
A characterization of K2,4-minor-free graphs

M. N. Ellingham1

Department of Mathematics, 1326 Stevenson Center

Vanderbilt University, Nashville, Tennessee 37212, U.S.A.

mark.ellingham@vanderbilt.edu

Emily A. Marshall1,2

Department of Mathematics, 303 Lockett Hall

Louisiana State University, Baton Rouge, Louisiana 70803, U.S.A.

emarshall@lsu.edu

Kenta Ozeki3

National Institute of Informatics,

2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

and

JST, ERATO, Kawarabayashi Large Graph Project, Japan

ozeki@nii.ac.jp

Shoichi Tsuchiya

School of Network and Information, Senshu University,

2-1-1 Higashimita, Tama-ku, Kawasaki-shi, Kanagawa, 214-8580, Japan

s.tsuchiya@isc.senshu-u.ac.jp

September 18, 2018

Abstract

We provide a complete structural characterization of K2,4-minor-free graphs. The 3-connected K2,4-

minor-free graphs consist of nine small graphs on at most eight vertices, together with a family of planar

graphs that contains 2n − 8 nonisomorphic graphs of order n for each n ≥ 5 as well as K4. To describe

the 2-connected K2,4-minor-free graphs we use xy-outerplanar graphs, graphs embeddable in the plane

with a Hamilton xy-path so that all other edges lie on one side of this path. We show that, subject

to an appropriate connectivity condition, xy-outerplanar graphs are precisely the graphs that have no

rooted K2,2 minor where x and y correspond to the two vertices on one side of the bipartition of K2,2.

Each 2-connected K2,4-minor-free graph is then (i) outerplanar, (ii) the union of three xy-outerplanar

graphs and possibly the edge xy, or (iii) obtained from a 3-connected K2,4-minor-free graph by replacing

each edge xiyi in a set {x1y1, x2y2, . . . , xkyk} satisfying a certain condition by an xiyi-outerplanar graph.
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Government is authorized to reproduce and distribute reprints notwithstanding any copyright notation herein.
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3Supported in part by JSPS KAKENHI Grant Number 25871053 and by a Grant for Basic Science Research Projects from

The Sumitomo Foundation.
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From our characterization it follows that a K2,4-minor-free graph has a hamilton cycle if it is 3-connected

and a hamilton path if it is 2-connected. Also, every 2-connected K2,4-minor-free graph is either planar,

or else toroidal and projective-planar.

1 Introduction

The Robertson-Seymour Graph Minors project has shown that minor-closed classes of graphs can be described

by finitely many forbidden minors. Excluding a small number of minors can give graph classes with interesting

properties. The first such result was Wagner’s demonstration [17] that planar graphs are precisely the graphs

that are K5- and K3,3-minor-free.

Excluding certain special classes of graphs as minors seems to give close connections to other graph

properties. One of the most important open problems at present is Hadwiger’s Conjecture, which relates

excluded complete graph minors to chromatic number. Our interest is in excluding complete bipartite

graphs as minors. Together with connectivity conditions, and possibly other assumptions, graphs with

no Ks,t as a minor can be shown to have interesting properties relating to toughness, hamiltonicity, and

other traversability properties. The simplest result of this kind follows from a well-known consequence of

Wagner’s characterization of planar graphs. This consequence says that 2-connected K2,3-minor-free graphs

are outerplanar or K4; hence, they are hamiltonian. For some recent examples of this type of result, involving

toughness, circumference, and spanning trees of bounded degree, see [1, 2, 13].

Our work was originally motivated by trying to find forbidden minor conditions to make 3-connected

planar graphs, or 3-connected graphs more generally, hamiltonian. In examining the hamiltonicity of 3-

connected K2,4-minor-free graphs we were led to a complete picture of their structure, which we then extended

toK2,4-minor-free graphs in general. Using this, we show in Section 4 that 3-connectedK2,4-minor-free graphs

are hamiltonian, and that 2-connected K2,4-minor-free graphs have hamilton paths.

For K2,4-minor-free graphs, or K2,t-minor-free graphs in general, there are a number of previous results.

Dieng and Gavoille (see Dieng’s thesis [5]) showed that every 2-connected K2,4-minor-free graph contains two

vertices whose removal leaves the graph outerplanar. Streib and Young [16] used Dieng and Gavoille’s result

to show that the dimension of the minor poset of a connected graph G with no K2,4 minor is polynomial

in |E(G)|. Chen et al. [2] proved that 2-connected K2,t-minor-free graphs have a cycle of length at least

n/tt−1. Myers [11] proved that a K2,t-minor-free graph G with t ≥ 1029 satisfies |E(G)| ≤ (1/2)(t+1)(n−1);

more recently Chudnovsky, Reed and Seymour [3] showed that this is valid for all t ≥ 2, and provided

stronger bounds for 2-, 3- and 5-connected graphs. Our results improve their bound for 3-connected graphs

when t = 4. An unpublished paper of Ding [7] proposes that K2,t-minor-free graphs can be built from slight

variations of outerplanar graphs and graphs of bounded order by adding ‘strips’ and ‘fans’ using an operation

that is a variant of a 2-sum (and which corresponds to the idea of replacing subdividable sets of edges that

is used later in this paper). Ding’s result involves subgraphs that have K2,4 minors, and so not all aspects of

his structure can be present in the case of K2,4-minor-free graphs; our results illuminate the extent to which

Ding’s structure still holds.

As part of our work we use rooted minors, where particular vertices of G must correspond to certain

vertices of H when we find H as a minor in G. For example, Robertson and Seymour [14] characterized

all 3-connected graphs that have no K2,3 minor rooted at the three vertices on one side of the bipartition.

Fabila-Monroy and Wood [8] characterized graphs with no K4 minor rooted at all four vertices. Demasi [4]

characterized all 3-connected planar graphs with no K2,4 minor rooted at the four vertices on one side of

the bipartition. In this paper we characterize all graphs with no K2,2 minor rooted at two vertices on one

side of the bipartition. This result is useful not only here, but also in the authors’ proof that 3-connected

K2,5-minor-free planar graphs are hamiltonian (see [9]).
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We begin with some definitions and notation. All graphs are simple. We use ‘−’ to denote set difference

and deletion of vertices from a graph, ‘\’ to denote deletion of edges, ‘/’ to denote contraction of edges, and

‘+’ to denote both addition of edges and join of graphs. Since we work with simple graphs, when we contract

an edge any parallel edges formed are reduced to a single edge.

A graph H is a minor of a graph G if H is isomorphic to a graph formed from G by contracting and

deleting edges of G and deleting isolated vertices of G. We delete multiple edges and loops, so all minors

are simple. Another way to think of a k-vertex minor H of G is as a collection of disjoint subsets of the

vertices of G, (V1, V2, . . . , Vk) where each Vi corresponds to a vertex vi of H, where G[Vi] (the subgraph of

G induced by the vertex set Vi) is connected for 1 ≤ i ≤ k, and for each edge vivj ∈ E(H) there is at least

one edge between Vi and Vj in G. We call this a model of H in G. We will often identify minors in graphs

by describing the sets (V1, V2, . . . , Vk). The set Vi is known as the branch set of vi, and may be thought of

as the set of vertices in G that contracts to vi in H.

Suppose we are given S ⊆ V (G), T ⊆ V (H), and a bijection f : S → T . We say that a model of H in

G is a minor rooted at S in G and at T in H by f if each v ∈ S belongs to the branch set of f(v) ∈ T . If

the symmetric group on T is a subgroup of the automorphism group of H (as it will be in our case) then the

exact bijection f between S and T does not matter.

A graph is H-minor-free if it does not contain H as a minor. A k-separation in a graph G is a pair (H,J)

of edge-disjoint subgraphs of G with G = H∪J , |V (H)∩V (J)| = k, V (H)−V (J) 6= ∅, and V (J)−V (H) 6= ∅.
Suppose K2,t has bipartition ({a1, a2}, {b1, b2, . . . , bt}). Let R1 and R2 be the branch sets of a1 and a2 in

a model of K2,t in a graph G. Suppose B is the branch set of bi for some i. Then there is a path v1v2 . . . vk,

k ≥ 3, with v1 ∈ R1, vk ∈ R2, and vi ∈ B for 2 ≤ i ≤ k− 1. Let B′ = {v2} and let R′2 = R2 ∪{v3, . . . , vk−1}.
We can replace B with B′ and R2 with R′2 and still have a model of K2,t (possibly using fewer vertices

of G than before). Hence without loss of generality we may assume that the branch set of each vertex bi,

1 ≤ i ≤ t, contains a single vertex si. Let S = {s1, s2, . . . , st}. We say (R1, R2;S) represents a standard K2,t

minor. Observe that G contains a K2,t minor if and only if G contains a standard K2,t minor. Note that the

standard model also applies to K2,t minors rooted at two vertices corresponding to a1 and a2.

A wheel is a graph Wn = K1 +Cn−1 with n ≥ 4. A vertex of degree n− 1 in Wn is a hub and its incident

edges are spokes while the remaining edges form a cycle called the rim. In W4 = K4 every vertex is a hub

and every edge is both a spoke and a rim edge, but in Wn for n ≥ 5 there is a unique hub and the edges are

partitioned into spokes and rim edges. Note that we identify wheels by their number of vertices, rather than

their number of spokes.

A graph is outerplanar if it has an outerplane embedding, an embedding in the plane with every vertex

on the outer face.

In the next section, we define a class of graphs and describe several small examples which together make up

all 3-connected K2,4-minor-free graphs. We begin with 3-connected graphs because all 4-connected graphs on

at least six vertices have a K2,4 minor. This is obvious for complete graphs. Otherwise, a pair of nonadjacent

vertices and the four internally disjoint paths between them guaranteed by Menger’s Theorem yield a K2,4

minor. In Section 3 we extend the characterization to 2-connected graphs. The generalization to all graphs

follows because a graph that is not 2-connected is K2,4-minor-free if and only if each of its blocks is K2,4-

minor-free. Section 4 presents applications of our characterization to hamiltonicity, topological properties,

counting, and edge bounds.

3



Figure 1

2 The 3-connected case

All graphs G with |V (G)| < 6 are trivially K2,4-minor-free; the 3-connected ones are K5, K5\e, W5, and

K4 = W4. For |V (G)| ≥ 6, first we define a class of graphs and identify those that are 3-connected and

K2,4-minor-free. We then look at some small graphs that do not fit into this class. Finally, we show that

every 3-connected K2,4-minor-free graph is one of these we have described.

2.1 A class of graphs G
(+)
n,r,s

For n ≥ 3 and r, s ∈ {0, 1, . . . , n − 3}, let Gn,r,s consist of a spanning path v1v2 . . . vn, which we call the

spine, and edges v1vn−i for 1 ≤ i ≤ r and vnv1+j for 1 ≤ j ≤ s. The graph G+
n,r,s is Gn,r,s + v1vn; we call

v1vn the plus edge. All graphs G
(+)
n,r,s are planar. The graph G+

n,1,n−3 is a wheel Wn with hub vn. Examples

are shown in Figure 1. Since G
(+)
n,r,s

∼= G
(+)
n,s,r we often assume r ≤ s.

In the following three lemmas we first determine when a graph G
(+)
n,r,s is 3-connected, and then when it is

K2,4-minor-free.

Lemma 2.1. For n ≥ 4, G = G
(+)
n,r,s is 3-connected if and only if (i) r = 1, s = n− 3, and the plus edge is

present (or symmetrically s = 1, r = n− 3, and the plus edge is present) or (ii) r, s ≥ 2 and r + s ≥ n− 2.

Proof. Assume that r ≤ s. To prove the forward direction, assume G is 3-connected and first suppose r = 1.

If the plus edge is not present, then v1 has degree 2 and {v2, vn−1} is a 2-cut. Similarly if s ≤ n−4, then vn−2

has degree 2 and {vn−3, vn−1} is a 2-cut. Next suppose r, s ≥ 2. If r + s ≤ n− 3, then there is necessarily a

degree 2 vertex vi with 4 ≤ i ≤ n− 3 and hence a 2-cut in G.

To prove the reverse direction, assume (i) or (ii). If (i) holds, G is a wheel, which is 3-connected, so we

may assume that (ii) holds. To show 3-connectedness we find three internally disjoint paths between each

possible pair of vertices. For v1 and vn we have paths v1v2vn, v1vn−1vn, and v1vn−2vn−3...vn−rv1+svn (where

possibly vn−r = v1+s). Next suppose that only one of v1 and vn is in the considered pair, say v1 without loss

of generality. First consider v1 and vi where n− r ≤ i ≤ n− 1. When v1vi+1 ∈ E(G), then the three disjoint

paths are v1v2...vi, v1vi, and v1vi+1vi. When v1vi+1 /∈ E(G), then v1vi−1 ∈ E(G) and vi−1 6= v2 and the

three disjoint paths are v1v2vnvn−1...vi, v1vi−1vi, and v1vi. Now consider v1 and vi where 2 ≤ i ≤ n− r− 1.

Then the three disjoint paths are v1v2...vi, v1vn−rvn−r−1...vi, and v1vn−r+1vn−r+2...vnvi. Finally consider

vi and vj where i < j and i, j 6= 1, n. If vi and vj are both adjacent to the same end vertex, say v1, where

i, j 6= 2, then the three disjoint paths are vivi+1...vj , viv1vj , and vivi−1...v2vnvn−1...vj . Otherwise the three

disjoint paths are vivi+1...vj , vivi−1...v1vj , and vjvj+1...vnvi.

Lemma 2.2. For n ≥ 6, G = G
(+)
n,r,s is K2,4-minor-free if and only if r + s ≤ n− 1.

Proof. To prove the forward direction, suppose r + s ≥ n. Then there are vertices vi and vi+1 such that

both v1 and vn are adjacent to both vi and vi+1 and 3 ≤ i ≤ n − 3. Then there is a standard K2,4 minor

(R1, R2;S) in G: let S = {v2, vi, vi+1, vn−1}, R1 = {v1}, and R2 = {vn}.
Now suppose that r+ s ≤ n− 1. We claim that if G has a standard K2,4 minor (R1, R2;S), then v1 ∈ R1

and vn ∈ R2 (or vice versa). The graph G − v1 is outerplanar and thus has no K2,3 minor. Therefore, if G

4



has a K2,4 minor, then it must include v1. We cannot have v1 ∈ S because then the outerplanar graph G−v1

would have a K2,3 minor. By symmetry, vn must also be included in the minor and vn /∈ S. If v1, vn ∈ Ri,

then G − {v1, vn} has a K1,4 minor, but G − {v1, vn} is a path and there is no K1,4 minor in a path. The

only remaining possibility is v1 ∈ R1 and vn ∈ R2 (or vice versa).

Let N(v) denote the set of neighbors of v. Let A = N(v1) − {v2} = {vn−r, vn−r+1, . . . , vn−1} and

B = N(vn)−{vn−1} = {v2, v3, . . . , vs+1}, which intersect only if vn−r = vs+1. Suppose G has a standard K2,4

minor (R1, R2;S). Then by the claim proved in the previous paragraph, v1 ∈ R1 and vn ∈ R2. We consider

the makeup of S. Suppose {s1, s2, s3} ⊆ S∩A, in that order along the spine. Since {v1, s1, s3} ⊆ R1∪{s1, s3}
separates s2 and vn, and vn ∈ R2, we cannot have R2 adjacent to s2, which is a contradiction. Thus

|S ∩ A| ≤ 2. Symmetrically, |S ∩ B| ≤ 2. We must have s1, s2 ∈ S ∩ A and s3, s4 ∈ S ∩ B in the order

s4, s3, s2, s1 along the spine. Since vn ∈ R2, there must be a vns2-path in G − {v1, s1, s3, s4}, and hence

s3 6= vs+1. Then vs+1 is a cutvertex separating vn and s2 in G − {v1, s1, s3, s4}, so vs+1 ∈ R2. Now there

must also be a v1s3-path in G− {vn, vs+1, s4} but no such path exists. Thus there is no K2,4 minor.

Define G to be the set of (labeled) graphs of the form G
(+)
n,r,s that are both 3-connected and K2,4-minor-

free. Of the four 3-connected graphs on fewer than six vertices, three are planar, and all three belong to G:

K5\e ∼= G+
5,2,2, W5

∼= G+
5,1,2
∼= G5,2,2, and K4 = W4

∼= G+
4,1,1. From this and Lemmas 2.1 and 2.2 we get

G = {G+
n,1,n−3, G

+
n,n−3,1 : n ≥ 4} ∪ {G(+)

n,r,s : n ≥ 5, r, s ∈ {2, 3, . . . , n− 3}, r + s = n− 1 or n− 2}.

Let G̃ denote the class of all graphs isomorphic to a graph in G. Note that graphs in G are 3-sums of two

wheels, a fact we will see in more detail later on.

There are some isomorphisms between graphs in G and also symmetries within certain graphs of the class.

Let ρ = ρn be the involution with ρ(vi) = vn+1−i for 1 ≤ i ≤ n. Then ρ provides the isomorphism (in both

directions) between G
(+)
n,r,s and G

(+)
n,s,r that we have already noted; if r = s it is an automorphism. The graph

G+
n,1,n−3 is isomorphic to Wn, with vn as a hub. It has the obvious symmetries.

Figure 2

Define σ = σn to be the involution fixing vn−1 and vn and with σ(vi) = vn−1−i for 1 ≤ i ≤ n− 2. Then σ

is an automorphism of Gn,2,n−4, an isomorphism (in both directions) between G+
n,2,n−4 and Gn,2,n−3, and an

automorphism of G+
n,2,n−3. The case n = 9 is illustrated in Figure 2, where σ = σ9 corresponds to reflection

about a vertical axis. The graph without the dashed edges e1 and e2 is G9,2,5. With the edge e1, the graph

is G+
9,2,5 and with e2, the graph is G9,2,6. With both edges e1 and e2, the graph is G+

9,2,6. In general σ maps

the spine P = v1v2 . . . vn to the path σ(P ) = vn−2vn−3 . . . v2v1vn−1vn. For G
(+)
n,r,s with r = 2 we call σ(P )

the second spine. When s = 2 we have a similar involution σ′, and the path σ′(P ) = v1v2vnvn−1 . . . v4v3 can

be regarded as an extra spine. When r = s = 2, σ′(P ) is the image of σ(P ) under the automorphism ρ.

Finally, besides some obvious special symmetries when n = 4 or 5, G6,2,2 is vertex-transitive and is

isomorphic to the triangular prism.
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These symmetries and isomorphisms will be important later, particularly in Section 3 when we discuss

which edges of G ∈ G can be subdivided without creating a K2,4 minor. Up to isomorphism the class G
contains one 4-vertex graph and 2n− 8 n-vertex graphs for each n ≥ 5.

We now examine the effect of deleting or contracting a single edge of a graph in G.

Lemma 2.3. Suppose G = G
(+)
n,r,s ∈ G and e ∈ E(G). The following are equivalent.

(i) G\e ∈ G.
(ii) G\e is 3-connected.

(iii) G is not a wheel and either e is a plus edge, or r + s = n− 1 and e ∈ {v1vn−r, vnv1+s}.

Proof. Clearly (iii) ⇒ (i) ⇒ (ii). If (iii) does not hold then G\e has at least one vertex of degree 2, so (ii)

does not hold; thus (ii) ⇒ (iii).

Table 1: Contracting an edge e in G = G
(+)
n,r,s with r, s ≥ 2

e G/e isomorphic to G/e is 3-conn.? G/e ∈ G̃?

spine edges

∗ v1+svn−r, r + s = n− 2 G
(+)
n−1,r,s yes yes

vn−ivn−i+1, 2 ≤ i ≤ r, r ≥ 3 G
(+)
n−1,r−1,s yes yes

vn−2vn−1, r = 2 G
(+)
n−1,1,n−4 if plus edge if plus edge

∗ vn−1vn, r ≥ 3 G+
n−1,r−1,s yes yes

∗ vn−1vn, r = 2 G+
n−1,1,n−4

∼= Wn−1 yes yes

non-spine edges

v1vn (plus edge) K1 + Pn−2 no no

v1vn−i, 2 ≤ i ≤ r − 1 G
(+)
n−1,r−1,s\vn−i−1vn−i no no

v1vn−1, r ≥ 3 G+
n−1,r−1,s\vn−2vn−1 no no

or r = 2 and s = n− 4

v1vn−1, r = 2 and s = n− 3 G+
n−1,1,n−4

∼= Wn−1 yes yes

v1vn−r, r + s = n− 2 G
(+)
n−1,r,s\vn−r−1vn−r no no

v1vn−r, r + s = n− 1, s ≥ 3 G+
n−1,r,s−1\vn−r−1vn−r no no

v1vn−r, r + s = n− 1, s = 2 G+
n−1,n−4,1\v2v3 no no

Now consider contracting an edge e of G = G
(+)
n,r,s. If n = 4 then G = K4 and G/e ∼= K3 for any edge e,

so assume that n ≥ 5. If G is a wheel Wn then we obtain Wn−1 if we contract a rim edge, and K1 + Pn−2 if

we contract a spoke. Therefore assume G is not a wheel, so r, s ≥ 2. The effects of contracting edges in this

case are shown in Table 1. Here the superscript ‘(+)’ means that the plus edge is present in G/e precisely if

it is present in G. Edges not included in the table are covered by the symmetry ρ that swaps r and s, vi and

vn+1−i. We may summarize the results as follows.

Lemma 2.4. Suppose G = G
(+)
n,r,s ∈ G and e ∈ E(G).

(i) If n ≥ 5 then G/e is isomorphic to a graph in G with at most one edge deleted.

(ii) If n ≥ 4 then G/e ∈ G̃ if and only if G/e is 3-connected.

(iii) If G is a wheel with n ≥ 5 then some G/e is isomorphic to Wn−1, and every G/e ∈ G̃ is isomorphic

to Wn−1. If G is not a wheel then (from the starred entries in Table 1) some G/e is isomorphic to

each of G+
n−1,r−1,min(s,n−4), G

+
n−1,min(r,n−4),s−1 and, if r+ s = n− 2, also G

(+)
n−1,r,s; and any G/e ∈ G̃

is isomorphic to a spanning subgraph of one of these.
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Now we apply these results to the structure of minors of graphs in G or G̃.

Corollary 2.5. Every minor of a graph in G̃ is a subgraph of some graph in G̃.

Proof. Apply Lemma 2.4(i) repeatedly to replace contractions by deletions (details are left to the reader).

Lemma 2.6. If a 3-connected graph H is a minor of a 3-connected graph G, then there is a sequence of

3-connected graphs G0, G1, . . . , Gk where G0
∼= G, Gk

∼= H, and each Gi+1 is obtained from Gi by contraction

or deletion of a single edge.

Proof. Seymour’s Splitter Theorem [15] as applied to graphs, or a similar result of Negami [12], says that

our result is true if H is not a wheel, or if H is the largest wheel minor of G. Seymour’s operations

and connectivity are defined for graphs with loops and multiple edges, not simple graphs, which is why a

sequence of minors G0, G1, . . . , Gi cannot be continued to reduce a large wheel minor Gi to a smaller one.

In particular, contracting a rim edge of a wheel in his definition yields a pair of parallel edges and so by his

definition the graph is not 3-connected. With our definition, where we reduce parallel edges to a single edge

after contraction, we can contract a rim edge of a wheel W`, ` ≥ 5, to obtain the smaller wheel W`−1, which

is still 3-connected. Therefore, we can continue the sequence of operations to also reach wheel minors H that

are not the largest wheel minor.

Corollary 2.7. If H is a 3-connected minor of G ∈ G̃ then H ∈ G̃.

Proof. Take the 3-connected sequence G ∼= G0, G1, . . . , Gk
∼= H given by Lemma 2.6. From Lemmas 2.3 and

2.4(ii), if Gi ∈ G̃ then Gi+1 ∈ G̃ also, and the result follows by induction.

2.2 Small cases

Figure 3 shows nine small graphs that are 3-connected (easily checked), not in G (also easily checked; all but

D have a K3,3 minor and so are nonplanar) and K2,4-minor-free. The first graph, K5, is the only 3-connected

graph on fewer than six vertices that is not in G. To prove that the other eight graphs are K2,4-minor-free

we examine the two maximal graphs C+ and D, and show that the rest are minors of C+.

Figure 3

Lemma 2.8. The graph C+ is K2,4-minor-free.

Proof. Consider C+ with vertices labeled as on the left in Figure 4. Suppose there is a standard K2,4 minor

(R1, R2;S) in C+ and suppose |R1| = 1. Then R1 must be either v4 or v5 since these are the only vertices

of degree 4. Say, without loss of generality, R1 = {v4}. Then S = {v5, v6, v7, v8}, and R2 must be a subset
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of {v1, v2, v3}. None of these three vertices are adjacent to v5, however, so we cannot have R2 adjacent to

v5 and thus we cannot have |R1| = 1, or symmetrically |R2| = 1. Thus |R1| ≥ 2 and |R2| ≥ 2 and since

|V (C+)| = 8, |R1| = |R2| = 2.

Let T be a triangle with a set N of neighbors with |N | = 3. Suppose R1 ⊆ V (T ). Then we would have

N ⊆ S along with the third vertex t of T , but N separates t from the rest of the graph so R2 cannot be

adjacent to t. Thus R1 (or symmetrically R2) cannot consist of two vertices in a triangle with only three

neighbors. In C+, we have the following triples of vertices which form such triangles: {v1, v2, v3}, {v4, v5, v6},
{v4, v5, v7}, and {v4, v5, v8}. The only remaining pairs of adjacent vertices that could make up R1 or R2

are {v3, v6}, {v2, v8}, and {v1, v7} where all three cases are symmetric. If R1 = {v3, v6}, then R2 must be

{v7, v8} but this set is not an option for R2.

Figure 4

Lemma 2.9. The graph D is K2,4-minor-free.

Proof. It is easy to check that D has no subgraph isomorphic to K2,4, nor does D/e for any e ∈ E(D). Hence

D is K2,4-minor-free since |V (D)| = 7.

Figure 5: Q3, V8, C
+ = K∆

5 , D, and their 3-connected minors

Figure 5 shows what we will prove is the Hasse diagram for the minor ordering of all 3-connected minors

of C+ (also labeled K∆
5 , following Ding and Liu [6]) and D. For future reference the figure also includes

three additional, circled graphs Q3 (the cube), Q3/e (contract any edge of Q3) and V8 (the 8-vertex twisted

cube or Möbius ladder). Unlike the other graphs, these three have K2,4 minors, as shown by the minor in

Q3/e on the right in Figure 6. Here, and later, a K2,4 minor is indicated by two groups of vertices circled by
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Figure 6

dotted curves representing the two vertices in one part of the bipartition of K2,4, and four triangular vertices

representing the other part.

Lemma 2.10. Figure 5 is the Hasse diagram for all 3-connected minors (up to isomorphism) of C+, D, Q3

and V8.

Proof. By Lemma 2.6, we can proceed by single edge deletions and contractions, and we do not need to

consider further minors once we reach a graph that is not 3-connected. The figure is clearly correct for the

3-connected graphs on four or five vertices, so we consider only graphs with at least six vertices. Also, the

3-connected minors for graphs in G follow from Lemmas 2.3 and 2.4(iii), so we consider only graphs not in G.

In what follows results of all deletions or contractions are identified only up to isomorphism. When we

lose 3-connectivity, in all but one case there will be at least one vertex of degree 2. We work upwards in the

figure.

For the graphs K3,3, A and A+ label the vertices consecutively along the top row then the bottom row

in Figure 3. For K3,3, deleting any edge loses 3-connectivity; contracting any edge results in W5. For A,

deleting v2v3 yields K3,3, and deleting any other edge loses 3-connectivity. Contracting an edge incident with

v1 yields K5\e, contracting v2v3 loses 3-connectivity, and contracting any other edge incident with v2 or v3

yields W5. For A+, all edges are equivalent up to symmetry to one of v1v4, v1v5, v2v3 or v2v5. Deleting v1v4

or v1v5 loses 3-connectivity, deleting v2v3 gives A, and deleting v2v5 gives G6,2,3. Contracting v1v4 gives K5,

contracting v1v5 gives K5\e, contracting v2v3 loses 3-connectivity, and contracting v2v5 yields W5.

For B and B+ we redraw B+ as on the left in Figure 6 and take B = B+\v6v7. For B, deleting any

edge loses 3-connectivity. Up to symmetry, there are five edge contractions to consider: v1v2, v1v3, v1v4,

v3v6 and v4v6. Contracting v1v2 yields K3,3, contracting v1v3 loses 3-connectivity, contracting v1v4 yields

A, contracting v3v6 results in W6, and contracting v4v6 gives G6,2,3. For B+, all edges are equivalent up to

symmetry to six possibilities: v1v2, v1v3, v1v4, v3v6, v4v6 and v6v7. Deleting v1v2, v1v3, v1v4 or v4v6 loses

3-connectivity, deleting v3v6 yields G7,2,3, and deleting v6v7 results in B. Contracting v1v3 or v6v7 loses

3-connectivity, contracting v1v2 results in A, contracting v1v4 yields A+, contracting v3v6 gives W6, and

contracting v4v6 gives G6,2,3.

For C+ we label the vertices as on the left in Figure 4 and take C = C+\v4v5. Deleting any edge of C

loses 3-connectivity. Up to symmetry, there are three edge contractions to consider: v1v2, v1v7 and v4v6.

Contracting v1v2 loses 3-connectivity, contracting v1v7 results in B, and contracting v4v6 yields G7,2,3. For

C+, deleting v4v5 yields C and deleting any other edge loses 3-connectivity. Up to symmetry, there are four

edge contractions of C+ to consider: v1v2, v1v7, v4v5 and v4v6. Contracting v1v2 or v4v5 loses 3-connectivity,

contracting v1v7 results in B+, and contracting v4v6 gives G7,2,3.

We label D as on the right in Figure 4. Up to symmetry all edges are equivalent to one of four edges:

v1v3, v2v4, v5v6 and v6v7. Deleting v1v3 results in G7,2,3, and deleting any of the other three edges loses

3-connectivity. Contracting v1v3 or v2v4 loses 3-connectivity, contracting v5v6 yields the triangular prism

G6,2,2, and contracting v6v7 results in G+
6,2,3.

Finally, consider Q3/e, Q3 and V8. Label Q3/e as shown on the right in Figure 6. Every edge in Q3/e is

adjacent to a degree 3 vertex so deleting any edge loses 3-connectivity. Up to symmetry, there are four edge
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contractions to consider: v1v2, v3v4, v2v6 and v3v7. Contracting v3v4 loses 3-connectivity, and contracting

v2v6 also loses 3-connectivity (without creating a vertex of degree 2). Contracting v1v2 results in G6,2,3, and

contracting v3v7 yields G6,2,2. In the cube Q3 all edges are symmetric; deleting any edge loses 3-connectivity,

and contracting any edge yields Q3/e. We may take V8 to be C8 = (v1v2 . . . v8) with added diagonals vivi+4

for 1 ≤ i ≤ 4. Deleting any edge loses 3-connectivity, contracting a C8 edge results in B, and contracting a

diagonal yields Q3/e.

Considering the minors of C+, we obtain the following.

Corollary 2.11. The graphs C, B+, B, A+, A, and K3,3 are K2,4-minor-free.

2.3 Characterization of 3-connected graphs

Theorem 2.12. Let G be a 3-connected graph. Then G is K2,4-minor-free if and only if G ∈ G̃ or G is

isomorphic to one of the nine small exceptions shown in Figure 3.

Our original proof of this theorem examined the structure of a 3-connected K2,4-minor-free graph relative

to a longest non-hamilton cycle in the graph. We analyzed cases and either derived a contradiction with a

longer non-hamilton cycle or a K2,4 minor, or found a desired graph. However, we then discovered the recent

systematic investigation by Ding and Liu [6], characterizing H-minor-free graphs for all 3-connected graphs

H on at most eleven edges. These allow us to give a shorter proof, which we present here.

First we give some definitions. Denote by Oct\e the graph obtained from the octahedron by removing

one edge. A 3-sum of two 3-connected graphs G1 and G2 is a graph G obtained by identifying a triangle

of G1 with a triangle of G2 and possibly deleting some of the edges of the common triangle as long as no

degree 2 vertices are created. Any 2-cut in G would lead to a 2-cut in either G1 or G2 so G is 3-connected.

An example is the graph C+ which is a 3-sum of K5 and a triangular prism. A common 3-sum of three or

more graphs is formed by specifying one triangle in each graph and identifying all as a single triangle called

the common triangle; again edges of the common triangle may be deleted as long as no degree 2 vertices are

created. Let S be the set of all graphs formed by taking common 3-sums of wheels and triangular prisms.

All graphs in S are 3-connected. We use the following result due to Ding and Liu.

Theorem 2.13 (Ding and Liu [6]). Up to isomorphism the family of 3-connected Oct\e-minor-free graphs

consists of graphs in S and 3-connected minors of V8, Q3, and C
+.

Proof of Theorem 2.12. The results of subsections 2.1 and 2.2 give the reverse direction of the proof.

For the forward direction, Oct\e contains K2,4 as a subgraph, so all 3-connected K2,4-minor-free graphs

must be Oct\e-minor-free graphs as described in Theorem 2.13. We must decide which of those graphs are

actually K2,4-minor-free. By Lemma 2.10, Figure 5 gives all 3-connected minors of V8, Q3, and C+ up to

isomorphism. The K2,4-minor-free ones are uncircled; all are in G or one of the nine small exceptions.

So we must determine which members of S are K2,4-minor-free. Any common 3-sum of four or more

graphs has a K3,4 minor (the three vertices of the common triangle form the part of size three) and hence a

K2,4 minor. Thus, we consider common 3-sums of at most three graphs, analyzed according to the numbers

of wheels and prisms.

First consider a common 3-sum of three wheels, Wk, W`, and Wm. For k = ` = 5 and m = 4, since

all vertices of W4 = K4 are equivalent, there are two ways up to symmetry to form a common 3-sum

(disregarding the possible existence of the edges of the common triangle): the hubs of the two wheels are

either identified or not. Both result in a K2,4 minor, as shown in the left and middle pictures of Figure 7.

The dashed edges are the edges of the common triangle which may or may not be present in the common

3-sum. Since graphs with k, ` ≥ 5 and m ≥ 4 have one of these two graphs as a minor, these graphs also
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Figure 7

have K2,4 minors. Hence at most one of k, `,m can be greater than 4. When k = 6 and ` = m = 4, there is

again a K2,4 minor, shown on the right in Figure 7. Graphs with k > 6 and ` = m = 4 have this graph as

a minor and hence also have a K2,4 minor. For k = 5 and ` = m = 4, we have the graph shown on the left

and middle in Figure 8. With no dashed edges of the common triangle, this graph is isomorphic to B. With

at least one dashed edge there is a K2,4 minor as shown on the left of the figure for e1 (e2 is symmetric) or

in the middle for e3. Hence k = ` = m = 4, and we have the graph shown on the right in Figure 8. With

any two dashed edges, the graph has a K2,4 minor, shown in the figure for e1 and e2. With no or one dashed

edge, the graph is isomorphic to K3,3 or A, respectively.

Figure 8

Next consider a common 3-sum of two wheels and a prism. If the wheels are W5 and W4, then all common

3-sums have the K2,4 minor shown on the left in Figure 9. Any other combination of wheels gives this, and

hence K2,4, as a minor, unless both wheels are W4. Then we have the graph shown on the right in Figure 9.

With any dashed edge we have a K2,4 minor, shown in the figure for e1. With no dashed edges, the graph is

isomorphic to C.

Figure 9

Now consider a common 3-sum of two wheels Wk and W`. Suppose the hubs of the wheels are not

identified, or k = 4 or ` = 4. We have the graph shown on the left in Figure 10. At least one of the

edges labeled e1 and e2 must be present in the common 3-sum to ensure there are no degree 2 vertices. Let

n = k + ` − 3. With e1 and e2, the graph is isomorphic to Gn,k−2,`−2. With e1 (or symmetrically e2), the

graph is isomorphic to either Gn,k−3,`−2 or Gn,k−2,`−3. In all cases e3 is the optional plus edge. The spine

is shown in the figure as the thick, highlighted path. Hence we obtain graphs in G̃.

Now suppose that k, ` ≥ 5 and the hubs of Wk and W` are identified in the common 3-sum. The graph

with k = ` = 5 appears on the right in Figure 10. With the edge labeled e1, we have the K2,4 minor shown,

and if k, ` ≥ 5 we get a similar minor. Without e1, both e2 and e3 must be present to ensure there are no

vertices of degree 2, and the graph is isomorphic in the general case to Wk+`−3 ∈ G̃.
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Figure 10

Now consider a common 3-sum of two prisms and one wheel. For W4 we have the graph on the left in

Figure 11 with the K2,4 minor shown; for any larger wheel we get this graph, and hence K2,4, as a minor.

Next consider a common 3-sum of two or three prisms. For two prisms we have the graph on the right in

Figure 11. At least two dashed edges are needed to prevent a degree 2 vertex and so we have the K2,4 minor

shown. In a common 3-sum of three prisms, the dashed edges need not be present to ensure 3-connectivity.

However, instead of using one of the dashed edges in the K2,4 minor as on the right in Figure 11, we can use

a path between these two vertices through the third prism. Hence a similar K2,4 minor exists.

Figure 11

Consider a common 3-sum of one wheel Wk and one prism; this is unique up to isomorphism. Figure 12

shows the graph for k = 5 on the left. To prevent vertices of degree 2, either e1 is present, in which case we

have the K2,4 minor shown, or the other two dashed edges must exist, and the graph is isomorphic to G8,2,4.

For k ≥ 6 there is a similar minor or the graph is isomorphic to Gk+3,2,k−1. The graph for k = 4 is shown

on the right in Figure 12. At least two dashed edges must be present to prevent degree 2 vertices. With two

or three dashed edges the graph is isomorphic to G7,2,3 or D, respectively.

Figure 12

Finally, a common 3-sum of a single graph is Wk
∼= G+

k,1,k−3 ∈ G or the triangular prism, isomorphic to

G6,2,2 ∈ G.

In [6] Ding and Liu also prove the following result, where K‡3,3 is the graph K3,3 with two additional edges

added on the same side of the bipartition.

Theorem 2.14 (Ding and Liu [6]). The family of all 3-connected K‡3,3-minor-free graphs consists of 3-

connected planar graphs and 3-connected minors of three small graphs on at most ten vertices.
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Because K2,4 is a subgraph of K‡3,3, K2,4-minor-free graphs must be a subset of the graphs described

in Theorem 2.14. Combining this with Theorem 2.13, we conclude that all large enough K2,4-minor-free

graphs G must be planar (and so K3,3-minor-free) members of S, hence common 3-sums of at most two

graphs, which reduces the work needed to conclude that G ∈ G̃. The analysis required for small graphs is

not simplified by using Theorem 2.14, however, so we provide the full analysis using only Theorem 2.13.

3 The 2-connected case

We begin this section by looking at how K2,t minors interact with separations in a graph. We will mostly

be concerned with 2-separations.

Lemma 3.1. Suppose (H,J) is a 2-separation in a graph G with V (H) ∩ V (J) = {x, y}. If G contains a

standard K2,t minor (R1, R2;S) with t ≥ 3, then one of the following hold:

(i) there exists a K2,t minor in H + xy,

(ii) there exists a K2,t minor in J + xy, or

(iii) x ∈ R1 and y ∈ R2 (or vice versa).

Proof. Let H ′ = H − {x, y} and J ′ = J − {x, y}. Assume (iii) does not hold, then {x, y} ∩ Ri = ∅ for

at least one i; we may suppose that {x, y} ∩ R2 = ∅. Since R2 induces a connected subgraph, this means

that R2 ⊆ V (H ′) or R2 ⊆ V (J ′); without loss of generality we assume that R2 ⊆ V (H ′). Then necessarily

S ⊆ V (H), and so (R1 ∩ V (H), R2;S) is a standard K2,t minor in H + xy and (i) holds.

By a K2,t minor (R1, R2;S) rooted at x and y, we mean x ∈ R1 and y ∈ R2. If part (iii) of Lemma 3.1

holds, then the K2,t minor splits into two minors, K2,t1 and K2,t2 with t1 + t2 = t, both rooted at x and y.

For K2,4 minors this means that we will be concerned with rooted K2,2 minors; we will describe the structure

of graphs without rooted K2,2 minors. Note that Demasi [4, Lemma 2.2.2] has characterized graphs without

K2,2 minors rooted at all four vertices, in terms of disjoint paths.

An xy-outerplane embedding of a connected graph G with x, y ∈ V (G) is an embedding of G in a closed

disk D such that a hamilton xy-path P of G is contained in the boundary of D. This is equivalent to

embedding G in the plane so that the outer facial walk contains P as an uninterrupted subwalk, or so that

all edges not in P lie ‘on the same side’ of P ; we use this as our practical definition. The path P is called the

outer path. A graph is xy-outerplanar, or generically path-outerplanar, if it has an xy-outerplane embedding.

A block is a connected graph without a cutvertex: an isolated vertex, an edge, or a 2-connected graph.

The blocks of a graph G are the maximal blocks that are subgraphs of G. The block-cutvertex tree of a

connected graph G is a tree whose vertices are the blocks and cutvertices of G; a block B and cutvertex v

are adjacent if v ∈ V (B).

The following useful properties are obvious, so we omit their proofs.

Lemma 3.2. (i) If G is xy-outerplanar, H is yz-outerplanar, and V (G) ∩ V (H) = {y} then G ∪ H is

xz-outerplanar.

(ii) Suppose x 6= y. Then G is xy-outerplanar if and only if G+ xy is a block with an outerplane embedding

in which xy is on the outer face. Such an embedding of G+ xy is also xy-outerplane.

We now characterize rooted K2,2-minor-free graphs.

Lemma 3.3. Suppose x and y are distinct vertices of G and G′ = G + xy is a block. Then G has no K2,2

minor rooted at x and y if and only if G is xy-outerplanar.
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Proof. (⇐) Assume an xy-outerplane embedding of G. Add a vertex z and edges xz, yz to G in the outer

face; the resulting graph G′′ is outerplanar. If G has a K2,2 minor rooted at x and y, then G′′ has a K2,3

minor, which is a contradiction since outerplanar graphs are K2,3-minor-free.

(⇒) Proceed by induction on |E(G)|. The base case for G is K2 which has no K2,2 minor rooted at x and

y and is clearly xy-outerplanar. Now assume the claim holds for all graphs on at most m ≥ 1 edges and

suppose |E(G)| = m+ 1. Then G′ is 2-connected.

First assume there is a cutvertex v in G. Since G′ is 2-connected, the block-cutvertex tree of G must be

a path B1v1B2v2 . . . vk−1Bk where k ≥ 2, x ∈ V (B1) − {v1} and y ∈ V (Bk) − {vk−1}. Define v0 = x and

vk = y. Because G has no K2,2 minor rooted at x and y, each block Bi has no K2,2 minor rooted at vi−1 and

vi for 1 ≤ i ≤ k. Thus, by induction each block Bi is vi−1vi-outerplanar. By Lemma 3.2(i), the outerplane

embeddings of the blocks can then be combined to create an xy-outerplane embedding of G, as in Figure 13.

Figure 13

Now suppose G has no cutvertex (G is 2-connected). Assume that G contains the edge xy. Then by

induction, G\xy has an xy-outerplane embedding. By Lemma 3.2(ii), G also has an xy-outerplane embedding.

Therefore, we may assume that G does not contain the edge xy. Since G has no cutvertex, there exist two

internally disjoint xy-paths. Since xy /∈ E(G), each path has an internal vertex, and hence they yield a K2,2

minor rooted at x and y, a contradiction.

In order to describe the structure of 2-connected K2,4-minor-free graphs, we need the following lemma:

Lemma 3.4. Suppose t ≥ 3. Let z be a degree 2 vertex in a graph G with neighbors x and y. Let G′ be the

graph formed from G by replacing the path xzy with an xy-outerplanar graph J on at least three vertices.

Then G is K2,t-minor-free if and only if G′ is K2,t-minor-free.

Proof. (⇐) G is a minor of G′ so if G′ is K2,t-minor-free then so is G.

(⇒) Let H = G − z. Then (H,J) is a 2-separation in G′ with V (H) ∩ V (J) = {x, y}. Because G is K2,t-

minor-free, we know that H + xy is K2,t-minor-free and also there is no K2,t−1 minor in H rooted at x and

y. Because J + xy is outerplanar, J + xy is K2,t-minor-free. Thus by Lemma 3.1, if G′ has a K2,t minor,

then x ∈ R1 and y ∈ R2. If |S ∩ V (J)| ≥ 2, then J has a K2,2 minor rooted at x and y which contradicts

Lemma 3.3. Thus |S ∩ V (H)| ≥ t − 1 but now we have a K2,t−1 minor rooted at x and y in H which is a

contradiction. Hence G′ is K2,t-minor-free.

We can now describe the structure of 2-connected K2,4-minor-free graphs using one new concept. If

G is K2,4-minor-free then F ⊆ E(G) is subdividable if the graph formed from G by subdividing all edges

of F (replacing each edge by a path of length 2) is K2,4-minor-free. The edge e is subdividable if {e} is

subdividable. If F is a subdividable set then every edge of F is subdividable, but the converse is not true.

Theorem 3.5. Let G be a block. Then G is K2,4-minor-free if and only if one of the following holds.

(i) G is outerplanar.

(ii) G is the union of three xy-outerplanar graphs H1, H2, H3 and possibly the edge xy, where |V (Hi)| ≥ 3

for each i and V (Hi) ∩ V (Hj) = {x, y} for i 6= j.
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(iii) G is obtained from a 3-connected K2,4-minor-free graph G0 by replacing each edge xiyi in a (possibly

empty) subdividable set of edges {x1y1, x2y2, . . . , xkyk} by an xiyi-outerplanar graph Hi, where V (Hi)∩
V (G0) = {xi, yi} for each i, and V (Hi) ∩ V (Hj) ⊆ V (G0) for i 6= j.

Proof. (⇐) For (i), all outerplanar graphs are K2,4-minor-free since they are K2,3-minor-free. To show that

a graph G in (ii) is K2,4-minor-free, we use Lemma 3.4. G is K2,4-minor-free if the graph formed from

G by replacing each of the three outerplanar pieces with a single vertex is K2,4-minor-free. This graph is

either K2,3 or K1,1,3 and is thus K2,4-minor-free. We use Lemma 3.4 again to show that graphs in (iii) are

K2,4-minor-free. Let G′ be formed from a 3-connected K2,4-minor-free graph by subdividing a subdividable

set of edges. G′ is still K2,4-minor-free by the definition of subdividable set. Now replace each subdivided

edge xiziyi with an xiyi-outerplanar graph; by Lemma 3.4, the resulting graph is still K2,4-minor-free.

(⇒) Suppose G is a K2,4-minor-free block. We proceed by induction on n = |V (G)|. As the basis, if n ≤ 4

then G is one of K1, K2, K3, K1,1,2 or C4, which are outerplanar and covered by (i), or K4, which is

3-connected and covered by (iii). If G is 3-connected then (iii) holds.

So we may assume that n ≥ 5 and G has a 2-cut {x, y}. Let H ′1, H
′
2, . . . ,H

′
`, where ` ≥ 2, be the

components of G− {x, y}, and for each i let Hi be the subgraph induced by V (H ′i) ∪ {x, y}.
If ` ≥ 4, then G has a K2,4 minor with x ∈ R1, y ∈ R2, and S consisting of a vertex from each of

H ′1, H
′
2, H

′
3, H

′
4. This is a contradiction.

Suppose ` = 3. If some Hi is not xy-outerplanar, then we have a K2,4 minor: by Lemma 3.3, there is a

K2,2 minor rooted at x and y in Hi, to which we may add one vertex from each of the two other components

of G− {x, y}. Thus, H1, H2, H3 are all xy-outerplanar and (ii) holds.

Now suppose ` = 2. If neither H1 nor H2 is xy-outerplanar, then G contains a K2,4 minor. If both are

xy-outerplanar then G is outerplanar as in (i). Hence one, say H1, is not xy-outerplanar and the other, H2,

is xy-outerplanar. Let H+
1 = H1 + xy. Since |V (H+

1 )| < |V (G)|, by induction H+
1 is in (i), (ii), or (iii). By

Lemma 3.2(ii), because H1 is not xy-outerplanar, H+
1 is not outerplanar and hence not in (i). If H+

1 is in

(ii), then the 2-cut {u, v} in H+
1 giving three components is also a 2-cut in G giving three components, and

so, applying the argument for ` = 3 to {u, v}, (ii) holds for G.

Now assume H+
1 is in (iii): H+

1 is a 3-connected K2,4-minor-free graph G0 with each edge f = uv of a

subdividable set F replaced by a uv-outerplanar graph J(f). Let H∗2 be H2 + xy if xy ∈ E(G), and H2

otherwise. In either case H∗2 is xy-outerplanar and G is obtained from H+
1 by replacing xy by H∗2 .

Suppose first that xy /∈
⋃

f∈F E(J(f)); then xy ∈ E(G0)− F . If we let J(xy) = H∗2 , then G is obtained

from G0 by replacing each f ∈ F ∪ {xy} by J(f). The graph obtained from G by replacing every J(f),

f ∈ F ∪ {xy}, by a path of length two with the same ends as f is the same as the graph obtained from

G0 by subdividing every edge of F ∪ {xy}. Since G is K2,4-minor-free, this graph is also K2,4-minor-free by

repeated application of Lemma 3.4, so F ∪ {xy} is subdividable in G0. Hence (iii) holds for G.

Next suppose xy is an edge of some J(f), f = uv ∈ F , with outer path P . Suppose xy /∈ E(P ). Then

there is at least one vertex in the subpath Q of P between, but not including, x and y. No vertex of Q is

adjacent to a vertex of V (H+
1 )−V (J(f)) or, because xy ∈ E(J(f)), to a vertex of V (J(f))− (V (Q)∪{x, y}).

Now there exists w ∈ V (H+
1 ) − V (J(f)), and Q and w are in different components of H+

1 − {x, y} = H ′1,

contradicting the fact that H ′1 is connected. So xy ∈ E(P ). Then the graph J ′(f) obtained by replacing xy

in J(f) with the xy-outerplanar graph H∗2 is still uv-outerplanar. Thus G is again in (iii).

To complete the 2-connected case, it remains to find all subdividable sets of edges in part (iii) of The-

orem 3.5 for each 3-connected K2,4-minor-free graph. If a set of edges is subdividable, then all subsets of

that set are also subdividable, so it suffices to state the maximal (under inclusion) subdividable sets of edges

in each graph. We start with graphs in G with n ≥ 6. The graphs G6,2,2, G+
6,2,2

∼= G6,2,3, and G7,2,3 need

special treatment and are dealt with later.
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Theorem 3.6. Consider G
(+)
n,r,s ∈ G with r ≤ s and n ≥ 6. (Results for r > s may be obtained using the

isomorphism between G
(+)
n,r,s and G

(+)
n,s,r.)

(i) When r = 1, the wheel G+
n,1,n−3 has n−1 maximal subdividable sets of edges. Each one includes all edges

of the rim as well as one of the spokes.

(ii) When r = 2, Gn,2,s with s ≥ 4 or G+
n,2,s with s ≥ 3 has two maximal subdividable sets of edges: the edge

sets of the spine, v1v2 . . . vn, and second spine, vn−2vn−3 . . . v1vn−1vn.

(iii) When r ≥ 3 the only maximal subdividable set of edges is the edge set of the spine, v1v2 . . . vn.

Proof. We first show that each claimed subdividable set is subdividable. For the wheel G+
n,1,n−3, subdividing

all edges of the rim and one spoke gives a graph isomorphic to a subgraph of G2n,2,2n−4, and hence K2,4-

minor-free. For r ≥ 2 the graph formed by subdividing all edges of the spine in G
(+)
n,r,s is isomorphic to a

subgraph of another graph in G with 2n− 1 vertices, and thus K2,4-minor-free. So the edge set of the spine

is subdividable. When r = 2 the second spine is the image under an isomorphism of the spine in another (or

possibly the same) member of G, and hence the edge set of the second spine is also subdividable.

Now we show that the sets of edges listed are maximal and are the only subdividable sets. Begin with the

wheel G+
n,1,n−3. All edges of the rim are in each set so we consider the spokes. If we subdivide two adjacent

spokes, we have the K2,4 minor shown on the left in Figure 14. A similar minor exists if we subdivide

nonadjacent spokes as long as n ≥ 6. Hence we cannot divide two spokes and the sets listed are maximal

and are the only subdividable sets of edges.

Figure 14

Now assume r, s ≥ 2. For this portion of the proof, we remove the assumption that r ≤ s (which is just

for brevity in stating our results). Denote by G ◦ e the graph formed from G by subdividing the edge e. We

consider subdivision of non-spine edges v1vn−i for 0 ≤ i ≤ r; edges vnv1+j for 0 ≤ j ≤ s are handled by

symmetry. The situations i = 0 and j = 0 correspond to a plus edge.

We describe two cases in which we can find a K2,4 minor. The first, Case A, is the K2,4 minor in

G+
5,2,2 ◦ v1v5 shown on the right in Figure 14. If s ≥ 2 and 0 ≤ i ≤ r − 2, then we form G+

5,2,2 ◦ v1v5,

and hence K2,4, as a minor from G
(+)
n,r,s ◦ v1vn−i by contracting all edges of the paths v3v4 . . . vn−i−2 and

vn−ivn−i+1 . . . vn and deleting multiple edges.

The second case, Case B, is the K2,4 minor in G+
5,2,2 ◦ v1v3 shown on the left in Figure 15. Note that the

minor does not use the edge v2v5. As with Case A, this minor is inherited by the following larger graphs

that have G+
5,2,2 ◦ v1v3 as a minor:

(B1) G+
n,r,s ◦ v1vn−i with s ≥ 2 and 2 ≤ i ≤ r;

(B2) Gn,r,s ◦ v1vn−i with s ≥ 2 and 3 ≤ i ≤ r; and

(B3) G
(+)
n,r,s ◦ v1vn−2 with s ≥ 3.

For graphs in (B1), form G+
5,2,2 ◦ v1v3 as a minor from G+

n,r,s ◦ v1vn−i by contracting all edges of the paths

v3v4 . . . vn−i and vn−i+1vn−i+2 . . . vn−1 and deleting multiple edges as well as the edge v1v3 if it is present after

contraction. Similarly for graphs in (B2), contract all edges of the paths v3v4 . . . vn−i and vn−i+2vn−i+3 . . . vn
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and delete multiple edges and v1v3. For graphs in (B3), contract v1v2 and all edges of the path v4v5 . . . vn−2

and delete multiple edges and v1v3.

Figure 15

For G
(+)
n,r,s with r, s ≥ 3, Case A shows that v1vn−r−2, v1vn−r−1, . . . , v1vn−1 and (if present) v1vn are

not subdividable. Case B shows that v1vn−r, v1vn−r+1, . . . , v1vn−2 are not subdividable. By symmetry all

non-spine edges incident to vn are not subdividable, and hence the spine is the only maximal subdividable

set of edges.

Now either r = 2 or s = 2. For our stated result we only need the case r = 2 with s as in (ii). Consider

G
(+)
n,2,s. Case A forbids subdivision of v1vn (if present) and (B3) does the same for v1vn−2. Applying symmetry,

Case A forbids subdivision of vnv1+j for 1 ≤ j ≤ s− 2, and Case B covers vnv1+j for 2 ≤ j ≤ s if there is a

plus edge and 3 ≤ j ≤ s otherwise. The conditions in (ii) mean that these cover vnv1+j for all j, 1 ≤ j ≤ s.

So the only possible subdividable non-spine edge is v1vn−1, which we already know is subdividable along with

all edges of the spine other than vn−2vn−1, as this is the edge set of the second spine. So consider v1vn−1

and vn−2vn−1 together. We use the K2,4 minor in G6,2,2 ◦ v1v5 ◦ v4v5 shown on the right in Figure 15. When

n ≥ 6, G
(+)
n,2,s ◦ v1vn−1 ◦ vn−2vn−1 has G6,2,2 ◦ v1v5 ◦ v4v5, and hence K2,4, as a minor: delete vnv1+j with

j = 0 (if present) and 3 ≤ j ≤ s, then contract all edges of v4v5 . . . vn−2. Therefore {v1vn−1, vn−2vn−1} is not

subdividable, and the only maximal subdividable sets are the edge sets of the spine and second spine.

All remaining small graphs are covered by Table 2. Verifying these results is straightforward; complete

proofs may be found in [9, Section 5.2]. These results were also confirmed by computer (the program may

be obtained from the first author). The dashed edges in the table indicate edges present in one graph but

not the other. For example, in the row for C and C+, the dashed edge is present in C+ but not C.

Lemma 3.7. The maximal subdividable sets of edges for the nine small cases not in G as well as K4 = W4,

W5
∼= G5,2,2, K5\e ∼= G+

5,2,2, G6,2,2, G
+
6,2,2
∼= G6,2,3 and G7,2,3 are listed in Table 2.

As mentioned earlier, a graph G is K2,4-minor-free if and only if each of its blocks is K2,4-minor-free, so

our overall result can now be stated as follows.

Theorem 3.8 (Characterization of K2,4-minor-free graphs). A graph is K2,4-minor-free if and only if each

of its blocks is described by Theorem 3.5, where for Theorem 3.5 (iii), the 3-connected graphs are given in

Theorem 2.12 and the subdividable sets are described in Theorem 3.6 and Lemma 3.7.

4 Consequences

Our characterization has a number of consequences. First, as mentioned in the introduction, we are interested

in hamiltonian properties of K2,4-minor-free graphs.

Corollary 4.1. (i) Every 3-connected K2,4-minor-free graph has a hamilton cycle.

(ii) There are 2-connected K2,4-minor-free planar graphs that have no spanning closed trail and hence no

hamilton cycle.

(iii) However, every 2-connected K2,4-minor-free graph has a hamilton path.
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Table 2

Graph Maximal Subdividable Sets of Edges Number of Symmetric Copies

K4 = W4 12

W5 (∼= G5,2,2) 4 of each

G+
5,2,2 (∼= K5\e) 6 of each

G6,2,2 edge set of spine 6

G+
6,2,2 (∼= G6,2,3)

edge set of spine in G+
6,2,2

edge set of second spine in G+
6,2,2

spine: 1

second spine: 2

G7,2,3

edge set of spine, edge set of second spine,

{v1v2, v4v5, v6v7, v3v7}
1 of each

K5 ∅ 1

A,K3,3

A: 1

K3,3: 6

A+ 1

B,B+ 1

C,C+ 1

D 3

Proof. (i) The graph G
(+)
n,r,s ∈ G has a hamilton cycle (v1v2 . . . vs+1vnvn−1 . . . vs+2). The graphs in Figure 3

are also all hamiltonian.

(ii) A 2-connected graph described by Theorem 3.5(ii) is planar and has no closed spanning trail; the simplest

example is K2,3. (It is also possible to construct examples using Theorem 3.5(iii).)

(iii) Define a hamilton base in a graph to be a hamilton path extended by a new edge at one or both ends,

i.e., a trail of the form x0x1x2 . . . xnxn+1, x1x2 . . . xnxn+1, or x1x2 . . . xn, where x1x2 . . . xn is a hamilton

path. If B is a hamilton base in a graph G0 and G1 is obtained from G0 by subdividing the elements of a

subset of E(B) arbitrarily many times, we observe that G1 has a hamilton path.

Now consider a 2-connected K2,4-minor-free graph G. If G is described by Theorem 3.5(i) then G is

hamiltonian. Suppose G is described by Theorem 3.5(iii), as constructed from a 3-connected K2,4-minor-free

graph G0 by replacing each edge of a subdividable set S = {x1y1, x2y2, . . . , xkyk} by an xiyi-outerplanar

graph. Then G has a spanning subgraph G1 which is obtained from G0 by subdividing each edge of S some

number of times. If G0 has a hamilton base containing S, then G1, and hence G, has a hamilton path. So

we just need to verify that each maximal subdividable set of edges in G0 is contained in a hamilton base.
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Each subdividable set from Theorem 3.6 itself forms a hamilton base, and it is not difficult to show that the

subdividable sets from Lemma 3.7 (Table 2) are contained in hamilton bases; we omit the details. Finally,

if G is described by Theorem 3.5(ii) then G has a spanning subgraph G1 obtained by subdividing edges of

G0 = K2,3, and K2,3 has a hamilton base containing all its edges, so a similar argument applies.

Second, a theorem of Dieng and Gavoille mentioned earlier can be derived from our results. We state it

and just outline a proof.

Corollary 4.2 (Dieng and Gavoille, see [5, Théorème 3.2]). For every 2-connected K2,4-minor-free graph G

there is U ⊆ V (G) with |U | ≤ 2 (|U | ≤ 1 if G is planar) such that G− U is outerplanar.

Sketch of proof. Consider the structure of G as described in Theorem 3.5. If (i) holds no vertices need to be

deleted, and if (ii) holds then one of x or y can be deleted. To verify the result when (iii) holds, it suffices to

show that for every 3-connected K2,4-minor-free G0 and every maximal subdividable set of edges F in G0,

there is U ⊆ V (G0) with |U | ≤ 2 (|U | ≤ 1 if G0 is planar) so that G0−U has an outerplane embedding with

all remaining edges of F (those not incident with U) on the outer face. If G0 = G
(+)
n,r,s ∈ G is covered by

Theorem 3.6 then G0 − vn always works. The result must be checked for the small graphs in Table 2.

Dieng and Gavoille in fact showed that there is an O(n) time algorithm to find either a K2,4 minor or a

set U as in Corollary 4.2 in any n-vertex graph.

Third, our result also gives bounds on genus.

Corollary 4.3. Every 2-connected K2,4-minor-free graph is either planar or else toroidal and projective-

planar. Thus, its orientable and nonorientable genus are at most 1.

Proof. The 3-connected graphs described in Theorem 2.12 are planar or minors of C+, and it is not difficult

to find toroidal and projective-planar embeddings of C+. For connectivity 2 the graphs G constructed in

Theorem 3.5 are either planar or have the same genus as some 3-connected K2,4-minor-free graph G0.

Note that Corollary 4.3 does not follow from Dieng and Gavoille’s result, Corollary 4.2, since a result

of Mohar [10] implies that graphs which become outerplanar after deleting two vertices can have arbitrarily

high (orientable) genus.

Fourth, our result shows that the number of 3-connected K2,4-minor-free graphs grows only linearly.

For n ≥ 9 the only such n-vertex graphs are those in G̃, and there are only 2n − 8 nonisomorphic such

graphs. Although we have not done so, it should also be possible to deduce counting results for 2-connected

K2,4-minor-free graphs from our characterization.

Finally, Chudnovsky, Reed and Seymour [3] showed that the number of edges in a 3-connected K2,t-

minor-free graph is at most 5n/2 + c(t). They provide examples to show that this is in a sense best possible

for t ≥ 5. Theorem 2.12 shows that this can be improved when t = 4. Using Theorem 3.5 we can also obtain

a result for 2-connected K2,4-minor-free graphs. We omit the straightforward proofs, which use the fact that

an n-vertex outerplanar graph has at most 2n− 3 edges.

Corollary 4.4. (i) Every 3-connected K2,4-minor-free n-vertex graph with n ≥ 7 has at most 2n− 2 edges,

and such graphs with 2n− 2 edges exist for all n ≥ 7. (K5 has 2n edges, and A+ has 2n− 1 edges.)

(ii) Every 2-connected K2,4-minor-free n-vertex graph with n ≥ 6 has at most 2n− 1 edges, and such graphs

with 2n− 1 edges exist for all n ≥ 6. (K5 has 2n edges.)
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