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OPTIMAL ATTITUDE CONTROL WITH TWO ROTATION AXES

YULY BILLIG

Abstract. Euler proved that every rotation of a 3-dimensional body can be realized as a
sequence of three rotations around two given axes. If we allow sequences of an arbitrary
length, such a decomposition will not be unique. In this paper we solve an optimal control
problem minimizing the total angle of rotation for such sequences. We determine the list
of possible optimal patterns that give a decomposition of an arbitrary rotation. Our results
may be applied to the attitude control of a spacecraft with two available axes of rotation.

1. Introduction

In this paper we investigate the problem of optimal attitude control of a 3-dimensional
body which can be rotated around two fixed axes. The problem goes back to Euler [2] who
proved in 1776 that an arbitrary rotation g of a 3-dimensional body may be factored as

g = R(t1Y )R(t2X)R(t3Y ), (1)

where R(tX) (resp. R(tY )) is a rotation in angle t around X-axis (resp. Y -axis). The
parameters t1, t2, t3 are called the Euler’s angles.

We could allow decompositions for g with more factors:

g = R(t1Y )R(t2X) . . .R(tn−1Y )R(tnX). (2)

Clearly we will get infinitely many such decompositions for a fixed element g in the group
SO(3) of rotations. Thus it is natural to pose the question of finding a decomposition (2) that
minimizes the total angle of rotation |t1|+ |t2|+ . . .+ |tn|. It can happen that decompositions
with more factors have a smaller total angle of rotation than the Euler’s decomposition (1).

It turns out that this problem is not well-posed: for some g an optimal decomposition (2)
does not exist. Instead, the infimum of the total angle of rotation is attained as a limit on
a sequence of decompositions (2) with n→ ∞.

We can overcome this difficulty by noting that

R(aX + bY ) = lim
n→∞

(
R
(a
n
X
)
R

(
b

n
Y

))n

,

hence it is natural to extend the set of controls from {±X,±Y } to C ={
aX + bY

∣∣ |a|+ |b| = 1
}
. Implementing a rotation R(aX + bY ) corresponds to carrying

out rotations around axes X and Y simultaneously with the ratio a : b of angular velocities.
Once we extend the control set, our optimization problem becomes well-posed and for

every g ∈ SO(3) there is an optimal decomposition with a finite number of factors.
We study this problem in a more general setting, where we allow an arbitrary angle

0 < α ≤ π
2
between the axes X and Y . We also introduce a more general cost function to be

minimized, where a rotation in angle t around Y -axis has the same cost as a rotation around
X-axis in angle κt, 0 ≤ κ ≤ 1.
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We solve the optimization problem in this greater generality and determine possible pat-
terns for the optimal decompositions. Each of these patterns has (at most) 3 independent
time parameters, and it is fairly easy to find numerically the decompositions of a given ele-
ment g ∈ SO(3) according to each pattern. This produces a finite number of decompositions
and we can immediately see which one of them is optimal.

It happens that our optimization problem has a bifurcation at κ = cosα. For the cases
κ > cosα and κ < cosα we get different lists of optimal patterns. There are also special
cases when κ = 0 or cosα = 0.

Let us present the list of optimal patterns in case when the axes X and Y are perpendicular
to each other and κ = 1. Since in this case the problem is symmetric with respect to
the dihedral group of order 8, generated by transformations (X, Y ) 7→ (Y,X), (X, Y ) 7→
(−X, Y ), (X, Y ) 7→ (X,−Y ), the list of patterns will also be symmetric with respect to this
group. We denote this group of 8 symmetries by (X, Y ) 7→ {±X,±Y } and use it to present
the list of patterns in a more compact form.

Theorem 1.1. Let the angle between the axes X and Y be α = π
2
and let κ = 1. For an

element g ∈ SO(3) there is an optimal decomposition with t1, t2, t3 ≥ 0 of one of the following
types:

R(t1X)R(t2Y )R(−t3X), with t1, t3 ≤ t2 ≤ π,

R(t1X)R(t2Y )R(−t2X)R(−t3Y ), with t1, t3 ≤ t2 ≤ π,

R(t1X)R (t2 (X + Y ) /2)R(t3X), with t1, t3 ≤ π, t2 ≤
√
2π,

R(t1X)R (t2 (X + Y ) /2)R(t3Y ), with t1, t3 ≤ π, t2 ≤
√
2π,

and symmetric to these under the group of transformations (X, Y ) 7→ {±X,±Y }.

Example 1.2. Suppose we would like to decompose a rotation R(tZ) as a product of rota-
tions around X- and Y -axes, where {X, Y, Z} is the standard orthogonal basis of R3. The
pattern for the optimal decompositions will depend on the value of t. If 0 ≤ t ≤ π

2
then the

following decomposition realizes the minimum of the total rotation angle:

R(tZ) = R(−t1X)R(−t2Y )R(t2X)R(t1Y ),

where t1 = arccos

(
1

cos
(
t
2

)
+ sin

(
t
2

)
)
, t2 = arccos

(
cos

(
t

2

)
− sin

(
t

2

))
.

For π
2
≤ t ≤ π the Euler’s decomposition (1) becomes optimal:

R(tZ) = R(−π
2
Y )R(tX)R(

π

2
Y ).

When t = π
2
both patterns are optimal. For −π < t < 0 the optimal decompositions may be

obtained by switching X with Y in the above expressions.

In case when the axes X and Y are perpendicular to each other and κ = 0 (meaning
that rotations around Y -axis have zero cost), the optimal decompositions are precisely those
described by Euler (1).

In 2009 NASA launched a space telescope Kepler with a mission of finding planets outside
the Solar system. This spacecraft was placed in an orbit around the Sun. To take images of
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stars, the telescope needs to be pointed in the target direction, with its solar panels facing
the Sun. The attitude control of Kepler is done with reaction wheels, which are heavy disks
mounted on electric motors. Once the reaction wheel is turned, the spacecraft will turn
around the same axis in the opposite direction due to the angular momentum conservation
law.

If we have three reaction wheels with linearly independent axes, by rotating them simulta-
neously with appropriate relative angular velocities, we can implement a continuous rotation
of the spacecraft around an arbitrary axis. For redundancy, Kepler was equipped with four
reaction wheels with their axes in a tetrahedral configuration, so that any three of them
could provide an efficient attitude control. However by May 2013, two of the four reaction
wheels failed, leaving Kepler with just two available axes of rotation [5]. The results of our
paper provide optimal methods for attitude control with two rotation axes, like in situation
with the Kepler space telescope.

This paper builds on our previous work [1], where we studied a similar problem for SU(2),
also with two available controls, but with a restriction that only a positive time evolution
is allowed. That paper was motivated by the applications to quantum control in a 1-qubit
system.

In the present paper we use the geometric control theory [3], which is an adaptation of
the Pontryagin’s Maximum Principle to the setting of Lie groups. The Maximum Principle
provides only necessary conditions for optimality, which need not be sufficient. In Section
3 we identify decompositions that satisfy the necessary conditions of the Pontryagin’s Max-
imum Principle. Then we go into a more detailed analysis in Section 4 by showing that
decompositions with a large number of factors are not optimal, even when they satisfy the
conditions of the Maximum Principle. Our main results are stated in Theorems 2.1 – 2.4 at
the end of the next Section.

Acknowledgements. I thank Cornelius Dennehy, Ken Lebsock, Eric Stoneking and Alex
Teutsch for the stimulating discussions. Support from the Natural Sciences and Engineering
Research Council of Canada is gratefully acknowledged.

2. Attitude control problem

For a unit vector X ∈ R
3 denote by R(tX) an operator of rotation of R

3 in angle t
around X , with the plane perpendicular to X turning counterclockwise when viewed from
the endpoint of X . As a 3× 3 matrix, R(tX) is given by the formula:

R(tX) = cos(t)I + sin(t)adX + (1− cos(t))XXT ,

where for X = (a, b, c)T with a2 + b2 + c2 = 1, adX is the adjoint matrix of X with respect
to the cross product, so that (adX)Y = X × Y :

adX =




0 −c b
c 0 −a
−b a 0


 and XXT =



a2 ab ac
ab b2 bc
ac bc c2


 . (3)

For X ∈ R
3 with |X| 6= 1 we set R(tX) = R(t′X ′), where t′ = t |X| and X ′ = X/|X|. The

set of all rotations of R3 forms the group SO(3).
For a fixed X the set {R(tX)|t ∈ R} is a 1-parametric subgroup in SO(3).
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It is well-known that for any two non-proportional unit vectors X, Y , the corresponding
1-parametric subgroups together generate the whole group SO(3). This means that every
element g ∈ SO(3) may be decomposed into a product

g = R(t1C1)R(t2C2) . . .R(tnCn) (4)

with Cj ∈ {X, Y }. Decomposition (4) is of course not unique. It is then natural to consider
the optimization problem of finding the infimum of |t1| + . . . + |tn| over all decompositions
(4) with fixed g ∈ SO(3). More generally, we may assign cost to each generator X, Y and
minimize the total cost in (4).

Introduction of the cost parameters may be warranted in case when the body that we
control has unequal momenta of inertia with respect to the axes X and Y , thus making it
easier to rotate it around one of the axes.

Without loss of generality, we assume that Cost(X) ≥ Cost(Y ) and renormalize the cost
function by fixing Cost(X) = 1, Cost(Y ) = κ with 0 ≤ κ ≤ 1.

For the rest of the paper we fix two non-proportional vectors X, Y ∈ R
3 with |X| = |Y | =

1. An important parameter is the angle α between these vectors. Without loss of generality
we assume 0 < α ≤ π

2
, otherwise we can replace Y with −Y . Throughout the paper we will

the use parameter c = cos(α), 0 ≤ c < 1. Let Z be a vector perpendicular to X and Y ,
Z = X × Y , |Z| = sin(α).

It could happen that the infimum of cost is not attained on any particular decomposition
(4), but rather as a limit on a sequence of such decompositions with n → ∞. It turns out
that we can overcome this difficulty by enlarging the set of generators to be

C =
{
aX + bY

∣∣ |a|+ |b| = 1
}
.

Note that rotations corresponding to elements of C can be realized as limits of products
of rotations with axes {X, Y }:

R(t(aX + bY )) = lim
n→∞

(
R

(
ta

n
X

)
R

(
tb

n
Y

))n

. (5)

From the point of view of the attitude control, this corresponds to turning on controls X
and Y simultaneously with intensities a and b respectively.

We extend the definition of the cost function in such a way that the cost of both sides of
(5) is the same:

Cost(aX + bY ) = |a|Cost(X) + |b|Cost(Y ). (6)

Our goal is to solve the following
Problem 1. For a given g ∈ SO(3) find a decomposition g = R(t1C1)R(t2C2) . . . R(tnCn)

with C1, . . . , Cn ∈ C, t1, . . . , tn ≥ 0, realizing the the infimum of

t1Cost(C1) + . . .+ tnCost(Cn).

It was shown in [1], Theorem 1.4, that the infimum cost in this problem problem is the
same as for its more restricted version where the set of controls is taken to be {±X,±Y }
instead of C.

In fact, we shall see that we would not need the whole set C, but require in addition
to controls {±X,±Y } only the elements {±W+,±W−}, where W+ (resp. W−) is a linear
combination of X and Y , which is orthogonal to κX + Y (resp. κX − Y ).
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Since the cost of R((λt)C) and R(t(λC)) is the same, we can rescale the generators without
changing the cost of decompositions. We can thus drop the requirement |a|+ |b| = 1 for the
generators C = aX + bY .

We fix W+ = (1+ κc)X − (κ+ c)Y and W− = (1− κc)X + (κ− c)Y . Taking into account
that (X,X) = (Y, Y ) = 1 and (X, Y ) = c, it is easy to check that (W+, κX + Y ) = 0 and
(W−, κX − Y ) = 0.

Now we can state the main results of the paper. It turns out that the problem we consider
has a bifurcation at κ = c, and we need to consider the cases 0 ≤ c < κ ≤ 1 and 0 < κ ≤ c < 1
separately. There will be also a special case when κ = 0.

We will give the solution of the above optimal control problem by specifying the patterns
of optimal decomposition (4).

We begin with some elementary observations. Obviously we may restrict all angles of
rotation to be less or equal to π.

If g = R(t1C1)R(t2C2) . . . R(tnCn) is an optimal decomposition then a decomposition

R(t′kCk)R(tk+1Ck+1) . . . R(tm−1Cm−1)R(t
′
mCm) (7)

with 1 ≤ k ≤ m ≤ n, 0 ≤ t′k ≤ tk, 0 ≤ t′m ≤ tm, is also optimal. We call (7) a subword
of R(t1C1)R(t2C2) . . . R(tnCn). We shall present the optimal decompositions as subwords of
certain patterns.

Since the number of patterns can be fairly large, we shall use various symmetries in order
to group several patterns together. For example, if we have an optimal decomposition

g = R(t1C1)R(t2C2) . . .R(tnCn)

with Cj ∈ C, then
R(−t1C1)R(−t2C2) . . .R(−tnCn)

is also an optimal decomposition (for a different element of SO(3)). This follows from the
fact that multiplication of controls by −1 is an automorphism of our problem. We denote
this symmetry transformation on the set of patterns by (X, Y ) 7→ (−X,−Y ).

Whereas the set of optimal patterns is always invariant with respect to the symmetry
(X, Y ) 7→ (−X,−Y ), other types of symmetries that we shall consider are not universal
and are present only for some patterns. If we make the following schematic representation
of the controls, all symmetries that we consider will be elements of the dihedral group of
symmetries of a square:

Figure 1

Consider a transformation X 7→ X , Y 7→ −Y , W+ 7→ W−, W− 7→W+. Together with the
symmetry (X, Y ) 7→ (−X,−Y ) this generates a set of 4 transformations. We denote this
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set of symmetries by (X, Y ) 7→ (±X,±Y ). We assume that all symmetries we consider are
compatible with multiplication by −1, even though they are not linear in general.

We also consider a transformation X 7→ Y , Y 7→ X , W+ 7→ −W+, W− 7→ W−. Together
with (X, Y ) 7→ (−X,−Y ), this generates a set of 4 transformations, which we denote by
(X, Y ) 7→ {−X,−Y }.

Finally, if we consider all of the above transformations together, we generate a full set of
8 symmetries of the square in Fig.1, which we denote by (X, Y ) 7→ {±X,±Y }.
Theorem 2.1. Let c = 0, 0 < κ ≤ 1. For an element g ∈ SO(3) the infimum of the
optimization Problem 1 is attained on a subword of one of the following patterns:

(I) R(tXX)R(tY Y )R(−tXX)R(−tY Y ) where tan(tX/2) = κ tan(tY /2), 0 < tX , tY ≤ π,
and symmetric to it under (X, Y ) 7→ {±X,±Y }.

(II) R(πX)R(tW+)R(πX) , with t ≥ 0, and symmetric to it under (X, Y ) 7→ {±X,±Y }.
(III) R(πX)R(tW+)R(−πY ) , with t ≥ 0, and symmetric to it under (X, Y ) 7→ {±X,±Y }.

When we apply symmetry transformations, e.g. X 7→ Y , Y 7→ X , we change the parame-
ters tX , tY accordingly, but the relation tan(tX/2) = κ tan(tY /2) in (I) is preserved. Under
this symmetry transformation, the pattern (I) takes form R(tY Y )R(tXX)R(−tY Y )R(−tXX)
with tan(tX/2) = κ tan(tY /2).

Set

t̂X = arccos

(
c− κ

c+ κ

)
, t̂Y = arccos

(
−1− κc

1 + κc

)
, 0 ≤ t̂X , t̂Y ≤ π. (8)

Theorem 2.2. Let 0 < c < κ ≤ 1. For an element g ∈ SO(3) the infimum of the optimiza-
tion Problem 1 is attained on a subword of either pattern (I) or one of the following:

(IV) R(t̂Y Y )R(t̂XX)R(tW+)R(t̂XX)R(t̂Y Y ), with t ≥ 0, and symmetric to it under
(X, Y ) 7→ {−X,−Y }.

(V) R(t̂XY )R(t̂XX)R(tW+)R(−t̂Y Y )R(−t̂XX), with t ≥ 0, and symmetric to it under
(X, Y ) 7→ {−X,−Y }.

(VI) R(πY )R(tW−)R(πY ) , with t ≥ 0, and symmetric to it under (X, Y ) 7→ {−X,−Y }.
(VII) R(πX)R(tW−)R(πY ) , with t ≥ 0, and symmetric to it under (X, Y ) 7→ {−X,−Y }.

Theorem 2.3. Let 0 < κ ≤ c < 1. For an element g ∈ SO(3) the infimum of the optimiza-
tion Problem 1 is attained on a subword of either patterns (I), (IV), (V) given above, or the
following pattern

(VIII) R(πY )R(tX)R(πY ) , with 0 ≤ t ≤ 2t̂X , and symmetric to it under (X, Y ) 7→
(−X,−Y ).

Theorem 2.4. Let κ = 0, c ≥ 0. For an element g ∈ SO(3) the infimum of the optimization
Problem 1 is attained on a subword of one of the following two patterns

(IX) R(πY )R(tW+)R(πY ) , with t ≥ 0, and symmetric to it under (X, Y ) 7→ (±X,±Y ).
(X) R(πY )R(tW+)R(−πY ) , with t ≥ 0, and symmetric to it under (X, Y ) 7→ (±X,±Y ).

Remark 2.5. When κ = c > 0 we have W− proportional to X , and the lists of patterns in
Theorems 2.2 and 2.3 become equivalent.
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3. Geometric optimization theory

In this section we will review the geometric optimization theory following [3], and apply
it to our optimization problem.

The Lie algebra so(3) of the Lie group SO(3) is the tangent space to SO(3) at identity
and consists of skew-symmetric 3 × 3 matrices. The Lie bracket of two matrices in so(3) is
[A,B] = AB − BA. We may identify the space so(3) with R

3 via the map (3) X 7→ ad(X).
The corresponding Lie bracket of two vectors in R

3 is the cross product.
Fix g ∈ SO(3). A curve leading to g is an absolutely continuous function U : [0, t0] →

SO(3) such that U(0) = I and U(t0) = g. An absolutely continuous function has a measur-
able derivative u : [0, t0] → so(3) such that U ′(t) = U(t)u(t) for almost all t. The derivative
u is Lebesgue integrable [7].

Let us formulate a differential version of our optimization problem.
Problem 2. For an element g ∈ SO(3) find the infimum of

∫ t0

0
Cost(U−1(t)U ′(t))dt

over all absolutely continuous curves U : [0, t0] → SO(3) leading to g, satisfying
U−1(t)U ′(t) ∈ C ⊂ R

3 = so(3) for almost all t.
The parameter t0 in Problem 2 is not fixed and when taking the infimum we consider the

curves with all t0 ≥ 0.
It is clear that the restriction to the case of piecewise constant controls u(t) = U−1(t)U ′(t)

gives precisely Problem 1. On the other hand we shall see that the solutions of Problem 2
indeed have piecewise constant controls, which implies equivalence of Problems 1 and 2.

Proposition 3.1. For any g ∈ SO(3) there exists an absolutely continuous optimal solution
U for Problem 2.

Proof. The proof of this Proposition is based on the observation that the cost assigned to
a curve U : [0, t0] → SO(3) is independent of the choice of its parametrization. To prove
this, we first note the cost function (6) satisfies Cost(λu) = λCost(u) for λ ≥ 0. Consider
an absolutely continuous increasing surjective reparametrization f : [0, τ0] → [0, t0] and the
corresponding reparametrized curve U(τ) = U(f(τ)). Then U and U have the same cost:

∫ τ0

0

Cost

(
U(τ)−1 d

dτ
U(τ)

)
dτ

=

∫ τ0

0

Cost

(
U(t)−1 d

dt
U(t)

∣∣
t=f(τ)

f ′(τ)

)
dτ

=

∫ τ0

0

Cost

(
U(t)−1 d

dt
U(t)

∣∣
t=f(τ)

)
f ′(τ)dτ

=

∫ t0

0

Cost
(
U(t)−1U ′(t)

)
dt.

This computation shows that rescaling of the set of controls C does not change the cost of a
curve U leading to g with U−1(t)U ′(t) ∈ C.

Let us modify Problem 2 by replacing the set C with its convex hull

C =
{
aX + bY

∣∣ |a|+ |b| ≤ 1
}
.

Once the control set is convex, we can apply Theorem 4.10 from [7] to obtain the existence
of an absolutely continuous optimal solution U : [0, t0] → SO(3) for the modified problem.
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To go back to the setting of Problem 2, we note that every absolutely continuous curve
admits a parametrization by the arc length, i.e., the natural parametrization (see for example
Section 5.3 in [6]). Then it is easy to see that the curve U may also be reparametrized with
U−1(t)U ′(t) ∈ C. Since reparametrization does not change the cost, we see that an optimal
solution of the modified problem with the set of controls C yields an optimal solution for
Problem 2. �

Remark 3.2. Our optimization problem induces a left-invariant metric on SO(3). It is
possible to see that this metric does not correspond to any Riemannian structure on this Lie
group.

The Hamiltonian function for Problem 2 is

H(p, u) = p0Cost(u) + (p, u), u ∈ C, p ∈ R
3,

which involves a parameter p0 ≤ 0 (see Section 11.2.2 in [3] for details).
For each p ∈ R

3 we define the maximal Hamiltonian

M(p) = max
u∈C

H(p, u).

Theorem 3.3. (Pontryagin’s Maximum Principle, [3]) Let U be an optimal curve leading to
g ∈ SO(3) for Problem 2. Then there exists an absolutely continuous function p : [0, t0] →
R

3 = so(3) and a constant p0 ≤ 0 such that for almost all t ∈ [0, t0] the following equations
hold:

(i) H(p(t), u(t)) = M(p(t)) = 0

and

(ii)
dp

dt
= p(t)× u(t).

If p0 = 0 then p(t) is non-zero for almost all t ∈ [0, t0].

Lemma 3.4. The quantity |p(t)| is conserved.

Proof.
d

dt
|p(t)|2 = 2

(
dp

dt
, p(t)

)
= 2 (p(t)× u(t), p(t)) = 0.

�

Note that for our problem the parameter p0 can not be zero, otherwise condition (i)
implies that maxu∈C(p(t), u) = 0, hence p(t) is proportional to Z for almost all t, and so is
dp

dt
. However (ii) implies that

(
dp

dt
, p(t)

)
= 0 and thus dp

dt
= 0 and p(t) is a constant multiple

of Z. Inspecting (ii) again, we conclude that p(t) must be zero for almost all t, which
contradicts the last claim of the theorem.

In case when the parameter p0 is non-zero, it can be rescaled to any negative value. A
convenient choice for us is p0 = − sin2(α).

Consider a second basis {S,Q} of the XY -plane, where

S = Y × Z = X − cY and Q = −X × Z = Y − cX.

Then (S,X) = (Q, Y ) = (S, S) = (Q,Q) = sin2(α), (S, Y ) = (Q,X) = 0. In this basis
W+ = (1 + κc)X − (κ+ c)Y = S − κQ and W− = (1− κc)X + (κ− c)Y = S + κQ.
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According to Theorem 3.3, the value of p(t) determines the value of u(t) via (i), while by
(ii) the value of u(t) determines the evolution of p(t). Let us analyze (i) to see which values
of p(t) are admissible, and what are the corresponding controls u.

Let us write u = aX + bY and p = sS + qQ+ zZ. Then

H(p, u) = sin2(α) (− |a| − κ |b| + sa+ qb) .

Since the set C is closed under symmetry a 7→ −a, b 7→ −b, we see that the maximum in
u ∈ C of H(p, u) is attained when a has the same sign as s and b has the same sign as q.
Hence

M(p)/ sin2(α) = max
|a|+|b|=1

(|s| − 1)|a|+ (|q| − κ)|b| = max {|s| − 1, |q| − κ} .

By property (i) of the Theorem, M(p(t)) = 0, thus the admissible values of p(t) satisfy
either |s| = 1, |q| ≤ κ or |q| = κ, |s| ≤ 1. We summarize this in the following Lemma, which
describes controls in the resulting regions:

Lemma 3.5. (a) Let κ > 0.
(i) If s = 1, −κ < q < κ then a = 1, b = 0, the control is u = X;
(ii) If s = −1, −κ < q < κ then a = −1, b = 0, the control is u = −X;
(iii) If q = κ, −1 < s < 1 then a = 0, b = 1, the control is u = Y ;
(iv) If q = −κ, −1 < s < 1 then a = 0, b = −1, the control is u = −Y .

(b) If κ = 0 then q = 0, |s| ≤ 1. When q = 0 and −1 < s < 1 we could have either control
u = Y or u = −Y .

At the points where two regions meet, the whole segment joining the corresponding two
controls is allowed. For example, when s = 1 and q = κ > 0 we could have any control
u = aX + bY with a, b ≥ 0, a+ b = 1. We will call such values of p critical.

If the curve p(t) reaches a critical point, one of three things could happen: the curve p(t)
could cross the boundary of a region, in which case the control will switch; the curve p(t)
could return to the same region where it came from without a switch of control; or the curve
p(t) may stay inside the critical boundary for some positive time. Let us describe evolution
of p(t) inside the critical boundary.

Lemma 3.6. (a) Suppose p(t) = S − κQ + z(t)Z for t ∈ [t1, t2]. Then u(t) = W+ and
z(t) = 0 for t ∈ [t1, t2].

(b) Suppose p(t) = S + κQ+ z(t)Z for t ∈ [t1, t2] and κ > 0. Then κ ≥ c, u(t) =W− and
z(t) = 0 for t ∈ [t1, t2].

Cases s(t) = −1, q(t) = κ and s(t) = −1, q(t) = −κ are analogous, the controls are
u(t) = −W+ and u(t) = −W− respectively and z(t) = 0.

Proof. To prove (a) consider equation (ii) in Theorem 3.3. We get

d

dt
(S − κQ+ z(t)Z) = (S − κQ+ z(t)Z)× (aX + bY ) .

Taking into account that

S ×X = cZ, S × Y = Z, Q×X = −Z, Q× Y = −cZ,
9



(A) Evolution with u = X, s = 1 (B) Evolution with u = Y , q = κ

(C) Evolution with u = −X, s = −1 (D) Evolution with u = −Y , q = −κ

Figure 2. Case κ > c.

we get that

dp

dt
= az(t)Q− bz(t)S + (ca + κa+ b+ cκb)Z.

Since q(t) and s(t) are constant, this implies z(t) = 0 for t ∈ [t1, t2]. Then we get (c+ κ)a =
−(1 + cκ)b and u is proportional to W+.

Case (b) is analogous, except that for κ < c the segment joining X and Y does not contain
a vector proportional to W−.

�
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Corollary 3.7. An optimal solution of Problem 2 could only involve controls ±X, ±Y ,
±W+ and ±W−. Moreover, controls ±W− do not occur if 0 < κ < c.

Note that when κ = c we get W− proportional to X . When κ = 0 we get W+ =W−.
Next, let us study evolution of p(t) under controls ±X and ±Y .
As we have seen in Lemma 3.5, control X corresponds to the region s = 1, −κ ≤ q ≤ κ.

Let p(t) = S + q(t)Q+ z(t)Z. By part (ii) of Theorem 3.3, evolution of p(t) is given by

dp

dt
= (S + q(t)Q+ z(t)Z)×X = (c− q(t))Z + z(t)Q.

From this we get

q′(t) = z(t), z′(t) = −(q(t)− c), s′(t) = 0.

Setting q̃(t) = q(t)− c, we get the equations of the harmonic oscillator

q̃′(t) = z(t), z′(t) = −q̃(t)
with solutions q(t) = c +K sin(t + θ), z(t) = K cos(t + θ). We plot the trajectories in QZ-
plane in Fig.2A and 3A. Similarly, we plot the trajectories for the other regions described in
Lemma 3.5.

This gives us the trajectories that satisfy the conditions of Theorem 3.3. For example, the
path 1 7→ 8 7→ 14 7→ 11 7→ 1 corresponds to the decomposition

R(t1X)R(−t2Y )R(−t3X)R(t4Y ).

When a trajectory reaches a critical point, for example 4 , it could continue from 4
either using evolution with controls X , Y or remain at this critical point for some positive
time using control W−.

The conservation law of Lemma 3.4 ensures that for the trajectory 1 7→ 8 7→ 14 the
points 1 and 14 have equal Z-coordinates. The same property holds in other similar
cases, and in particular the trajectory that starts at a critical point 9 and goes to 15
will reach the critical point 12 .

It follows that for the trajectory 1 7→ 8 7→ 14 7→ 11 evolution times for the parts
1 7→ 8 and 14 7→ 11 are the same, since the corresponding arcs are symmetric to

each other.
Next we establish the relations between the time parameters in these trajectories (cf.

Proposition 2.1 in [1]).

Proposition 3.8. (a) Let tX be the X-evolution time, and tY be −Y -evolution time for the

trajectory 1 7→ 8 7→ 14 . Then

tan(tX/2) = κ tan(tY /2).

The same relation holds for the trajectories 14 7→ 11 7→ 1 , 7 7→ 13 7→ 20 ,
13 7→ 20 7→ 10 , etc., with tX being the time parameter for ±X-evolution and tY for ±Y -

evolution.
(b) Let t̂X be the time of evolution for the trajectories involving critical points, 9 7→ 6 ,
2 7→ 9 , 15 7→ 12 or 12 7→ 19 .
Let t̂Y be the time of evolution for the trajectories 12 7→ 2 , 6 7→ 12 , 19 7→ 9

or 9 7→ 15 .
11



(A) Evolution with u = X, s = 1 (B) Evolution with u = Y , q = κ

(C) Evolution with u = −X, s = −1 (D) Evolution with u = −Y , q = −κ

Figure 3. Case 0 < κ ≤ c.

Then

t̂X = arccos

(
c− κ

c+ κ

)
, t̂Y = arccos

(
−1− κc

1 + κc

)
. (9)

Proof. Consider the trajectory 1 7→ 8 7→ 14 . Let z1 and z2 be Z-coordinates of the
points 1 , and 8 respectively. Then z1 is also the Z-coordinate of the point 14 .

Since the points 1 and 8 lie on a circle with the center at Z = 0, Q = c, they satisfy
the equation

z21 + (κ− c)2 = z22 + (κ+ c)2. (10)
12



(A) Evolution with u = Y , q = 0 (B) Evolution with u = −Y , q = 0

Figure 4. Case κ = 0.

Let b be the base of the isosceles triangle with vertices at 1 , 8 and the center of the
circle, and let h be the altitude in this triangle. Then

b2 = (z2 − z1)
2 + (2κ)2

and

h2 =

(
z1 + z2

2

)2

+ c2.

Since tX is the angle at the vertex of this triangle, we have

tan2

(
tX
2

)
=

(
b

2h

)2

=
(z2 − z1)

2 + 4κ2

(z2 + z1)2 + 4c2
.

Similarly,

tan2

(
tY
2

)
=

(z2 − z1)
2 + 4

(z2 + z1)2 + 4κ2c2
.

Since tan(tX/2), tan(tY /2) > 0, in order to establish claim (a), we need to show that
tan2(tX/2) = κ2 tan2(tY /2). This equality however follows from (10):
(
(z2 − z1)

2 + 4κ2
) (

(z2 + z1)
2 + 4κ2c2

)
− κ2

(
(z2 − z1)

2 + 4
) (

(z2 + z1)
2 + 4c2

)

= (κ2 − 1)
(
(z2 − z1)

2(z2 + z1)
2 − 16κ2c2

)
= 0.

The proof for the other cases in (a) is analogous.

Let us prove part (b). Consider the trajectory 9 7→ 6 . The time parameter t̂X is the
angle corresponding to this arc of the circle with center at Z = 0, Q = c and radius κ + c.
Taking the projection to Q-axis we get

cos(t̂X) =
c− κ

c+ κ
.

13



The derivation of the formula for t̂Y is analogous. �

The patterns listed in Theorem 2.2 can be traced on the diagrams in Fig.2, while the
patterns of Theorem 2.3 can be seen on Fig. 3. For example, the pattern given in part (I)

of Theorem 2.2 corresponds to the trajectory 10 7→ 7 7→ 13 7→ 20 7→ 10 . The above
Proposition describes the relations between the time parameters of the evolution.

To complete the proofs of Theorems 2.1 – 2.4 we need to show that decompositions with
a large number of switches can not be optimal. We defer this to the next section.

4. Bounds on the number of control switches

In this section we are going to show that certain decompositions are not optimal, even
though they satisfy the necessary conditions of the Pontryagin’s Maximum Principle. This
will give us constraints on the number of control switches in optimal decompositions.

Rather than doing computations in the group of rotations SO(3), it is easier to carry them
out in the unitary group SU(2), which is a double cover of SO(3):

ϕ : SU(2) → SO(3). (11)

Let us recall the construction of SU(2) based on the quaternions. The algebra of quater-
nions H has a basis {1, i, j, k} and relations i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i,
ki = −ik = j. Similar to the complex numbers, we have the conjugation on H, given by
1 = 1, i = −i, j = −j, k = −k, and the norm: |ai+ bj+ ck+d| =

√
a2 + b2 + c2 + d2. Every

non-zero element of H has a multiplicative inverse given by w−1 = w/|w|2.
The unitary group SU(2) may be realized as a unit sphere in the quaternion algebra H:

SU(2) =
{
ai+ bj + ck + d | a2 + b2 + c2 + d2 = 1

}
.

The Lie algebra su(2) of the group SU(2) is the tangent space at identity, it is a 3-
dimensional subspace in H spanned by {i, j, k}. We are going to identify this Lie algebra
with R

3 via i 7→ e1, j 7→ e2, k 7→ e3, where {e1, e2, e3} is the standard basis of R3. Since
[i, j] = ij − ji = 2k, [j, k] = jk − kj = 2i, [k, i] = ki− ik = 2j, we see that two Lie algebra
structures on R

3 coming from so(3) and su(2) differ by a factor of 2. For this reason there
is a factor of 2 in the formula for the homomorphism ϕ:

ϕ (exp(X)) = R(2X).

Here for a vector X = (a, b, c)T the exponential is computed in the algebra of quaternions
exp(X) = exp(ai + bj + ck) ∈ SU(2). Note that the rotation operator R(X) is also an
exponential: R(X) = exp(ad(X)).

The kernel of the homomorphism ϕ is {±1} ⊂ SU(2), so the map ϕ is 2 to 1.
The advantage of using SU(2) instead of SO(3) is that SU(2) is embedded in a 4-

dimensional vector space H, while SO(3) is embedded into the 9-dimensional space of 3× 3
matrices.

In our computations we are going to use the Campbell-Hausdorff formula [4] (up to the
second order terms):

exp(εA) exp(εB) = exp(C), where C = ε(A+B) +
ε2

2
[A,B] + o(ε2). (12)

We will also need the conjugation formula: C exp(B)C−1 = exp (CBC−1).
14



Pontryagin’s Maximum Principle that we use above is essentially a local first derivative
test. In order to obtain stronger results, we need to either apply non-local transformations
(those that do not come from a small variation of parameters) or use higher derivatives.
In Proposition 4.4 we will be using the second derivative in order to show that certain
decompositions are not optimal. An example of a non-local transformation is the identity
R(πX) = R(−πX) where |X| = 1. This trivial observation may be generalized in the
following way. Suppose R(t1X)R(t2Y ) is a rotation in angle π. Then we get a relation
R(t1X)R(t2Y ) = R(−t2Y )R(−t1X). Note that both sides of this equality have the same
cost. This non-local relation and its consequences will be quite useful for our analysis.

Lemma 4.1. Let g = ai + bj + ck + d ∈ SU(2). The image of g in SO(3) is a rotation in
angle π if and only if d = 0.

Proof. Clearly, ϕ(g) is a rotation in angle π if and only if ϕ(g)2 is the identity matrix, but
ϕ(g) is not identity. This is equivalent to g2 = ±1, g 6= ±1 in SU(2). It is easy to see that
the only solutions to g2 = 1 are g = ±1. Thus the preimages of rotations in angle π are
precisely g ∈ SU(2) with g2 = −1, or equivalently, g−1 = −g. Since |g| = 1, this becomes
g = −g. For g = ai+ bj + ck + d this is equivalent to d = 0. �

Proposition 4.2. Let X, Y ∈ R
3 = su(2). Suppose |X| = |Y | = 1 and let α be the angle

between X and Y .
(a) If tan(s1) tan(s2) =

1
cos(α)

then the image of exp(s1X) exp(s2Y ) in SO(3) is a rotation

in angle π. In this case exp(s1X) exp(s2Y ) = − exp(−s2Y ) exp(−s1X).
(b) Let tanψ = cosα tan(s2), −π

2
< ψ ≤ π

2
. Then

exp(s1X) exp(s2Y ) exp(s3X) = exp(s′1X) exp(−s2Y ) exp(s′3X),

where s′1 = s1 + ψ − π
2
, s′3 = s3 + ψ + π

2
.

Proof. The group SU(2) acts on its Lie algebra su(2) by conjugation, and its center {±1}
acts trivially. This gives the action of SO(3) on su(2), which is the natural action of SO(3)
on R

3. Since this action is transitive on pairs of unit vectors with a given angle between
them, we may set without loss of generality X = i, Y = i cosα + j sinα. We complete this
to a basis of su(2) by setting Z = 1

2
[X, Y ] = k sinα. We can easily verify that

XY = − cosα + Z, Y X = − cosα− Z,

XY X = Y − 2 cosαX, Y XY = X − 2 cosαY,

[Z,X ] = 2Y − 2 cosαX, [Z, Y ] = −2X + 2 cosαY,

XZX = Z, Y ZY = Z.

(13)

We also note that X2 = −1 and exp(sX) = cos(s) +X sin(s) and likewise for Y .
We have

exp(s1X) exp(s2Y ) = (cos(s1) +X sin(s1)) (cos(s2) + Y sin(s2))

= (cos(s1) cos(s2)− cos(α) sin(s1) sin(s2))

+X sin(s1) cos(s2) + Y cos(s1) sin(s2) + Z sin(s1) sin(s2).

Applying Lemma 4.1 we establish the claim of part (a).
15



Using part (a), we get

exp(s2Y ) = − exp(−τX) exp(−s2Y ) exp(−τX),

where tan(τ) tan(s2) =
1

cos(α)
. Set ψ = π

2
− τ . Then tanψ = 1

tan τ
= cosα tan(s2) and

exp(s2Y ) = − exp((ψ − π

2
)X) exp(−s2Y ) exp((ψ − π

2
)X)

= exp((ψ − π

2
)X) exp(−s2Y ) exp((ψ +

π

2
)X).

Multiplying both sides by exp(s1X) on the left and exp(s3X) on the right, we get the claim
of part (b). �

Proposition 4.3. Let tan
∣∣ tX

2

∣∣ = κ tan
∣∣ tY
2

∣∣ . Decompositions R(tY Y )R(tXX)R(−tY Y ) with
|tY | > π

2
and R(tXX)R(tY Y )R(−tXX) with |tX | > π

2
are not optimal.

Proof. We may assume without loss of generality that tX , tY > 0. Let us begin with the case
ofR(tY Y )R(tXX)R(−tY Y ). We take its preimage under ϕ: exp(s1Y ) exp(s2X) exp(−s1Y ) ∈
SU(2), where s1 = tY /2, s2 = tX/2, tan(s2) = κ tan(s1), s1 >

π
4
. We claim that the decom-

position exp(s′1Y ) exp(−s2X) exp(s′3Y ) given by the previous proposition will have a lower
cost. Since |s2| = | − s2| we need to show that |s′1|+ |s′3| < 2|s1|, where

s′1 = s1 + ψ − π

2
, s′3 = −s1 + ψ +

π

2
. (14)

We have ψ > 0 and s′3 > 0. If s′1 < 0 then

|s′1|+ |s′3| = −(s1 + ψ − π

2
) + (−s1 + ψ +

π

2
) = π − 2s1 <

π

2
< 2s1,

and we get that the new cost is lower. If s′1 ≥ 0 then

|s′1|+ |s′3| = (s1 + ψ − π

2
) + (−s1 + ψ +

π

2
) = 2ψ. (15)

Since tanψ = cosα tan s2 and tan s2 = κ tan s1, we get that ψ < s2 ≤ s1, so the new cost is
again lower.

We now apply the same approach to R(tXX)R(tY Y )R(−tXX). We again take its preimage
exp(s1X) exp(s2Y ) exp(−s1X) in SU(2) and transform it into exp(s′1X) exp(−s2Y ) exp(s′3X)
using Proposition 4.2. Here tan s1 = κ tan s2. The values of s′1, s

′
3 are still given by (14)

with tanψ = cosα tan s2. We have s′3 > 0 and consider the sign of s′1. The case s′1 < 0 is
treated in the same way as before.

When s′1 ≥ 0 we consider two subcases: κ ≤ cosα and κ > cosα. If κ ≤ cosα, the claim
of the Proposition follows from the observation that on the diagrams (A), (C) in Fig. 3 the
arcs 1 7→ 8 , 10 7→ 7 , 14 7→ 11 and 13 7→ 20 correspond to an angle not
exceeding π

2
.

Let us assume κ > cosα. To show that the transformed expression has a lower cost, we
need to prove that ψ < s1. However tanψ = cosα tan s2 = cosα

κ
tan s1. Since cosα

κ
< 1, we

get ψ < s1, which completes the proof of the Proposition. �

Proposition 4.4. Let δ > 0 be a small parameter and let κ 6= 0. Then the decompositions

R(−δX)R(tY Y )R(tXX)R(−tY Y )R(−δX) (16)

with tX , tY > 0, tan(tX/2) = κ tan(tY /2), and those symmetric to it under (X, Y ) 7→
{±X,±Y }, are not optimal.
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Proof. Let us assume by contradiction that the given decomposition is optimal. As before,
we take a preimage exp(−εX) exp(s1Y ) exp(s2X) exp(−s1Y ) exp(−εX), where ε = δ/2, s1 =
tY /2, s2 = tX/2. We shall express the given decomposition in the following way:

exp(−εX) exp(s1Y ) exp(s2X) exp(−s1Y ) exp(−εX)

= exp((s1 + ε1)Y ) exp((s2 + ε2)X) exp(−(s1 + ε′2)Y ) exp(−ε3X). (17)

We are going to solve for ε1, ε2, ε
′
2 and ε3 in terms of ε, and show that the new decomposition

has a lower cost. Note that the parameters ε2 and ε
′
2 are bound by the relation tan(s2+ε2) =

κ tan(s1 + ε′2).
We will use the Campbell-Hausdorff formula (12) to rewrite both sides of (17) in the form

exp(s1Y ) exp(s2X) exp(L) exp(−s1Y ).
We shall calculate L up to the second order in ε. Applying (12) to the left hand side of (17),
we get that

L = L1 + L2 +
1

2
[L1, L2] + o(ε2), (18)

where

L1 = exp(−s2X) exp(−s1Y )(−εX) exp(s1Y ) exp(s2X),

and

L2 = exp(−s1Y )(−εX) exp(s1Y ).

Let us carry out the detailed calculations. We shall use the basis {X, Y, Z} and relations
(13) as in the proof of the Proposition 4.2.

L2 = −ε (cos(s1)− Y sin(s1))X (cos(s1) + Y sin(s1))

= −ε
(
X cos(2s1) + Z sin(2s1) + 2cY sin2(s1)

)
.

Next,

L1 = exp(−s2X)L2 exp(s2X)

= −ε (cos(s2)−X sin(s2))
(
X cos(2s1) + Z sin(2s1) + 2cY sin2(s1)

)
(cos(s2) +X sin(s2))

= −ε
(
X
(
cos(2s1)− c sin(2s1) sin(2s2) + 4c2 sin2(s1) sin

2(s2)
)

+Y
(
sin(2s1) sin(2s2) + 2c sin2(s1) cos(2s2)

)
+Z

(
sin(2s1) cos(2s2)− 2c sin2(s1) sin(2s2)

) )
.

Doing the same calculations for the right hand side of (17), we get

L = L3+L4+L5+L6+
1

2
([L3, L4] + [L3, L5] + [L3, L6] + [L4, L5] + [L4, L6] + [L5, L6])+o(ε

2),

(19)
where

L3 = exp(−s2X)(ε1Y ) exp(s2X),

L4 = ε2X, L5 = −ε′2Y,
L6 = exp(−s1Y )(−ε3X) exp(s1Y ).
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We begin by solving (17) to the first order in ε. Equating (18) with (19) we get:

− εX
(
2 cos(2s1)− c sin(2s1) sin(2s2) + 4c2 sin2(s1) sin

2(s2)
)

− εY
(
sin(2s1) sin(2s2) + 4c sin2(s1) cos

2(s2)
)
− εZ

(
2 sin(2s1) cos

2(s2)− 2c sin2(s1) sin(2s2)
)

= X
(
2ε1c sin

2(s2) + ε2 − ε3 cos(2s1)
)
+ Y

(
ε1 cos(2s2)− ε′2 − 2ε3c sin

2(s1)
)

+ Z (−ε1 sin(2s2)− ε3 sin(2s1)) .

We divide both sides of this equation by cos2(s1) cos
2(s2), which allows us to express every-

thing in terms of tan(s1), tan(s2). Using the relation tan(s2) = κ tan(s1), we further eliminate
tan(s2). To make the equations more compact we denote tan(s1) by x. By Proposition 4.3
we have 0 < x ≤ 1.

Since we also have the relation κ tan(s1 + ε′2) = tan(s2 + ε2), we use the Taylor expansion
to find the relation between ε2 and ε′2 to the first order:

κε′2
cos2(s1)

=
ε2

cos2(s2)
+ o(ε2).

Expressing this in terms of x, we get

ε′2 = ε2
κx2 + κ−1

x2 + 1
+ o(ε2).

Equating the coefficients at X, Y, Z, we get a system of equations

2ε1c(1 + x2)κ2x2 + ε2(1 + x2)(1 + κ2x2)− ε3(1 + κ2x2)(1− x2)

= −ε
(
2(1− x2)(1 + κ2x2)− 4cκx2 + 4c2κ2x4

)
+ o(ε),

ε1(1 + x2)(1− κ2x2)− ε2κ
−1(1 + κ2x2)2 − 2ε3cx

2(1 + κ2x2) = −4ε(κ+ c)x2 + o(ε),

− 2ε1κx(1 + x2)− 2ε3x(1 + κ2x2) = −ε
(
4x− 4cκx3

)
+ o(ε).

The determinant of this system is the jacobian of (17) and equals

4x(1 + x2)(1 + κ2x2)2(1− κ2x4 + 2cκx2 + cκx4 + cκ3x4).

Since 0 < x ≤ 1, 0 < κ ≤ 1, 0 ≤ c < 1, we see that the only case when the jacobian vanishes
is x = 1, κ = 1, c = 0. We will consider this case separately below. In all other cases the
jacobian is non-zero, hence by the Implicit Function Theorem, equation (17) has a unique
solution for small ε.

Solving (17) to the second order in ε, we get that the cost of the right hand side of (17) is

κ(s1 + ε1) + (s2 + ε2) + κ(s1 + ε′2) + ε3

= 2κs1 + s2 + 2ε− 2ε2
κx(1− cκx2)(2− κ2x4 + κ2x2 + 3c2x2 + c2x4 + 2c2κ2x4)

(1 + x2)(1− κ2x4 + 2cκx2 + cκx4 + cκ3x4)
+ o(ε2),

which is lower than the cost of the left hand side 2κs1 + s2 + 2ε.
For the remaining case x = 1, κ = 1, c = 0, we have s1 = s2 =

π
4
.

Applying Proposition 4.2 we see that

exp
(π
4
Y
)
exp

(π
4
X
)
exp

(
−π
4
Y
)
= exp

(
−π
4
Y
)
exp

(
−π
4
X
)
exp

(π
4
Y
)
,
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and thus

exp (−εX) exp
(π
4
Y
)
exp

(π
4
X
)
exp

(
−π
4
Y
)
exp (−εX)

= exp (−εX) exp
(
−π
4
Y
)
exp

(
−π
4
X
)
exp

(π
4
Y
)
exp (−εX) ,

which is not optimal since it does not correspond to any trajectory in Fig. 2.
This completes the proof of the proposition for the decomposition

R(−δX)R(tY Y )R(tXX)R(−tY Y )R(−δX). The cases of the decompositions obtained from
this one by applying symmetries (X, Y ) 7→ {±X,±Y } are analogous. For example, in the
case of R(−δY )R(tXX)R(tY Y )R(−tXX)R(−δY ), we use the transformation

exp(−εY ) exp(s1X) exp(s2Y ) exp(−s1X) exp(−εY )
= exp((s1 + ε1)X) exp((s2 + ε2)Y ) exp(−(s1 + ε′2)X) exp(−ε3Y ). (20)

The cost of the right hand side is

2s1 + κs2 + 2κε− 2ε2
κx(1 − cκx2)(2 + x2 − κ2x4 + 3c2κ2x2 + 2c2κ2x4 + c2κ4x4)

(1 + κ2x2)(1− κ2x4 + cκx4 + 2cκx2 + cκ3x4)
+ o(ε2),

which is lower than the cost 2s1 + κs2 + 2κε of the left hand side. �

It follows from Proposition 4.4 that for the optimal decompositions corresponding to the
trajectory . . . 7→ 1 7→ 8 7→ 14 7→ 11 7→ 1 7→. . ., and symmetric to it, the number of
factors is at most 4. This corresponds to pattern (I) in Theorems 2.1 – 2.3.

Suppose κ > c. For the trajectory . . . 7→ 3 7→ 5 7→ 3 7→. . ., and symmetric to it,
the number of factors is bounded by 2, since the evolution times 3 7→ 5 and 5 7→ 3
exceed π, and optimal decompositions can not have such time parameters. The case of two
factors is incorporated in patterns (III) and (VII) with t = 0 in Theorems 2.1 and 2.2.

In the case 0 < κ ≤ c, the decompositions corresponding to the trajectory
5 7→ 3 7→ 5 , could have up to 3 factors, since Y -evolution time 5 7→ 3 exceeds

π, but X-evolution time does not exceed 2t̂X , which is less than π. This corresponds to
pattern (VIII) in Theorem 2.3.

To complete the proof of Theorems 2.1 – 2.4, we need to establish a bound on the number
of factors for the trajectories that pass through the critical points. For the critical points
±W− with c 6= 0 the existence of such a bound immediately follows from the diagrams in Fig.
2, since the trajectories connected to these points are full circles and require time evolution
of 2π to complete the circle, while any evolution with time exceeding π is not optimal.

In the case of the critical points ±W+ we need to deal with a trajectory
. . . 7→ 9 7→ 6 7→ 12 7→ 12 7→ 19 7→ 9 7→ 9 7→ 15 7→. . ., and other similar to it.
Again, we will establish a bound on the number of switches.

The trajectory 9 7→ 6 7→ 12 corresponds to the product

R(t̂XX)R(t̂Y Y ) with t̂X = arccos

(
c− κ

c+ κ

)
, t̂Y = arccos

(
−1− κc

1 + κc

)
.

We are going to see that this element of SO(3) is a rotation in angle π around an axis, which
is orthogonal to W+.
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Proposition 4.5. (a) The products R(t̂XX)R(t̂Y Y ) and R(t̂Y Y )R(t̂XX) are both rotations
in angle π.

(b) The following relations hold:

R(t̂XX)R(t̂Y Y ) = R(−t̂Y Y )R(−t̂XX),

R(t̂Y Y )R(t̂XX) = R(−t̂XX)R(−t̂Y Y ),
R(t̂Y Y )R(t̂XX)R(tW+) = R(−tW+)R(t̂Y Y )R(t̂XX),

R(t̂XX)R(t̂Y Y )R(−tW+) = R(tW+)R(t̂XX)R(t̂Y Y ).

(c) Let κ = 0. Then R(πY )R(tW+) = R(−tW+)R(πY ).

Proof. Let us consider a preimage h = exp(ŝXX) exp(ŝXY ) in SU(2) for R(t̂XX)R(t̂Y Y ).
Here ŝX = t̂X/2, ŝY = t̂Y /2. It follows from (8) that

sin ŝX =

√
κ

κ+ c
, cos ŝX =

√
c

κ+ c
, sin ŝY =

1√
1 + κc

, cos ŝY =

√
κc

1 + κc
.

Then

h = exp(ŝXX) exp(ŝXY ) = (cos ŝX +X sin ŝX) (cos ŝY + Y sin ŝY )

=
1√

(κ + c)(1 + κc)

(
c
√
κ+Xκ

√
c+ Y

√
c +XY

√
κ
)

=
1√

(κ+ c)(1 + κc)

(
Xκ

√
c+ Y

√
c + Z

√
κ
)
.

By Lemma 4.1, the image of h in SO(3) is a rotation in angle π and the first equality in part
(b) holds. It is easy to see that h is orthogonal to W+:

(
κ
√
cX +

√
cY +

√
κZ
∣∣S − κQ

)
= 0,

which implies that the axis of rotation corresponding to h is orthogonal to W+ and also
that hW+h

−1 = −W+. Taking the exponential of both sides, we get that h exp(sW+)h
−1 =

exp(−sW+), from which the third claim of part (b) follows.
The argument for R(t̂Y Y )R(t̂XX) is completely analogous.
For κ = 0 we have (W+, Y ) = 0, from which the claim (c) follows. �

Proposition 4.6. Suppose an element g ∈ SO(3) has an optimal decomposition containing
factors R(tW+) or R(tW−). Then there is an optimal decomposition for g with a single
factor of that type.

Proof. First we consider the case c 6= 0 and κ 6= 0. We have pointed out above that the
factor R(tW−) may only appear when c < κ and there will be only one such a factor in that
case. In case when c = κ, we have that W− is proportional to X , and we do not need to
consider the factors of the form R(tW−) at all.

Consider an optimal decomposition with factors R(tW+). Without loss of generality as-
sume that the time parameter in the first such factor is positive. Then it will necessarily
have the form

h0R(t1W+)h1R(−t2W+)h2R(t3W+)h3 . . . hn−1R((−1)n−1tnW+)hn,
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where tk ≥ 0 and for 1 ≤ k ≤ n− 1

hk =

{
R(t̂XX)R(t̂Y Y ) or R(−t̂Y Y )R(−t̂XX) if k is odd,

R(t̂Y Y )R(t̂XX) or R(−t̂XX)R(−t̂Y Y ) if k is even.

By Proposition 4.5 we can combine all factors of type R(tW+) into one without changing
the cost:

h0R((t1 + t2 + . . .+ tn)W+)h1h2 . . . hn−1hn.

Next suppose κ = 0. Using Proposition 4.5(c) and applying the above argument we
see that there is an optimal decomposition with at most one factor of type R(tW+). This
completes the proof of Theorem 2.4.

Now let us consider the case c = 0. Here we could have a decomposition that contains
factors of both types, R(tW+) and R(tW−). Note that t̂X = t̂Y = π. Suppose that an
optimal decomposition of g ∈ SO(3) contains a factor R(tW+) with t > 0. This factor will
be followed by either an X-evolution or −Y -evolution. Let us assume it is X-evolution that
follows. If the time parameter for X-evolution is less than π, that will be the last factor in
the decomposition, as the control switch can not occur. Otherwise, we get R(tW+) followed
by a factor R(πX). But this will imply optimality of the expression R(tW+)R(−πX), which
gives a contradiction since R(tW+)R(−εX) can not be optimal since it does not satisfy the
necessary conditions for optimality of Theorem 3.3. All other cases are analogous and we
conclude that in case c = 0 factors R(tW±) in optimal decompositions may be preceded or
followed by just a single factor R(t′X) or R(t′Y ) with |t′| < π, thus completing the proof of
Theorem 2.1.

�

Finally, it remains to investigate the factors that could precede/follow R(tW+) in optimal
decompositions. We are going to show that the number of such factors is at most two.

Proposition 4.7. Let c > 0, 0 < κ ≤ 1. Suppose an optimal decomposition for g ∈ SO(3)
contains a factor R(tW+) with t > 0. Then there exists an optimal decomposition of g, which
is a subword in one of the following:

R(t̂Y Y )R(t̂XX)R(tW+)R(t̂XX)R(t̂Y Y ),

R(t̂Y Y )R(t̂XX)R(tW+)R(−t̂Y Y )R(−t̂XX),

R(−t̂XX)R(−t̂Y Y )R(tW+)R(t̂XX)R(t̂XY ),

R(−t̂XX)R(−t̂Y Y )R(tW+)R(−t̂Y Y )R(−t̂XX).

Proof. Let us show that in an optimal decomposition of g the number of factors following
R(tW+) is at most two. Indeed, if it is followed by three or more factors, such evolu-
tion must begin with either R(t̂XX)R(t̂Y Y ) or R(−t̂Y Y )R(−t̂XX). By Proposition 4.5,
R(t̂XX)R(t̂Y Y ) = R(−t̂Y Y )R(−t̂XX). This will be followed by evolution with control −X
or Y . This would imply optimality of either R(tW+)R(t̂XX)R((t̂Y + δ)Y ) or
R(tW+)R(−t̂Y Y )R(−(t̂X + δ)X) for small δ > 0. Let us show that these decompositions
are not optimal. Consider a preimage exp(sW+) exp(ŝXX) exp((ŝY + ǫ)Y ) in SU(2) for
R(tW+)R(t̂XX)R((t̂Y + δ)Y ). Here s = t

2
> 0, ǫ = δ

2
> 0. Since κc > 0 we get that ŝY < π

2
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and we can assume that ŝY + ǫ < π
2
. Choose 0 < τ < π

2
such that tan τ tan(ŝY + ǫ) = 1

c
.

Since tan ŝX tan ŝY = 1
c
, we conclude that 0 < τ < t̂X . Then by Proposition 4.2(a) we get

exp(sW+) exp(ŝXX) exp((ŝY+ǫ)Y ) = − exp(sW+) exp((ŝX−τ)X) exp(−(ŝY+ǫ)Y ) exp(−τX).

However the latter decomposition is not optimal since it does not correspond to a trajectory
in Fig. 2, 3, yet both sides in the above equality have the same cost. This implies that
R(tW+)R(t̂XX)R((t̂Y + δ)Y ) is not optimal. The argument for R(tW+)R(−t̂Y Y )R(−(t̂X +
δ)X) is analogous. This completes the proof of Proposition 4.7 and Theorems 2.2 and 2.3.

�
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