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Abstract

In this paper, we study the formation of finite time singularities in the form of super norm

blowup for a spatially inhomogeneous hyperbolic system. The system is related to the variational

wave equations as those in [18]. The system posses a unique C1 solution before the emergence

of vacuum in finite time, for given initial data that are smooth enough, bounded and uniformly

away from vacuum. At the occurrence of blowup, the density becomes zero, while the momentum

stays finite, however the velocity and the energy are both infinity.

1 Introduction

In this paper, we consider the following Cauchy problem of spatially inhomogeneous hyperbolic

partial differential equations:





ρt + (ρu)x = 0

(ρu)t +
(
ρu2 − c2(x)ρ−1

)
x

= −c(x)c′(x)ρ−1

(ρ, u)|t=0 = (ρ0, u0),

(1.1)

where ρ(x, t) : R × [0,+∞) → [0,∞) is the density, u(x, t) : R × [0,+∞) → R is the velocity,

ρ0, u0 are given initial data that will be specified later and c(x) : R → R+ is a given function

satisfying

c(x) ∈ C2, 0 < c0 ≤ c(x) ≤ C0 < +∞, |c′(x)| ≤ C1 < +∞, c′(x) 6≡ 0, (1.2)

for some constants c0, C0 and C1. It is easy to verify that the smooth solutions of (1.1) satisfy

an energy conservation law

Et + qx = 0 (1.3)

with specific energy (entropy)

E =
1

2
ρu2 +

1

2
c2ρ−1 (1.4)

and entropy flux

q =
1

2
u3ρ− 1

2
c2ρ−1u . (1.5)
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1.1 Inhomogeneous linear elasticity

System (1.1) can be viewed as an Eulerian description of inhomogeneous linear elasticity.

Basic mechanics. For any smooth domain ΩX0 ⊂ Rn with n = 1, 2, or 3, let X ∈ ΩX0 denotes

the Lagrangian coordinates. The flow map x(X, t) : ΩX0 → Ωxt in Figure 1 satisfies (see [1] for

details) 



dx

dt
= u(x(X, t), t)

x(X, 0) = X .
(1.6)

	  

2 Basic Mechanics

In this chapter we present the general setting we consider when studying complex
fluids. Moreover, we define several objects that help us to model, understand,
and study these materials.

2.1 Coordinate Systems and Deformation

First, we define the deformation and talk about the different coordinate systems.

x(X, t)

Ωx
tΩX

0

xX

Figure 2.1: Deformation Mapping between Reference Configuration ΩX
0 and De-

formed Configuration Ωx
t

Definition 1. Let ΩX
0 , Ωx

t ⊂ Rn, n ∈ N, be domains with smooth boundaries,
t ∈ R+

0 be time and let u = (u1, . . . , un) be a smooth vector field in Rn depending
smoothly on time t. The deformation or flow map x(X, t) : ΩX

0 → Ωx
t is defined

as a solution map of
{

d
dtx(X, t) = u(x(X, t), t), t > 0,

x(X, 0) = X,
(2.1)

where X = (X1, . . . ,Xn) ∈ ΩX
0 and x = (x1, . . . , xn) ∈ Ωx

t .
The coordinate system X is called the Lagrangian coordinate system and refers
to ΩX

0 which we call the reference configuration; the coordinate system x is called
the Eulerian coordinate system and refers to Ωx

t which we call the deformed con-
figuration.

In other words, we start from a domain ΩX
0 , the reference configuration which

changes over time. At any given time t the deformed configuration is Ωx
t . The
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Figure 1: A flow map

Furthermore, let

F̃ (X, t) =
∂x(X, t)

∂X
(1.7)

be the deformation matrix associate with the flow map and define the Eulerian quantity (push

forward)

F (x(X, t), t) = F̃ (X, t). (1.8)

In case of F preserving the sign, e.g. det F̃ > 0, not only F̃ is an invertible matrix, x(X, t)

preserves the orientation. By (1.7), (1.8) and direct calculation, we obtain that F satisfies the

following kinematic relation (chain rule) (c.f. [31])

Ft + u · ∇xF = ∇xu · F. (1.9)

Let ρ(x, t) : Ωxt × [0,+∞)→ R+ be the density of mass with initial data ρ0(X) = ρ(x(X, 0), 0).

The usual conservation of mass equation

ρt +∇x · (ρu) = 0 (1.10)

is equivalent to

ρ(x(X, t), t) =
ρ0(X)

det F̃ (X, t)
. (1.11)

Energetic variational approaches. By the first and second laws of thermodynamics, one

can start with energy law for a conservative system:

d

dt

∫

ΩX0

K(X, t, xt) +W(X, t, x, F̃ ) dX = 0, (1.12)
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where K(X, t, xt) denotes the kinetic energy and W(X, t, x, F̃ ) denotes the free energy. Specif-

ically, one can consider the following simple forms of kinetic energy and internal energy (for

inhomogeneous linear elasticity)

d

dt

1

2

∫

ΩX0

ρ0(X)|xt(X, t)|2 + c2(x)|F̃ (X, t)|2 dX = 0, (1.13)

where c(x) : Ωxt → R+ is a given scalar function. The energy law (1.13) has been widely used to

describe the elasticity in an inhomogeneous medium, that includes the coupling and competition

between the kinetic energy and (linear) elastic energy (c.f [33], [31] and [28]). In particular, when

the space dimension n = 1 and the initial data ρ0(X) = 1, we have

ρ(x(X, t), t) =
ρ0(X)

det F̃ (X, t)
=

1

F̃ (X, t)
> 0. (1.14)

Therefore, to certain degree, in one space dimension one cannot distinguish elastic energy which

depends only on F̃ and the conventional free energy of fluid which is a function of ρ (c.f. [15]).

System (1.1) can be derived from the energy law (1.13) by using the energetic variational

methods under Eulerian coordinates (c.f. [20]). For completeness of our paper, we sketch main

steps of derivation as those in [20].

For any T > 0, the action of the system is

A(x) =
1

2

∫ T

0

∫

Ω

ρ0(X)|xt(X, t)|2 − c2(x)|F̃ (X, t)|2 dXdt.

By the least action law, the variation of A(x) with respect to x under Lagrangian coordinates

can be calculated as follows:

0 =
d

dε

∣∣∣∣
ε=0

A(x+ εy)

=

∫ T

0

∫

ΩX0

ρ0(X)xt · yt − c(x) |F̃ |2 (y · ∇x)c(x)− c2(x)F̃ :
∂y

∂X
dXdt

= −
∫ T

0

∫

ΩX0

ρ0(X)xtt · y + c(x) |F̃ |2 (y · ∇x)c(x)− divX

(
c2(x)F̃

)
y dXdt,

(1.15)

for any y(X, t) ∈ C∞0 (ΩX0 ×(0, T )). Here A : B = AijBij denotes the inner product of two matri-

ces. Therefore, the Euler-Lagrange equation of energy law (1.13) under Lagrangian coordinates

for any n = 1, 2 or 3, is

ρ0(X)xitt + c(x)F̃ 2∇xic(x)−∇Xj (c2(x)F̃ij) = 0. (1.16)

Remark 1.1 When the space dimension n = 1 and the initial data ρ0(X) = 1, equation (1.16)

can be written as nonlinear wave equation

xtt(X, t)− c(x)(c(x)F̃ (X, t))X = 0, (1.17)

which is exactly a special case of one dimensional variational wave equation modeling nematic

liquid crystal dynamics. We will provide more details later.

Let ỹ(x(X, t), t) = y(X, t) be the pull-forward quantity of y from the Lagrangian to Eulerian

coordinates. Integrating by parts with respect to t, changing variables and integrating by parts
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with respect to x, one can obtain

0 =
d

dε

∣∣∣∣
ε=0

A(x+ εy)

= −
∫ T

0

∫

Ωt

ρ(x, t)(ut + u · ∇xu)ỹ +
c(x)|F |2(ỹ · ∇x)c(x)

detF
− divx

(
c2(x)FFT

detF

)
ỹ dxdt,

(1.18)

where (1.6) and (1.11) have been used in changing variables. Therefore, the Euler-Lagrange

equation of energy law (1.13) in the Eulerian coordinates is

ρ(x, t)(ut + u · ∇xu) +
c(x)|F |2∇xc(x)

detF
− divx

(
c2(x)FFT

detF

)
= 0. (1.19)

When the space dimension n = 1, combining (1.19), (1.10) and (1.9), we have the following

coupled dynamic system

ρt + (ρu)x = 0

Ft + uFx = uxF

ρ(ut + uux) = c(x) (c(x)F )x .

(1.20)

Remark 1.2 When the space dimension n = 1, Ωxt = R, the initial data ρ0(X) = 1
(
i.e. F = 1

ρ

)
,

system (1.20) becomes

ρt + (ρu)x = 0

ρ(ut + uux) = c(x)

(
c(x)

ρ

)

x

,
(1.21)

which is exactly (1.1). And the corresponding energy law (1.13) becomes

d

dt

1

2

∫

R
ρ(x, t)|u(x, t)|2 + c2(x)ρ−1(x, t) dx = 0. (1.22)

From Remark 1.1 and Remark 1.2, when the space dimension n = 1, the initial data ρ0(X) =

1, detF > 0 and the solutions for both systems are smooth enough, (1.21) and variational wave

equation (1.17) are formally equivalent systems under different coordinates. However, in general

when one looks at (1.21) and (1.17) in weak form, they can be different since the deformation

matrix F is not always invertible (when singularities occur).

The equation (1.17) is a special case of variational wave equation modeling nematic liquid

crystal. In [2] such variational wave equation was first investigated in any dimensions when

people were trying to find the minimal of the following energy
∫

Ω

|nt|2 −W (n,∇n) dy = 0, (1.23)

where |n| = 1 and

W (n,∇n) = α|n× (∇× n)|2 + β(∇ · n)2 + γ(n · ∇ × n)2 + η
[
tr(∇n)2 − (∇ · n)2

]
.

Here α, β, γ and η are all positive viscosity constants, and W is the Oseen-Frank potential for

nematic liquid crystal (c.f. [2]). When n only depends on a single space variable X and

n = cosφ(X, t)ey1 + sinφ(X, t)ey2 (planar deformation),
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where ey1 and ey2 are the coordinate vectors in the y1 and y2 directions, respectively. The

Euler-Lagrange equation of (1.23) was given in [2] as follows

φtt − c(φ)(c(φ)φX)X = 0, (1.24)

with

c2(φ) = α cos2(φ) + β sin2(φ).

It is obvious that (1.24) is exactly (1.17) with φ replaced by x. In [5], Bressan and Zheng have

established the global existence of energy conservative weak solutions for (1.17)) by introducing

new energy-dependent coordinates (see also [19]). The solutions are locally Hölder continuous

with exponent 1
2 . For general W (n,∇n) in one space dimension, the existence of weak solutions

has been studied by a series of papers [40, 41, 10].

We really need to point out that the singularity formation for (1.17) has been first studied

by Glassey, Hunter and Zheng in their seminal work [18], in which a gradient blowup example

has been provided. When there is a damping term in (1.17), a similar gradient blowup example

is provided in [11]. In [11, 18], the singularities they construct are ”kink” solutions instead

of shock waves constructed for systems of conservation laws including at least one genuinely

nonlinear characteristic family [26, 23, 6, 7, 8, 9]. We will provide more details in Remark 1.4,

Remark 1.6 and Remark 5.1.

Our first main result is for (1.1) with initial data ρ0 = 1 describing the inhomogeneous elastic

flow.

Theorem 1.3 There exists a function c(x) ∈ C2 (given in (4.1)) satisfying (1.2) and a finite

time T = O(1)ε−2 > 0, such that the Cauchy problem of (1.1) with initial data (ρ0, u0) =

(1, c(x)) has a unique C1 solution (ρ(x, t), u(x, t)) on (x, t) ∈ R× [0, T ). Moreover, there exists

a point (x∗, T ) with |x∗| < O(1)ε−1 at which the solution satisfies

lim
t→T−

u(x∗, t) =∞ lim
t→T−

ρ(x∗, t) = 0 lim
t→T−

ρu(x∗, t) = B and lim
t→T−

E(x∗, t) =∞,
(1.25)

where B is a finite constant. The solutions ρ(x, t) and −u(x, t) have uniform upper bounds on

(x, t) ∈ R× [0, T ).

Remark 1.4 We have several remarks for Theorem 1.3:

(1). In our example, the characteristic speeds of two families are uniformly away from each

other, or in another word, system (1.1) is uniformly strictly hyperbolic (see Lemma 4.4

and Lemma 4.5).

(2). In our example, the L∞ blowup happens at the same time of C1 blowup, since two char-

acteristic families for (1.1) are both linearly degenerate in the definition of Lax when c(x)

is constant. This is a rare case for systems of hyperbolic conservation laws. In fact, for

(1.32), this happens only when γ = −1.

(3). By (1.11), (1.17) and the last remark, one could see that the C1 blowup of the flow map

essentially indicates the vacuum formation for (1.1) when the initial data ρ0 = 1 and

F > 0, through the transformation from Lagrangian coordinates to Eulerian coordinates.

The construction of our example is motivated by the pioneer work by Glassey, Hunter

and Zheng [18] on the singularities of variational wave equation (1.17) (with F = xX) in

one dimension. However, the blowup example constructed in (1.17) does not satisfy the

5



restrictions ρ0 = 1 (i.e. xX = 1 initially) and F = xX > 0, hence the system cannot

be transformed to (1.1) in this situation. By introducing new techniques, in Theorem 1.3,

we construct a blowup example satisfying all these restrictions. We do adopt important

ideas from [18], while the restrictions for inhomogeneous elastic flow make the construction

much more complicated than the example in [18].

(4). For any positive constant K, the total energy of the solution for any time until the blowup

when x ∈ [−K,K] is bounded by a constant depending on K, although at the time of

blowup, the energy concentrates, i.e. energy density is infinity, somewhere.

(5). It is an interesting question to consider more general assumptions on c. The numerical

experiments in [20] have indicated such blowup might happen for more general cases.

(6). When the initial data ρ0 6≡ 1, one needs to investigate the system (1.20) instead of (1.1).

It is also an interesting and challenging question.

1.2 Isentropic duct flow for Chaplygin gas dynamics

System (1.1) has applications in various fields. We can reformulate the spatially inhomogeneous

system (1.1) by setting

ρ = c(x)ρ̄, (1.26)

then the system (1.1) can be equivalently written as the isentropic flow for Chaplygin gas [13, 35]

on varying cross-sectional area of the duct or with radially symmetry (see also equation (7.1.24)

in [15]), which is used for the modeling of dark energy,:

{
(c(x)ρ̄)t + (c(x)ρ̄u)x = 0

(c(x)ρ̄u)t +
(
c(x)ρ̄u2 − c(x)ρ̄−1

)
x

= −c′(x)ρ̄−1
(1.27)

with pressure

p(ρ̄) = −ρ̄−1,

where ρ̄ is the density of gas at any point (x, t) and ρ is the density on a cross-section. For

a duct flow, c(x) is the cross-sectional area which is uniformly positive and bounded. We can

also generally consider (1.1) as a model for the isentropic Chaplygin gas in an inhomogeneous

medium.

Similar as Theorem 1.3, we construct blowups for the Cauchy problem of (1.27) (or equiv-

alently (1.1) by the relation (1.26)). For simplicity, we only consider a very special example of

c(x):

c(x) =





3− εα − 1
2ηε

α, x ∈ (−∞,−1− η),

ψ1(x), x ∈ [−1− η,−1),

3 + εαx, x ∈ [−1, 1],

ψ2(x), x ∈ (1, 1 + η],

3 + εα + 1
2ηε

α, x ∈ (1 + η,∞),

(1.28)

where α is any constant in [0, 1), ψ1(x) is an increasing function on x ∈ [−1− η,−1) connecting

3− εα− 1
2ηε

α and 3− εα and ψ2(x) is an increasing function on x ∈ [1, 1 + η] connecting 3 + εα

and 3 + εα + 1
2ηε

α. The positive constant η < ε3. Furthermore 0 < ε < 1 is a small given

number which will be provided in the proof of the theorem. By standard mollifier theory, we

can find ψ1 and ψ2 such that c(x) satisfies (1.2).

Now we list our first result on the singularity formation for the Cauchy problem of (1.27).
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Theorem 1.5 For any α ∈ [0, 1) and c(x) given in (1.28), there exist uniformly bounded C1

initial data ρ0(x) (ρ0 6≡ 1 and has uniformly positive lower bound) and u0(x) (which will be

given in the proof) and a finite time T = O(ε−α) > 0, such that the Cauchy problem of (1.1)

with initial data (ρ0, u0) has a unique classical C1 solution (ρ(x, t), u(x, t)) on (x, t) ∈ R× [0, T ).

Moreover, there exists a point (x∗, T ) with |x∗| = O(ε
1−α
2 ) < O(1) at which the solution satisfies

lim
t→T−

u(x∗, t) =∞ lim
t→T−

ρ(x∗, t) = 0 lim
t→T−

ρu(x∗, t) = B and lim
t→T−

E(x∗, t) =∞,
(1.29)

where B is a finite constant. The solutions ρ(x, t) and −u(x, t) have uniform upper bounds on

(x, t) ∈ R× [0, T ).

Remark 1.6 We have several remarks for Theorem 1.5.

(1). In this example, the characteristic speeds of two families are uniformly away from each

other, or in another word, system (1.27) is uniformly strictly hyperbolic (see Lemma 5.5

and Lemma 5.6).

(2). The result is also motivated by the pioneer work by Glassey, Hunter and Zheng [18] on

the singularities of variational wave equation (1.17) in one space dimension. Although

equations (1.27) and (1.17) are not equivalent when the initial ρ0 6= 1, initial data in

Theorem 1.5 and in the example in [18] for (1.17) have a lot of similarities.

(3). This blowup can happen on a very slowly varying duct, which means ‖c′‖L∞ and the total

variation of c can be both arbitrarily small in Theorem 1.5. When the variation of c is

larger (c′(x) is larger) around x = 0, we show faster blowup. In fact, when α is decreasing,

c′(x) is increasing around x = 0, then the blowup time is shorter. When α = 0, the blowup

time is at most O(1).

(4). For any positive constant K, the total energy of the solution for any time until the blowup

when x ∈ [−K,K] is bounded by a constant depending on K, although at the time of

blowup, the energy concentrates, i.e. the energy density is infinity, somewhere.

When one looks for the radially symmetric solutions: ρ̄(y, t) = ρ̄(x, t), u(y, t) = yu(x, t)

with radius x ≥ 0 for {
∂tρ̄+∇y · (ρ̄u) = 0

∂t(ρ̄u) +∇y · (ρ̄u ⊗ u) +∇yp(ρ̄) = 0,
(1.30)

with p(y, t) = ρ̄−1(y, t), u(y, t) = (u1, u2, u3) and (y, t) ∈ Rm+1 × R+ with m = 1 or 2, the

resulting system was in form of (1.27) with c(x) = xm (m = 1, cylindrical symmetric solution;

m = 2, spherically symmetric solution). See [15]. It will be shown in Section 1.3.1 that (1.30)

has strictly convex entropy.

Our next result concerns radially symmetric solutions for (1.30), that is the equation (1.27)

with c(x) = xm, where x denotes the radius. Without of loss of generality, we only consider the

solutions with initial data given on a special interval x ∈ [1, 3].

Theorem 1.7 For m = 1, 2 and some given C1 initial data (ρ0(x), u0(x)) depending only on

radius x ∈ [1, 3] (which will be prescribed in the proof), there exists a time T = O(1) > 0 such

that the Cauchy problem of (1.27) with c(x) = xm has a unique classical C1 solution in Ωsymm,

where Ωsymm is the domain of dependence of the initial interval x ∈ [1, 3] for any time t in
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(0, T ). Moreover, there exists a point (x∗, T ) with |x∗| = O(ε
1
2 ) < O(1) at which the solution

satisfies

lim
t→T−

u(x∗, t) =∞ lim
t→T−

ρ(x∗, t) = 0 lim
t→T−

ρu(x∗, t) = B and lim
t→T−

E(x∗, t) =∞,
(1.31)

where B is a finite constant. The solutions ρ(x, t) and −u(x, t) have uniform upper bounds on

(x, t) ∈ R× [0, T ).

Remark 1.8 Theorem 1.7 provides an example with finite time vacuum formation and L∞

blowup for the radially symmetric solutions with radius varying in a finite closed interval away

from zero. This example satisfies all properties as the example in Theorem 1.5 with α = 0.

1.3 Convex entropy and vacuum

Smooth solutions of the system (1.30) satisfy energy conservation law

Et +∇y ·Q = 0

with entropy

E =
1

2
ρ̄|u|2 +

1

2
ρ̄−1

and entropy flux

Q = (
1

2
ρ̄|u|2 − 1

2
ρ̄−1)u.

The entropy E is a strictly convex function on conservative variables (ρ̄,m), where m = ρ̄u is

the momentum, i.e. E = 1
2
|m|2
ρ̄ + 1

2 ρ̄
−1 satisfies that D2E is a positively defined matrix.

Concerning one dimensional case, the smooth solutions of equation (1.1) satisfy energy con-

servation law

Et + qx = 0,

with entropy

E =
1

2
ρu2 +

1

2
c2ρ−1

and entropy flux

q =
1

2
u3ρ− 1

2
c2ρ−1u.

By direct calculation, we obtain

E =
1

2

(
u ρ

)( ρ 0

0 c2ρ−3

)(
u

ρ

)
.

This implies that the entropy E is strictly convex.

The L∞ blowup in this paper is totally different from the previous L∞ blowup results found

first by Jenssen in his groundbreaking work [21], and then by several other authors [3, 22, 38, 39]

by considering the shock interactions. To see the difference, more intuitively, one could still

essentially consider that the L∞ blowup constructed in our examples on 1
ρ are coming from the

blowup on the gradient variable xX through transformation between different coordinates. A key

point worth mentioning is that after transformation from Lagrangian coordinates to Eulerian

coordinates, one gets a linearly degenerate system, which rarely happen, on which C1 solution

exists before the L∞ blowup.
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Furthermore, except the L∞ blowup, the more generic singularity: gradient blowup has been

studied for systems of conservation laws. The gradient blowup in systems of conservation laws

has been widely accepted as the most generic type of singularity related to the shock formation

in [26, 23, 6, 7, 8, 9]. It is much harder to find the L∞ blowup for systems of conservation laws.

Finally, we give a remark on the L∞ blowup on u and vacuum formation. The isentropic

hyperbolic systems with p = ρ̄γ when the adiabatic constant γ > 0 and p = −ρ̄γ when γ < 0

are given by {
(c(x)ρ̄)t + (c(x)ρ̄u)x = 0

(c(x)ρ̄u)t +
(
c(x)ρ̄u2 + c(x)p

)
x

= c′(x)p.
(1.32)

When 0 ≤ γ < 1, the entropy is not strictly convex so these cases are not the interesting cases for

us. When γ ≥ 1 or −1 < γ < 0 or γ < −1, the system (1.32) is genuinely nonlinear when c(x) is

a constant, hence we expect shock formation and tend to believe that the shock could prevent

the L∞ blowup. For example, when 1 < γ ≤ 5
3 , which is corresponding to gas dynamics, the L∞

existence has already been proven in [12] for the duct flow and exterior radially symmetric flow,

hence L∞ blowup on u can not happen (see also [27] for the gas dynamics with 1 < γ <∞).

Furthermore, the nonisentropic compressible Euler equations with polytropic ideal gas are




ρt + (ρ u)x = 0

(ρ u)t + (ρ u2 + p)x = 0

( 1
2ρ u

2 + ρ e)t + ( 1
2 ρ u

3 + u p)x = 0 ,

(1.33)

with equation of state

e = cvT =
p τ

γ − 1
and p τ = RT,

so that pressure

p = K exp(S/cv) τ−γ , (1.34)

where ρ is density, τ = 1/ρ, u is velocity, e is specific internal energy, S is the entropy, T is the

temperature, R, K, cv are positive constants, and γ > 1 is the adiabatic gas constant. In [9],

the first author, R. Young and Q. Zhang have found uniform time-independent L∞ bounds for

ρ and |u|.
Whether the solution for (1.32) or (1.33) with γ > 1 has a finite time vacuum or not is still

a major open problem for gas dynamics. If one only considers the smooth solutions for (1.32)

with γ > 1 and constant c, one may conjecture, by a strong evidence from [32], that there will

be no vacuum in finite time if there is no vacuum initially or instantaneously.

The rest of paper is organized as follows. In Section 2, we set up the Riemann coordinates

and several lemmas for smooth solutions. In Section 3, we prove the existence of C1 solution

when ‖u‖L∞ + ‖ρ‖L∞ < +∞ and |ρ| is away from zero. In Section 4, we prove Theorem 1.3 for

inhomogeneous elastic flow. In Section 5, we prove the Theorem 1.5 for isentropic Chaplygin

gas and the Theorem 1.7 for the radially symmetric case.

2 Riemann coordinates

For smooth solutions, the system (1.1) can be written as

ρt + uρx + ρux = 0

ut + uux + c2(x)ρ−3ρx = c(x)c′(x)ρ−2.
(2.1)
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Hence (
ρ

u

)

t

+A

(
ρ

u

)

x

=

(
0

c(x)c′(x)ρ−2

)
(2.2)

where

A =

(
u ρ

c2ρ−3 u

)
. (2.3)

Direct calculation shows that the eigenvalues of A are

S = u+ c(x)ρ−1, R = u− c(x)ρ−1, (2.4)

and the corresponding right eigenvectors are

v1 = (1, c(x)ρ−2)T , v2 = (1, −c(x)ρ−2)T . (2.5)

According to Lax [25], the two characteristic families for system (2.1) when c is a constant are

both linearly degenerate. For any (x̄, t̄) with t̄ > 0, the plus and minus characteristics x±(t)

through (x̄, t̄) are defined by

dx+(t, x̄, t̄)

dt
= S(x+, t) and

dx−(t, x̄, t̄)

dt
= R(x−, t) . (2.6)

For simplicity, we use x+(t) or t+(x) and x−(t) or t−(x) to denote the plus and minus charac-

teristics respectively. For smooth solutions of equation (2.1), we obtain the following equation

of c(x)/ρ, which will be used several times in the rest of paper.

c(x)(ρ−1)t + u(c(x)ρ−1)x − c(x)ρ−1ux = c′(x)uρ−1. (2.7)

Lemma 2.1 For smooth solutions of (1.1), S and R satisfy

St +RSx = c′(x)uρ−1 =
c′(x)

4c(x)

(
S2 −R2

)
,

Rt + SRx = −c′(x)uρ−1 =
c′(x)

4c(x)

(
R2 − S2

)
.

(2.8)

Proof. By equation (2.1) and (2.7), we have

St +RSx

=(u+ c(x)ρ−1)t + (u− c(x)ρ−1)(u+ c(x)ρ−1)x

=ut + c(x)(ρ−1)t + uux − c(x)ρ−1ux + u(c(x)ρ−1)x − c(x)ρ−1(c(x)ρ−1)x

=ut + uux − c(x)ρ−1(c(x)ρ−1)x + c(x)(ρ−1)t − c(x)ρ−1ux + u(c(x)ρ−1)x

=c′(x)uρ−1.

(2.9)

And

Rt + SRx

=(u− c(x)ρ−1)t + (u+ c(x)ρ−1)(u− c(x)ρ−1)x

=ut − c(x)(ρ−1)t + uux + c(x)ρ−1ux − u(c(x)ρ−1)x − c(x)ρ−1(c(x)ρ−1)x

=ut + uux − c(x)ρ−1(c(x)ρ−1)x −
(
c(x)(ρ−1)t − c(x)ρ−1ux + u(c(x)ρ−1)x

)

=− c′(x)uρ−1.

(2.10)

2
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Remark 2.2 When c(x) is a constant function, R and S are exactly two Riemann invariants

along plus and minus characteristics with characteristic speeds S and R respectively by Lemma

2.1, 



St +RSx = 0,

Rt + SRx = 0.
(2.11)

By the Theorem 2.3 in [29], system (2.11) admits a global-in-time unique C1 solution if the

initial data S0 and R0 have bounded C1 norm.

Lemma 2.3 (Energy conservation law) For smooth solutions of (1.1), the energy density

E = 1
4ρ(S2 +R2) satisfies

(
ρ(S2 +R2)

)
t

+
(
ρ(S2R+R2S)

)
x

= 0. (2.12)

Proof. By(2.4), we have

ρS = ρu+ c(x) and ρR = ρu− c(x). (2.13)

Thus, multiplying the first equation of (2.8) by 2ρS and the second equation of (2.8) by 2ρR,

adding them up, and using (2.13) and the conservation of mass in (1.1), we obtain

(ρS2 + ρR2)t +
(
ρ(S2R+R2S)

)
x

=(S2 +R2)ρt + S2(ρR)x +R2(ρS)x + 2c′u(S −R)

=(S2 +R2)ρt + S2(ρu− c)x +R2(ρu+ c)x + c′(S +R)(S −R)

=S2(ρt + (ρu)x) +R2(ρt + (ρu)x) + c′(R2 − S2) + c′(S2 −R2)

=0.

(2.14)

2

Finally, we give a key estimate for the proof of our main theorems. For any (x0, t0) ∈
R × (0,+∞), let γ+ and γ− be plus and minus characteristics through (x0, t0) and intersect

x−axis at x1 and x2 respectively (see Figure 2). Integrating (2.12) over a characteristic triangle

x

t

x0

(x0 t, 0 )

t!+t

x2x1

Figure 2: A characteristic triangle D.

D enclosed by γ+, γ− and [x1, x2] as in Figure 2, we obtain an energy identity indicating the

finite propagation of the waves.

Lemma 2.4 (Finite propagation) For smooth solutions of (1.1) inside a characteristic tri-

angle D in Figure 2,

2

∫ x0

x1

cS(x, γ+(x)) dx− 2

∫ x2

x0

cR(x, γ−(x)) dx =

∫ x2

x1

ρ(S2 +R2)(x, 0) dx. (2.15)
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Proof. Integrating (2.12) over the region D and using the Green’s theorem, we obtain

0 =

∫∫

D

(
ρ(S2 +R2)

)
t

+
(
ρ(S2R+R2S)

)
x
dxdt

=

∫

∂D

ρ(S2R+R2S) dt− ρ(S2 +R2) dx.

(2.16)

On γ+ which is the left boundary of D, by (2.4) and (2.6) we have

∫

γ+

ρ(S2R+R2S) dt− ρ(S2 +R2) dx

=

∫ x0

x1

ρ(SR+R2)− ρ(S2 +R2) dx

=

∫ x0

x1

ρS(R− S) dx

=− 2

∫ x0

x1

cS(x, γ+(x)) dx.

(2.17)

Similarly, on γ− which is the right boundary of D, we have

∫

γ−

ρ(S2R+R2S) dt− ρ(S2 +R2) dx

=

∫ x2

x0

ρ(S2 +RS)− ρ(S2 +R2) dx

=

∫ x2

x0

ρR(S −R) dx

=2

∫ x2

x0

cR(x, γ−(x)) dx.

(2.18)

Putting (2.17) and (2.18) into (2.16), we obtain (2.15). 2

3 Existence of C1 solutions before L∞ blowup

For smooth solutions of (1.1), let

v = ρ−1Sx, w = ρ−1Rx

be two gradient variables. Then we obtain the following lemma.

Lemma 3.1 For smooth solutions of (1.1), v and w satisfy

vt +Rvx =
c′

2c

[
(2cρ−1 + S)v −Rw

]
+
c′′c− c′2

4c2
ρ−1(S2 −R2)

wt + Swx =
c′

2c

[
(2cρ−1 +R)w − Sv

]
+
c′′c− c′2

4c2
ρ−1(R2 − S2) .

(3.1)
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Proof. By (2.8) and (2.4), we have

vt +Rvx

=Sx
(
ρ−1

)
t

+ SxR
(
ρ−1

)
x

+ ρ−1 (Sx)t + ρ−1R (Sx)x

=Sx
((
ρ−1

)
t

+ u
(
ρ−1

)
x
− cρ−1

(
ρ−1

)
x

)
+ ρ−1 (St +RSx)x − ρ−1RxSx

=Sx
(
uxρ
−1 − cρ−1

(
ρ−1

)
x

)
+ ρ−1 (St +RSx)x − ρ−1RxSx

=Sxρ
−1
(
ux −

(
cρ−1

)
x

+ c′ρ−1
)

+ ρ−1 (St +RSx)x − ρ−1RxSx

=ρ−1RxSx + c′ρ−2Sx + ρ−1 (St +RSx)x − ρ−1RxSx

=c′ρ−2Sx + ρ−1 (St +RSx)x

=c′ρ−2Sx + ρ−1

(
c′(x)

4c(x)

(
S2 −R2

))

x

,

(3.2)

which implies the first equation of (3.1). Similarly

(
ρ−1Rx

)
t

+ S
(
ρ−1Rx

)
x

=Rx
(
ρ−1

)
t

+RxS
(
ρ−1

)
x

+ ρ−1 (Rx)t + ρ−1S (Rx)x

=Rx
((
ρ−1

)
t

+ u
(
ρ−1

)
x
− cρ−1

(
ρ−1

)
x

)
+ ρ−1 (Rt + SRx)x − ρ−1RxSx

=Rx
(
uxρ
−1 − cρ−1

(
ρ−1

)
x

)
+ ρ−1 (Rt + SRx)x − ρ−1RxSx

=Rxρ
−1
(
ux −

(
cρ−1

)
x

+ c′ρ−1
)

+ ρ−1 (Rt + SRx)x − ρ−1RxSx

=ρ−1RxSx + c′ρ−2Rx + ρ−1 (Rt + SRx)x − ρ−1RxSx

=c′ρ−2Rx + ρ−1 (Rt + SRx)x

=c′ρ−2Rx + ρ−1

(
c′(x)

4c(x)

(
R2 − S2

))

x

,

(3.3)

which implies the second equation of (3.1). 2

Remark 3.2 System (3.1) indicates that the rates of change of v along the minus characteristic

and w along the plus characteristic are both linear.

Before we prove the C1 existence result when the solution has L∞ bounds, we first state an

a priori condition.

(A) Suppose the initial data u0 and ρ0 are C1 functions and uniformly bounded (ρ0 is also

uniformly bounded away from zero). Then for any C1 solution (ρ(x, t), u(x, t)) of Cauchy

problem of equation (1.1) with (x, t) ∈ R× [0, T∗], for 0 < T∗ < T , there exists a positive

constant L∗, only depending on T∗ and initial data, such that

‖ρ(x, t)‖L∞ + ‖ρ−1(x, t)‖L∞ + ‖u(x, t)‖L∞ = L∗ <∞. (3.4)

Under the condition (A), by Lemma 3.1, observation in Remark 3.2 and C∞ functions are dense

in C1, it is easy to obtain the following a priori estimates.

Lemma 3.3 Assume that the condition (A) is satisfied, u0, ρ0 ∈ C1 and uniformly bounded (ρ0

is also uniformly bounded away from zero). Then any C1 solutions ρ(x, t), u(x, t) for system

(1.1) with 0 ≤ t ≤ T∗ satisfy

sup
(x,t)∈R×[0,T∗]

{|St|, |Sx|, |Rt|, |Rx|} = M∗, (3.5)

for some positive constant M∗ only depending on initial values, L∗ and T∗.
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Remark 3.4 Lemma 3.3 implies that the C1 blowups never occur before L∞ blowup for (1.1).

By the a priori estimate in Lemma 3.3, one can prove the existence of C1 solution on [0, T )

under the condition (A).

Theorem 3.5 If the condition (A) is satisfied for any 0 < T∗ < T , the initial value problem of

(1.1) with uniformly bounded initial data u0, ρ0 ∈ C1 (ρ0 is also uniformly bounded away from

zero) has a unique C1 solution (ρ(x, t), u(x, t)) for (x, t) ∈ R× [0, T ).

First we observe that (A) implies the uniformly strict hyperbolicity of (1.1). The local

existence of the C1 solution now can be obtained by standard argument in [30]. Under the

condition (A), the local solution can be extended to (x, t) ∈ R × [0, T ) by Theorem 2.4 in [29]

and Remark 2.20 in [29]. To make this paper self-contained, we sketch the proof here.

Proof. We first fix our consideration on (x, t) ∈ R× [0, T∗] for some T∗.

By the local-in-time existence results for the quasi-linear first order hyperbolic systems in

[30], for any strong determinate domain Ω̃k corresponding to initial interval x ∈ [−k, k], there

exists some time T0 = T0(k, L∗,M∗) such that (3.1) exists a unique C1 solutions on Ω̃k with

t ∈ [0, T0]. Here a domain

Ω̃[a,b] ≡ Ω̃[a,b](δ0) =
{

(x, t)
∣∣0 ≤ t ≤ δ0, x1(t) ≤ x ≤ x2(t)

}

is called a strong determinate domain of initial interval [a, b] if

i. x1(t) and x2(t) are C1 functions for 0 ≤ t ≤ δ0.

ii. x1(0) = a and x2(0) = b.

iii. For any C1 solution in Ω̃(δ0), x′1(t) ≥MS and x′2(t) ≤MR,

where MS is the upper bound of plus characteristic S and MR is the lower bound of minus

characteristic R on Ω̃(δ0). In our problem, MS and MR are only depending on L∗. Since T0

is a constant, when k is large enough, one can prove the existence of C1 solution on Ω̃k with

t ∈ [0, T∗], by using the local existence proof finite many times.

Next, for any point (x, t) ∈ R× [0, T∗], we could find Ω̃k including this point with sufficiently

large k, because MS and MR are only depending on L∗. Hence, we already proved the global

existence on (x, t) ∈ R× [0, T∗].

Furthermore, since T∗ is any time before T , so we already proved the C1 existence on

(x, t) ∈ R× [0, T ), where the uniqueness of the local existence protects that we have one unique

solution. 2

4 Vacuum for the inhomogeneous elastic flow: proof of

Theorem 1.3

We define an increasing C2 smooth function

c(x) =





d1, x ∈ (−∞,−ε−8 − ε5),

Ψ1(x), x ∈ [−ε−8 − ε5,−ε−8),
ε

1−εx , x ∈ [−ε−8, 1],

Ψ2(x), x ∈ (1, 1 + ε5],

d2, x ∈ (1 + ε5,∞),

(4.1)
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where d1, d2 are two positive constants and Ψ1, Ψ2 are increasing C2 smooth functions such

that
ε

1− ε ≤ d2 ≤
ε

1− ε + ε5, (4.2)

and
ε

1 + ε(ε−8 + ε5)
(1− ε5) ≤ d1 ≤

ε

1 + ε(ε−8 + ε5)
. (4.3)

The function f(x) = ε
1−εx on x ∈ [−ε−8, 1] satisfies

f ′(x)

f2(x)
= 1,

hence we can find d1, d2, Ψ1(x) and Ψ2(x) such that

0 ≤ c′(x)

c2(x)
≤ 1 + ε8 (4.4)

for any x. It is easy to see that there exists a function c(x) such that (1.2), (4.1)∼(4.4) are all

satisfied. The positive constant ε� 1 will be given in the proof of the theorem.

Remark 4.1 The construction of the initial data u0 and c(x) is motivated by the seminal work

[18]. However, our restrictions are all on the function c(x) since ρ0 ≡ 1, u0 = c(x) and S is

uniformly larger than R. It makes our construction much more involved than the one in [18].

Throughout this paper, we use Ki and Mi to denote positive constants independent of ε. To

prove Theorem 1.3, we show that there exists some time

T = M0ε
−2 (4.5)

such that the a priori condition (A) is satisfied for any t ∈ [0, T ∗] with T ∗ < T which indicates

that C1 solution exists for any t ∈ [0, T ∗]. We also show that at T = M0ε
−2, S blows up at

somewhere while R is uniformly bounded.

Lemma 4.2 For any C1 solutions to (1.1) with c(x) given in (4.1) and prescribed initial data

ρ0 ≡ 1, u0 = c(x), we have

R ≤ 0.

Proof. By Lemma 2.1, for any x ∈ (−∞,∞)

Rt + SRx ≤M1(ε, d1)R2, (4.6)

where M1(ε, d1) is a positive constant depending on ε and d1, and left hand side is the derivative

along a minus characteristic. By (4.6) and ODE comparison theorem,

R ≤ 0

for any C1 smooth solution. 2

In Lemmas 4.3∼4.5, we restrict our consideration on the C1 solutions with S(x, t) > 0 for

any (x, t) ∈ R × [0, T ∗] with T ∗ < T and T defined in (4.5). For these solutions, the plus and

minus characteristics go in forward and backward directions respectively. We will show that the

a priori condition on S is satisfied for any C1 solutions with prescribed initial data in Lemma

4.6.
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Figure 3: Proof of Theorem 1.3.

We use Figure 4 for the proof. Note in Figure 4, P1 is the initial point of the forward

characteristic Γ0 intersecting with the vertical line passing P2 at time T , P2 = (−ε−8 − ε5, 0),

P3 = (−ε−8, 0), P4 = (1, 0) and P5 = (1 + ε5, 0). The backward characteristic Γξ starts from

Pξ = (ξ, 0) and ends at t = T with xP2
< ξ ≤ 1. The backward characteristic Γ starts from P4.

The forward characteristic Γ1 starts from P5. Furthermore, we use Ωξ to denote the domain of

dependence in the left of Γξ when t < T .

Lemma 4.3 Consider any C1 solutions for (1.1) with c(x) given in (4.1) and prescribed initial

data ρ0 ≡ 1, u0 = c(x). Assume S(x, t) > 0 for any (x, t) ∈ R× [0, T ). Then the initial energy

Eξ = 1
4

∫
P1Pξ

ρ(S2 +R2)(x, 0) dx in the interval P1Pξ with xP1 < ξ ≤ 1 satisfies

0 < (1 + ε8)Eξ ≤
ε

1− εξ . (4.7)

In the region Ωξ,

0 ≥ R(x, t) ≥ − ε

2(1− εξ) =: −aξ . (4.8)

Also we know that the characteristic Γ will not interact with Γ0 before T . Furthermore,

S0(ξ) =
2ε

1− εξ (1− ε5) > aξ , (4.9)

when xP2
< ξ ≤ 1.

Proof. By Figure 4 and the initial data, the energy in the initial interval P3Pξ is

EP3Pξ =

∫ ξ

−ε−8

( ε

1− εx
)2
dx =

ε

1− εξ −
ε

1− ε−7
.

Since the length of P2P3 is ε5 and the forward characteristic Γ0 has speed less than O(ε7) which

are both very small, so it is easy to see that energy EP1P3
is omittable hence (4.7) is correct

when ε is small enough, where we also use that T = O(1)ε−2.

For any (x, t) in the left the forward characteristic Γ0, R(x, t) = 0 since c(x) is a constant

when x < −ε−8 − ε5 and (2.11), hence (4.8) is correct in this region.
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By (2.8), we have

Rt + SRx ≥ −
c′

4c2
S2. (4.10)

Integrating it along any forward characteristic in Ωξ starting from P1P4, by (2.15) and c′

c2 ≤
1 + ε8, for any (x, t) on this forward characteristic in Ωξ we have

R(x, t) ≥ −
∫

γ+∩Ω

c′

8c2
2cS2(t, x+(t))dt ≥ −1

2
(1 + ε8)Eξ ≥ −

ε

2(1− εξ) = −aξ. (4.11)

Hence, (4.8) is always correct in Ωξ.

For any (x, t) on Γ with wave speed R, we have

1− x
t
≤ ε

2(1− ε) = O(ε).

Since, |P1P4| > ε−8, easy calculation shows that the characteristic Γ will not interact with Γ0

before T = O(ε−2).

Furthermore, it is easy to check that (4.9) is correct. Hence we proved this lemma. 2

Lemma 4.4 Consider C1 solutions to (1.1) with c(x) given in (4.1) and prescribed initial data

ρ0 ≡ 1, u0 = c(x). Assume S(x, t) > 0 for any (x, t) ∈ R× [0, T ). There exist constants κ1 and

κ2 depending on ε such that

− κ1 < R(x, t) ≤ 0, (4.12)

and

0 < κ2 < S(x, t), (4.13)

for any (x, t) ∈ R× [0, T ).

Proof. We first estimate R. We have already proved (4.12) in Ω{1}, i.e. Ωξ with ξ = 1, in the

left of Γ in Lemma 4.3. For (x, t) in the right of forward characteristic Γ1, R = 0 since c(x) is a

constant when x ≥ xP5
= 1 + ε5 and (2.11). For any smooth solutions, by (2.15),

Rt + SRx ≥ −
c′

4c
S2.

Using the same argument as in (4.11) and the initial energy in the domain of dependence

including the region between Γ and Γ1 is finite, we have

R > −κ1.

for some positive constant κ1.

Now we proceed to prove (4.13). To the right (or left) of the vertical line passing P5 (or P2)

which are both backward characteristics, S equals to its initial constant data, hence (4.13) is

correct. To consider S in the region Ω{1}, i.e. to the left of the characteristic Γ starting from

P4, and to the right of the vertical line passing P2, by Lemmas 2.1 and Lemma 4.3, on any

backward characteristic Γξ when t < T starting from the point Pξ(ξ, 0),

St +RSx ≥
c′

4c2
(S2 − a2

ξ).

with initial data S0(ξ) = 2ε
1−εξ > aξ. Hence S ≥ S0(ξ) on Γξ when t < T . So (4.13) is correct in

this region for some κ2.
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On the backward characteristic starting from [P4, P5], we also have that S(x, t) has positive

lower bound as the previous paragraph, since S0(ξ) ≈ 2ε
1−ε > a{ξ=1} ≈ aξ with differences at

most in O(ε5) by (4.2) when ξ ∈ (1, 1 + ε5). This completes the proof of (4.13), hence the proof

of the lemma. 2

Now we proceed to find the blowup of S.

Lemma 4.5 Consider C1 solutions to (1.1) with c(x) given in (4.1) and prescribed initial data

ρ0 ≡ 1, u0 = c(x). Assume S(x, t) > 0 for any (x, t) ∈ R× [0, T ). There exist positive constants

M0 such that

0 < κ2 < S(x, t) < +∞, (4.14)

for any (x, t) ∈ R× [0, T ) with T = M0ε
−2 and

lim
(x,t)→(x∗,T )

S(x, t) = +∞

for some x∗ such that 0 < 1− x∗ ≤ O(1)ε−1.

Proof. By Lemma 2.1, we have

St +RSx ≤
d2

2
S2. (4.15)

where d2 = O(ε) and 0 < S0 ≤ O(ε). So S stays finite until before

t̄ = M2ε
−2,

for some constant M2 > 0.

Then we show the blowup happens at a time in O(ε−2). For simplicity, we only consider the

backward characteristic Γ starting from the P4(1, 0) on (x, t)-plane. For any (x, t) on Γ, by the

estimate of R in Lemma 4.4, we have
1− x
t
≤ a, (4.16)

where we use

a =
ε

2(1− ε) , to denote aξ =
ε

2(1− εξ) at ξ = 1.

Before Γ interacts with Γ0 which will happen not earlier than O(ε−9) by (4.16), by Lemma

2.1, Lemma 4.4, (4.16) and definition of c(x),

St +RSx ≥
c

4
(S2 − a2) ≥ ε

4(1 + aεt− ε) (S2 − a2). (4.17)

Studying the ODE
dg

dt−
=

ε

4(1 + aεt− ε) (g2 − a2) (4.18)

with initial data

g(0) = S0(1) =
2ε

1− ε > a, (4.19)

one has that g blows up at t∗, which satisfies

2 ln

(
S0(1) + a

S0(1)− a

)
+ ln(1− ε) = ln(1 + aεt∗ − ε).

Therefore

t∗ =
16

9aε
(1− ε) =

32(1− ε)2

9ε2
= M3ε

−2, (4.20)
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for constant M3 = 32(1−ε)2
9 . By comparison theorem of ODE, S(x, t) blows up not later than

t∗ = M3ε
−2.

Therefore, there exists M0 ∈ [M2,M3] such that for any (x, t) ∈ R× [0, T ) with T = M0ε
−2

0 < S(x, t) < +∞, lim
(x,t)→(x∗,T )

S(x, t) = +∞

for some x∗. By (4.16) and T = M0ε
−2, we have 0 < 1−x∗ ≤ O(1)ε−1. Hence we complete the

proof of the lemma by (4.13).

2

Next we show that the assumption that S > 0 is true for all C1 solutions in our initial value

problems, which implies that S is uniformly bounded away from zero by Lemma 4.4.

Lemma 4.6 For any C1 solutions to (1.1) with c(x) given in (4.1) and prescribed initial data

ρ0 ≡ 1, u0 = c(x), one has S(x, t) > 0 for any (x, t) ∈ R × [0, T ). Hence Lemmas 5.2∼5.6 are

correct without the assumption that S(x, t) > 0 in the beginning.

Proof. Note R = 0 and S are positive constants in the left of Γ0 and in the right Γ1 re-

spectively, since c(x) has constant value on each of these two regions. Denote the finite region

between these two regions as Ω∗ with t < T .

We prove the lemma by contradiction. Assume that S = 0 somewhere. Then S = 0 must

first happen in Ω∗. We could find the minimum time such that S = 0. Assume that S(x̂, T̂ ) = 0

for some point (x̂, T̂ ) in Ω∗ and S(x, t) > 0 for any (x, t) ∈ R×[0, T̂ ). Then running the proofs in

Lemmas 4.2∼4.4, we can still get (4.14) for (x, t) ∈ R× [0, T̂ ] which contradicts to S(X̂, T̂ ) = 0.

Hence, S(x, t) > 0 for any (x, t) ∈ R× [0, T ). 2

Finally we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Combining the a priori estimates in Lemma 4.4 and Lemma 4.5,

using (2.4), we know the a priori condition (A) is true for any T ∗ < T = M0ε
−2, where we use

the fact: for any C1 solution, S is bounded above in the closed set Ω∗ defined in the previous

lemma with t ∈ [0, T ∗] since S is not infinity when t ∈ [0, T ∗], and S has constant value in the

left of Γ0 or in the right of Γ1.

As a conclusion, by Theorem 3.5, the initial value problem of (1.1) with the prescribed

initial data exists a unique C1 solution (ρ(x, t), u(x, t)) when (x, t) ∈ R × [0, T ). Furthermore,

by Lemma 4.5, S is uniformly positive and

lim
t→T−

S(x∗, t) =∞

for some |x∗| = O(ε−1), while R is non-negative and uniformly bounded by Lemma 4.4. So by

(2.4),

lim
t→T−

u(x∗, t) =∞ lim
t→T−

ρ(x∗, t) = 0 lim
t→T−

ρu(x∗, t) = B and lim
t→T−

E(x∗, t) =∞,
(4.21)

where B is a finite constant. Hence we complete the proof of Theorem 1.3.

2
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5 Singularity formations in duct flow for Chaplygin gas:

proof of Theorem 1.5 and 1.7

In this section, without any ambiguity, we still use several notations used in the previous section,

such as ε, Ω, Mi etcs.

To prove Theorem 1.5, we need first set up the initial data ρ0 and u0 corresponding to c(x)

in (1.28)

ρ0(x) =





ε−α−1, x ∈ (−∞,−2ε),

φ1(x), x ∈ [−2ε,−ε),
1, x ∈ [−ε, ε],

φ2(x), x ∈ (ε, 2ε],

ε−α−1, x ∈ (2ε,∞),

(5.1)

and

u0(x) =
c(x)

ρ0(x)
− εα+1, (5.2)

where the function φ1 and φ2 are C1 increasing and decreasing functions on [−2ε,−ε) and (ε, 2ε]

respectively. We collect some useful information on initial data here. First ρ0 and c(x) are C2

functions bounded away from zero and infinity. |c′(x)| is bounded above. u0 is a C1 function

with finite upper and lower bounds. For any x,

2 ≤ c(x) ≤ 4, (5.3)

c′(x) =





0, x ∈ (−∞,−1− η),

ψ′1(x) ∈ [0, εα], x ∈ [−1− η,−1),

εα, x ∈ [−1, 1],

ψ′2(x) ∈ [0, εα], x ∈ (1, 1 + η],

0, x ∈ (1 + η,∞),

(5.4)

1

ρ0(x)
=





εα+1, x ∈ (−∞,−2ε),
1

φ1(x) ∈ [εα+1, 1], x ∈ [−2ε,−ε),
1, x ∈ [−ε, ε],

1
φ2(x) ∈ [εα+1, 1], x ∈ (ε, 2ε],

εα+1, x ∈ (2ε,∞),

(5.5)

and

R0(x) = −εα+1 and εα+1 < S0(x) < +∞. (5.6)

The constants α ∈ [0, 1) and 0 < η < ε3. Furthermore 0 < ε � 1 is a small given number

which will be provided in the proof of the theorem.

Remark 5.1 (i) The construction of the initial data ρ0, u0 and c(x) is also motivated by the

seminal work [18]. The initial data given by equations (1.4) and (1.5) in Theorem 1 of [18]

were constructed for their unknown state φ (which is equivalent to x(X, t) in our equation (1.1)

if ρ0 = 1).

(ii) When ρ0 6≡ 1, (1.1) is not equivalent to (1.17) any more. This requires us to do extra

constructions on c (as a function of x ∈ (−∞,∞)). While in [18], the wave speed c was a
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function of their unknown state φ (see (1.1) in [18]). They assumed c to be a uniformly positive

and bounded smooth function.

(iii)The constructions on R0, S0 in (5.6) play an essential role in our proof.

Assuming that ρ(x, t), u(x, t) are C1 solutions to Cauchy problem of (1.1) with given c, ρ0

and u0, we first do some analysis on the domains of dependence of different pieces of the initial

data (see Figure 4), where A1 = −1− η, B1 = −1, A2 = 1, B2 = 1 + η and when t ∈ [0, T ∗] for

any T ∗ < T with

T = M1ε
−α, (5.7)

where M1 is a fixed constant that will be provided later. In fact, T is the time of blowup.

We use Ω, ΩL, ΩR to denote three domains of dependence respect to [−1, 1], (−∞,−1− η),

(1+η,+∞) respectively (boundaries are black solid lines). Π1 and Π2 are two regions in between

ΩL, Ω and ΩR. The domains of dependence ΩΠ1 and ΩΠ2 including Π1 and Π2 respectively are

regions with red dash lines as boundaries (with initial bases [a1, b1] and [a2, b2] respectively).

�� �
� �

T

t

xA B 0 A Ba b a b

blowup

1 2

L R

1 2

2 2 2

Figure 4: Proof of Theorem 1.5

We first have a lemma for C1 solutions.

Lemma 5.2 For any C1 solutions with prescribed initial data,

R < 0.

Proof. By Lemma 2.1, for any x ∈ (−∞,∞)

Rt + SRx ≤
1

4
R2, (5.8)

where left hand side is derivative along a minus characteristic. By (5.6) and ODE comparison

theorem,

R < 0

for any C1 smooth solution. 2

In Lemmas 5.3∼5.6, we restrict our consideration on the C1 solutions with S(x, t) > 0 for

any (x, t) ∈ R × [0, T ) where T is defined in (5.7). For these solutions, the plus and minus

characteristic go in forward and backward directions respectively. So we can always use Figure
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2 to study the propagation of the solution along characteristics. We will show that this a priori

condition on S is satisfied for any C1 solutions in our initial value problems in Lemma 5.7.

Lemma 5.3 Consider C1 solutions with prescribed initial data and S(x, t) > 0 for any (x, t) ∈
R× [0, T ). Let T0 be the intersection time of forward characteristic from (−1, 0) and backward

characteristic from (1, 0). Then there exists a constant K1 > 0 such that

T0 ≥ K1ε
−1 > T. (5.9)

And we also have the estimates

|b1 −B1|+ |A2 − a2| ≤ K2ε
1−α
2 , (5.10)

where b1, B1, A2 and a2 are on Figure 4.

Proof. It can be calculate by (2.4), (1.28), (5.2) and (5.5) that the initial energy in Ω satisfies

∫ 1

−1

ρ0(S2 +R2)(x, 0) dx = 2

∫ 1

−1

ρ−1
0 (ρ2

0u
2
0 + c2) dx = 2

∫ 1

−1

ρ−1
0 (
(
c− ρ0ε

α+1
)2

+ c2) dx ≤ K3ε.

(5.11)

For any x1, x2 ∈ [−1, 1], let (x0, t0) be the intersection of forward and backward characteristics

γ+, γ− starting (x1, 0) and (x2, 0) respectively. By Lemma 2.4 of finite propagation and (5.11),

we know

2

∫ t0

0

cS2(x+(t), t) dt+ 2

∫ t0

0

cR2(x−(t), t) dt

=2

∫ x0

x1

cS(x, t+(x)) dx− 2

∫ x2

x0

cR(x, t−(x)) dx ≤ K3ε.

(5.12)

where Ki and Mi always mean positive constant in this paper.

Therefore

x2 − x1 = x0 − x1 + x2 − x0

=

∫ t0

0

S(x+(t), t) dt−
∫ t0

0

R(x−(t), t) dt

≤
(∫ t0

0

1

c
dt

) 1
2
(

2

∫ t0

0

cS2(x, x+(t)) dt

) 1
2

+

(∫ t0

0

1

c
dt

) 1
2
(

2

∫ t0

0

cR2(x, x−(t)) dt

) 1
2

≤K4t
1
2
0 ε

1
2 ,

(5.13)

It is easy to see that (5.9) by (5.13).

Repeat the proof of (5.13), we can prove

|b1 −B1|+ |A2 − a2| ≤ 2K5T
1
2 ε

1
2 ≤ K2ε

1−α
2 , (5.14)
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where in fact set (x1, t1) = B1 or a2 in Figure 2 then when x0 − x1 = O(ε
1−α
2 ),

x0 − x1 =

∫ t0

t1

S(x+(t), t) dt

≤ 1√
2

(∫ t0

t1

1

c
dt

) 1
2
(∫ t0

t1

2cS2(x, x+(t)) dt

) 1
2

=
1√
2

(∫ t0

t1

1

c
dt

) 1
2
(

2

∫ x0

x1

cS(x, t+(x)) dx

) 1
2

≤ 1√
2

(∫ t0

t1

1

c
dt

) 1
2
(∫ x2

x1

ρ0(S2
0 +R2

0) dx

) 1
2

≤ M4 · (t0 − t1)
1
2 (x0 − x1)

1
2 ε

1+α
2

so t0 − t1 ≥ O(ε−α).

Hence we complete the proof of Lemma 5.3. 2

Remark 5.4 (i) By (5.10), it is easy to get that the initial energy in ΩΠ1
or ΩΠ2

is not greater

than O(ε2+α) by (5.10).

(ii) On regions to the left or right of Ω, ΩΠ1
and ΩΠ2

, the wave speeds S and R are constants

by (2.11) (c(x) has constant values in those regions) and S and R are constants initially in each

of these two regions.

Lemma 5.5 Consider C1 solutions with prescribed initial data and S(x, t) > 0 for any (x, t) ∈
R× [0, T ). There exist constants δ2 and δ3 such that

− δ3 < R(x, t) < −δ2 < 0. (5.15)

Proof. By Remark 5.4 (ii) and (5.6), we only need to consider the solution on Ω, ΩΠ1
and

ΩΠ2 . By Lemma 2.1, for any x ∈ (−∞,∞)

Rt + SRx ≤
1

8
R2. (5.16)

By (5.6) and ODE comparison theorem, there exists δ2 such that

R < −δ2 < 0.

For any forward characteristic in Ω ∪ ΩΠ1 ∪ ΩΠ2 , by (2.8), (1.28) and (5.4) we have

Rt + SRx ≥ −
εα

16
cS2. (5.17)

Integrating it along any forward characteristic γ+, by Lemma 2.15, Remark 5.4 (i) and (5.6),

we have

R(t0, x0) ≥ −ε
α

16

∫ t0

0

cS2(t, x+(t))dt+R0(x1)

= −ε
α

16

∫ x0

x1

cS(t+(x), x)dx− εα+1

≥ −ε
α

16

∫ x2

x1

ρ0(S2
0 +R2

0)dx− εα+1

≥ −K6ε
1+α := −δ3. (5.18)
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2

Now we proceed to estimate S.

Lemma 5.6 Consider C1 solutions with prescribed initial data and S(x, t) > 0 for any (x, t) ∈
R× [0, T ). There exist positive constants M1 and δ1 such that

0 < δ1 < S(x, t) < +∞, (5.19)

for any (x, t) ∈ R× [0, T ) with T = M1ε
−α and

lim
(x,t)→(x∗,T )

S(x, t) = +∞

for some x∗ = O(1)ε
1−α
2 .

Proof. By Remark 5.4 (ii) and (5.6), we only need to consider the solution on Ω, ΩΠ1 and

ΩΠ2
.

By Lemma 2.1 and the estimate of R in Lemma 5.5, we have

St +RSx ≤
εα

8
S2. (5.20)

So S stays finite until before

t̄ = M2ε
−α,

where M2 = 8
S0(x) .

When x 6∈ [−2ε, 2ε], we have S0(x) = O(ε1+α). So by the comparison theorem of ODE,

S(x, t) along any backward characteristic starting from an initial point with x 6∈ [−2ε, 2ε], will

not blowup until t̄ = O(ε−1−2α). Comparing to the blowup time in O(ε−α) proved later, we see

that the blowup can only happen on a backward characteristic starting from the initial interval

[−2ε, 2ε].

Then we show the blowup happens at a time in O(ε−α). For simplicity, we only consider the

backward characteristic Γ starting from the origin on (x, t)-plane. On Γ, by Lemma 2.1 and the

estimate of R in Lemma 5.5,

St +RSx ≥
εα

16
S2 − εα

8
δ2
3 . (5.21)

Studying the ODE
dg

dt−
=
εα

16
g2 − εα

8
δ2
3 (5.22)

with initial data

g(0) = S0(0) = 6− εα+1 ∈ (5, 6), (5.23)

one has that g blows up at

t∗ =
8

K7ε1+2α
ln

∣∣∣∣
S0(0) + 2δ3
S0(0)− 2δ3

∣∣∣∣ = M3ε
−α, (5.24)

for some constant M3 > 0. By comparison theorem of ODE, S(x, t) blows up not later than

t̄ = M3ε
−α.

Therefore, there exists M1 ∈ [M2,M3] such that for any (x, t) ∈ R× [0, T ) with T = M1ε
−α

0 < S(x, t) < +∞, lim
(x,t)→(x∗,T )

S(x, t) = +∞
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for some x∗. By (5.13) and T = M1ε
−α, we have x∗ = O(1)ε

1−α
2 .

For any (x, t) ∈ R× [0, T ), by (5.21), we have

St +RSx ≥ −
εα

8
δ2
3 ,

then by (5.6) (S0(x) > εα+1) and comparison theorem of ODE, we obtain

0 < δ1 < S(x, t) < +∞ (5.25)

for some constant δ1, which completes the proof of the lemma.

2

Next we show that the assumption that S > 0 is true for all C1 solutions in our initial value

problems.

Lemma 5.7 For any C1 solutions with prescribed initial data, S(x, t) > 0 for any (x, t) ∈
R × [0, T ). Hence Lemmas 5.2∼5.6 are correct without the assumption that S(x, t) > 0 in the

beginning.

Proof. We prove it by contradiction. Assume that S = 0 somewhere.

Note R and S are non-zero negative and positive constants respectively when (x, t) 6∈ Ω ∪
ΩΠ1 ∪ΩΠ2 . So if S = 0 then it must first happen in Ω∪ΩΠ1 ∪ΩΠ2 . We could find the minimum

time such that S = 0. Assume that S(x̂, T̂ ) = 0 for some (x̂, T̂ ) ∈ Ω∪ΩΠ1
∪ΩΠ2

and S(x, t) > 0

for any (x, t) ∈ R×[0, T̂ ). Then running the proofs in Lemmas 5.2∼5.6, we can still get (5.25) for

(x, t) ∈ R×[0, T̂ ] which contradicts to S(X̂, T̂ ) = 0. Hence, S(x, t) > 0 for any (x, t) ∈ R×[0, T ).

2

Finally we are ready to prove Theorem 1.5.

Proof of Theorem 1.5. Combining the a priori estimates in Lemma 5.5 and Lemma 5.6,

using (2.4), we know the a priori condition (A) is true for any T ∗ < T = M1ε
−α, where we

use the fact: for any C1 solution, S is bounded above in the closed set Ω ∪ ΩΠ1
∪ ΩΠ2

with

t ∈ [0, T ∗] since S is not infinity when t ∈ [0, T ∗], then uniformly bounded from above for any

(x, t) ∈ R× [0, T ∗] by Remark 5.4 (ii).

As a conclusion, by Theorem 3.5, there exists a unique C1 solution (ρ(x, t), u(x, t)) for

equation (1.1) when (x, t) ∈ R× [0, T ) with the prescribed initial data.

Furthermore, by Lemma 5.6

lim
t→T−

S(x∗, t) =∞

while R is uniformly bounded and negative by Lemma 5.5. So by (2.4),

lim
t→T−

u(x∗, t) =∞ lim
t→T−

ρ(x∗, t) = 0 lim
t→T−

ρu(x∗, t) = B and lim
t→T−

E(x∗, t) =∞,
(5.26)

where B is a finite constant. Here |x∗| = O(ε
1−α
2 ) < O(1) and the blowup must be on some

characteristic starting form the initial interval x ∈ [−2ε, 2ε]. Hence we complete the proof of

Theorem 1.5.

2

Finally we prove the Theorem 1.7 for the Cauchy problem of (1.30) with radially symmetry,

i.e. (1.27) or (1.1) with c(x) = xm (m = 1, cylindrical symmetric solution; m = 2, spherically
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symmetric solution) and the radius x ∈ [1, 3]. This theorem is also correct when x ∈ [a, b] with

0 < a < b.

Proof of Theorem 1.7. When x ∈ [1, 3], we consider initial data ρ0(x) and u0(x) satisfying

(1).

ρ0(x) =





ε−1, x ∈ [1, 2− 2ε),

φ3(x), x ∈ [2− 2ε, 2− ε),
1, x ∈ [2− ε, 2 + ε],

φ4(x), x ∈ (2 + ε, 2 + 2ε],

ε−1, x ∈ (2 + 2ε, 3],

(5.27)

(2). u0(x) = c(x)
ρ0(x) − ε.

The function φ3 and φ4 are increasing and decreasing smooth functions on [2 − 2ε, 2 − ε) and

(2 + ε, 2 + 2ε] respectively. Furthermore ε < 1 is a small given number which will be provided

in the proof of the theorem.

In order to directly use the proof for Theorem 1.5, we extend the definition of initial data

from x ∈ [1, 3] to x ∈ (−∞,∞) by

(1’).

c̃(x) =





1− δ, x ∈ (−∞, 1− η),

ψ3(x), x ∈ [1− η, 1),

xm, x ∈ [1, 3],

ψ4(x), x ∈ (3, 3 + η],

3m + δ, x ∈ (3 + η,∞),

(5.28)

where ψ3(x) is an increasing C2 convex positive function on x ∈ [1− η, 1) and ψ4(x) is an

increasing C2 concave positive function on x ∈ (3, 3 + η]. The positive constants

δ � η � ε� 1.

(2’).

ρ̃0(x) =





ε−1, x ∈ (−∞, 2− 2ε),

φ3(x), x ∈ [2− 2ε, 2− ε),
1, x ∈ [2− ε, 2 + ε],

φ4(x), x ∈ (2 + ε, 2 + 2ε],

ε−1, x ∈ (2 + 2ε,∞),

(5.29)

(3’). ũ0(x) = c̃(x)
ρ̃0(x) − ε.

The initial data in Theorem 1.7 are very similar to the initial data in Theorem 1.5 with

α = 0. In fact, we only need to change x ∈ [−1, 1] to radius x ∈ [1, 3] and slightly change the

values of c, then we can prove Theorem 1.7 by an entirely same way as the proof in Theorem

1.5, and finally we only have to use the piece of solution on Ωsymm with t ∈ [0, T ) after finding

the C1 solution for (x, t) ∈ R× [0, T ). We leave the details to the reader.
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