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Abstract

In the setting of general initial data and whole space we perform a
rigorous analysis of the quasineutral limit for a hydrodynamical model
of a viscous plasma with capillarity tensor represented by the Navier
Stokes Korteweg Poisson system. We shall provide a detailed math-
ematical description of the convergence process by analyzing the dis-
persion of the fast oscillating acoustic waves. However the standard
acoustic wave analysis is not sufficient to control the high frequency
oscillations in the electric field but it is necessary to estimates the dis-
persive properties induced by the capillarity terms. Therefore by using
these additional estimates we will be able to control, via compensated
compactness, the quadratic nonlinearity of the stiff electric force field.
In conclusion, opposite to the zero capillarity case [12] where persis-
tent space localized time high frequency oscillations need to be taken
into account, we show that as λ → 0, the density fluctuation ρλ − 1
converges strongly to zero and the fluids behaves according to an in-
compressible dynamics.
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1 Introduction and plan of the paper

1.1 Introduction

In the last years hydrodynamical models have been widely used to describe
physical phenomena in plasma physics. In the particular case where the
viscous stress tensors are taken into consideration the most simple model is
provided by the coupling of the compressible Navier Stokes equations with
the Poisson equation. In this case, in dimensionless units, the coupling can
be expressed in terms of a constant λ which represents the scaled Debye
length, a characteristic physical parameter for plasmas related to the phe-
nomenon of the so called “Debye shielding”, [20]. Moreover, if one wants
to take into consideration the surface tension effects it is necessary to add
to the momentum equation a capillarity tensor, namely one has to consider
Korteweg type model of capillarity. This type of models were first intro-
duced by Korteweg [27], see also [32] and derived rigorously by Dunn and
Serrin [14] and are based on an extended version of thermodynamics which
assumes that the energy of the fluid not only depends on standard variables
but also on the gradient of the density. Finally the model we will consider in
this paper is given by the following Navier-Stokes -Poisson Korteweg system
in 3−D, namely

∂tρ
λ + div(ρλuλ) = 0, (1)

∂t(ρ
λuλ)+div(ρλuλ⊗uλ)+∇p(ρλ)γ = div(µρλD(uλ)+K(ρλ))+ρλ∇Φλ, (2)

λ2∆Φλ = ρλ − 1, (3)

where p(ρλ) denotes the pressure term,

p(ρλ) = (ρλ)γ , γ ≥ 3/2,

K the capillarity tensor which is given by

Kij(ρ
λ) =

κ

2
(∆(ρλ)2 − |∇ρλ|2)δij − κ∂iρ

λ∂jρ
λ (4)

and D(uλ) the strain tensor which has the form

D(uλ)ij =
∂iu

λ + ∂ju
λ

2
. (5)

Let x ∈ R
3, t ≥ 0, we denote by ρλ(x, t) the negative charge density, by

m(x, t) = ρλ(x, t)uλ(x, t) the current density, by uλ(x, t) the velocity field,
by Φλ(x, t) the electrostatic potential, µ the shear viscosity. The parameter
λ is the so called Debye length (up to a constant factor), κ is the capillarity
coefficient. Moreover let us observe that

divK(ρλ) = κρλ∇∆ρλ.
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The purpose of this paper is to perform a rigorous limiting analysis when
λ → 0. The physical meaning of the Debye length λ is the distance over
which the usual Coulomb field is killed off exponentially by the polariza-
tion of the plasma. In terms of physical variables the Debye length can be
expressed as

λ = λD/L λD =

√

ε0kBT

e2n0
, (6)

where L is the macroscopic length scale, ε0 is the vacuum permittivity, kB
the Boltzmann constant, T the average plasma temperature, e the absolute
electron charge and n0 the average plasma density. In many cases the Debye
length is very small compared to the macroscopic length λD << L and so
it makes sense to consider the quasineutral limit λ → 0 of the system (1)-
(3). In this situation the particle density is constrained to be close to the
background density (equal to one in our case) of the oppositely charged
particle. The limit λ → 0 is called the quasineutral limit since the charge
density almost vanishes identically. The velocity of the fluid then evolves
according to an incompressible flow.

In the last years the quasineutral limit for hydrodynamical models of
plasma or semiconductor devices has been widely studied by many authors,
in the case of Euler Poisson system for instance by [8], [7], [31], [33] or the
case of the Navier Stokes Poisson system by [37] who studied the quasineu-
tral limit for the smooth solution with well-prepared initial data. Jiang and
Wang [24] studied the combined quasineutral and inviscid limit of the com-
pressible Navier- Stokes-Poisson system for weak solution and obtained the
convergence of Navier- Stokes-Poisson system to the incompressible Euler
equations with general initial data. Moreover in [24] the vanishing of vis-
cosity coefficient was required in order to take the quasineutral limit and no
convergence rate was derived there. The paper [25] studied the quasineutral
limit of the isentropic Navier-Stokes-Poisson system both in the whole space
and in the torus without restrictions on the viscous coefficients, with well
prepared initial data.

The authors in [11] investigated the quasineutral limit of the isentropic
Navier-Stokes-Poisson system in the whole space and obtained the conver-
gence of weak solution of the Navier-Stokes-Poisson system to the weak so-
lution of the incompressible Navier- Stokes equations by means of dispersive
estimates of Strichartz’s type under the assumption that the Mach number
is related to the Debye length. A more general analysis in the context of
weak solutions and in framework of general initial data was performed by
the authors in [12] where all the regularity and smallness assumptions of the
previous paper were removed. They were able to provide a detailed math-
ematical description of the convergence process by using microlocal defect
measures and by developing an explicit correctors analysis.

Finally, in the contest of combined quasineutral and relaxation time limit
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we have the papers by Gasser and Marcati in [16, 17, 18]. Other similar limits
have been investigated in [6], [9], [10].

As far as it concerns the quasineutral limit for the compressible Navier
Stokes Poisson Korteweg system we refer to [29] for the Hs setting of strong
solutions and we refer to [5] for the quasineutral limit in a periodic domain,
where the electrons are assumed to be thermalized and to follow a non
dimensional Maxwell-Boltzmann distribution (ρλ = eΦ

λ
).

In all of these papers but [12], the assumptions are designed to kill the
presence of high frequency oscillations of the electric force fields. In this
paper we are interested to understand the limiting behaviour in the same
general situation of [12], when a Korteweg tensor is added.

In this paper we perform the zero Debye limit for the Navier Stokes
Poisson Korteweg system in the whole space and in the framework of weak
solutions and large non smooth initial data. We do not make any particular
assumption and our methods will control the quadratic stiff term of the
electric fields by a better understanding of the role of the various scales in
the oscillating wave packets.

A common feature for the limit analysis in the case of ill prepared initial
data is the high plasma oscillations, namely the presence of high frequency
time oscillations of the acoustic waves, moreover what actually makes the
limiting behavior analysis very hard is the presence of very stiff terms due
to the electric field, whose oscillations cannot be controlled only by the
dispersion of the acoustic waves, as pointed out in [12]. In the case of
fluids of Korteweg type an additional difficulty is represented by the loss
of information on the gradient of the velocity when vacuum appears and
the presence of these phenomena causes the lost of compactness for the
momentum term. So it is particularly important to understand the different
behaviors of the various vector fields acting in our system, what and which
are the relationship between high frequency interacting waves, dispersive
behavior and the different roles of time and space oscillations. There are
distinct dispersive behavior acting on distinct scales and one has to analyze
in detail their behavior.

The classical acoustic wave analysis is able to control how the velocity
field disperses and oscillates and in detail it follows by analyzing the disper-
sion of the acoustic equation related to the plasma fluctuation. We get that
the dispersive behavior dominates on the high frequency time oscillations
and usual estimates of Strichartz type are sufficient to pass into the limit of
the convective term, but it is not able to control the electric fields time high
frequency oscillations. The quadratic terms due to the electric force field
may not be analyzed in the same way since the dispersion may no longer
dominates the time high frequency wave packets and we have to take care
of the self-interacting waves. The capillarity term induces additional disper-
sive effects on a different scale than the usual acoustic waves and by using
non standard Strichartz estimates for the beam equations we can control
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the electric field. Intuitively while the acoustic waves scale like the standard
D’Alembert equation, the capillarity tensor induces linear dispersive waves
which scale like the Klein-Gordon or the Schrödinger equation. The limit be-
havior of the quadratic nonlinearity of the electric force field is then deduced
by a Compensated Compactness argument. The structure of this paper, as
well as the main ingredients of our approach to this limiting process, can be
summarized as follows. In Section 2 we set up our problem and state the
main result. In Section 3 we collect the main mathematical tools needed
in the paper, including notations and dispersive estimates. The Section 4
is devoted to obtain a priori estimates independent of λ, namely standard
energy bounds. Section 5 concerns the convergence of the density. Section
6 and 7 are devoted to the convergence of the momentum and the electric
field respectively. In that sections a careful analysis of the dispersion of the
acoustic waves related to the plasma fluctuation will be performed. Finally,
in Section 8 we conclude with the proof of our Main Theorem 1.

2 Statement of the problem and Main Result

Before performing our limiting analysis, we recast our problem in a more
precise way and we recall some results concerning the existence of weak
solutions for the Navier Stokes Poisson Korteweg system. The system under
consideration in this paper is given by the following equations,

∂tρ
λ + div(ρλuλ) = 0

∂t(ρ
λuλ) + div(ρλuλ ⊗ uλ) +∇(ρλ)γ = div(µρλD(uλ)) + ρλ∇Φλ + κρλ∇∆ρλ

λ2∆Φλ = ρλ − 1. (7)

From now on we set µ = κ =1 and we denote by πλ the renormalized
pressure,

πλ =
(ρλ)γ − 1− γ(ρλ − 1)

(γ − 1)
.

Moreover we assume the initial data satisfy,

ρλt=0 = ρλ0 ≥ 0, Φλ|t=0 = Φλ
0 ,

ρλuλ|t=0 = mλ
0 , mλ

0 = 0 on {x ∈ R
3 | ρλ0 (x) = 0},

E0 =
∫

R3

(

πλ|t=0 +
|∇ρλ0 |2

2
+

|mλ
0 |2

2ρλ0
+ λ2|∇Φλ

0 |2
)

dx < +∞.

∫

R3

|∇√
ρλ0 |2dx < +∞.

(ID)
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Remark 2.1. By (ID) we get mλ
0 is bounded in H−1(R3). In fact we can

rewrite mλ
0 in the following way

mλ
0 =

mλ
0

√

ρλ0

√

ρλ0χ|ρλ
0
−1|≤1/2 +

mλ
0

√

ρλ0

√

ρλ0
√

|ρλ0 − 1|

√

|ρλ0 − 1|χ|ρλ
0
−1|>1/2

then, mλ
0 is bounded in L2(R3) + L2k/(k+1)(R3), where k = min{2, γ} and

hence in H−1(R3).

The existence of global weak solutions “à la Leray” for fixed λ > 0 for
the system (7) deserves some comments. One of the main difficulty in the
proof of existence of weak solutions for the Navier Stokes equations is the
strong compactness of the density in some Lp space in order to pass to the
limit in the pressure term. In the case of a Navier Stokes Korteweg fluid
for the density are available bounds in L∞((0, T ); Ḣ1(R3)), hence one can
handle easily the convergence of the pressure term. However one is unable to
pass to the limit in the quadratic terms of the type ∇ρλ⊗∇ρλ appearing in
the capillarity tensor and there is also a loss of information for the gradient
of the velocity near the vacuum. The existence of strong solutions for the
Navier Stokes Korteweg equations has been obtained by Hattori and Li in
[22], [23], while the existence of weak solutions has been obtained by Bresch,
Desjardins, Lin in [4] where they use some special test functions depending
on ρ in order to deal with the vacuum problem. Their result can be easily
adapted in order to prove the existence of weak solutions for the system
(7). We summarize this existence result for the system (7) in the following
theorem, see [5].

Theorem 2.2. Assume (ID), and let γ > 3/2, then there exists a global
weak solution (ρλ, uλ,Φλ) to (7) such that ρλ − 1 ∈ L∞((0, T );Lγ

2 (R
3)),

ρλ ∈ L2((0, T ); Ḣ2(R3)), ∇ρλ and ∇
√

ρλ ∈ L∞((0, T );L2(R3)),
√

ρλuλ ∈
L2((0, T );L2(R3)),

√

ρλD(uλ) ∈ L2((0, T );L2(R3)). Furthermore

• The following energy inequality holds for almost every t ≥ 0,

E(t) +
∫ t

0

∫

R3

(

µ|
√

ρλDuλ|2
)

dxds ≤ E0. (8)

where

E(t) =
∫

R3

(

ρλ
|uλ|2
2

+ πλ +
|∇ρλ|2

2
+ λ2|∇Φλ|2

)

dx.

• The continuity equation (7)1 is satisfied in the sense of distribution.
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• For all ϕ ∈ D((0, T )× R
3), one has

∫

R3

m0ρ
λ
0ϕ+

∫ T

0

∫

R3

(

(ρλ)2uλ ·∂tϕ+ ρλuλ ⊗ uλ :D(ϕ) − (ρλ)2uλ · ϕdiv uλ

+ (ρλ)γ divϕ− (ρλ)2∇Φλ · ϕ− 2ρλD(uλ) : ρλD(uλ)

− ρλD(uλ) : ϕ⊗∇ρλ − (ρλ)2∆ρλ divϕ− 2ρλ(ϕ · ∇ρ)∆ρλ
)

dxdt = 0,

where “ :′′ denotes the product between matrices.

Having collected all the preliminary material we are now ready to state
our main result.

Main Theorem 1. Let (ρλ, uλ,Φλ) be a sequence of weak solutions in R
3

of the system (7), assume that the initial data satisfy (ID). Then

(i) ρλ −→ 1 weakly in L∞([0, T ];Lk
2(R

3)) and strongly in
L2/s((0, T );H1+s

loc (R3)) ∩ C((0, T );Hs
loc(R

3)), 0 < s < 1.

(ii) The gradient component H⊥(ρλuλ) of the momentum satisfies

H⊥(ρλuλ) −→ 0 strongly in Lq([0, T ];Lp(R3)),

where q =
4(s0 + 3)

2s0 + 5
, p =

12(s0 + 3)

8s0 + 19
for any s0 ≥ 3/2.

(iii) The divergence free component H(ρλuλ) of the momentum satisfies

H(ρλuλ) −→ Hu = u strongly in L2([0, T ];Lp
loc(R

3)), 1 ≤ p ≤ 3/2.

(iv) ρλuλ −→ u a.e.

(v) u = Hu satisfies the following equation

H
(

∂tu−∆u+ (u · ∇)u
)

= 0, (9)

in D′([0, T ]× R
3).

The remaining part of this paper is devoted to the proof of the Main
Theorem 1.

3 Notations and Mathematical tools

For convenience of the reader we establish some notations and recall some
basic facts that will be used in the sequel.
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3.1 Notations

Given real valued functions F,G, we write F . G if there exists c ∈ R such
that F ≤ c G.

We denote by

a) D(Rd×R+) the space of test function C∞
0 (Rd×R+), by D′(Rd×R+) the

space of Schwartz distributions and 〈·, ·〉 the duality bracket between
D′ and D.

b) W k,p(Rd) = (I −∆)−
k
2Lp(Rd) and Hk(Rd) = W k,2(Rd) the nonhomo-

geneous Sobolev spaces, for any 1 ≤ p ≤ ∞ and k ∈ R. Ẇ k,p(Rd) =

(−∆)−
k
2Lp(Rd) and Ḣk(Rd) = Ẇ k,2(Rd) denote the homogeneous

Sobolev spaces. The notations Lp
tL

q
x, L

p
tW

k,q
x , CtW

k,q
x will abbrevi-

ate respectively the spaces Lp([0, T ];Lq(Rd)), Lp([0, T ];W k,q(Rd)) and
C([0, T ];W k,q(Rd)).

c) Lp
2(R

d) the Orlicz space defined as follows

Lp
2(R

d)={f ∈L1
loc(R

d) | |f |χ|f |≤ 1

2

∈ L2(Rd), |f |χ|f |> 1

2

∈ Lp(Rd)}, (10)

see [1] for more details.

d) H and H⊥ the Helmotz Leray projectors, H⊥ on the space of gradients
vector fields and H on the space of divergence - free vector fields.
Namely

H⊥ = ∇∆−1 div, H = I−H⊥. (11)

It is well known that H⊥ and H can be expressed in terms of Riesz
multipliers, therefore they are bounded linear operators on every W k,p

x

(1 < p < ∞) space (see [35]).

3.2 Mathematical tools

3.2.1 Compactness theorems

In the paper we use also the following compactness lemmas. The first one
is the so called Lions-Aubin Lemma, (see [2], [34]).

Theorem 3.1. Let be X,B, Y Banach spaces such that X is included in
B with compact imbedding and B ⊂ Y and let be un a bounded sequence in
Lp([0, T ];X), such that ∂un/∂t are bounded in Lp([0, T ];Y ) for 1 ≤ p < ∞.
Then, un is relatively compact in Lp([0, T ];B).

We will also use the following generalization of the div-curl lemma (see
Lemma 1.1. in [15])
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Lemma 3.2. Assume that {un(·, t)} and {vn(·, t)} are vector fields in R
d

for 0 ≤ t ≤ T such that

L1) un −→ u and vn −→ u weak-∗ in L∞([0, T ];L2
loc(R

d)) and strongly in
C([0, T ];H−1

loc (R
d));

L2) {div un} is precompact in C([0, T ];H−1
loc (R

d));

L3) {curl vn} is precompact in C([0, T ];H−1
loc (R

d)).

Then,
un · vn −→ u · v in D′([0, T ] × R

d).

3.2.2 Strichartz estimates for dispersive equations

As explained in the Introduction in the sequel we need dispersive estimates
for equations describing the acoustic waves. So it is worthwhile to recall the
basic facts for this equations. Following Keel and Tao [26], we start with a
very general abstract setting.

Let (X, dx) be measure space and H a Hilbert space and for all t ∈ R,
U(t) : H → L2(X) ((U(t))∗ it’s adjoint) an operator that fulfills the following
inequality

‖U(t)f‖L2
x
. ‖f‖H (12)

and for some δ > 0 one of the following “dispersive” estimate.
For all t 6= s and all g ∈ L1(X)

‖U(s)(U(t))∗g‖L∞ . |t− s|−δ‖g‖L1 . (13)

For all t, s and all g ∈ L1(X)

‖U(s)(U(t))∗g‖L∞ . (1 + |t− s|)−δ‖g‖L1 . (14)

Definition 3.3. We say that the exponent pair (q, r) is δ-admissible if q, r ≤
2, (q, r, δ) 6= (2,∞, 1) and

1

q
+

δ

r
≤ δ

2
. (15)

If equality (15) hold we say that (q, r) is sharp δ- admissible.

We have then the following Strichartz type estimate (see [26]).

Theorem 3.4. If U(t) obeys (13) and (14), then the estimates

‖U(t)f‖Lq
xL

r
t
. ‖f‖H (16)

‖
∫

(U(s))∗F (s)ds‖H . ‖F‖
Lq′
x Lr′

t

(17)
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‖
∫

U(t)(U(s))∗F (s)ds‖Lq
xL

r
t
. ‖F‖

Lq̃′
x Lr̃′

t

(18)

hold for all sharp δ-admissible pairs (q, r), (q̃, r̃). Furthermore if the de-
cay hypothesis is strengthened to (14), then (16), (17), (18) hold for all
δ-admissible pairs (q, r), (q̃, r̃).

In the next to section we will apply the Theorem 3.4 to the dispersive
equations used in the paper.

3.2.3 Strichartz estimate for Klein Gordon equation

We apply the previous Theorem 3.4 to the following Klein Gordon equation,

(

−∂tt +∆−m2
)

w(t, x) = F (t, x)

with Cauchy data
w(0, ·) = f, ∂tw(0, ·) = g,

wherem > 0 is the mass and 0 < T < ∞. It turns out that the Klein Gordon

operator satisfies the decay estimate (13)-(14) with exponent δ =
d− 1

2
, so

by applying the Theorem 3.4 with d = 3, X = R
3 and H = L2(R3) we get

that w satisfies the following Strichartz estimate, (see also Corollary 2, page
712 in [36])

‖w‖Lq
t,x

+ ‖∂tw‖Lq
tW

−1,q
x

+ ‖w‖
CtḢ

1/2
x

+ ‖∂tw‖CtḢ
−1/2
x

. ‖f‖
Ḣ

1/2
x

+ ‖g‖
Ḣ

−1/2
x

+ ‖F‖Lp
t,x
,

where (q, p), are admissible pairs, namely they satisfy

4

3
≤ p ≤ 10

7

10

3
≤ q ≤ 4.

By choosing p = 4/3 and q = 4 and by a standard application of Duhamel’s
principle it is straightforward to observe that for any s ∈ R the following
Strichartz estimate holds,

‖w‖L4
tW

s,4
x

+ ‖∂tw‖L4
tW

−1+s,4
x

+ ‖w‖
CtḢ

1/2+s
x

+ ‖wt‖CtḢ
−1/2+s
x

. ‖f‖
Ḣ

1/2+s
x

+ ‖g‖
Ḣ

−1/2+s
x

+ ‖F‖L1
t Ḣ

s
x
.

(19)

3.2.4 Strichartz estimates for the Beam equations

The second dispersive equation we use is the so called Beam equation,

(

−∂tt +∆2 −m2
)

w(t, x) = F (t, x)

with Cauchy data
w(0, ·) = f, ∂tw(0, ·) = g,

11



The Beam operator verifies the decay estimates (13)-(14) with and exponent

δ =
d

4
, see for example [21], [28]. Then by applying the Theorem 3.4 with

d = 3, X = R
3 and H = L2(R3) we get that w satisfies the following

Strichartz estimate (for more details see Theorems 3.1 and 3.2 in [28])

‖w‖Lq
t,x

+ ‖w‖CtL2
x
+ ‖∂tw‖CtḢ

−2
x

≤ ‖f‖Ḣ2 + ‖g‖L2
x
+ ‖F‖Lq

t,x
.

where q is admissible, namely it satisfy

q ≥ 2 +
8

3

As before, by a standard application of Duhamel’s principle it is straight-
forward to see that for any s ∈ R the following estimate is also true

‖w‖W s,q
t,x

+ ‖w‖CtḢs
x
+ ‖∂tw‖CtḢ

s−2
x

≤ ‖w0‖Ḣ2+s + ‖w1‖Ḣs
x
+ ‖F‖L1

t Ḣ
s
x
. (20)

4 Uniform estimates

In this section we wish to establish all the basic a priori estimates, indepen-
dent on λ, for the solutions of the system (7). We point out that all the
estimates of this section can be recovered by using smooth approximating
solutions constructed by means of a regularizing process. We skip all the
details since this procedure is standard in the literature. First of all we
remind that from the Theorem 2.2 we have that the solutions of (7) satisfy
the following uniform energy estimate

E(t) +
∫ t

0

∫

R3

(

µ|
√

ρλDuλ|2
)

dxds ≤ E0 (21)

where

E(t) =
∫

R3

(

ρλ
|uλ|2
2

+ πλ +
|∇ρλ|2

2
+ λ2|∇Φλ|2

)

dx.

Beside the standard estimate (21) it is possible to recover some further
bounds on the second derivative of ρλ and on ∇

√

ρλ. First, we need to
prove the following lemma.

Lemma 4.1. Assume that (ρλ, uλ,Φλ) is a global weak solution of (7) and
that (ID) hold, then the following identity holds,

1

2

d

dt

∫

R3

ρλ|∇ log ρλ|2dx+

∫

R3

∇ div uλ · ∇ρλdx

+

∫

R3

ρλD(uλ) : ∇ log ρλ ⊗∇ log ρλdx = 0.

(22)
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Proof. By dividing first the continuity equation (7)1 by ρλ, then by differ-
entiating it with respect to space we get

∂t(∂i log ρ
λ) + ∂i div u

λ + ∂i(∇ log ρλ · u) = 0. (23)

The identity (22) follows now, easily, by multiplying (23) by ρλ∂i log ρ
λ and

integrating by parts.

Using the identity (22) we are able to prove the following uniform esti-
mate,

Proposition 4.2. Assume that (ρλ, uλ,Φλ) is a global weak solution of (7)
and that (ID) hold, then the solutions of the system (7) satisfy the following
inequality,

1

2

d

dt

∫

R3

(

ρλ|uλ +∇ log ρλ|2 + |∇ρλ|2 + λ|∇Φλ|2
)

dx

+ 4

∫

R3

(

p′(ρλ)|∇
√

ρλ|2 + |∇∇ρλ|2 + (ρλ − 1)2

λ2

)

dx ≤ E0.
(24)

Proof. By multiplying the momentum equation (7)2 by ∇ρλ/ρλ and by in-
tegrating by parts we get

∫

R3

4p′(ρλ)|∇
√

ρλ|2dx+

∫

R3

|∇∇ρλ|2dx

+

∫

R3

∂tu
λ∇ρλdx+

∫

R3

uλ∇uλ∇ρλdx+

∫

R3

∇uλ : ∇∇ρλdx

−
∫

R3

ρλD(uλ) : ∇ log ρλ ⊗∇ log ρλdx =

∫

R3

∇Φλ∇ρλdx.

(25)

Now by using the Poisson equation (7)3we can rewrite the integral in the
right hand side of (25) as follows,

∫

R3

∇Φλ∇ρλdx =

∫

R3

∇Φλ∇(ρλ − 1)dx

= −
∫

R3

∆Φλ(ρλ − 1)dx = −
∫

R3

(ρλ − 1)2

λ2
dx

(26)

Now by combing together (25) with (26) the identity (22) and the energy
estimate (21) we end up with (24).

4.1 Consequences of the uniform estimate

We collect here all the a priori bounds provided by the energy inequality
(21) and from the uniform estimate (24). From (21) we get that there exists
c > 0 depending only from E0, such that

‖
√

ρλuλ‖L∞

t L2
x
≤ c, (27)

13



‖
√

ρλD(uλ)‖L2
tL

2
x
≤ c, (28)

‖∇ρλ‖L∞

t L2
x
≤ c, (29)

‖λ∇Φλ‖L∞

t L2
x
≤ c. (30)

Since πλ ∈ L∞([0, T ];L1(R3)) it is straightforward to deduce

ρλ − 1 is bounded in L∞([0, T ];Lk
2(R

3)), where k = min(γ, 2), (31)

ρλ is bounded in C([0, T ];Lp
loc(R

3)), where 1 ≤ p < γ, (32)

Moreover, the additional estimate (24) provides more regularity on ρλ, in
fact we have that

‖ρλ‖L2
t Ḣ

2
x
≤ c. (33)

The uniform L∞([0, T ];L2(R3)) bound on
√

ρλ∇ log ρλ yields to

‖∇
√

ρλ‖L∞

t L2
x
≤ c. (34)

Finally, from (24) it follows

‖ρλ − 1‖L2
tL

2
x
≤ cλ. (35)

5 Strong convergence of ρλ and
√

ρλ

Here by using the bounds obtained in Section 4 we are able to prove some
results concerning the convergence of ρλ and

√

ρλ. A straightforward con-
sequence of (35) is that

ρλ − 1 −→ 0 strongly in L2
tL

2
x. (36)

√

ρλ − 1 −→ 0 strongly in L2
tL

2
x. (37)

Now by using together (29), (33) and the fact that

∂tρ
λ = − div(ρλuλ) is bounded in L2

tH
−1
x ,

we can apply the Lions-Aubin Lemma 3.1 to conclude that for any compact
set K ⊂ R

3,

ρλ −→ 1 strongly in

L2/s(0, T ;H1+s(K)) ∩ C(0, T ;Hs(K)), 0 < s < 1,
(38)

moreover, by taking s > 1/2, the Rellich-Kondrachov Theorem implies

ρλ −→ 1 uniformly in [0, T ]×K. (39)

Finally, by combining together (29), (33) and (38) we get that

∇ρλ −→ 0 strongly in L2
tL

2
x. (40)

Now, by using (36) and (40) we have that

∇
√

ρλ −→ 0 strongly in L2(0, T ;L2
loc(R

3)). (41)
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6 Convergence and Compactness of ρλuλ

The next step in our limit analysis is to get enough information in order to
pass into the limit in the convective term div(ρλuλ⊗uλ). Unfortunately the
estimates of the Section 4 are not enough to handle this nonlinear term. In
fact from the bound (27) we get only the weak convergence of

√

ρλuλ and a
new difficulty takes place concerning the loss of information on the gradient
of uλ (see the estimate (28)) when vacuum appears. So it becomes involved
to pass to the limit in the term ρλuλ ⊗ uλ. In order to deal with this loss
of information the goal of this section is to get some compactness for the
momentum term ρλuλ. First of all, by combing together (27), (32) and (34)
we have that

ρλuλ is uniformly bounded in L∞([0, T ];Lp
loc(R

3), 1 ≤ p ≤ 3/2. (42)

On the other hand from (27), (28), (34), we get

∇(ρλuλ) is uniformly bounded in L2([0, T ];L1
loc(R

3) ∩ L
3/2
loc (R

3)), (43)

hence, by using simoultaneously (42) and (43) we have

ρλuλ is uniformly bounded in L2([0, T ];W 1,1
loc (R

3) ∩W
1,3/2
loc (R3)). (44)

The previous bound entails only the weak convergence of ρλuλ. In order
to study the strong convergence we decompose the momentum term in its
soleinoidal and gradient part, namely

ρλuλ = H(ρλuλ) +H⊥(ρλuλ)

and we analyze separately the convergence of these two terms.

6.1 Compactness of the soleinoidal part H(ρλuλ)

In order to get the compactness of H(ρλuλ), by using the Lions-Aubin

Lemma 3.1 and (44), we need to show that ∂tH(ρλuλ) is bounded in L2
tW

−k,p
x

for some k > 0 and p ≥ 1. From the uniform bounds of Section 4 we have

div(
√

ρλuλ ⊗
√

ρλuλ), ∇p(ρλ) ∈ L∞
t W−1,1

x , (45)

(ρλ − 1)∇Φλ = div(λ∇Φλ ⊗ λ∇Φλ) +
λ2

2
∇|∇Φλ|2 ∈ L∞

t W−1,1
x , (46)

(ρλ − 1)∇∆ρλ ∈ L∞
t W−1,2

x . (47)

By applying the Helmotz-Leray projector H to the momentum equation
we are able to conclude

∂tH(ρλuλ) is bounded in L2([0, T ];W−2,4/3(R3). (48)
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Finally, (48) and the Lemma 3.1 yields

H(ρλuλ) is compact in L2([0, T ];Lp
loc(R

3)), 1 ≤ p ≤ 3/2. (49)

Next, since
√

ρλuλ is uniformly bounded in L2
tL

2
x we deduce that it

converges weakly to some m ∈ L2
tL

2
x. This fact together with (38) allows us

to define a limit velocity u as follows

uλ(t, x) =

√

ρλuλ
√

ρλ
⇀ m = u(t, x) in L2

tL
2
x . (50)

Hence by passing into the limit inside the conservation of mass equation (7)1
we get

div u = 0 in D′((0, T ) × R
3). (51)

By using together (38), (49), (51), it follows

H(ρλuλ) −→ Hu = u strongly in L2([0, T ];Lp
loc(R

3)), 1 ≤ p ≤ 3/2. (52)

6.2 Convergence of H⊥(ρλuλ)

Let us define the density fluctuation in the usual way

σλ =
ρλ − 1

λ
(53)

then, by the identity

H⊥(ρλuλ) = −λ∇∆−1∂tσ
λ, (54)

we can deduce that the convergence of H⊥(ρλuλ) is strictly related to the
one of the density fluctuation. As mentioned in the introduction the weak
convergence of the the gradient part of ρλuλ is induced by the so called
acoustic waves. In fact as we will see in this section the density fluctuation
exhibits very fast oscillating waves in time (the so called plasma oscillation).
In order to control this high frequency waves we will recover the acoustic
equation satisfied by σλ, we show that it enjoys various dispersive properties
which will enable us to estimate the density fluctuation σλ uniformly with
respect to λ.

Let us rewrite the system (7) in the following way

∂tσ
λ +

1

λ
div(ρλuλ) = 0 (55)

∂t(ρ
λuλ) +

1

λ
∇σλ = div(ρλD(uλ))− div(ρλuλ ⊗ uλ)−∇p(ρλ)

+
1

λ
∇σλ + (ρλ − 1)∇Φλ +∇Φλ + ρλ∇∆ρλ, (56)

λ∆Φλ = σλ. (57)
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Then, by differentiating with respect to time the equation (55), by taking
the divergence of (56) and by using (57) we get that σλ satisfies the following
equation

λ2∂ttσ
λ −∆σλ + σλ = −λdiv div

(

ρλD(uλ)− ρλuλ ⊗ uλ
)

(58)

− λdiv

(

−∇p(ρλ) +
1

λ
∇σλ + (ρλ − 1)∇Φλ + ρλ∇∆ρλ

)

.

It turns out that (58) is a nonhomogeneous Klein Gordon equation with
mass 1/λ, in order to get uniform bounds on the fluctuation σλ we have to
take into account the combined description of dispersion and high frequency
time oscillations provided by the Strichartz estimates (19). In order to make
the equation (58) more easier to handle, we rescale the time variable, the
density fluctuation, the velocity and the electric potential in the following
way

τ =
t

λ
, y = x (59)

ũ(y, τ) = uλ(y, λτ), ρ̃(y, t) = ρλ(y, λτ)

σ̃(y, τ) = σλ(y, λτ), Φ̃(y, τ) = Φλ(y, λτ). (60)

As a consequence of this scaling the Klein Gordon equation (58) becomes,

∂ττ σ̃ −∆σ̃ + σ̃ = F̃ (61)

where

F̃ = −λdiv
(

div(ρ̃D(ũ))− div(ρ̃ũ⊗ ũ)−∇p(ρ̃) + (ρ̃− 1)∇Φ̃
)

− λdiv ((ρ̃− 1)∇∆ρ̃)− λdiv
(

∇∆ρ̃+ λ−1∇σ̃
)

= F̃1 + F̃2 + F̃3.

(62)

By using the uniform bounds of the Section 4, the Poisson equations (57),
for any s0 ≥ 3/2 we have

F̃1 = −λdiv
(

div(ρ̃D(ũ))− div(ρ̃ũ⊗ ũ)−∇p(ρ̃)

+ div(λ∇Φ̃⊗ λ∇Φ̃)− 1

2
∇|λ∇Φ̃|2

)

∈ L∞
τ H−s0−2

y ,

(63)

F̃2 = −λ2 div∇(σ̃∆ρλ)− λdiv(∇ρ̃∆ρ̃) ∈ L1
tH

−s0−2
x + L2

τH
−s0−1
y , (64)

F̃3 = −λdiv(∇∆ρ̃)− div(∇σ̃) ∈ L2
τH

−2
y . (65)

Then the following estimate on σλ holds.
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Theorem 6.1. Let us consider the solutions (ρλ, uλ,Φλ) of the Cauchy prob-
lem for the system (7) with initial data satisfying (ID). Then, for any
s0 ≥ 3/2, the following estimate holds

λ− 1

4‖σλ‖
L4
tW

−s0−2,4
x

+ λ
3

4‖∂tσλ‖
L4
tW

−s0−3,4
x

+ ‖σλ‖
CtH

−3/2−s0
x

+ λ‖∂tσλ‖
CtH

−5/2−s0
x

. ‖σλ
0 ‖H−1

x
+ ‖mλ

0‖H−1
x

+ T‖div(div(ρλD(uλ))− div(ρλuλ ⊗ uλ)−∇p(ρλ) + (ρλ − 1)∇Φλ)‖
L∞

t H
−s0−2
x

+ λ‖div∇(σλ∆ρλ)‖
L1
tH

−s0−2
x

+
√
T‖div(∇(ρλ − 1)∆ρλ)‖

L2
tH

−s0−1
x

+
√
T‖div(∇∆ρλ + λ−1∇(ρλ − 1))‖L2

tH
−2
x

. (66)

Proof. By using the bounds (63)-(65) and in the same spirit of [12], we apply
the Strichartz estimate (19) with (y, τ) ∈ R

3 × (0, T/λ) to the scaled Klein
Gordon equation (61) and we get

‖σ̃‖
L4
τW

−s0−2,4
y

+ ‖∂τ σ̃‖L4
τW

−s0−3,4
y

+ ‖σ̃‖
CτH

−3/2−s0
y

+ ‖∂tσ̃‖CτH
−5/2−s0
y

. ‖σ̃0‖H−3/2−s0
y

+ ‖∂τ σ̃0‖H−5/2−s0
y

+ T‖div(div(ρ̃ũ⊗ ũ) +∇p(ρ̃)− div(ρ̃D(ũ))− (ρ̃− 1)∇Φ̃)‖
L∞
τ H

−s0−2
y

+ λ2‖div∇(σ̃∆ρ̃)‖
L1
τH

−s0−2
y

+
√
λ
√
T‖div(∇(ρ̃− 1)∆ρ̃)‖

L2
τH

−s0−1
y

+
√
λ
√
T‖div(∇∆ρ̃+ λ−1∇(ρ̃− 1)‖L2

τH
−2
y

.

Finally, since

‖σ̃‖
Lq
τW

k,p
y

= λ
− 1

q ‖σ̃‖
Lq
tW

k,p
x

by using that ∂tσ0 = m0 together with the Remark 2.1 and σ0 = λ∆Φ0 ∈
H−1

x we end up with (66).

Going back to (54) we get

‖H⊥(ρλuλ)‖
L4
tW

−s0−2,4
x

≤ λ1/4‖λ3/4∇∆−1∂tσ
λ‖

L4
tW

−s0−2,4
x

≤ λ1/4‖λ3/4∂tσ
λ‖

L4
tW

−s0−3,4
x

,

and by using (66) we end up with,

H⊥(ρλuλ) −→ 0 strongly in L4
tW

−s0−2,4
x , for any s0 ≥ 3/2. (67)

By using (43), (54) and (67), by standard interpolation (see Theorem 6.4.5,
in [3]) it follows

H⊥(ρλuλ) −→ 0 strongly in Lq([0, T ];Lp
loc(R

3)), (68)

where q =
4(s0 + 3)

2s0 + 5
, p =

12(s0 + 3)

8s0 + 19
, for any s0 ≥ 3/2.
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7 Convergence of the electric field

This section is devoted to the study of the convergence of the electric field
Eλ = ∇Φλ. By the a priori estimate (30) we know that λEλ is bounded in
L∞
t L2

x which does not give enough information to pass into the limit in the
quadratic term (ρλ − 1)∇Φλ ∼ div(λEλ ⊗ λEλ) − 1/2∇|λEλ|2, appearing
in the righthand side of (7)2. Hence, the problem now, is how to recover
the weak continuity of this quadratic forms in L2. A way to recover some
weak continuity for scalar product of L2 sequences is given by a compensated
compactness tool as the div-curl lemma. For this purpose we have to recover
compactness in space and time. A key observation follows from the Poisson
equation (7)3 written in terms of electric field and density fluctuation

λEλ = ∇∆−1σλ, (69)

where, by using (30) and (35) we have

λEλ is bounded in L2(0, T ;H1(R3)). (70)

The previous bound gives us compactness in space but not in time. On the
other hand the dispersion of the acoustic equation of Klein Gordon type
does not gives us sufficient information. One way to overcome this further
difficulty would be to exploit in a better way the dispersive behavior of all
the terms appearing in the momentum equation. In the previous section we
focused on the dispersion given by the combination of the electric field and
the Poisson equation, now we are going to exploit the dispersive properties
induced by the capillarity term ρλ∇∆ρλ. This will be done in the next
section.

7.1 Beam equation for the density fluctuation

We rewrite the system (7) in the following way

∂tσ
λ +

1

λ
div(ρλuλ) = 0 (71)

∂t(ρ
λuλ) = div(ρλD(uλ))− div(ρλuλ ⊗ uλ)−∇p(ρλ)

+ (ρλ − 1)∇Φλ +∇Φλ + (ρλ − 1)∇∆ρλ +∇∆ρλ, (72)

λ∆Φλ = σλ. (73)

By differentiating (71) with respect to time and by taking the divergence of
(72) we get

∂ttσ
λ +∆2σλ +

1

λ2
σλ =− 1

λ
div

(

ρλD(uλ)− div(ρλuλ ⊗ uλ)−∇p(ρλ)
)

− 1

λ
div

(

(ρλ − 1)∇Φλ + (ρλ − 1)∇∆ρλ
)

.

(74)
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The equation (74) goes under the name of Beam equation. In order to
handle it in a more easier way we rescale the time and space variables, the
density fluctuation, the velocity and the electric potential in the following
way

τ =
t

λ
, y =

x√
λ

(75)

˜̃u(y, τ) = uλ(
√
λy, λτ), ˜̃ρ(y, t) = ρλ(

√
λy, λτ)

˜̃σ(y, τ) = σλ(
√
λy, λτ), ˜̃Φ(y, τ) = Φλ(

√
λy, λτ). (76)

Then the equation (74) becomes

∂ττ ˜̃σ +∆2 ˜̃σ + ˜̃σ = ˜̃F (77)

where

˜̃F = − div
(

div(˜̃ρD(˜̃u)) − div(˜̃ρ˜̃u⊗ ˜̃u)−∇p(˜̃ρ)
)

− div
(

(˜̃ρ− 1)∇ ˜̃Φ
)

− 1

λ
div

(

(˜̃ρ− 1)∇∆˜̃ρ
)

= ˜̃F 1 +
˜̃F 2 +

˜̃F 3.

(78)

By taking into account the scaling (75) and (76) and the uniform bounds
of Section 4 for any s0 ≥ 3/2 we have

˜̃F 1 = − div(div(˜̃ρD(˜̃u)) − div(˜̃ρ˜̃u⊗ ˜̃u)−∇p(˜̃ρ)) ∈ L∞
τ H−s0−2

y , (79)

˜̃F 2 = div(div(
√
λ∇ ˜̃Φ⊗

√
λ∇ ˜̃Φ) + 1/2∇|

√
λ∇ ˜̃Φ|2) ∈ L∞

τ H−s0−2
y , (80)

λF̃3 = − div∇((˜̃ρ− 1)∆˜̃ρ)− div(∇ ˜̃ρ∆˜̃ρ) ∈ L1
τH

−s0−2
y + L2

τH
−s0−2
y (81)

By using the Strichartz estimates for the Beam equation we are able to
prove the following theorem

Theorem 7.1. Let us consider the solutions (ρλ, uλ, V λ) of the Cauchy
problem for the system (7) with initial data satisfying (ID). Then for any
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s0 ≥ 3/2, the following estimate holds

λ− 1

4
− 5

2q ‖σλ‖
Lq
t Ẇ

−s0−2,q
x

+ ‖σλ‖
C(0,T ;Ḣ

−s0−2
x )

+ ‖∂tσλ‖
C(0,T ;Ḣ

−s0−4
x )

. λ‖σλ
0 ‖H−1

x
+ ‖mλ

0‖H−1
x

+ T‖div(div(ρλuλ ⊗ uλ)−∇p(ρλ) + div(ρλDuλ))‖
L∞

t Ḣ
−s0−2
x

+ T‖div(div(λ∇Φλ ⊗∇Φλ) +
1

2
∇|λ∇Φλ|2)‖

L∞

t Ḣ
−s0−2
x

+ ‖λ−1 div∇((ρλ − 1)∆ρλ)‖
L1
t Ḣ

−s0−2
x

+
√
T
√
λ‖div∇ρ̃∆ρ̃‖L2

t Ḣ
−2
x

. (82)

Proof. By using the bounds (79)-(81), as in the previous section, we apply
the Strichartz estimate (20) with (y, τ) ∈ R

3 × (0, T/λ) to the scaled Beam
equation (77) and we get that ˜̃σ verifies

‖˜̃σ‖
Lq
τW

−s0−2,q
y

+ ‖˜̃σ‖
C(0,T ;H

−s0−2
y )

+ ‖∂t ˜̃σ‖C(0,T ;H
−s0−4
y )

. ‖σ̃0‖H−s0
y

+ ‖∂τ σ̃0‖H−s0−2
y

+
T

λ
‖div(div(˜̃ρ˜̃u⊗ ˜̃u)−∇p(˜̃ρ) + ˜̃ρD(˜̃u))‖

L∞

τ H
−s0−2
y

+
T

λ
‖div(div(

√
λ∇ ˜̃Φ⊗

√
λ∇ ˜̃Φ) +

1

2
∇|

√
λ∇ ˜̃Φ|2)‖

L∞
τ H

−s0−2
y

+
1√
λ
‖div∇

(

(ρ̃− 1)

λ1/4

∆˜̃ρ

λ1/4

)

‖
L1
τH

−s0−2
y

+

√
T√

λλ1/4
‖div

(∇ ˜̃ρ√
λ

∆˜̃ρ

λ1/4

)

‖
L2
τH

−s0−2
y

Finally, since

‖σ̃‖
Lq
τW

k,p
y

= λ
− 1

q
+ k

2
− 3

2p ‖σε‖
Lq
tW

k,p
x

and, as before, by using the Remark 2.1 and the fact that σ0 = λ∆Φ0 ∈ H−1
x

we end up with (82).

With the uniform estimate (82) we are able to prove the following com-
pactness results concerning λ∇Φλ.

Proposition 7.2. Let (ρλ, uλ,Φλ) be a sequence of solutions of the Navier
Stokes Korteweg Poisson system (7) which satisfy (ID), then it holds

λ∇Φλ ⊗ λ∇Φλ ⇀ 0 in D′([0, T ]× R
3). (83)

Proof. In order to prove (83) we apply the generalized Div-curl Lemma 3.2
to the sequences un = vn = λ∇Φλ = λEλ. So we have to check that the
hypotheses L1 − L3 hold. By combing together (27), (69) and (82) we get
that

λEλ −→ 0 weak-∗ in L∞([0, T ];L2
loc(R

3)). (84)
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Then, we observe that the hypothesis L3 is automatically fullfilled since
curl(λEλ) = 0. In order to verify the hypothesis L2 we see that by the
Poisson equation

div(λEλ) = λ∇Φλ = σλ.

By using (82) we have ∂tσ
λ ∈ C(0, T ;H−s(R3)), for any s > 1, so σλ

is bounded in Lip(0, T ;H−s(R3)), s > 1 which together with the energy
bounds on σλ in L2(0, T ;L2(R3)), yields to the precompactness of div(λEλ)
in C([0, T ];H−1

loc (R
3)). In a similar way we fulfill the hypothesis L1, by

combing λEλ = ∆−1/2σλ and the bounds (82). Since L1-L3 holds we can
conclude by using the Lemma 3.2 that

λ∇Φλ ⊗ λ∇Φλ ⇀ 0 in D′([0, T ]× R
3).

8 Proof of the Main Theorem 1

(i) It follows from (31) and (38).

(ii) It follows from (68).

(iii) It follows from (52).

(iv) It follows from (ii) and (iii).

(v) First of all we apply the Leray projector H to the momentum equation
of the system (7), then we have

∂tH(ρλuλ) +H(div(ρλuλ ⊗ uλ))

= H(div(ρD(uλ) + div(λEλ ⊗ λEλ) + (ρλ − 1)∇∆ρλ).
(85)

By using together (52) and the Proposition 7.2 for any ϕ ∈ D([0, T ]×
R
3) we obtain that

〈∂tH(ρλuλ)−H div(λEλ ⊗ λEλ), ϕ〉 −→ 〈∂tHu, ϕ〉. (86)

The convergence established in (38) entails that for any ϕ ∈ D([0, T ]×
R
3)

〈H((ρλ − 1)∇∆ρλ), ϕ〉 =− 〈∇(ρλ − 1)∆ρλ,Hϕ〉
− 〈(ρλ − 1)∆ρλ,∇Hϕ〉 −→ 0.

(87)

The convergence of the diffusive terms follows in the following way.

〈H div(ρλD(uλ)), ϕ〉 =〈ρλuλ,D(∇Hϕ)〉+ 〈∇ρλ · uλ,∇Hϕ〉
= 〈ρλuλ,D(∇Hϕ)〉+ 2〈

√

ρλuλ∇
√

ρλ,∇Hϕ〉
−→ 〈H(∆uλ), ϕ〉,

(88)
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where we used (41), (52) and (68). For the convergence of the convec-
tive term is enough to notice that by (i) and (iii) we have that

√

ρλ

and ρλuλ converges almost everywhere hence

√

ρλuλ =
ρλuλ
√

ρλ
−→ u almost everywhere. (89)

And, as a consequence

〈H div(ρλuλ ⊗ uλ), ϕ〉 −→ 〈H div(u⊗ u), ϕ〉 (90)

So, by using together (86), (87), (88), (90) we have that u = Hu
satisfies the following equation in D′([0, T ]× R

3)

H
(

∂tu−∆u+ (u · ∇)u
)

= 0.
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