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Abstract

We present a deterministic local routing algorithm that is guaranteed to find a path be-
tween any pair of vertices in a half-θ6-graph1 (the half-θ6-graph is equivalent to the Delaunay
triangulation where the empty region is an equilateral triangle). The length of the path is at
most 5/

√
3 ≈ 2.887 times the Euclidean distance between the pair of vertices. Moreover, we

show that no local routing algorithm can achieve a better routing ratio, thereby proving that
our routing algorithm is optimal. This is somewhat surprising because the spanning ratio of
the half-θ6-graph is 2, meaning that even though there always exists a path whose lengths is at
most twice the Euclidean distance, we cannot always find such a path when routing locally.

Since every triangulation can be embedded in the plane as a half-θ6-graph using O(log n)
bits per vertex coordinate via Schnyder’s embedding scheme (SODA 1990), our result provides
a competitive local routing algorithm for every such embedded triangulation. Finally, we show
how our routing algorithm can be adapted to provide a routing ratio of 15/

√
3 ≈ 8.660 on two

bounded degree subgraphs of the half-θ6-graph.
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1 Introduction

A fundamental problem in networking is the routing of a message from one vertex to another in a
graph. What makes routing more challenging is that often in a network the routing strategy must
be local. Informally, a routing strategy is local when the routing algorithm must choose the next
vertex to forward a message to based solely on knowledge of the source and destination vertex,
the current vertex and all vertices directly connected to the current vertex. Routing algorithms
are considered geometric when the graph is embedded in the plane, with edges being straight line
segments connecting pairs of points and weighted by the Euclidean distance between their end-
points. Geometric routing algorithms are important in wireless sensor networks (see [18] and [20]
for surveys of the area) since they offer routing strategies that use the coordinates of the vertices
to help guide the search as opposed to using the more traditional routing tables.

Papadimitriou and Ratajczak [19] posed a tantalizing question in this area that lead to a flurry
of activity: Does every 3-connected planar graph have a straight-line embedding in the plane
that admits a local routing strategy such as greedy routing2? They provided a partial answer by
showing that 3-connected planar graphs can always be embedded in R3 such that they admit a
greedy routing strategy. They also showed that the class of complete bipartite graphs, Kk,6k+1 for
all k ≥ 1 cannot be embedded such that greedy routing always succeeds since every embedding has
at least one vertex that is not connected to its nearest neighbor. Bose and Morin [8] showed that
greedy routing always succeeds on Delaunay triangulations. In fact, a slightly restricted greedy
routing strategy known as greedy-compass is the first local routing strategy shown to succeed on
all triangulations [6]. Dhandapani [11] proved the existence of an embedding that admits greedy
routing for every triangulation and Angelini et al. [1] provided a constructive proof. Leighton and
Moitra [17] settled Papadimitriou and Ratajczak’s question by showing that every 3-connected
planar graph can be embedded in the plane such that greedy routing succeeds. One drawback of
these embedding algorithms is that the coordinates require Ω(n log n) bits per vertex. To address
this, He and Zhang [14] and Goodrich and Strash [13] gave succinct embeddings using only O(log n)
bits per vertex. Recently, He and Zhang [15] showed that every 3-connected plane graph admits a
succinct embedding with convex faces on which a slightly modified greedy routing strategy always
succeeds.

In light of these recent successes, it is surprising to note that the above routing strategies have
solely concentrated on finding an embedding that guarantees that a local routing strategy will
succeed, but pay little attention to the quality of the resulting path. For example, none of the
above routing strategies have been shown to be competitive. A geometric routing strategy is said to
be competitive if the length of the path found by the routing strategy is not more than a constant
times the Euclidean distance between its endpoints. This constant is called the routing ratio.
Bose and Morin [8] show that many local routing strategies are not competitive, but show how to
route competitively on the Delaunay triangulation. However, Dillencourt [12] showed that not all
triangulations can be embedded in the plane as Delaunay triangulations. This raises the following
question: can every triangulation be embedded in the plane such that it admits a competitive
local routing strategy? We answer this question in the affirmative.

The half-θ6-graph was introduced by Bonichon et al. [4], who showed that it is identical to the
Delaunay triangulation where the empty region is an equilateral triangle. Although both graphs

2A routing strategy is greedy when a message is always forwarded to the vertex whose distance to the destination
is the smallest among all vertices in the neighborhood of the current vertex, including the current vertex.
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are identical, the local definition of the half-θ6-graph makes it more useful in the context of routing.
We formally the half-θ6-graph in the next section. Our main result is a deterministic local routing
algorithm that is guaranteed to find a path between any pair of vertices in a half-θ6-graph whose
length is at most 5/

√
3 times the Euclidean distance between the pair of vertices. On the way to

proving our main result, we uncover some local properties of spanning paths in the half-θ6-graph.
Since Schnyder [21] showed that every triangulation can be embedded in the plane as a half-θ6-
graph using O(log n) bits per vertex coordinate, our main result implies that every triangulation
has an embedding that admits a competitive local routing algorithm. Moreover, we show that no
local routing algorithm can achieve a better routing ratio on a half-θ6-graph, implying that our
routing algorithm is optimal. This is somewhat surprising because Chew [10] showed that the
spanning ratio of the half-θ6-graph is 2. Thus, our lower bound provides a separation between the
spanning ratio of the half-θ6-graph and the best achievable routing ratio on the half-θ6-graph. We
believe that this is the first separation between the spanning ratio and routing ratio of any graph.
It also makes the half-θ6-graph one of the few graphs for which tight spanning and routing ratios
are known. Finally, we show how our routing algorithm can be adapted to provide a routing ratio
of 15/

√
3 on two bounded degree subgraphs of the half-θ6-graph introduced by Bonichon et al. [5].

To the best of our knowledge, this is the first competitive routing algorithm on a bounded-degree
plane graph.

2 Preliminaries

In order to find a competitive path between any two vertices of a graph, such a path must first
exist. Graphs that meet this criterion are called spanners. Formally, given a weighted graph G,
we define the distance dG(u, v) between two vertices u and v to be the sum of the weights of the
edges in the shortest path between u and v in G. A subgraph H of G is a t-spanner of G if for all
pairs of vertices u and v, dH(u, v) ≤ t · dG(u, v), for t ≥ 1. We say that H is a spanner if it is a
t-spanner for some constant t. The spanning ratio of H is the smallest t for which it is a t-spanner.
The graph G is referred to as the underlying graph.

Unless otherwise noted, we assume that the underlying graph G is a straight-line embedding
of the complete graph on a set of n points in the plane, with the weight of an edge (u, v) being
the Euclidean distance |uv| between u and v. A spanner of such a graph is called a geometric
spanner. We focus on one specific class of geometric spanners: the half-θ6-graph. In a slight abuse
of notation, we often speak about the spanning ratio of the half-θ6-graph. By this, we mean the
maximum spanning ratio of any half-θ6-graph on any set of n points in the plane. In the remainder
of this section, we describe the construction of the half-θ6-graph and introduce some notation.

Given a set P of points in the plane, we consider each point u ∈ P and partition the plane into
6 cones (regions in the plane between two rays originating from the same point) with apex u, each
defined by two rays at consecutive multiples of π/3 radians from the positive x-axis. We label the
cones C1, 0̧, C2, 1̧, C0 and 2̧, in counter-clockwise order around u, starting from the positive x-axis
(see Figure 1a). The cones 0̧, 1̧ and 2̧ are called positive, while the others are called negative. When
the apex is not clear from the context, we use Cui to denote cone Ci with apex u.

To build the half-θ6-graph, we consider each vertex u and add an edge to the ‘closest’ vertex in
each of its positive cones. However, instead of using the Euclidean distance, we measure distance
by projecting each vertex in the cone onto the bisector of the cone. We call the vertex in this cone
whose projection is closest to u the closest vertex and connect it to u with an edge (see Figure 1b).
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Figure 1: (a) The cones around a vertex u. (b) The construction of the half-θ6-graph. In each
positive cone, u connects to the vertex with the closest projection on the bisector of that cone.

For simplicity, we assume that no two points lie on a line parallel to a cone boundary, guaranteeing
that each vertex connects to exactly one vertex in each positive cone. Hence the graph has at most
3n edges in total.

Given two vertices u and v such that v lies in a positive cone of u, we define their canonical
triangle Tuv to be the triangle bounded by the cone of u that contains v and the line through v
perpendicular to the bisector of that cone. For example, the shaded region in Figure 1b is the
canonical triangle of u and v. Note that for any pair of vertices u and v, either v lies in a positive
cone of u, or u lies in a positive cone of v, so there is exactly one canonical triangle (either Tuv or
Tvu) for the pair. The construction of the half-θ6-graph can alternatively be described as adding
an edge between two vertices if and only if their canonical triangle is empty. This property will
play an important role in our proofs.

3 Spanning ratio of the half-θ6-graph

Bonichon et al. [4] showed that the half-θ6-graph is a geometric spanner with spanning ratio 2 by
showing it is equivalent to the Delaunay triangulation based on empty equilateral triangles, which
is known to have spanning ratio 2 [10]. This correspondence also shows that the half-θ6-graph
is internally triangulated: every face except for the outer face is a triangle (this follows from the
duality with the Voronoi diagram, along with the fact that all vertices in the Voronoi diagram have
degree 3, provided that no 4 points lie on the same equilateral triangle). In this section, we provide
an alternative proof of the spanning ratio of the half-θ6-graph. Our proof shows that between any
pair of points, there always exists a path with spanning ratio 2 that lies in the canonical triangle.
This property plays an important role in our routing algorithm, which we describe in Section 5.

For a pair of vertices u and w, our bound is expressed in terms of the angle α between the line
from u to w and the bisector of their canonical triangle (see Figure 2).

Theorem 1 Let u and w be vertices with w in a positive cone of u. Let m be the midpoint of the
side of Tuw opposing u, and let α be the unsigned angle between uw and um. There exists a path
between u and w in the half-θ6-graph, of length at most

(
√

3 · cosα+ sinα) · |uw|,

where all vertices on this path lie in Tuw.
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m

α

u

w

Figure 2: Two vertices u and w with their canonical triangle Tuw. The angle α is the unsigned
angle between the line uw and the bisector of the cone containing w.

The expression
√

3 · cosα+ sinα is increasing for α ∈ [0, π/6]. Inserting the extreme value π/6 for
α, we arrive at the following.

Corollary 2 The spanning ratio of the half-θ6-graph is 2.

We note that the bounds of Theorem 1 and Corollary 2 are tight: for all values of α ∈ [0, π/6] there
exists a point set for which the shortest path in the half-θ6-graph for some pair of vertices u and
w has length arbitrarily close to (

√
3 · cosα + sinα) · |uw|. A simple example appears later in the

proof of Theorem 4.

Proof of Theorem 1. Given two vertices u and w, we assume without loss of generality that w
lies in Cu0 . We prove the theorem by induction on the rank, when ordered by area, of the triangles
Txy for all pairs of points x and y where y lies in a positive cone of x. Let a and b be the upper
left and right corner of Tuw, and let A = Tuw ∩ Cw1 and B = Tuw ∩ Cw2 , as illustrated in Figure 3.

u

a bw

A
B

Figure 3: The corners a and b, and the regions A and B.

Our inductive hypothesis is the following, where δ(u,w) denotes the length of the shortest path
from u to w in the part of the half-θ6-graph induced by the vertices in Tuw.

1. If A is empty, then δ(u,w) ≤ |ub|+ |bw|.
2. If B is empty, then δ(u,w) ≤ |ua|+ |aw|.
3. If neither A nor B is empty, then δ(u,w) ≤ max{|ua|+ |aw|, |ub|+ |bw|}.

4



We first note that this induction hypothesis implies Theorem 1: using the side of Tuw as the unit
of length, we have from Figure 2 that |wm| = |uw| · sinα and

√
3/2 = |um| = |uw| · cosα. Hence

the induction hypothesis gives us that δ(u,w) is at most 1 + 1/2 + |wm| =
√

3 · (
√

3/2) + |wm| =
(
√

3 · cosα+ sinα) · |uw|, as required.
Base case: Tuw has rank 1. Since there are no smaller canonical triangles, w must be the

closest vertex to u. Hence the edge (u,w) is in the half-θ6-graph, and δ(u,w) = |uw|. Using the
triangle inequality, we have |uw| ≤ min{|ua|+ |aw|, |ub|+ |bw|}, so the induction hypothesis holds.

Induction step: We assume that the induction hypothesis holds for all pairs of points with
canonical triangles of rank up to i. Let Tuw be a canonical triangle of rank i+ 1.

If (u,w) is an edge in the half-θ6-graph, the induction hypothesis follows by the same argument
as in the base case. If there is no edge between u and w, let v be the vertex closest to u in
the positive cone Cu0 , and let a′ and b′ be the upper left and right corner of Tuv. By definition,
δ(u,w) ≤ |uv|+ δ(v, w), and by the triangle inequality, |uv| ≤ min{|ua′|+ |a′v|, |ub′|+ |b′v|}.

We perform a case distinction on the location of v: (a) v lies neither in A nor in B, (b) v lies
inside A, and (c) v lies inside B. The case where v lies inside B is analogous to the case where v
lies inside A, so we only discuss the first two cases, which are illustrated in Figure 4.

u

a bw

v

c d

a′ b′

C D

u

a bw

v

a′′

a′
E

(a) (b)

b′

Figure 4: The two cases: (a) v lies in neither A nor B, (b) v lies in A.

Case (a): Let c and d be the upper left and right corner of Tvw, and let C = Tvw ∩ Cw1 and
D = Tvw ∩ Cw2 (see Figure 4a). Since Tvw has smaller area than Tuw, we apply the inductive
hypothesis on Tvw. Our task is to prove all three statements of the inductive hypothesis for Tuw.

1. If A is empty, then C is also empty, so by induction δ(v, w) ≤ |vd|+ |dw|. Since v, d, b, and
b′ form a parallelogram, we have:

δ(u,w) ≤ |uv|+ δ(v, w)

≤ |ub′|+ |b′v|+ |vd|+ |dw|
= |ub|+ |bw|,

which proves the first statement of the induction hypothesis. This argument is illustrated in
Figure 5a.

2. If B is empty, an analogous argument proves the second statement of the induction hypothesis.
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3. If neither A nor B is empty, by induction we have δ(v, w) ≤ max{|vc| + |cw|, |vd| + |dw|}.
Assume, without loss of generality, that the maximum of the right hand side is attained by
its second argument |vd|+ |dw| (the other case is analogous).

Since vertices v, d, b, and b′ form a parallelogram, we have that:

δ(u,w) ≤ |uv|+ δ(v, w)

≤ |ub′|+ |b′v|+ |vd|+ |dw|
≤ |ub|+ |bw|
≤ max{|ua|+ |aw|, |ub|+ |bw|},

which proves the third statement of the induction hypothesis. This argument is illustrated in
Figure 5b.

u

bw

u

bw

u

a wd d a′′

a′
v

vb′v b′

(a) (b) (c)

C

E

Figure 5: Visualization of the path inequalities in three cases: (a) v lies in neither A nor B and
one of A or B is empty (cases a.1 and a.2 in our proof), (b) v lies in neither A nor B and neither
is empty (case a.3), (c) v lies in A or B (case b). The paths occurring in the equations are drawn
with thick red lines, and light blue areas indicate empty regions.

Case (b): Let E = Tuv ∩ Twv, and let a′′ be the upper left corner of Twv (see Figure 4b). Since
v is the closest vertex to u in one of its positive cones, Tuv is empty and hence E is also empty. Since
Twv is smaller than Tuw, we can apply induction on it. As E is empty, the first statement of the
induction hypothesis for Twv applies, giving us that δ(v, w) ≤ |va′′|+ |a′′w|. Since |uv| ≤ |ua′|+ |a′v|
and v, a′′, a, and a′ form a parallelogram, we have that δ(u,w) ≤ |ua| + |aw|, proving the second
and third statement in the induction hypothesis for Tuw. This argument is illustrated in Figure 5c.
Since v lies in A, the first statement in the induction hypothesis for Tuw is vacuously true. �

4 Remarks on the spanning ratio

The full-θ6-graph, introduced by Keil and Gutwin [16], is similar to the half-θ6-graph except that
all 6 cones are positive cones. Thus, the full-θ6-graph is the union of two copies of the half-θ6-graph,
where one half-θ6-graph is rotated by π/3 radians. The half-θ6-graph and the full-θ6-graph both
have a spanning ratio of 2, with lower bound examples showing that it is tight for both graphs.
This is surprising since the full-θ6-graph can have twice the number of edges of the half-θ6-graph.

6



Note that since the full-θ6-graph consists of two rotated copies of the half-θ6-graph, one question
that comes to mind is what is the best spanning ratio if one is to construct a graph consisting of
two rotated copies of the half-θ6-graph? Can one do better than a spanning ratio of 2? Consider
the following construction. Build two half-θ6-graphs as described in Section 2, but rotate each cone
of the second graph by π/6 radians. For each pair of vertices, there is a path of length at most√

3 cosα+ sinα times the Euclidean distance between them, where α is the angle between the line
connecting the vertices in question, and the closest bisector. Since this function is increasing, the
spanning ratio is defined by the maximum possible angle to the closest bisector, which is π/12
radians, giving a spanning ratio of roughly 1.932.

By using k copies, we improve the spanning ratio even further: if each is rotated by π/(3k)
radians, we get a spanning ratio of

√
3 cos π

6k + sin π
6k . This is better than the known upper bounds

for the full θ3k-graph [9] for k ≤ 3 and for the Yao3k-graph [3] for k ≤ 4.

Corollary 3 The union of k copies of the half-θ6-graph, each rotated by π/(3k) radians, is a
geometric spanner with up to 3k edges and spanning ratio at most

√
3 cos π

6k + sin π
6k .

5 Routing in the half-θ6-graph

In this section, we give matching upper and lower bounds for the routing ratio on the half-θ6-graph.
We begin by defining our model. Formally, a routing algorithm A is a deterministic k-local, m-
memory routing algorithm, if the vertex to which a message is forwarded from the current vertex s
is a function of s, t, Nk(s), and M , where t is the destination vertex, Nk(s) is the k-neighborhood
of s and M is a memory of size m, stored with the message. The k-neighborhood of a vertex s is
the set of vertices in the graph that can be reached from s by following at most k edges. For our
purposes, we consider a unit of memory to consist of a log2 n bit integer or a point in R2. Our
model also assumes that the only information stored at each vertex of the graph is Nk(s). Since our
graphs are geometric, we identify each vertex by its coordinates in the plane. A routing algorithm
is d-competitive provided that the total distance travelled by the message is never more than d
times the Euclidean distance between source and destination. Analogous to the spanning ratio, the
routing ratio of an algorithm is the smallest d for which it is d-competitive.

We present a deterministic 1-local 0-memory algorithm that achieves the upper bounds, but our
lower bounds hold for any deterministic k-local 0-memory algorithm. Our bounds are expressed in
terms of the angle α between the line from the source to the destination and the bisector of their
canonical triangle (see Figure 2).

Theorem 4 Let u and w be two vertices, with w in a positive cone of u. Let m be the midpoint
of the side of Tuw opposing u, and let α be the unsigned angle between uw and um. There is a
deterministic 1-local 0-memory routing algorithm on the half-θ6-graph for which every path followed
has length at most

i) (
√

3 · cosα+ sinα) · |uw| when routing from u to w,

ii) (5/
√

3 · cosα− sinα) · |uw| when routing from w to u,

and this is best possible for deterministic k-local, 0-memory routing algorithms, where k is constant.

The first expression is increasing for α ∈ [0, π/6], while the second expression is decreasing. Inserting
the extreme values π/6 and 0 for α, we get the following worst case version of Theorem 4.
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Corollary 5 Let u and w be two vertices, with w in a positive cone of u. There is a deterministic
1-local 0-memory routing algorithm on the half-θ6-graph with routing ratio

i) 2 when routing from u to w,

ii) 5/
√

3 = 2.886 . . . when routing from w to u,

and this is best possible for deterministic k-local, 0-memory routing algorithms, where k is constant.

Since the spanning ratio of the half-θ6-graph is 2, the second lower bound shows a separation
between the spanning ratio and the best possible routing ratio in the half-θ6-graph.

Since every triangulation can be embedded in the plane as a half-θ6-graph using O(log n) bits
per vertex via Schnyder’s embedding scheme [21], an important implication of Theorem 4 is the
following.

Corollary 6 Every n-vertex triangulation can be embedded in the plane using O(log n) bits per
coordinate such that the embedded triangulation admits a deterministic 1-local 0-memory routing
algorithm with routing ratio at most 5/

√
3.

In the remainder of this section we prove Theorem 4. We split the proof into two cases,
depending on whether the destination lies in a positive (Section 5.1) or negative (Section 5.2) cone
of the source. In each case, we first present a proof of the lower bound, then a description of the
routing algorithm, and finally a proof of the upper bound.

5.1 Positive routing

Lemma 7 (Lower bound for positive routing) Let u and w be two vertices, with w in a
positive cone of u. Let m be the midpoint of the side of Tuw opposing u, and let α be the unsigned
angle between uw and um. For any routing algorithm, there are instances for which the path
followed has length at least (

√
3 · cosα+ sinα) · |uw| when routing from u to w.

Proof. Let the side of Tuw be the unit of length. From Figure 2, we have |wm| = |uw| · sinα and√
3/2 = |um| = |uw| · cosα. From Figure 6, the spanning ratio of the half-θ6-graph is at least

1 + 1/2 + |wm| =
√

3 · (
√

3/2) + |wm| = (
√

3 · cosα+ sinα) · |uw|, since the point in the upper left
corner of Tuw can be moved arbitrarily close to the corner. As there is no shorter path between u
and w, this is a lower bound for any routing algorithm. �

Routing algorithm. While routing, let s denote the current vertex and let t denote the fixed
destination (i.e. t corresponds to w in Theorem 4). To be deterministic, 1-local, and 0-memory,
the routing algorithm needs to determine which edge (s, v) to follow next based only on s, t, and
the neighbours of s. We say we are routing positively when t is in a positive cone of s, and routing
negatively when t is in a negative cone. (Note the distinction between “positive routing” and
“routing positively”: the first describes the conditions at the start of the routing process, while
the second does so during the routing process. In other words, positive routing describes a routing
process that starts by routing positively. It is very common for positive routing to include situations
where we are routing negatively, see e.g. Figure 9b.)
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u

w

α

m

Figure 6: The lower bound example when routing to a vertex in a positive cone.

For ease of description, we assume without loss of generality that t is in cone Cs0 when routing
positively, and in cone C

s
0 when routing negatively. When routing positively, Tst intersects only

Cs0 among the cones of s. When routing negatively, Tts intersects C
s
0, as well as the two positive

cones Cs1 and Cs2 . Let X0 = C
s
0 ∩ Tts, X1 = Cs1 ∩ Tts, and X2 = Cs2 ∩ Tts. Let a be the corner

of Tts contained in X1 and b the corner of Tts contained in X2. These definitions are illustrated in
Figure 7.

s

a bt

X1

X2

t

sC0

C1 X0

C0

C2

(a) (b)

Figure 7: Routing terminology when (a) routing positively and (b) routing negatively.

The routing algorithm will only follow edges (s, v) where v lies in the canonical triangle of s and
t. Routing positively is straightforward since there is exactly one edge (s, v) with v ∈ Tst, by the
construction of the half-θ6-graph. The challenge is to route negatively. When routing negatively,
at least one edge (s, v) with v ∈ Tts exists, since by Theorem 1, s and t are connected by a path
inside Tts. The core of our routing algorithm is how to choose which edge to follow when there
is more than one. Intuitively, when routing negatively, our algorithm tries to select an edge that
makes measurable progress towards the destination. When no such edge exists, we are forced to
take an edge that does not make measurable progress, however we are able to then deduce that
certain regions within the canonical triangle are empty. This allows us to bound the total distance
traveled while not making measurable progress. We provide a formal description of our routing
algorithm below.

Our routing algorithm can be in one of four cases. We call the situation when routing positively

9



case A, and divide the situation when routing negatively into three further cases: both X1 and X2

are empty (case B), either X1 or X2 is empty (case C), or neither is empty (case D). Since X1 and
X2 correspond to positive cones of s, each contains the endpoint of at most one edge (s, v). These
edges contain a lot of information about the regions X1 and X2. In particular, if there is no edge
in the corresponding cone, then the entire cone must be empty. And if there is an edge, but its
endpoint lies outside of the region, the region is guaranteed to be empty. This allows our algorithm
to locally determine if X1 and X2 are empty, and therefore which case we are in.

Since we are routing to a destination in a positive cone of the source, our routing algorithm
starts in case A. Routing in this case is straightforward, as there is only one edge (s, v) with v in
Tts that we can follow. We now turn our attention to routing in cases B and C (it turns out case D
never occurs when routing to a destination in a positive cone of the source; we come back to it
when describing negative routing in Section 5.2).

In case B, both X1 and X2 are empty, so there must be edges (s, v) with v ∈ X0, as s and t
are connected by a path in Tts by Theorem 1. If |as| ≥ |sb|, the routing algorithm follows the last
edge in clockwise order around s; if |as| < |sb|, it follows the first edge. In short, when both sides
of Tts are empty, the routing algorithm favors staying close to the largest empty side of Tts. Note
that |as| and |sb| can be computed locally from the coordinates of s and t.

In case C, exactly one of X1 or X2 is empty. If there exist edges (s, v) with v ∈ X0, the routing
algorithm will follow one of these, choosing among them in the following way: If X1 is empty, it
chooses the last edge in clockwise order around s. Else X2 is empty, and it chooses the first edge
in clockwise order around s. In short, the routing algorithm favors staying close to the empty side
of Tts. If no edges (s, v) with v ∈ X0 exist, the routing algorithm follows the single edge (s, v) with
v in X1 or X2.

Upper bound. The proof of the upper bound uses a potential function φ, defined as follows for
each of the cases A, B, and C. For the potential in case C, x ∈ {a, b} is the corner contained in the
non-empty one of the two areas X1 and X2.

Case A: φ = |sa|+ max(|at|, |tb|)
Case B: φ = |ta|+ min(|as|, |sb|)
Case C: φ = |ta|+ |sx|

t

bs

t

a s

Case B Case C

s

bt

Case A

aa b

Figure 8: The potential φ in each case. Thick red lines designate potential and light blue designates
empty areas.
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This definition is illustrated in Figure 8. We will refer to the first term of φ (i.e., |sa| in case A,
|ta| in cases B, and C) as the vertical part of φ and to the rest as the horizontal part. Note that
since all sides of the canonical triangle have equal length, a and b are interchangeable in the vertical
part. The proof makes extensive use of the following observation about equilateral triangles:

Observation 8 In an equilateral triangle, the diameter (the longest distance defined by any two
points in the triangle) is equal to the side length.

Our aim is to prove the following claim: for any routing step, the reduction in φ is at least as
large as the length of the edge followed. This allows us to ‘pay’ for each edge with the difference
in potential, thereby bounding the total length of the path by the initial potential. We do this by
case analysis of the possible routing steps.

Case A. For a routing step starting in case A, v can be in a negative or a positive cone of t. The
first situation leads to case A again. The second leads to case B or C, since the area of Tst between
s and v must be empty by construction of the half-θ6-graph. These situations are illustrated in
Figure 9.

s

t tt

v

(a)

(b)

s

t t

v v

vv

or

Figure 9: Routing in case A. (a) v lies in a negative cone of t, (b) v lies in a positive cone of t.
Dashed red lines indicate which parts of the potential are used to pay for the edge.

If we remain in case A after following edge (s, v), the reduction of the vertical part of φ (dashed
in Figure 9a) is at least as large as |sv| by Observation 8. Therefore we can use it to pay for
this step. Since Tvt is contained in Tst, both |at| and |bt| decrease. Thus the horizontal part of φ
decreases too, as it is the maximum of the two. Hence the claim holds for this situation.

For the situation ending in case C (the second illustration after the arrow in Figure 9b), we
again use the reduction of the vertical part of φ to pay for the step. The rest of the vertical part
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precisely covers the new horizontal part. Since Ttv is contained in Tst, the new vertical part is a
portion of either ta or tb. This can be covered by the current horizontal part, as it is the maximum
of |ta| and |tb|. Thus the claim holds for this situation as well. Finally, for the situation ending in
case B, the final value of φ is at most that of the situation ending in case C, so again the claim
holds.

v

t

s

or

tt

vv

Figure 10: Routing in case B.

Case B. A routing step starting in case B (illustrated in Figure 10) cannot lead to case A, as the
step stays within Tts. We first show that it always results in Case B or C, meaning that at least
one of X1 or X2 is empty again. The algorithm follows an edge (s, v) with v ∈ X0. If s is to the
left of t, it follows the first edge in clockwise order around s, otherwise it follows the last one. We
consider only the case where s is to the left of t, the other case is symmetric. By the construction
of the half-θ6-graph, the existence of the edge (s, v) implies that Tvs is empty. It follows that the
hatched area in Figure 10 is also empty: if not, the topmost point in it would have an edge to s,
while coming before v in the clockwise order around s, contradicting the choice of v by the routing
algorithm. Therefore X2 will again be empty, resulting in case B or C.

By Observation 8, the reduction in the vertical part of φ is at least as large as |sv|. In addition,
the horizontal part of φ can only decrease. If it remains on the same side of the triangle, this follows
from the fact that v lies in X0 and Ttv is contained in Tts. And the only case where the potential
switches sides, is when we end up in case B again but the other side is shorter than the current
one, reducing the potential even further. Hence the claim holds.

Case C. As in the previous case, a routing step starting in case C cannot lead to case A and we
show that it cannot lead to case D, either. There are two situations, depending on whether edges
(s, v) with v ∈ X0 exist. For the situation where such edges do exist (illustrated in Figure 11a),
the analysis is exactly the same as for a routing step starting in case B.

For the situation where edges (s, v) with v ∈ X0 do not exist, the start of the step is illustrated
on the left of the arrow in Figure 11b. Again, Tsv must be empty by the construction of the half-
θ6-graph, which implies that the hatched area must also be empty: if not, the topmost point in it
would have an edge to s, contradicting that edges (s, v) with v ∈ X0 do not exist. Thus, the routing
step can only lead to case B or C. Looking at the potential, the vertical part can only decrease,
and by Observation 8, the reduction of the horizontal part of φ is at least as large as |sv|. Thus we
can pay for this step as well and the claim holds in both situations.
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Figure 11: Routing in case C.

Lemma 9 (Upper bound for positive routing) Let u and w be two vertices, with w in a
positive cone of u. Let m be the midpoint of the side of Tuw opposing u, and let α be the unsigned
angle between uw and um. There is a deterministic 1-local 0-memory routing algorithm on the
half-θ6-graph for which every path followed has length at most (

√
3 · cosα + sinα) · |uw| when

routing from u to w.

Proof. That the algorithm is deterministic, 1-local, and 0-memory follows from the description of
the algorithm, so we only need to prove the bound on the distance. We showed that for any routing
step, the reduction in φ is at least as large as the length of the edge followed. Since φ is always
non-negative, this implies that no path followed can be longer than the initial value of φ. As all
edges have strictly positive length, the routing algorithm must terminate. Since we are routing to
a vertex in a positive cone, we start in case A, with an initial potential of |ua| + max(|aw|, |wb|).
Taking the side of Tuw as the unit of length reduces this to 1 + 1/2 + |wm|, and using the same
analysis as in Lemma 7, we obtain the desired bound of (

√
3 · cosα+ sinα) · |uw|. �

5.2 Negative routing

Next we turn our attention to the case when we are routing to a destination in a negative cone of
the source. We start by deriving a lower bound, then present the required extensions to our routing
algorithm and finish with the matching upper bound.

Lemma 10 (Lower bound for negative routing) Let u and w be two vertices, with w in a
positive cone of u. Let m be the midpoint of the side of Tuw opposing u, and let α be the unsigned
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angle between uw and um. For any deterministic k-local 0-memory routing algorithm, there are
instances for which the path followed has length at least (5/

√
3 · cosα− sinα) · |uw| when routing

from w to u.

Proof. Consider the two instances in Figure 12. Any deterministic 1-local 0-memory routing algo-
rithm has information about direct neighbors only. Hence, it cannot distinguish between the two
instances when routing out of w. This means that it routes to the same neighbor of w in both
instances, and either choice of neighbor leads to a non-optimal route in one of the two instances.
The smallest loss occurs when the choice is towards the closest corner of Tuw, for which Figure 12a
is the bad instance. If we let the side of Tuw be the unit of length, this gives a lower bound of
(1/2− |wm|) + 1 + 1 = 5/2− |wm|, since the points in the corners of Tuw can be moved arbitrar-
ily close to the corners while keeping their relative positions. Using that |wm| = |uw| · sinα and√

3/2 = |um| = |uw|·cosα, the lower bound reduces to (5/
√

3·cosα−sinα)·|uw|. By appropriately
adding Ω(k) points close to the corners such that u is not in the k-neighborhood of w, the lower
bound holds for any deterministic k-local 0-memory routing algorithm. �

u

w

u

w

(a) (b)

m m

Figure 12: The lower bound instances for routing to a vertex in a negative cone.

Routing algorithm. The only difference with the routing algorithm we used for positive routing
lies in the initial case. Since our destination is in a negative cone, we start in one of the negative
cases. This time, besides cases B and C, where both or one of X1 and X2 are empty, we also need
case D, where neither is empty. Recall that in the previous section, we showed that a routing step
starting in case A, B, or C can never result in case D. Thus, if the routing process starts in case D,
it never returns there once it enters case A, B, or C.

In case D, the routing algorithm first tries to follow an edge (s, v) with v ∈ X0. If several such
edges exist, an arbitrary one of these is followed. If no such edge exists, the routing algorithm
follows the single edge (s, v) with v in the smaller of X1 and X2. In short, the routing algorithm
favors moving towards the closest corner of Tts when it is not able to move towards t. Note that,
in the instances of Figure 12, this choice ensures that the first routing step incurs the smallest loss
in the worst case, making it possible to meet the lower bound of Lemma 10. We now show that
our algorithm achieves this lower bound in all cases.
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Upper bound. The potential in case D is given below. It mirrors the lower bound path, in that
it allows walking towards the closest corner, crossing the triangle, then walking down to t. This is
the highest potential among the four cases.

Case D: φ = |ta|+ |ab|+ min(|as|, |sb|)

t

bs

Case D

a

Figure 13: The potential φ in case D.

As before, we want to show that for any routing step, the reduction in φ is at least as large as
the length of the edge followed. Since we already did this for states A, B, and C, all that is left is
to prove it for case D.

Case D. A routing step starting in case D cannot lead to case A, as the step stays within Tts,
but it may lead to case B, C, or D. There are two situations, depending on whether edges (s, v)
with v ∈ X0 exist or not. These are illustrated in Figure 14.

In the first situation, where we follow an edge (s, v) with v ∈ X0, the reduction of the vertical
part of φ is at least as large as |sv| by Observation 8. The horizontal part of φ can only decrease,
as Ttv is fully contained in Tts and v lies in X0. In the second situation, where the endpoint of our
edge lies in the smaller of X1 and X2, these roles switch, with the reduction of the horizontal part
of φ being at least as large as |sv| and the vertical part of φ only decreasing. In both situations,
the statement is proven.

Lemma 11 (Upper bound for negative routing) Let u and w be two vertices, with w in a
positive cone of u. Let m be the midpoint of the side of Tuw opposing u, and let α be the unsigned
angle between uw and um. There is a deterministic 1-local 0-memory routing algorithm on the
half-θ6-graph for which every path followed has length at most (5/

√
3 · cosα − sinα) · |uw| when

routing from w to u.

Proof. Since the choices that the routing algorithm makes are completely determined by the neigh-
bours of s and the location of s and t, the algorithm is indeed deterministic, 1-local, and 0-memory.
To bound the length of the resulting path, we again showed that for any routing step, the reduction
in φ is at least as large as the length of the edge followed. As in the proof of Lemma 9, this implies
that the routing algorithm terminates and that the total length of the path followed is bounded by
the initial value of φ. Since our destination lies in a negative cone, we start in one of the cases B,
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Figure 14: Routing in case D. The endpoint v of the edge followed lies in X0 (a), or the smaller of
X1 and X2 (b).

C, or D. Of these three cases, case D has the largest initial potential of |ta|+ |ab|+ min(|as|, |sb|).
Taking the side of Tuw as the unit of length reduces this to 1+1+1/2−|wm| = 5/2−|wm|, and us-
ing the same analysis as in Lemma 10, we obtain the desired bound of (5/

√
3·cosα−sinα)·|uw|. �

As Theorem 4 follows from Lemmas 7, 9, 10, and 11, this concludes our proof.

6 A stateful algorithm

Next we present a slightly different routing algorithm from the one in the previous section. The
main difference between the two algorithms is that this one maintains one piece of information as
state, making it O(1)-memory instead of 0-memory. The information that is stored is a preferred
side, and it is either nil, X1, or X2. Intuitively, the new algorithm follows the original algorithm
until it is routing negatively and determines that either X1 or X2 is empty. At that point, the
algorithm sets the empty side as the preferred side and picks the rest of the edges in such a way that
the preferred side remains empty. Thus, the algorithm maintains as invariant that if the preferred
side is set (not nil), that region is empty. Furthermore, once the preferred side is set, it stays fixed
until the algorithm reaches the destination. This algorithm simplifies the cases a little, but more
importantly, it allows the algorithm to check far fewer edges while routing. This is crucial, as the
new algorithm forms the basis for routing algorithms on versions of the half-θ6-graph with some
edges removed to bound the maximum degree, described in the next section.

We now present the details of this stateful version of the routing algorithm. Recall that we are
trying to find a path from a current vertex s to a destination vertex t. For ease of description, we
again assume without loss of generality that t lies in 0̧ or C0 of s. If t lies in C0, the cones around
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s split Tts into three regions X0, X1, and X2, as in Figure 7. For brevity, we use “an edge in X0”
to denote an edge incident to s with the other endpoint in X0. The cases are as follows:

• If t lies in a positive cone of s, we are in case A.
• If t lies in a negative cone of s and no preferred side has been set yet, we are in case B.
• If t lies in a negative cone of s and a preferred side has been set, we are in case C.

These cases are closely related to the cases in the stateless algorithm. Cases A and B correspond
to cases A and D, respectively, while case C merges cases B and C from the original algorithm into
a single case, where only one side’s emptiness is tracked. This is reflected in the routing strategy
for each case:

• In case A, follow the unique edge (s, v) in the positive cone containing t. If t lies in a negative
cone of v, set the preferred side to the region (X1 or X2 of v) that is contained in Tsv, as this
is now known to be empty (see Figure 9b).
• In case B, if there are edges in X0, follow an arbitrary one. Otherwise, if there is an edge in

the smaller of X1 and X2, follow that edge. Otherwise, follow the edge in the larger of X1

and X2 and set the other as the preferred side. By Theorem 1, at least one of these edges
must exist.
• In case C, if there are edges in X0, follow the one closest to the preferred side in cyclic order

around s. Otherwise, follow the edge in the positive cone that is not on the preferred side.
Again, at least one of these edges must exist.

The proof in Section 5 can be adapted to show that this routing algorithm achieves the same
upper bounds. In short, the proof is simplified to only use a potential as defined for cases A, C,
and D, and only a subset of the illustrations in Figures 9, 11, and 14 are relevant. We omit the
repetitive details.

7 Bounding the maximum degree

Each vertex in the half-θ6-graph has at most one incident edge in each positive cone, but it can
have an unbounded number of incident edges in its negative cones. In this section, we describe two
transformations that allow us to bound the total degree of each vertex. The transformations are
adapted from Bonichon et al. [5].

The first transformation discards all edges in each negative cone, except for three: the first and
last edges in clockwise order around the vertex and the edge to the “closest” vertex, meaning the
vertex whose projection on the bisector of the cone is closest (see Figure 15a). This results in a
subgraph with maximum degree 12, which we call G12.

To reduce the degree even further, we note that since the half-θ6-graph is internally triangulated,
consecutive neighbours of u within a negative cone are connected by edges. We call the path formed
by these edges the canonical path. Instead of keeping three edges per negative cone, we now keep
only the edge to the closest vertex, but force the edges of the canonical path to be kept as well
(see Figure 15b). We call the resulting graph G9. Bonichon et al. [5] showed that all edges on the
canonical path are either first or last in a negative cone, making G9 a subgraph of G12. Note that
since the half-θ6-graph is planar, both subgraphs are planar as well. They also proved that G9 is a
3-spanner of the half-θ6-graph with maximum degree 9. Since the half-θ6-graph is a 2-spanner and
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(a) (b)

u

Figure 15: The construction for G12 (a) and G9 (b). Solid edges are kept, while dotted edges are
discarded if no other vertex wants to keep them.

G9 is a subgraph of G12, this shows that both G9 and G12 are 6-spanners of the complete Euclidean
graph. We give an adapted version of the proof of the spanning ratio of G9 below.

Theorem 12 G9 is a 3-spanner of the half-θ6-graph.

Proof. Consider an edge (s, v) in the half-θ6-graph and assume, without loss of generality, that v
lies in a negative cone of s (if not, we can swap the roles of s and v). Now consider the path between
them in G9 consisting of the edge from s to the vertex closest to s, followed by the edges on the
canonical path between the closest vertex and v. We will refer to this path as the approximation
path, and we show that it has length at most 3 · |sv|.

s

v

v0

v1

a

b

c

d

m1 m2

Figure 16: The approximation path.

Let v0 be the closest vertex and let v1, . . . , vk = v be the other vertices on the approximation
path. We assume without loss of generality that s lies in 0̧ of v and that v lies to the right of v0.
We shoot rays parallel to the boundaries of 0̧ from each vertex on the approximation path. Let mi

be the intersection of the right ray of vi−1 and the left ray of vi (see Figure 16). These intersections
must exist, as s is the closest vertex in 0̧vi , for each vi. Let a and b be the intersections of the left
boundary of C

s
0 with the left rays of v and v0, respectively, and let c be the intersection of this left

boundary with the horizontal line through v. Finally, let d be the intersection of the right ray of
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v0 and the left ray of v. We can bound the length of the approximation path as follows:

|sv0|+
k∑
i=1

|vi−1vi|

≤ |sb|+ |bv0|+
k∑
i=1

|vi−1mi|+
k∑
i=1

|mivi|

= |sb|+ |bv0|+ |ab|+ |dv| {by projection}
= |sb|+ |ab|+ |av|
≤ |sc|+ 2 · |cv|

The last inequality follows from the fact that v0 is the closest vertex to s. Let α be ∠csv. Some
basic trigonometry gives us that |sc| = 2√

3
· sin

(
α+ π

3

)
· |sv| and |cv| = 2√

3
· sinα · |sv|. Thus

the approximation path is at most 2√
3
·
(
sin
(
α+ π

3

)
+ 2 · sinα

)
times as long as (s, v). Since this

function is increasing in [0, π3 ], the maximum is achieved for α = π/3, where it is 3. Therefore every
edge of the half-θ6-graph can be approximated by a path that is at most 3 times as long and the
theorem follows. �

Note that the part of the approximation path that lies on the canonical path has length at most
2 · |cv| = 4√

3
· sinα · |sv|. This function is also increasing in [0, π3 ] and its maximal value is 2, so the

total length of this part is at most 2 · |sv|.

7.1 Routing in G12

The stateful algorithm in Section 6 constructs a path between two vertices in the half-θ6-graph.
We cannot directly follow this path in G12, as some of the edges may have been removed. Hence,
we need to find a new path in G12 that approximates the path in the half-θ6-graph, taking the
missing edges into account. This often amounts to following the approximation path for edges that
are in the path in the half-θ6-graph, but were removed to create G12. In addition, some of the
information the algorithm uses to decide which edge to follow relies on the presence or absence of
edges in the half-θ6-graph. Since the absence of these edges in G12 does not tell us whether or not
they were present in the half-θ6-graph, we need to find a new way to make these decisions.

First, note that the only information we need to determine in which of the three cases we are,
are the coordinates of s and t and whether the preferred side has been set or not. Therefore we
can still make this distinction in G12. The following five headlines refer to steps of the stateful
algorithm on the half-θ6-graph, and the text after a headline describes how to simulate that step
in G12. We discuss modifications for G9 in Section 7.2.

Follow an edge (s, v) in a positive cone C. If the edge of the half-θ6-graph is still present in
G12, we simply follow it. If it is not, the edge was removed because s is on the canonical path of v
and it is not the closest, first or last vertex on the path. Since G12 is a supergraph of G9, we know
that all of the edges of the canonical path are kept and every vertex on the path originally had an
edge to v in C. Therefore it suffices to traverse the canonical path in one direction until we reach
a vertex with an edge in C, and follow this edge. Since the edges connecting v to the first and last
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vertices on the path are always kept, the edge we find in this way must lead to v. Note that the
edges of the canonical path are easy to identify, as they are the closest edges to C in cyclic order
around s (one on either side of C).

This method is guaranteed to reach v, but we want to find a competitive path to v. Therefore
we use exponential search along the canonical path: we start by following the shorter of the two
edges of the canonical path incident to s. If the endpoint of this edge does not have an edge in
C, we return to s and travel twice the length of the first edge in the other direction. We keep
returning to s and doubling the maximum travel distance until we find a vertex x that does have
an edge in C. If x is not the closest to v, by the triangle inequality, following its edge to v is shorter
than continuing our search until we reach the closest and following its edge. So for the purpose
of bounding the distance travelled, we can assume that x is closest to v. Let d be the distance
between s and x along the canonical path. By using exponential search to find x, we travel at
most 9 times this distance [2] and afterwards we follow (x, v). From the proof of Theorem 12,
we know that d ≤ 2 · |sv| and d + |xv| ≤ 3 · |sv|. Thus the total length of our path is at most
9 · d+ |xv| = 8 · d+ (d+ |xv|) ≤ 16 · |sv|+ 3 · |sv| = 19 · |sv|.

Determine if there are edges in X0. In the regular half-θ6-graph we can look at all our
neighbours and see if any of them lie in X0. However, in G12, these edges may have been removed.
Fortunately, we can still determine if they existed in the original half-θ6-graph. To do this, we look
at the vertices of the canonical path in this cone that are first and last in clockwise order around
s. If these vertices do not exist, s did not have any incoming edges in this cone, so there can be no
edges in X0. If the first and last are the same vertex, this was the only incoming edge to s from
this cone, so we simply check if its endpoint lies in X0. The interesting case is when the first and
last exist and are distinct. If either of them lies in X0, we have our answer, so assume that both lie
outside of X0. Since they were connected to s, they cannot have t in their positive cone, so they
must lie in one of two regions, which we call S1 and S2 (see Figure 17).

t

s

X1
X2

X0

S1
S2

Figure 17: Possible regions for the first and last vertex.

If both the first and last lie in S2, there can be no edge in X0, since any vertex of the canonical
path in X0 either lies in cone 0̧ of the last vertex, or would come after the last vertex in clockwise
order around s. Both yield a contradiction. If both lie in S1, a similar argument using the first
vertex applies.

On the other hand, if the first lies in S2 and the last in S1, both X1 and X2 have to be empty,
since both vertices are connected to s. Now we are in one of two cases: either X0 is also empty,
or it is not. If there are no vertices in X0 (different from t and s), t must have had an edge to s.
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On the other hand, if there are other vertices in X0, the topmost of these vertices must have had
an edge to s. In either case, there must have been an edge in X0. This shows that we can check
whether there was an edge in X0 in the half-θ6-graph using only the coordinates of the first and
last vertex.

Follow an arbitrary edge in X0. If the half-θ6-graph has edges in X0, we simulate following
an arbitrary one of these by first following the edge to the closest vertex in the negative cone. If
this vertex is in X0, we are done. Otherwise, we follow the canonical path in the direction of X0

and stop once we are inside. This traverses exactly the approximation path of the edge, and hence
travels a distance of at most 3 times the length of the edge.

Determine if there is an edge in X1 or X2. Since these regions are symmetric, we will
consider only the case for X1. Since X1 is contained in a positive cone of s, it contains at most one
edge incident to s. If the edge is present in G12, we can simply test whether the other endpoint
lies in X1. However, if s does not have a neighbour in this cone (see Figure 18), we need to find
out whether it used to have one in the original half-θ6-graph and if so, whether it was in X1. Since
this step is only needed in case B after we determine that there are no edges in X0, we can use this
information to guide our search. Specifically, we know that if we find an edge, we should follow it.

t

s

v

a

Figure 18: An example where s had an edge in X1 in the half-θ6-graph, which was removed during
the construction of G12.

Therefore we simply attempt to follow the edge in this cone, using the exponential search method
for following an edge in a positive cone described earlier. Let x be the first vertex we encounter
that still has an edge (x,w) in C1. If in the half-θ6-graph, s had an edge (s, v) in X1, then we
know (from the arguments presented earlier for following an edge in a positive cone) that w is v.
As such, w must lie in X1. We also know (from the proof of Theorem 12) that the distance along
the canonical path from s to x is at most 2 · |sv|, which is bounded by 2 · |as| since v lies in X1. In
this case, we follow the edge from x to v. Conversely, if we do not find any vertex with an edge in
C1 within a distance of 2 · |as| from s, or we do, but the endpoint of the edge (w) does not lie in
X1, then we can return to s and conclude that it did not have an edge in X1 in the half-θ6-graph
and therefore X1 must be empty.

If there was an edge in X1, we travelled the same distance as if we were simply following the
edge: at most 19 · |sv|. If we return to s unsuccessfully, we travelled at most 20 · |as|: 9 times 2 · |as|
during the exponential search and 2 · |as| to return to s.
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Follow the edge in X0 closest to the preferred side in clockwise order. To follow this
edge, we first follow the edge to the closest vertex. If this lands us in X0, we then follow the
canonical path towards the preferred side and stop at the last vertex on the canonical path that is
in X0. If the closest is not in X0, we follow the canonical path towards X0 and stop at the first or
last vertex in X0, depending on which side of X0 we started on. This follows the approximation
path of the edge, so the distance travelled is at most 3 times the length of the edge.

Routing ratio. This shows that we can simulate the stateful routing algorithm on G12. As state
in the message, we need to store not only the preferred side, but also information for the exponential
search, including distance travelled. The exact routing ratios are as follows.

Theorem 13 Let u and w be two vertices, with w in a positive cone of u. There exists a deter-
ministic 1-local O(1)-memory routing algorithm on G12 with routing ratio

i) 19 · 2 = 38 when routing from u to w,

ii) 19 · 5/
√

3 = 54.848 . . . when routing from w to u.

Proof. As shown above, we can simulate every edge followed by the algorithm by travelling at most
19 times the length of the edge. The only additional cost is incurred in case B, when we try to
follow an edge in the smaller of X1 and X2, but this edge does not exist. In this case, we travel
an additional 20 · |as|, where a is the corner closest to s. Fortunately, this can happen at most
once during the execution of the algorithm, as it prompts the transition to case C, after which
the algorithm never returns to case B. Looking at the proof for the upper bound in Section 5
(specifically, the second case in Figure 14b), we observe that in the transition from case D to C,
there is 2 · |as| of unused potential. Since we are trying to show a routing ratio of 19 times the
original, we can charge the additional 20 · |as| to the 38 · |as| of unused potential. �

7.2 Routing in G9

In this subsection, we explain how to modify the previously described simulation strategies so that
they work for G9, where the first and last edges are not guaranteed to be present. We discuss only
those steps that rely on the presence of these edges. To route successfully in this setting, we need
to change our model slightly. We now let every vertex store a constant amount of information in
addition to the information about its neighbours.

Follow an edge (s, v) in a positive cone. Because the first and last edges are not always kept,
we cannot guarantee that the first vertex we reach with an edge in this positive cone is still part
of the same canonical path. This means that the edge could connect to some arbitrary vertex, far
away from v. Therefore our original exponential search solution does not work. Instead, we store
one bit of information at s (per positive cone), namely in which direction we have to follow the
canonical path to reach the closest vertex to v. Knowing this, we just follow the canonical path
in the indicated direction until we reach a vertex with an edge in this positive cone. This vertex
must be the closest, so it gives us precisely the approximation path and therefore we travel at most
3 · |sv|.
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Determine if there are edges in X0. In G12, this test was based on the coordinates of the
endpoints of the first and last edge. Since these might be missing in G9, we store the coordinates of
these vertices at s. This allows us to perform the check without increasing the distance travelled.

Determine if there is an edge in X1 or X2. As in the positive routing simulation, we now
know where to go to find the closest. Therefore we simply follow the canonical path in this direction
from s and stop when we reach a vertex with an edge in the correct positive cone, or when we have
travelled 2 · |as|. If there is an edge, we follow exactly the approximation path, giving us 3 times
the length of the edge. If there is no edge, we travel 2 · |as| back and forth, for a total of 4 · |as|.

Routing ratio. Since the other simulation strategies do not rely on the presence of the first or
last edges, we can now analyze the routing ratio obtained on G9.

Theorem 14 Let u and w be two vertices, with w in a positive cone of u. By storing O(1)
additional information at each vertex, there exists a deterministic 1-local O(1)-memory routing
algorithm on G9 and G12 with routing ratio

i) 3 · 2 = 6 when routing from u to w,

ii) 3 · 5/
√

3 = 8.660 . . . when routing from w to u.

Proof. The simulation strategy for G12 followed the approximation path for each edge, except when
following an edge in a positive cone. Since our new strategy follows the approximation path there as
well, our new routing ratio is only 3 times the one for the half-θ6-graph. Note that this is still suffi-
cient to charge the additional 4 · |sa| travelled to the transition from case B to C, which has 3 ·2 · |as|
of otherwise unused potential. Since G9 is a subgraph of G12, this strategy works on G12 as well. �

8 Conclusions

We presented a competitive deterministic 1-local 0-memory routing algorithm on the half-θ6-graph.
We also presented matching lower bounds on the routing ratio for any deterministic k-local 0-
memory algorithm, showing that our algorithm is optimal. Since any triangulation can be em-
bedded as a half-θ6-graph using Schnyder’s embedding [21], this shows that any triangulation has
an embedding that admits a competitive routing algorithm. An interesting open problem here is
whether this approach can be extended to other theta-graphs. In particular, we recently extended
the proof for the spanning ratio of the half-θ6-graph to theta-graphs with 4k + 2 cones, for integer
k > 0 [7]. It would be interesting to see if it is possible to find optimal routing algorithms for these
graphs as well.

We further extended our routing algorithm to work on versions of the half-θ6-graph with
bounded maximum degree. As far as we know, these are the first competitive routing algorithms
on bounded-degree plane graphs. There are several problems here that are still open. For example,
while we found a matching lower bound for negative routing in the regular half-θ6-graph, we do
not have one for the version with bounded degree. Can we find this, or is it possible to improve the
routing algorithm further? And can we extend the algorithm to the version with maximum degree
6, introduced by Bonichon et al. [5]?
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