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Abstract

For many Markov chains of practical interest, the invariant distribution is extremely sensitive to 

perturbations of some entries of the transition matrix, but insensitive to others; we give an 

example of such a chain, motivated by a problem in computational statistical physics. We have 

derived perturbation bounds on the relative error of the invariant distribution that reveal these 

variations in sensitivity.

Our bounds are sharp, we do not impose any structural assumptions on the transition matrix or on 

the perturbation, and computing the bounds has the same complexity as computing the invariant 

distribution or computing other bounds in the literature. Moreover, our bounds have a simple 

interpretation in terms of hitting times, which can be used to draw intuitive but rigorous 

conclusions about the sensitivity of a chain to various types of perturbations.

1. Introduction

The invariant distribution of a Markov chain is often extremely sensitive to perturbations of 

some entries of the transition matrix, but insensitive to others. However, most perturbation 

estimates bound the error in the invariant distribution by a single condition number times a 

matrix norm of the perturbation. That is, perturbation estimates usually take the form

(1)

where F and F̃ are the exact and perturbed transition matrices, π(F) and π(F̃) are the 

invariant distributions of these matrices, ∥·∥ is a matrix norm, |·| is either a vector norm or 

some measure of the relative error between the two distributions, and κ(F) is a condition 

number depending on F. For example, see [2,5–7,9,13,16,19–21] and the survey given in 

[3]. No bound of this form can capture wide variations in the sensitivities of different entries 

of the transition matrix.
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Alternatively, one might approximate the difference between π and  using the linearization 

of π at F. (The derivative of π can be computed efficiently using the techniques of [6].) The 

linearization will reveal variations in sensitivities, but only yields an approximation of the 

form

not an upper bound on the error. That is, unless global bounds on π′(F) can be derived, 

linearization provides only a local, not a global estimate.

In this article, we give upper bounds that yield detailed information about the sensitivity of 

π(F) to perturbations of individual entries of F. Given an irreducible substochastic matrix S, 

we show that for all stochastic matrices F, F ̃ satisfying the entry-wise bound F, F ̃ ≥ S,

(2)

where Qij(S) is defined in Section 4. As a corollary, we also have

(3)

for all stochastic F, F̃ ≥ S.

The difference in logarithms on the left hand sides of (2) and (3) measures relative error. 

Usually, when x̃ ∈ (0, ∞) is computed as an approximation to x ∈ (0, ∞), the error of x̃ 

relative to x is defined to be either

(4)

Instead, we define the relative error to be |log x̃ – log x|. Our definition is closely related to 

the other two: it is the logarithm of the second definition in (4); and by Taylor expansion,

so it is equivalent with the first in the limit of small error. We chose our definition because it 

allows for simple arguments based on logarithmic derivatives of π(F).

We call the coefficient Qij(S)–1 in (3) the sensitivity of the ijth entry. Qij(S) has a simple 

probabilistic interpretation in terms of hitting times, which can sometimes be used to draw 

intuitive conclusions about the sensitivities. In Theorem 4, we show that our coefficients 

Qij(S)–1 are within a factor of two of the smallest possible so that a bound of form (3) holds. 

Thus, our bound is sharp. (We note that our definition of sharp differs slightly from other 

standard definitions; see Remark 5.) In Theorem 5, we give an algorithm by which the 
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sensitivities may be computed in O(L3) time for L the number of states in the chain. 

Therefore, computing the error bound has the same order of complexity as computing the 

invariant measure or computing most other perturbation bounds in the literature; see Remark 

8.

Since our result takes an unusual form, we now give three examples to illustrate its use. We 

discuss the examples only briefly here; details follow in Sections 4 and 6. First, suppose that 

F̃ has been computed as an approximation to an unknown stochastic matrix F and that we 

have a bound on the error between F̃ and F, for example |F̃
ij – Fij| ≤ αij. In this case, we 

define Sij := max{F̃
ij – αij, 0}, and we have estimate

for all F so that |F̃
ij – Fij| ≤ αij. See Remark 7 for a more detailed explanation.

Now suppose instead that F ≥ αP where 0 < α < 1 and P is the transition matrix of an 

especially simple Markov chain, for example a symmetric random walk. Then we choose 

S := αP, and we compute or approximate Qij(αP) by easy to understand probabilistic 

arguments. This method can be used to draw intuitive but rigorous conclusions about the 

sensitivity of a chain to various types of perturbations. See Section 6.5 for details.

Finally, suppose that the transition matrix F has a large number of very small positive 

entries and that we desire a sparse approximation F̃ to F with approximately the same 

invariant distribution. In this case, we take S to be F with all its small positive entries set to 

zero. If the sensitivity Qij(S)–1 is very large, it is likely that the the value of Fij is important 

and cannot be set to zero. If Qij(S)–1 is small, then setting F̃
ij = 0 and F̃

ii = Fii + Fij will not 

have much effect on the invariant distribution.

We are aware of two other bounds on relative error in the literature. By [9, Theorem 4.1],

(5)

where  for Fi the jth principal submatrix of F. This bound fails to 

identify the sensitive and insensitive entries of the transition matrix since the error in the ith 

component of the invariant distribution is again controlled only by the single condition 

number κi(F). Moreover, computing κi(F) for all i is of the same complexity as computing 

all of our sensitivities Qij(S)–1; see Remark 8. Therefore, in many respects, our result 

provides more detailed information at the same cost as [9, Theorem 4.1]. On the other hand, 

we observe that [9, Theorem 4.1] holds for all perturbations: one does not have to restrict the 

admissible perturbations by requiring F̃ ≥ S as we do for our result. However, this is not 

always an advantage, since we anticipate that in many applications bounds on the error in F 

are available and, as we will see, the benefit from using this information is significant.
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In [18, Theorem 1], another bound on the relative error is given. Here, the relative error in 

the invariant distribution is bounded by the relative error in the transition matrix. Precisely, 

if F,  are irreducible stochastic matrices with Fij = 0 if and only if F̃
ij = 0, then

(6)

This surprising result requires no condition number depending on F, but it does require that 

F and F̃ have the same sparsity pattern, which greatly restricts the admissible perturbations. 

Our result may be understood as a generalization of (6) which allows perturbations changing 

the sparsity pattern.

Our result also bears some similarities with the analysis in [2, Section 4], which is based on 

the results of [9]. In [2], a state m of a Markov chain is said to be centrally located if Ei[τm] 

is small for all states i. (Here, τm is the first passage time to state m; see Section 2.) It is 

shown that if |Ei[τm] – Ej[τm]| is small, then πm(F) is insensitive to Fij in relative error. 

Therefore, if m is centrally located, πm(F) is not sensitive to any entry of the transition 

matrix. Our  can also be expressed in terms of first passage times, and they provide a 

better measure of the sensitivity of πm(F) to Fij than |Ei[τm] – Ej[τm]|; see Section 6.3.

Our bounds on derivatives of π(F) in Theorem 2 and our estimates (2) and (3) share some 

features with structured condition numbers [12, Section 5.3]. The structured condition 

number of an irreducible, stochastic matrix F is defined to be

Structured condition numbers yield approximate bounds valid for small perturbations. These 

bounds are useful, since for small perturbations, estimates of type (1) are often far too 

pessimistic. We remark that our results (2) and (3) give the user control over the size of the 

perturbation through the choice of S. (If S is nearly stochastic, then only small perturbations 

are allowed.) Therefore, like structured condition numbers, our results are good for small 

perturbations. In addition, our results are true upper bounds, so they are more robust than 

approximations derived from structured condition numbers.

Our interest in perturbation bounds for Markov chains arose from a problem in 

computational statistical physics; we present a drastically simplified version below in 

Section 6. For this problem, the invariant distribution is extremely sensitive to some entries 

of the transition matrix, but insensitive to others. We use the problem to illustrate the 

differences between our result, [18, Theorem 1], [9, Theorem 4.1], and the eight bounds on 

absolute error surveyed in [3]. Each of the eight bounds has form (1), and we demonstrate 

that the condition number κ(F) in each bound blows up exponentially with the inverse 

temperature parameter in our problem. By contrast, many of the sensitivities  from our 

result are bounded as the inverse temperature increases. Thus, our result gives a great deal 
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more information about which perturbations can lead to large changes in the invariant 

distribution.

2. Notation

We fix , and we let X be a discrete time Markov chain with state space Ω = {1, 2, . . . , 

L} and irreducible, row-stochastic transition matrix . Since F is irreducible, X has 

a unique invariant distribution  satisfying

We let ei denote the ith standard basis vector in , e denote the vector of ones, and I denote 

the identity matrix. We treat all vectors, including π, as column vectors (that is, as L × 1 

matrices). For , we let  be the operator defined by

Instead of defining Sj as above, we could define Sj to be S with the jth row and column set to 

zero. We could also define Sj to be the jth principal submatrix. We chose our definition to 

emphasize that we treat Sj as an operator on . If S and T are matrices of the same 

dimensions, we say S ≥ T if and only if Sij ≥ Tij for all indices i, j. For any  with v > 

0, we define  by (log v)i = log(vi).

For k ∈ {1, 2, . . . , L}, we define 1k to be the indicator function of the set {k}, and

to be the first return time to state k. We also define

to be the probability of the event A conditioned on X0 = k and the expectation of the random 

variable Y conditioned on X0 = k, respectively. Finally, for Y a random variable and B an 

event, we let

where χB is the indicator function of the event B.
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3. Partial derivatives of the invariant distribution

Given an irreducible, stochastic matrix , let  be the invariant 

distribution of F; that is, let π(F) be the unique solution of

We regard π as a function defined on the set of irreducible stochastic matrices, and in 

Lemma 1, we show that π is differentiable in a certain sense. We give a proof of the lemma 

in Appendix A.

Lemma 1

The function π admits a continuously differentiable extension  to an open neighborhood 

of the set of irreducible stochastic matrices in . The extension may be chosen so that 

 for all  and so that if Ge = e, then

Remark 1—The set of stochastic matrices is not a vector space; it is a compact, convex 

polytope lying in the affine space . As a consequence, we need 

the extension guaranteed by Lemma 1 to define the derivative of π on the boundary of the 

polytope, which is the set of all stochastic matrices with at least one zero entry. We 

introduce  only to resolve this unpleasant technicality, not to define π(F) for matrices 

which are not stochastic. In fact, all our results are independent of the particular choice of 

extension, as long as it meets the conditions in the second sentence of the lemma.

Our perturbation bounds are based on partial derivatives of π with respect to entries of F. As 

usual, the partial derivatives are defined in terms of a coordinate system, and we choose the 

off-diagonal entries of F as coordinates: Any stochastic F is determined by its off-diagonal 

entries through the formula

Accordingly, for i, j ∈ Ω with i ≠ j, we define

(7)

These partial derivatives must be understood as derivatives of the extension  guaranteed by 

Lemma 1. Otherwise, if Fij or Fii were zero, the right hand side of (7) would be undefined.
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Remark 2—We chose to define partial derivatives by (7), since that definition leads to the 

global bounds on the invariant distribution presented in Section 4. Other choices are 

reasonable: for example, one might consider derivatives of the form

where k ≠ i and j ≠ i. However, to the best of our knowledge, only definition (7) leads easily 

to global bounds.

In Theorem 1, we derive a convenient formula for . Comparable results relating 

derivatives and perturbations of π to the matrix of mean first passage times were given in 

[2,8]. A formula for the derivative of the invariant distribution in terms of the group inverse 

of I – F was given in [15]; a general formula for the derivative of the Perron vector of a 

nonnegative matrix was given in [4].

Theorem 1

Let F be an irreducible stochastic matrix, and let X be a Markov chain with transition matrix 

F. Define π(F) and  as above. We have

for all i, j ∈ Ω with i ≠ j.

Proof—Define  and  as in Lemma 1, let  for all , and let 

. Define

Since Gεe = e, Lemma 1 implies

(8)

for all ε sufficiently close to zero.

We derive an equation for  from (8); differentiating (8) with respect to ε gives

(9)

Recalling the definition of Fi from Section 2, (9) implies
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Moreover, by [1, Chapter 6, Theorem 4.16],

(10)

Therefore, we have

(11)

We now interpret (11) in terms of the Markov chain Xt with transition matrix F. We observe 

that for any m ∈ Ω \ {i},

where τi := min{t > 0 : Xt = i} is the first passage time to state i. Therefore, for m, j ∈ Ω \ 

{i}, (11) yields

(12)

In fact, this formula also holds for m = i, since we have

for all j ∈ Ω \ {i}.

Finally, we convert our formula for  to a formula for . We have

and so by (12),

(13)

Now by [17, Theorem 1.7.5], we have
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(14)

Therefore, (13) implies

Our goal is to bound the relative errors of the entries of the invariant measure π(F), where 

for x̃, x ∈ (0, ∞), we define the relative error between x̃ and x to be

(15)

Our definition of relative error is unusual, but it is closely related to the common definitions, 

as we explain in the introduction. In Theorem 2, we derive sharp bounds on the logarithmic 

partial derivatives of the invariant distribution. We want bounds on logarithmic derivatives, 

since we will ultimately prove bounds on the relative error in π, with relative error defined 

by (15).

The following lemma will be used in the proof of Theorem 2.

Lemma 2

We have

and

Proof—For n ≥ 0, define Yn := Xτj+n. For i ∈ Ω, let  and  denote the first return times 

to i for X and Y, respectively. By the strong Markov property, (a) Y is a Markov process with 

the same transition matrix as X, (b) the distribution of Y0 is , and (c) conditional on Y0, Yn 

is independent of X0, X1, . . . , Xτj. Therefore,
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(The second equality above follows from the definition of Y; the third equality follows from 

the strong Markov property, since the event  is determined by X0, X1, . . . , Xτj.) This 

proves the first formula in the statement of the lemma; the second formula follows on 

summing the first over all m.

Using Lemma 2, we now prove our bounds on the logarithmic derivatives.

Theorem 2

We have

and

Proof—Using Theorem 1, Lemma 2, and (14), we have

(16)

(17)

We observe that the term  in formula (16) is nonnegative, hence that 

term attains a minimum value of zero when m = i. Therefore, we have
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(18)

with the minimum attained when m = i, since the other term in formula (16) does not depend 

on m. By a similar argument using (17),

(19)

and the maximum is attained when m = j.

Subtracting (18) from (19) gives

hence

Finally, by Lemma 2 and (14),

so

Corollary 1 gives a simplified version of the bound in Theorem 2. This estimate can be used 

to derive [18, Theorem 1], which we have stated in equation (6) above. We omit the proof.

Corollary 1

Whenever Fij ≠ 0,

Proof—We have
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and so the result follows by Theorem 2.

4. Global perturbation bounds

In this section, we use our bounds on the derivatives of the invariant distribution to prove 

global perturbation estimates. Our estimates assume that both the exact transition matrix F 

and the perturbed matrix F̃ are bounded below by some irreducible substochastic matrix S. 

As a consequence, coefficients Qij(S) depending on S arise.

We define Qij(S) in terms of a Markov chain with transition matrix depending on S, and our 

perturbation results are based on comparisons between this chain and other chains with 

transition matrices G ≥ S. Therefore, to avoid confusion, we let

denote the probability that XG ∈ A conditioned on  for XG a chain with transition 

matrix G. To give a specific example, we intend Pi[τi < τj](G) to mean the probability that 

XG hits j before returning to i, conditional on .

We now define Qij(S).

Definition 1

For S an irreducible and substochastic or stochastic matrix, let Xω be the Markov chain with 

state space  and transition matrix

We think of Xω as a chain with transition probability S, but augmented by an absorbing state 

ω to adjust for the fact that S is substochastic. For all i, j ∈ Ω with i ≠ j, we define

Remark 3—We observe that for F stochastic,

since the absorbing state ω does not communicate with the other states Ω when F is 

stochastic.

We now show that Qij(S) is monotone as a function of S. This is the crucial step in deriving 

global perturbation bounds from the bounds on derivatives in Theorem 2.
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Lemma 3

Let S be an irreducible substochastic matrix. If F is a stochastic or substochastic matrix with 

F ≥ S, then

In addition, for any substochastic or stochastic matrix S,

Proof—Let  be the set of all walks of length M in Ω which start at i, end at j, and visit i 

and j only at the endpoints. To be more precise, define

We observe that since F ≥ S,

Since S is irreducible, we also have that

Finally,

which concludes the proof.

Combining Theorem 2 with Lemma 3 yields our global perturbation estimate.

Theorem 3

Let F, F̃ be stochastic matrices, let S be substochastic and irreducible, and assume that F, F̃ ≥ 
S. We have
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Remark 4—We allow S to be stochastic in Definition 1 and also in the hypotheses of 

Theorem 3. However, we observe that if S is stochastic, then the conclusion of the theorem 

is trivial since S is the unique stochastic F with F ≥ S.

Proof—Let G ∈ {tF̃+(1–t)F : t ∈ [0, 1]}. Since Qij(S) = Pi[τj < min{τi, τω}](Sω), we have

Therefore,

The first equality holds since by Lemma 1, the invariant distribution π is Fréchet 

differentiable on an open neighborhood of the set of irreducible, stochastic matrices. 

Directional derivatives can then be computed using partial derivatives as above. The 

denominator in the third line is positive since F, F ̃ ≥ S implies

and by Lemma 3, Qij(S) > 0.

Theorem 3 takes a somewhat complicated form, so in Corollary 2, we present a simplified 

version. The proof of Corollary 2 shows that the bound in Theorem 3 is always smaller than 

the bound in Corollary 2.

Corollary 2

Let F, F̃ be stochastic matrices, let S be substochastic and irreducible, and assume that F, F̃ ≥ 
S. We have
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Proof—We have

and so the result follows directly from Theorem 3.

We show in Theorem 4 that both Theorem 3 and Corollary 2 are sharp. That is, we show 

that ρij(S) = Qij(S) is within a factor of two of the largest value of ρij(S) so that a bound of 

the form

and we show that ηij(S) = Qij(S)–1 is within a factor of two of the smallest value of ηij(S) 

such that a bound of the form

holds.

Remark 5—We note that some authors call a bound sharp if it is possible for equality to 

hold. For example, a bound of form (1) may be called sharp if for every stochastic F, there 

exists a stochastic F̃ so that equality holds. We prefer to call a bound sharp if it is the best 

bound of a given form, possibly up to a small constant factor. Thus, for bounds of the type 

which we consider, we require that for every S and every i ≠ j, Qij(S)–1 is as small as 

possible.

Theorem 4

Let S be an irreducible substochastic matrix, and let i, j ∈ Ω with i ≠ j. For every ε > 0, there 

exist stochastic matrices F̃, F with F ̃, F ≥ S so that
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and  for all (k, l) except (i, j) and (i, i).

Proof—Define

F is stochastic, F ≥ S,  and Fj⊥,j = Sj⊥,j. Therefore,

We now distinguish two cases:  and . In the first case, if F ≥ S 

and F is stochastic, then Fim = Sim for all m ∈ Ω. Therefore,  for all stochastic 

F, F̃ ≥ S, and so the conclusion of the theorem holds. In the second case, we observe that 

 implies Fii > Sii ≥ 0. Therefore, for any sufficiently small η > 0,

is stochastic, and Fη ≥ S. By Theorem 2, we have

It follows that for every ε > 0 there exists an η > 0 with

(The second inequality follows by an argument similar to the proof of Corollary 2.)

Theorem 3 and Corollary 2 take unusual forms, and at first glance the condition F, F ̃ ≥ S 

may seem inconvenient. In Remarks 6 and 7, we explain how to use these estimates in the 

common case when only one matrix and a bound on the error are known.
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Remark 6—For a given application, the best upper bounds are obtained by choosing the 

largest possible S. This is a consequence of Lemma 3. We apply this principle in Remark 7.

Remark 7—Suppose that F̃ has been computed as an approximation to an unknown 

stochastic matrix F and that we have some bound on the error between F̃ and F. For 

example, suppose that for some matrix α ≥ 0,

In this case, we define

We observe that this choice of S is the largest possible so that F ≥ S for all F so that |Fij – F̃
ij| 

≤ αij. Therefore, by Lemma 3, the coefficients Qij(S) are as large as possible, giving the best 

possible upper bounds.

If S is irreducible, we have

In general, if S is reducible, then no statement can be made about the error of the invariant 

distribution. In fact, if S is reducible, then there is a reducible, stochastic F with 

, and the invariant distribution of F is not even unique.

5. An efficient algorithm for computing sensitivities

In Theorem 5 below, we show that the coefficients Qij(S) can be computed by inverting an L 

× L matrix and performing additional operations of cost O(L2). Therefore, the cost of 

estimating the error in π using either Theorem 3 or Corollary 2 is comparable to the cost of 

computing π. Moreover, the cost of computing our bounds is the same as the cost of 

computing most other bounds in the literature, for example, those based on the group 

invserse; see Remark 8.

Our first step is to characterize Qij(S) as the solution of a linear equation. We advise the 

reader that we will make extensive use of the notation introduced in Section 2. In addition, 

we define

(20)

to be the jth column and row of S with the jth entry set to zero, respectively.
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Lemma 4

Let S be irreducible and substochastic or stochastic. For i, j ∈ Ω with i ≠ j, let  be 

the vector defined by

for all k ∈ Ω \ {j}. Define Sj as in Section 2, and Sj⊥,j by (20). The operator 

is invertible on , and qij(S) is the unique solution of the equation

(21)

Proof—Let i, j ∈ Ω with i ≠ j. We have

and for k ≠ j,

Therefore,

(22)

We observe that equation (22) above can be expressed as

(23)

We now claim that if S is irreducible, then  is invertible, which shows that qij 

is the unique solution of (23). By (10), . We now observe that

so  converges, hence  is invertible.

The proof of Theorem 5 uses the following lemma.
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Lemma 5

For S substochastic and irreducible,

Proof—We recall that

Multiplying both sides by (I – Sj)–1 then yields

Now Sj ≥ 0 is a substochastic matrix, so by (10), . Therefore, 

, and by the Sherman-Morrison formula,

Thus,

(24)

Theorem 5

Let  be irreducible and substochastic. The set of all coefficients Qij(S) can be 

computed by inverting an L × L matrix and then performing additional operations of cost 

O(L2).

Proof—We begin with some definitions and notation. Define

(The right hand side above denotes the block decomposition of A with respect to the 

decomposition . Thus, for example, I – Sj is to be interpreted as an operator 
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on ; cf. the definition of Sj in Section 2.) We observe that A(j) is invertible, since by (10), I 

– Sj is invertible, so

(25)

In the first step of the algorithm, we compute A(1)–1, which costs O(L3) operations. Second, 

we compute SA(1)–1. Given A(1)–1, this can be done in O(L2) operations using the formula

(The formula is easily proved by direct calculation using (25).) Third, we compute Qi1(S) 

for all i ≠ 1. By Lemma 5 and 25, we have

(26)

Therefore, once A(1)–1 has been computed, it costs O(L) operations to compute Qi1(S) for all 

i ≠ 1.

We compute the remaining sensitivities Qij(S) for j ≠ 1 by a formula analogous to (28), but 

with A(j)–1 in place of A(1)–1. To do so efficiently, we use the Sherman-Morrison-

Woodbury identity to derive a formula expressing A(j)–1 in terms of A(1)–1:

(27)

where

In the fourth step of the algorithm, we loop over all j ≠ 1. For each j, we first compute 

C(j)–1, which requires a total of O(L) operations. We then compute A(j)–1ej at a cost of O(L) 

operations using a formula derived from (27):
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Next, we must compute  for all i ≠ j. By (27),

so the cost of computing  for each i ≠ j is O(L). Finally, we compute Qij(S) for all i ≠ 

j. By Lemma 5 and 25, we have

(28)

so this last step costs O(L).

The total cost of the algorithm described above is a single L × L matrix inversion plus O(L2).

Remark 8—Most perturbation bounds in the literature have the same computational 

complexity as our bound. For example, some bounds are based on the group inverse of I – F 

[13,16]. The cost of computing the group inverse is O(L3) [6], so our bound has the same 

complexity as [13, 16]. Computing the bound on relative error in [9] requires finding 

 for all j; see (5). This could be done in O(L3) operations by methods similar 

to Theorem 5, so we conjecture that our bound and the bound of [9] have the same 

complexity. On the other hand, the bound on relative error in [18] (see (6)) requires almost 

no calculation at all.

Remark 9—We give the algorithm above to show that the cost of computing our bounds is 

comparable to the cost of other bounds, in principle. We do not claim that the algorithm is 

always reliable, since we have not performed a complete stability analysis. Nonetheless, in 

many cases, the computation of Qij(S) is stable even when the computation of π(F) is 

unstable. For example, suppose that S = αF for F a stochastic matrix and α ∈ (0, 1). (This 

would be a good choice of S if all entries of F were known with relative error α–1; cf. 

Remark 7.) Let ∥M∥∞ denote the operator norm of the matrix  with respect to 

the -norm

It is a standard result that
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Therefore, since F is stochastic and 0 ≤ Sj ≤ S = αF, ∥Sj∥∞ ≤ α, and we have

Moreover,

and so the condition number for the inversion of I – Sj satisfies

We conclude that if α is not too close to one, then the algorithm is stable for any F. For 

example, if the entries of F are known with 2% error, then we choose S = 0.98F, and we 

have κ∞(F) ≤ 100.

6. The hilly landscape example

In this section, we discuss an example in which the invariant distribution is very sensitive to 

some entries of the transition matrix, but insensitive to others. The example arose from a 

problem in computational statistical physics. We will use the example to compare our results 

with previous work, especially [2,9,18] and the bounds on absolute error summarized in [3].

6.1. Transition matrix and physical interpretation

Our hilly landscape example is a simple analogue of the dynamics of a single particle in 

contact with a heat bath. Define  by

Take , and let Ω := {1, 2, . . . , L} with periodic boundary conditions; that is, take 

. Given V, we define a probability distribution on Ω by

The measure π is in detailed balance with the Markov chain X having transition matrix 

 defined by
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(In the definition of F, FL,L+1 means FL,1 and F1,0 means F1,L, since we take Ω with periodic 

boundary conditions.)

We interpret X as the position of a particle which moves through the interval (0, 1] with 

periodic boundary conditions. If V(i) > V(j), we say that j is downhill from i. When the 

inequality is reversed we say that j is uphill from i. Under the dynamics prescribed by F, the 

particle is more likely to move downhill than uphill. In fact, as L tends to infinity, π 

becomes more and more concentrated near the minima of V. For large L, the particle spends 

most of the time near minima of V, and transitions of the particle between minima occur 

rarely.

6.2. Sensitivities for the hilly landscape transition matrix

In Figure 1, we plot –logQij(αF) versus i and j for F the hilly landscape transition matrix 

with L = 40 and α ∈ {0.7, 0.8, 0.9, 0.95, 0.98, 1}. The purpose of this section is to give an 

intuitive explanation of the main features observed in the figure. Recall that the potential V 

is shaped roughly like a “W” with peaks at 0, ½, and 1 and valleys at ¼ and ¾. When L = 

40, the peaks correspond to the indices 0, 20, and 40 in Ω, and the valleys correspond to 10 

and 30. (To be precise, 0 and 40 are identical since we take periodic boundary conditions.)

Now consider the case α = 1. We observe that –logQ20,j(F) is small for all j, so Q20,j(F)–1 is 

small, and π(F) is insensitive to perturbations which change the transition probabilities from 

the peak to other points. This is as expected, since the probability P20[τj < τ20](F) = Q20,j(F) 

of hitting a point j in the valley before returning to the peak should be fairly large. On the 

other hand, –logQ30,10(F) is enormous, so π(F) is sensitive to the transition probability from 

the valley to the peak. This is also as expected, since the probability P30[τ10 < τ30](F) of 

climbing from the valley to the peak without falling back into the valley should be small. To 

explain the small values of –logQij(F) observed near the diagonal, we observe that for all i ∈ 

Ω and all L,

where Lip(V) = 1 is the Lipschitz constant of the potential V. Therefore, by Corollary 1,

The same estimate holds for Qi,i–1(F).
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The coefficients Qij(αF) for α < 1 share many features with Qij(F). These coefficients 

would be relevant if F were known with relative error 1 – α; see Remark 7. The main 

difference between Qij(αF) and Qij(F) is that Qij(αF) is small whenever the minimum 

number of time steps required to transition between i and j is large. The reader is directed to 

Section 6.5 for discussion of a related phenomenon. Observe that this effect grows more 

dominant as α decreases. We also note that Qij(αF)–1 is again small near the diagonal. In 

fact, by Lemma 3, we have

The same estimate holds for Qi,i–1(αF).

6.3. Mean first passage times and related relative error bounds

Section 4 of [2] also suggests bounds on relative error in terms of certain first passage times. 

A comparison is therefore in order. We record a simplified version of these results below.

Theorem 6

[2, Corollaries 4.1,4.2] Let F and F̃ be irreducible stochastic matrices. We have

where the expectations are taken for the chain with transition matrix F and δ is the 

Kronecker delta function. Therefore,

Taking the maximum over all m in the second sentence of Theorem 6 yields a pertubation 

result having a form similar to Theorem 3, but with

in place of Qij(S)–1. In the next paragraph, we show for the hilly landscape transition matrix 

that for some values of i and j, βij grows exponentially with L while Qij(S)–1 remains 

bounded. Thus, the results of [2] dramatically overestimate the error due to some 

perturbations.
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To derive the estimate in the second sentence of Theorem 6 from the exact formula in the 

first sentence, one discards a factor of πi(F̃). Therefore, roughly speaking, the estimate is 

poor when πi(F̃) is small. To give a specific example, let F be the hilly landscape transition 

matrix, assume that L is even, and let i = L/2 and j = L/2 + 1. Observe that we have chosen i 

at a peak of the potential V, so

(Here, we use the symbols ≲ and ≳ to denote bounds up to multiplicative constants, so in 

the last line above, we mean that there is some C > 0 so that the left hand side is bounded 

above by C exp(–L) for all L.) Let . We have

by Theorem 6. Therefore, by Theorem 2,

and so

Now suppose that the substochastic matrix S appearing in our bound is chosen for each L so 

that Sij for i = L/2 and j = L/2 + 1 is bounded above zero uniformly as L → ∞. For example, 

one might choose S to be a multiple of F as in Section 6.2 or a multiple of a simple random 

walk transition matrix as in Section 6.5. Then by Lemma 3, we have

so Qij(S)–1 is bounded. Thus, βij(F) is a poor estimate of the sensitivity of the ijth entry for 

this problem.

6.4. The spectral gap and related absolute error bounds

The survey article [3] lists eight condition numbers κi(F) for i = 1, 2, . . . , 8 for which 

bounds of the form

THIEDE et al. Page 25

SIAM J Matrix Anal Appl. Author manuscript; available in PMC 2015 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



hold. (The Hölder exponents p and p′ vary with the choice of condition number.) Some of 

these condition numbers are based on ergodicity coefficients [20,21], some on mean first 

passage times [2], and some on generalized inverses of the characteristic matrix I – F 

[5,7,9,16,19]. We prove for the hilly landscape transition matrix F that κi(F) increases 

exponentially with L for all i. By contrast, we have already seen that many of the 

coefficients Qij(αF)–1 are bounded as L tends to infinity.

Our proof that the condition numbers increase exponentially is based on an analysis of the 

spectral gap of F. Let σ(F) denote the spectrum of F. The spectral gap γ is defined to be

(29)

We use the bottleneck inequality [14, Theorem 7.3] to show that the spectral gap of the hilly 

landscape transition matrix decreases exponentially with L. For convenience, assume that L 

is even, and let

The bottleneck ratio [14, Section 7.2] for the partition {E, Ec} is

(As in the last section, we use the symbols ≲ and ≳ to denote bounds up to multiplicative 

constants.) Therefore, by the bottleneck inequality, the mixing time tmix [14, Section 4.5] 

satisfies

By [14, Theorem 12.3],

Therefore,

(30)

and we see that the spectral gap decreases exponentially in L.
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We now relate the condition numbers to the spectral gap. Using Equation (3.3) and the table 

at the bottom of page 147 in [3], and also [11, Corollary 2.6], we have

(31)

for all i = 1, . . . , 8. Now we claim that for sufficiently large L,

(32)

in which case (30) and (31) imply that all condition numbers grow exponentially with L. To 

see this, we first observe that since F is reversible, its spectrum is real [14, Lemma 12.2]. 

Moreover,

where Lip(V) = 1 is the Lipschitz constant of V. Therefore, using the Gershgorin circle 

theorem we have

(33)

for all λ ∈ σ(F). Inequality (33) shows that σ(F) is bounded above –1 uniformly in L, and by 

(30),

It follows that for sufficiently large L, max{|λ| : λ ∈ σ(F) \ {1}} is attained for λ > 0. Thus, 

equation (32) holds, and we conclude using (30) and (31) that

for all i = 1, . . . , 8.

6.5. Bounds below by a random walk

Let Y be the random walk on Ω with transition matrix

(As above, since Ω has periodic boundaries, PL,L+1 means PL,1, etc.) In this section, we use 

Theorem 3 to relate Qij(P) with Qij(F) for F the hilly landscape transition matrix. First, 

using the lower bounds on entries of F derived in Section 6.2, we have
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Therefore, by (35) and Lemma 3,

(34)

Now for any β ∈ (0, 1),

Let |i – j| denote the minimum number of time steps required for the chain to reach state j 

from state i. Adopting the notation used in the proof of Lemma 3, there is some path 

 of length |i – j| for which

(35)

Combining (34) and (35) then yields
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Appendix A. Proof of Lemma 1

Proof

Let F be irreducible and stochastic. By [6, Equation (3.1)], det(I – Fi) > 0 for all i ∈ Ω, and

(36)

The right hand side of (36) yields the desired extension. To show this, we first observe that 

there exists an open neighborhood  of F and a disc  with  such 

that  implies (a)  and (b) G has exactly one eigenvalue in  and 

that eigenvalue is simple. There exists a neighborhood with property (a), since 
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 is continuous in G and . The existence of a 

neighborhood  and disc  with property (b) follows from standard results in perturbation 

theory, since F irreducible and stochastic implies that 1 is a simple eigenvalue of F; see [10, 

Ch. II, Theorem 5.14]. We now let  be the union of the sets  over all irreducible, 

stochastic F, and we define  by extending the formula on the right hand side of 

(36). By (a),  is continuously differentiable. By property (b), we know that if  with 

Ge = e then e is a simple eigenvalue of G, and so . Following the proof of 

[6, Theorem 3.1], one may then use the identity

where adj(·) denotes the adjugate matrix, to show that .
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Figure 1. 
Sensitivities for the hilly landscape transition matrix.
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