(i1, i2, i4, i3) AΠnn = A

Fig. 3.1. Unfolding a ((1,2),(3,4)-Tensor

that are tabulated in Fig.3.1. We refer to an n2-by-n2 matrix A that satisfies A = AT ,
ΠnnA = A, and A = AΠnn as a ((1,2),(3,4))-symmetric matrix. Such a matrix is also
PS-symmetric because the properties ΠnnA = A and AΠnn = A imply ΠnnAΠnn = A.
This permits us to say a little more about the block diagonalization in (2.8).

Theorem 3.1. If the n2-by-n2 matrix A is ((1,2),(3,4))-symmetric, then

QT
nn
AQnn =

[

A(sym) 0

0 0

]

where Qnn is defined by (2.6). In other words, the diagonal block A(skew) in Theorem
2.1 is zero. Moreover,

A(sym) = ∆(sym)(u, u) · A(u, u) ·∆(sym)(u, u) (3.1)

where ∆(sym) is defined by (2.15) and u = symn is given by (2.12).

Proof. Using (2.11) and the properties AΠnn = A and ΠnnQ
(skew)
nn

= −Q(skew)
nn

, we
have

A(skew) = Q(skew)
nn

TAQ(skew)
nn

= Q(skew)
nn

T (AΠnn)Q
(skew)
nn

= Q(skew)
nn

TA(ΠnnQ
(skew)
nn

) = −Q(skew)
nn

TAQ(skew)
nn

= −A(skew)

Thus, A(skew) = 0. Equation (3.1) follows by noting that A(u, p(u)) = A(u, u) in
(2.18).

With this added bit of structure we can construct a representation that is more
abbreviated than what is laid out in Figure 2.1 for matrices that are merely PS-
symmetric. Observe in Fig 3.2 that only a single half-sized factorization is required.
The impact of the set-up overhead in the first step is discussed in §4.

Representing a ((1,2),(3,4))-Symmetric Matrix A that is Positive Semidefinite

1. Form A(sym) using (3.1).

2. Compute the pivoted Cholesky factorization of A(sym). See (2.26) and (2.27).

Fig. 3.2. Computing the representation {L(sym), P (sym)}of a ((1,2),(3,4))-Symmetric Matrix
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3.2. An Example. The four-index Electron Repulsion Integral (ERI) tensor
A ∈ R

n×n×n×n is defined by

A(i1, i2, i3, i4) =

∫

R3

∫

R3

φi1(r1)φi2 (r1)φi3 (r2)φi4 (r2)

‖r1 − r2‖
dr1dr2 (3.2)

where a set of basis functions {φk}1≤k≤n is given such that φk ∈ H1(R3). In general,
φk are complex basis functions but in this paper we assume real basis functions. The
simplest real basis functions φk are Gaussians parametrized by the exponents αk ∈ IR
and centers rk ∈ IR3 for k = 1, . . . , n, e.g.

φk(r) = gk(r− rk) = (2αk/π)
3/4e−αk‖r−rk‖

2

Typically, more sophisticated basis functions are composed from linear combinations
of these simple Gaussians [7].

The ERI tensor is essential to electronic structure theory and ab initio quantum
chemistry. Efficient numerical algorithms for computing and representing this ten-
sor have been a major preoccupation for researchers interested in ab initio quantum
chemistry [3, 9, 18, 11].

Notice that for the ERIs,

A(i1, i2, i3, i4) = A(i3, i4, i1, i2)

because the order of integration does not matter. Also, due to the commutativity of
scalar multiplication:

A(i1, i2, i3, i4) = A(i2, i1, i3, i4) = A(i1, i2, i4, i3) = A(i2, i1, i4, i3)

Thus, if A is the tensor defined by (3.2), then it is ((1,2),(3,4)) symmetric. More-
over, A = A[1,2]×[3,4] is positive definite since it is a Gram matrix for the product-basis
set {φiφj} in the Coulomb metric 〈·, 1

‖r1−r2‖
·〉. See [10] for details.

3.3. A Structured Multilinear Product. A structured version of (3.2) arises
in the Hartree-Fock method, an important technique for those concerned with the
ab initio calculation of electronic structure. Szabo and Ostlund [22] is an excellent
general reference in this regard. For an accurate treatment of electronic correlation
effects, it is convenient to transform the ERI tensor from the atomic orbital basis
{φk(r)} to the molecular orbital basis {ψk(r)}. The change of basis is defined by

ψp =

n
∑

q=1

X(p, q)φq p = 1, 2, . . . , n (3.3)

where X ∈ IRn×n is given. The goal is to transform the atomic orbital basis ERI
tensor A into the following molecular orbital basis ERI tensor B ∈ R

n×n×n×n defined
by

B(i1, i2, i3, i4) =

∫

R3

∫

R3

ψi1(r1)ψi2(r1)ψi3(r2)ψi4 (r2)

‖r1 − r2‖
dr1dr2. (3.4)

By substituting (3.3) into (3.2) it is easy to show that this tensor is given by

B(i1, i2, i3, i4) =

n
∑

j1,j2,j3,j4=1

A(j1, j2, j3, j4)X(i1, j1)X(i2, j2)X(i3, j3)X(i4, j4). (3.5)
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To analyze and exploit the structure of this computation, we start with the fact
that it is a special case of the general multilinear product

B(j1, j2, j3, j4) =
n
∑

i1,i2,i3,i4=1

A(i1, i2, i3, i4)X1(i1, j1)X2(i2, j2)X3(i3, j3)X3(i4, j4).

(3.6)
It can be shown that

B[1,2]×[3,4] = (X2 ⊗X1)A[1,2]×[3,4] (X4 ⊗X3)
T (3.7)

See [8, p.728-9]. Thus, if

B(i1, i2, i3, i4) =
n
∑

j1,j2,j3,j4=1

A(j1, j2, j3, j4)X(i1, j1)X(i2, j2)X(i3, j3)X(i4, j4). (3.8)

then it follows that

B[1,2]×[3,4] = (X ⊗X)A[1,2]×[3,4] (X ⊗X)T .

It is easy to verify that if the tensor A is ((1,2),(3,4))-symmetric then the tensor B is
also ((1,2),(3,4))-symmetric. Indeed,

ΠnnB[1,2]×[3,4] = Πnn(X ⊗X)A[1,2]×[3,4] (X ⊗X)T

= (X ⊗X)(Πnn A[1,2]×[3,4]) (X ⊗X)T

= (X ⊗X)A[1,2]×[3,4] (X ⊗X)T = B[1,2]×[3,4].

where we used the fact that Πnn(M1 ⊗M2) = (M2 ⊗M1)Πnn for all M1,M2 ∈ IRn×n.
See [8, p.27]. Likewise, B[1,2]×[3,4]Πnn = B[1,2]×[3,4]. Since B[1,2]×[3,4] is obviously symmet-
ric, we see that this matrix (and hence the tensor B) is ((1,2),(3,4)) symmetric.

4. Discussion. To check out the ideas presented in the previous sections, we im-
plemented the method displayed in Fig. 3.2 and tested it on the low-rank ((1,2),(3,4))-
symmetric matrices that arise from ERI tensor unfoldings.

4.1. Low Rank. It is well known in the TEI setting that A[1,2]×[3,4] is very close
to a matrix whose rank in O(n). Indeed, Røeggen and Wisløff-Nilssen [18] show that
rank10−p(A) ≈ pn where rankδ(A) is the number of A’s singular values that are
greater than δ. Affirmations of this heuristic can be found in O’Neal and Simons [11].
For insight we graphically display the eigenvalue decay for two simple molecules in
Fig 3.3. Fig 3.4 is a table of ranks for some larger problems. See [18] for more details
on the low rank structure.

4.2. A Lazy Evaluation Strategy. In their highly cited paper Beebe and Lin-
derberg [3] demonstrate that by making use of the low rank and positive definiteness
of the two-electron integral matrix it is possible to reduce the number of integral
evaluations necessary to factorize the matrix, as well as reduce the complexity of a
major bottleneck of computational quantum chemistry called the two-electron inte-
gral four-index transformation. The key idea is to implement the pivoted Cholesky
factorization algorithm with lazy evaluation–off-diagonal entries (integrals) are only
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H2O (n = 12) C2H4 (n = 6)

Fig. 4.1. Eigenvalue decay of ERI matrices generated by the Psi4 Quantum Chemistry Package
[23]

Molecule n2 n rank10−6(A)

HF 1190 34 ≈ 200

NH3 2304 48 ≈ 300

H2O2 4624 68 ≈ 400

N2H4 6724 82 ≈ 500

C2H5OH 15129 123 ≈ 750

Fig. 4.2. Confirmation that rank10−6 ≈ 6n

computed when necessary. To illustrate, after (say) k steps of the process on an
N -by-N matrix A, we have the following partial factorization

PkAP
T
k =

[

L11 0
L21 IN−k

] [

Ik 0

0 Ã

] [

L11 0
L21 IN−k

]T

(4.1)

Ordinarily, the matrix Ã is fully available, its diagonal is scanned for the largest
entry, and then a PAPT -type of permutation update is performed that brings this
largest diagonal entry to the (k+1, k+1) position. The step is completed by carrying
a rank-1 update of the permuted Ã and this renders the next column of L. The
lazy evaluation version of this recognizes that we do not need the off-diagonal values
in Ã to determine the pivot. Only the diagonal of Ã is necessary to carry out the
pivot strategy. The recipe for the next column of L involves (a) previously computed
columns of L and (b) entries from that column of A which is associated with the
pivot. It is then an easy matter to update the diagonal of the current Ã to get the
diagonal of the “next” Ã. The importance of this lazy-evaluation strategy is that
O(Nk) integral evaluations (i.e., aij evaluations) are necessary to get through the k-

th step. If the largest diagonal entry in Ã is less than a small tolerance δ, then because
Ã is positive definite, ‖ Ã ‖ = O(δ) and we have the “right” to regard A as a rank-
k matrix. The overall technique can be seen as a combination of Gaxpy-Cholesky,
which only needs A(k:n, k) in step k and outer product Cholesky which is traditionally
used in situations that involve diagonal pivoting. Røeggen and Wisløff-Nilssen [18]
explore the numerical rank of the two-electron integral matrix, and investigate the
relationship of various thresholds and electronic properties. See also [9, 10].

While on the subject of lazy evaluation, it is important to stress that the matrix
entries in A(sym) are essentially entries from A. See (3.2). Thus, when we apply
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our implementation of pivoted Cholesky to to A(sym) with lazy evaluation, there are
no extra aij computations. In other words, our method requires half the work, half
the storage, and half the electronic repulsion integrals as traditional Cholesky-based
methods. The table displayed in Fig 4.3 confirms these observations

n = 44
r = 345

n = 72
r = 560

n = 88
r = 720

n = 116
r = 918

Tu/Ts 1.84 1.90 1.89 1.93

Su/Ss 1.95 1.97 1.97 1.98

Eu/Es 1.95 1.97 1.97 1.98

Fig. 4.3. Tu and Ts are the time in seconds to factorize A and A(u, u) respectively; Su and Ss

are the number of bytes allocated to factorize A and A(u, u) respectively; Eu and Es are the number
of ERI evaluations to factorize A and A(u, u) respectively. Results are based on running Psi4 Lazy
Evaluation pivoted Cholesky on the ERI matrix of four different molecules on a single core of a
laptop Intel(R) Core(TM) i5-3210M CPU @ 2.50GHz.

4.3. Conclusion. We have used a simple example of multiple symmetries to ex-
plore a computational framework that involves block diagonalization and the pivoted
Cholesky factorization. Items on our research agenda include the extension of these
ideas to more intricate forms of multiple symmetry that arise in higher-order tensor
problems and to apply this approach to improve the performance of the Hartree-Fock
method in quantum chemistry. Intelligent data structures and blocking will certainly
be part of the picture. Ragnarsson and Van Loan develop a block tensor computa-
tion framework in [17]. If multiple symmetries are present, then as in the matrix
case tensions arise between compact storage schemes and “layout friendly” matrix
multiplication formulations. See Epifanovsky et al [6], and Solomonik, Matthews,
Hammond, and Demmel, [21]. In [20] Schatz, Low, van de Geijn, and Kolda discuss
a blocked data structure for symmetric tensors, partial symmetry, and the prospect
of building a general purpose library for multi-linear algebra computation. They also
discuss a blocking strategy for a symmetric multilinear product.
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