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ABSTRACT
In the classic Minimum Bisection problem we are given as
input a graph G and an integer k. The task is to determine
whether there is a partition of V (G) into two parts A and
B such that ||A| − |B|| ≤ 1 and there are at most k edges
with one endpoint in A and the other in B. In this paper
we give an algorithm for Minimum Bisection with running

time O(2O(k3)n3 log3 n). This is the first fixed parameter
tractable algorithm for Minimum Bisection. At the core of
our algorithm lies a new decomposition theorem that states
that every graph G can be decomposed by small separators
into parts where each part is “highly connected” in the fol-
lowing sense: any cut of bounded size can separate only a
limited number of vertices from each part of the decompo-
sition.

Our techniques generalize to the weighted setting, where
we seek for a bisection of minimum weight among solutions
that contain at most k edges.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Computa-
tions on discrete structures

General Terms
Algorithms, Theory

Keywords
minimum bisection, fixed-parameter tractability, tree de-
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composition, randomized contractions

1. INTRODUCTION
In the Minimum Bisection problem the input is a graph

G on n vertices together with an integer k, and the objective
is to find a partition of the vertex set into two parts A and
B such that |A| = bn

2
c, |B| = dn

2
e, and there are at most k

edges with one endpoint in A and the other endpoint in B.
The problem can be seen as a variant of Minimum Cut, and
is one of the classic NP-complete problems [13]. Minimum
Bisection has been studied extensively from the perspec-
tive of approximation algorithms [11, 10, 18, 23], heuris-
tics [2, 4] and average case complexity [1].

In this paper we consider the complexity of Minimum Bi-
section when the solution size k is small relative to the
input size n. A näıve brute-force algorithm solves the prob-
lem in time nO(k). Until this work, it was unknown whether
there exists a fixed parameter tractable algorithm, that is an
algorithm with running time f(k)nO(1), for the Minimum
Bisection problem. In fact Minimum Bisection was one
of very few remaining classic NP-hard graph problems whose
parameterized complexity status was unresolved. Our main
result is the first fixed parameter tractable algorithm for
Minimum Bisection.

Theorem 1.1. Minimum Bisection admits an algorithm

running in time O(2O(k3)n3 log3 n).

Theorem 1.1 implies that Minimum Bisection can be solved
in polynomial time for k = O( 3

√
logn). In fact, our tech-

niques can be generalized to solve the more general problem
where the target |A| is given as input, the edges have non-
negative weights, and the objective is to find, among all
partitions of V (G) into A and B such that A has the pre-
scribed size and there are at most k edges between A and B,
such a partition where the total weight of the edges between
A and B is minimized.

1.1 Our methods
The crucial technical component of our result is a new

graph decomposition theorem. Roughly speaking, the the-
orem states that for any k, every graph G may be decom-
posed in a tree-like fashion by separators of size 2O(k) such



that each part of the decomposition is “highly connected”.
To properly define what we mean by “highly connected” we
need a few definitions. A separation of a graph G is a pair
A,B ⊆ V (G) such that A ∪ B = V (G) and there are no
edges between A\B and B \A. The order of the separation
(A,B) is |A ∩ B|. A vertex set X ⊆ V (G) is called (q, k)-
unbreakable if every separation (A,B) of order at most k
satisfies |(A \ B) ∩X| ≤ q or |(B \ A) ∩X| ≤ q. The parts
of our decomposition will be “highly connected” in the sense
that they are (2O(k), k)-unbreakable. We can now state the
decomposition theorem as follows.

Theorem 1.2. There is an algorithm that given G and k

runs in time O(2O(k2)n2m) and outputs a tree-decomposition

(T, β) of G such that (i) for each a ∈ V (T ), β(a) is (2O(k), k)-
unbreakable in G, (ii) for each ab ∈ E(T ) we have that

|β(a) ∩ β(b)| ≤ 2O(k), and β(a) ∩ β(b) is (2k, k)-unbreakable
in G.

Here β(a) denotes the bag at node a ∈ V (T ); the completely
formal definition of tree-decompositions may be found in the
preliminaries. It is not immediately obvious that a set X
which is (q, k)-unbreakable is “highly connected”. To get
some intuition it is helpful to observe that if a set X of size
at least 3q is (q, k)-unbreakable then removing any k ver-
tices from G leaves almost all of X, except for at most q
vertices, in the same connected component. In other words,
one cannot separate two large chunks of X with a small sep-
arator. From this perspective Theorem 1.2 can be seen as
an approximate way to “decompose a graph by k vertex-cuts
into it’s k + 1-connected components” [5], which is consid-
ered an important quest in structural graph theory. The
proof strategy of Theorem 1.2 is inspired by the recent de-
composition theorem of Marx and Grohe [15] for graphs ex-
cluding a topological subgraph. Contrary to the approach of
Marx and Grohe [15], however, the crucial technical tool we
use to decompose the graph are the important separators of
Marx [19].

Our algorithm for Minimum Bisection applies Theorem 1.2
and then proceeds by performing bottom up dynamic pro-
gramming on the tree-decomposition. The states in the
dynamic program are similar to the states in the dynamic
programming algorithm for Minimum Bisection on graphs
of bounded treewidth [16]. Property (ii) of Theorem 1.2
ensures that the size of the dynamic programming table

is upper bounded by 2O(k2)nO(1). For graphs of bounded
treewidth all bags have small size, making it easy to com-
pute the dynamic programming table at a node b of the
decomposition tree, if the tables for the children of b have
already been computed. In our setting we do not have any
control over the size of the bags, we only know that they are
(2O(k), k)-unbreakable. We show that the sole assumption

that the bag at b is (2O(k), k)-unbreakable is already suffi-
cient to efficiently compute the table at b from the tables of
its children, despite no a priori guarantee on the bag’s size.
The essence of this step is an application of the “randomized
contractions” technique [7].

We remark here that the last property of the decomposi-
tion of Theorem 1.2 — the one that asserts that adhesions
β(a) ∩ β(b) are (2k, k)-unbreakable in G — is not essential
to establish the fixed-parameter tractability of Minimum Bi-
section. This high unbreakability of adhesions is used to
further limit the number of states of the dynamic program-
ming, decreasing the dependency on k in the algorithm of

Theorem 1.1 from double- to single-exponential.

1.2 Related work on balanced separations
There are several interesting results concerning the pa-

rameterized complexity of finding balanced separators in
graphs. Marx [19] showed that the the vertex-deletion vari-
ant of the bisection problem is W[1]-hard. In Minimum
Vertex Bisection the task is to partition the vertex set
into three parts A, S and B such that |S| ≤ k and |A| = |B|,
and there are no edges between A and B. It is worth men-
tioning that the hardness result of Marx [19] applies to the
more general problem where |A| is given as input, however
the hardness of Minimum Vertex Bisection easily follows
from the results presented in [19].

As the vertex-deletion variant of the bisection problem is
W[1]-hard, we should not expect that our approach would
work also in this case. Observe that one can compute the
decomposition of Theorem 1.2 and define the states of the
dynamic programming over the tree decomposition, as it is
done for graphs of bounded treewidth. However, we are un-
able to perform the computations needed for one bag of the
decomposition. Moreover, it is not only the artifact of the
“randomized contractions” technique, but the hard instances
obtained from the reduction of [19] are in fact highly un-
breakable by our definition, and Theorem 1.2 would return
a trivial decomposition.

Feige and Mahdian [12] studied cut problems that may be
considered as approximation variants of Minimum Bisec-
tion and Minimum Vertex Bisection. We say that a ver-
tex (edge) set S is an α-(edge)-separator if every connected
component of G\S has at most αn vertices. The main result
of Feige and Mahdian [12] is a randomized algorithm that
given an integer k, 2

3
≤ α < 1 and ε > 0 together with a

graph G which has an α-separator of size at most k, outputs
in time 2f(ε)knO(1) either an α-separator of size at most k
or an (α+ ε)-separator of size strictly less than k. They also
give a deterministic algorithm with similar running time for
the edge variant of this problem. To complement this result
they show that, at least for the vertex variant, the exponen-
tial running time dependence on 1/ε is unavoidable. Specif-
ically, they prove that for any α > 1

2
finding an α-separator

of size k is W[1]-hard, and therefore unlikely to admit an

algorithm with running time f(k)nO(1), for any function f .

On the other hand, our methods imply a 2O(k3)nO(1/α) time
algorithm for finding an α-edge-separator of size at most k,
for any α > 0.

Minimum Bisection on planar graphs was shown to be
fixed parameter tractable by Bui and Peck [3]. It is inter-
esting to note that Minimum Bisection is not known to
be NP-hard on planar graphs, and the complexity of Min-
imum Bisection on planar graphs remains a challenging
open problem. More recently, van Bevern et al. [25] used
the treewidth reduction technique of Marx et al. [20] to give
a fixed parameter tractable algorithm for Minimum Bisec-
tion for the special case when removing the cut edges leaves
a constant number of connected components. Their algo-
rithm also works for the vertex-deletion variant the same
restrictions. Since Minimum Vertex Bisection is known
to be W[1]-hard, it looks difficult to extend their methods
to give a fixed parameter tractable algorithm for Minimum
Bisection without any restrictions. Thus, Theorem 1.1 re-
solves an open problem of van Bevern et al. [25] on the ex-
istence of such an algorithm.



1.3 Related work on graph decompositions
The starting point of our decomposition theorem is the

“recursive understanding” technique pioneered by Grohe et
al. [14], and later used by Kawarabayashi and Thorup [17]
and by Chitnis et al. [7] to design a number of interesting
parameterized algorithms for cut problems. Recursive un-
derstanding can be seen as a reduction from a parameterized
problem on general graphs to the same problem on graphs
with a particular structure. Grohe et al. [14] essentially use
recursive understanding to reduce the problem of deciding
whether G contains H as a topological subgraph to the case
where G either excludes a clique on f(|H|) vertices as a
minor or contains at most f(|H|) vertices of degree more
than f(|H|), for some function f . Marx and Grohe [15]
subsequently showed that any graph which excludes H as
a topological subgraph can be decomposed by small sepa-
rators, in a tree-like fashion, into parts such that each part
either excludes a clique on f(|H|) vertices as a minor or con-
tains at most f(|H|) vertices of degree more than f(|H|), for
some function f . Thus, the decomposition theorem of Marx
and Grohe [15] can be seen as a “structural” analogue of the
recursive understanding technique for topological subgraph
containment.

Both Kawarabayashi and Thorup [17] and Chitnis et al. [7]
apply recursive understanding to reduce certain parameter-
ized cut problems on general graphs to essentially the same
problem on a graph G where V (G) is (f(k), k)-unbreakable
for some function f . Then they proceed to show that the
considered problem becomes fixed parameter tractable on
(f(k), k)-unbreakable graphs. Observe that Minimum Bi-
section on (f(k), k)-unbreakable graphs is trivially fixed
parameter tractable - if the number of vertices is more than
2f(k) we can immediately say no, while if the number of
vertices is at most 2f(k), then a brute force algorithm is al-
ready fixed parameter tractable. More importantly, it turns
out that even the more general problem where |A| is given on
the input can be solved in fixed parameter tractable time on
(f(k), k)-unbreakable graphs via an application of the “ran-
domized contractions” technique of Chitnis et al [7]. It is
therefore very natural to try to use recursive understanding
in order to reduce Minimum Bisection on general graphs
to Minimum Bisection on (f(k), k)-unbreakable graphs.

Unfortunately, it seems very difficult to pursue this route.
In particular, recursive understanding works by cutting the
graph into two parts by a small separator, “understanding”
the easier of the two parts recursively, and then replacing
the“understood” part by a constant size gadget. For Mini-
mum Bisection it seems unlikely that the understood part
can be emulated by any constant size gadget because of the
balance constraint in the problem definition. Intuitively, we
would need to encode the behaviour of the understood part
for every possible cardinality of A, which gives us amount
of information that is not bounded by a function of k. The
issue has strong connections to the fact that the best known
algorithm for Minimum Bisection on graphs of bounded
treewidth is at least quadratic [16] rather than linear.

At this point our decomposition theorem comes to the
rescue. It precisely allows us to structurally decompose the
graph in a tree-like fashion into (f(k), k)-unbreakable parts,
which provides much more robust foundations for further al-
gorithmic applications. Thus, essentially our decomposition
theorem does the same for cut problems as the decompo-
sition theorem of Marx and Grohe [15] does for topologi-

cal subgraph containment. Notably, the “recursive under-
standing” step used by Kawarabayashi and Thorup [17] and
Chitnis et al. [7] for their problems could be replaced by dy-
namic programming over the tree-decomposition given by
Theorem 1.2.

We remark here that it has been essentially known, and
observed earlier by Chitnis, Cygan and Hajiaghayi (private
communication), that Minimum Bisection can be solved in
FPT time on sufficiently unbreakable graphs via the “ran-
domized contractions” technique. Furthermore, although
our application of this framework to handle one bag of the
decomposition is more technical than in [7], due to the pres-
ence of the information for children bags, it uses no novel
tools compared to [7]. Hence, we emphasize that our main
technical contribution is the decomposition theorem (Theo-
rem 1.2), with the fixed-parameter algorithm for Minimum
Bisection being its corollary via an involved application of
known techniques.

In this extended abstract we prove the main technical con-
tribution of the paper, namely Theorem 1.2. This is done in
Section 3, after setting up notation and preliminary results
in Section 2. We briefly skecth the dynamic programming
algorithm for Minimum Bisection in Section 4. For full ex-
position of this algorithm, as well as discussion on weighted
extension and α-edge-separators we refer to the full version
of the paper [8].

2. PRELIMINARIES
We use standard graph notation, see e.g. [9]. We use n

and m to denote cardinalities of the vertex and edge sets,
respectively, of a given graph provided it is clear from the
context. We begin with some definitions and known results
on separators and separations in graphs.

Definition 2.1 (separator). For two sets X,Y ⊆ V (G)
a set W ⊆ V (G) is called an X−Y separator if in G\W no
connected component contains a vertex of X and a vertex of
Y at the same time.

Definition 2.2 (separation). A pair (A,B) where A∪
B = V (G) is called a separation if E(A\B,B \A) = ∅. The
order of a separation (A,B) is defined as |A ∩B|.

Definition 2.3 (important separator). An inclusion-
wise minimal X − Y separator W is called an important
X − Y separator if there is no X − Y separator W ′ with
|W ′| ≤ |W | and RG\W (X \W ) ( RG\W ′(X \W ′), where
RH(A) is the set of vertices reachable from A in the graph
H.

Lemma 2.4 ([6, 21]). For any two sets S, T ⊆ V (G)
there are at most 4k important S − T separators of size at
most k and one can list all of them in O(4kk(n+m)) time.

We proceed to define tree-decompositions. For a rooted
tree T and a non-root node t ∈ V (T ), by parent(t) we denote
the parent of t in the tree T . For two nodes u, t ∈ T , we say
that u is a descendant of t, denoted u � t, if t lies on the
unique path connecting u to the root. Note that every node
is thus its own descendant.

Definition 2.5 (tree decomposition). A tree decom-
position of a graph G is a pair (T, β), where T is a rooted

tree and β : V (T )→ 2V (G) is a mapping such that:



• for each node v ∈ V (G) the set {t ∈ V (G)|v ∈ β(t)}
induces a nonempty and connected subtree of T ,

• for each edge e ∈ E(G) there exists t ∈ V (T ) such that
e ⊆ β(t).

The set β(t) is called the bag at t, while sets β(u) ∩ β(v)
for uv ∈ E(T ) are called adhesions. Following the notation
from [15], for a tree decomposition (T, β) of a graph G we

define auxiliary mappings σ, γ : V (T )→ 2V (G) as

γ(t) =
⋃
u�t

β(u),

σ(t) =

{
∅ if t is the root of T

β(t) ∩ β(parent(t)) otherwise

Finally, we proceed to the definition of unbreakability.

Definition 2.6 ((q, k)-unbreakable set). We say that
a set A is (q, k)-unbreakable, if for any separation (X,Y ) of
order at most k we have |(X\Y )∩A| ≤ q or |(Y \X)∩A| ≤ q.
Otherwise A is (q, k)-breakable, and any separation (X,Y )
certifying this is called a witnessing separation.

Let us repeat the intuition on unbreakable sets from the
introduction. If a setX of size at least 3q is (q, k)-unbreakable
then removing any k vertices from G leaves almost all of X,
except for at most q vertices, in the same connected compo-
nent. In other words, one cannot separate two large chunks
of X with a small separator.

Observe that if a set A is (q, k)-unbreakable in G, then
any of its subset A′ ⊆ A is also (q, k)-unbreakable in G.
Moreover, if A is (q, k)-unbreakable in G, then A is also
(q, k)-unbreakable in any supergraph of G. For a small set A
it is easy to efficiently verify whether A is (q, k)-unbreakable
in G, or to find a witnessing separation, by checking, for all
possible pairs (A1, A2) of disjoint subsets of A of size q + 1,
whether A1 and A2 can be separated in G by a cut of size
at most k.

Lemma 2.7. Given a graph G, a set A ⊆ V (G) and an
integer q one can check in O(|A|2q+2k(n+m)) time whether
A is (q, k)-unbreakable in G, and if not, then find a separa-
tion (X,Y ) of order at most k such that |(X \ Y ) ∩ A| > q
and |(Y \X) ∩A| > q.

3. DECOMPOSITION
We now restate our decomposition theorem in a slightly

stronger form that will emerge from the proof.

Theorem 3.1. There is an O(2O(k2)n2m) time algorithm
that, given a connected graph G together with an integer k,
computes a tree decomposition (T, β) of G with at most n
nodes such that the following conditions hold:

(i) for each t ∈ V (T ), the graph G[γ(t)]\σ(t) is connected
and N(γ(t) \ σ(t)) = σ(t) ,

(ii) for each t ∈ V (T ), the set β(t) is (2O(k), k)-unbreakable
in G[γ(t)],

(iii) for each non-root t ∈ V (T ), we have that |σ(t)| ≤ 2O(k)

and σ(t) is (2k, k)-unbreakable in G[γ(parent(t))].

3.1 Proof overview
We first give an overview of the proof of Theorem 3.1,

ignoring the requirement that each adhesion is supposed to
be (2k, k)-unbreakable. As discussed in the introduction,
this property is only used to improve the running time of the
algorithm, and is not essential to establish fixed-parameter
tractability.

We prove the decomposition theorem using a recursive ap-
proach, similar to the standard framework used for instance
by Robertson and Seymour [24] or by Marx and Grohe [15].
That is, in the recursive step we are given a graph G together
with a relatively small set S ⊆ V (G) (i.e., of size bounded

by 2O(k)), and our goal is to construct a decomposition of
G satisfying the requirements of Theorem 3.1 with an ad-
ditional property that S is contained in the root bag of the
decomposition. The intention is that the recursive step is
invoked on some subgraph of the input graph, and the set
S is the adhesion towards the decomposition of the rest of
the graph.

Henceforth we focus on one recursive step, and consider
three cases. In the base case, if |S| ≤ 3k, we add an arbitrary
vertex to S and repeat. In what follows, we assume |S| > 3k.

First, assume that S is (2k, k)-breakable in G, and let
(X,Y ) be the witnessing separation. We proceed in a stan-
dard manner (cf. [24]): we create a root bag A := S ∪ (X ∩
Y ), for each connected component C of G \ A recurse on
(NG[C], NG(C)), and glue the obtained trees as children of
the root bag. It is straightforward from the definition of the
witnessing separation that in every recursive call we have
|NG(C)| ≤ |S|. Moreover, clearly |A| ≤ |S|+ k and hence A
is appropriately unbreakable.

In the last, much more interesting case the adhesion S
turns out to be (2k, k)-unbreakable. Hence, any separation
(X,Y ) in G partitions S very unevenly: almost the entire
set S, up to O(k) elements, lies on only one side of the
separation. Let us call this side the“big”side, and the second
side the “small” one.

The main idea now is as follows: if, for each v ∈ V (G), we
mark all important separators of size O(k) between v and
S, then the marked vertices will separate all “small” sides
of separations from the set S. Let B be the set of marked
vertices and let A be the set of all vertices of G that are
either in B ∪ S, or are not separated from S by any of the
considered important separator. We observe that the strong
structure of important separators — in particular, the single-
exponential bound on the number of important separators
for one vertex v — allows us to argue that each connected
component C of G \A that is separated by some important
separator from S has only bounded number of neighbours
in A. Moreover, the fact that we cut all “small” sides of
separations implies that A is appropriately unbreakable in
G. Hence, we may recurse, for each connected component
C of G \ A that is separated by some important separator
from S, on (NG[C], NG(C)), and take A as a root bag.

The section is organised as follows. In Section 3.2 we de-
fine formally the notion of chips, that are parts of the graph
cut out by important separators, and provide all the prop-
erties that play crucial role in Section 3.3. In Section 3.3
we also show how to proceed with the case S being un-
breakable, that is, how extract the root bag containing S
by cutting away all the chips. In Section 3.4 we perform
some technical augmentation to ensure that the adhesions
are (2k, k)-unbreakable. Finally in Section 3.5 we combine



the obtained results and construct the main decomposition
of Theorem 3.1.

3.2 Chips
In this subsection we define fragments of the graph which

are easy to chip (i.e. cut out of the graph) from some given
set of vertices S, and show their basic properties.

Definition 3.2 (chips). For a fixed set of vertices S ⊆
V , a subset C ⊆ V is called a chip, if G[C] is connected,
|N(C)| ≤ 3k, and N(C) is an important C − S separator.

Let C be the set of all inclusion-wise maximal chips.
The following lemma is straightforward from the definition

of important separators.

Lemma 3.3. For any nonempty set C ⊆ V (G) such that
G[C] is connected, the following conditions are equivalent.

(i) N(C) is an important C − S separator;

(ii) for any v ∈ C, N(C) is an important v − S separator;

(iii) there exists v ∈ C such that N(C) is an important v−S
separator.

Note also that for a connected set of vertices D and any
important D − S separator Z of size at most 3k that is
disjoint with D, the set of vertices reachable from D in G\Z
forms a chip. Lemmata 2.4 and 3.3 show how to enumerate
inclusion-wise maximal chips.

Lemma 3.4. Given a set S ⊆ V (G) one can compute the

set C of all inclusion-wise maximal chips in O(2O(k)n(n +
m)) time. In particular, |C| ≤ 43kn.

Proof. For any v ∈ V , we use Lemma 2.4 to enumerate
the set Zv of all important v − S separators of size at most
3k. Recall that for any Z ∈ Zv, the set RG\Z(v) is the
vertex set of the connected component of G \ Z containing
v. Define Av = {RG\Z(v) : Z ∈ Zv} and let Cv be the set of
inclusion-wise maximal elements of Av. By Lemma 3.3 we
infer that if some chip C ∈ Av is not inclusion-wise maximal,
then there exists C′ ∈ Av such that C ( C′. Therefore, we
have that C =

⋃
v∈V (G) Cv.

As |Zv| ≤ 43k for any v ∈ V (G), the bound on |C| follows.
For each v ∈ V (G), the sets Zv, Av and Cv can be computed

in O(2O(k)(n+m)) time in a straightforward manner. The

computation of C =
⋃
v∈V (G) Cv in O(2O(k)n(n + m)) time

can be done by inserting all the elements of
⋃
v∈V (G) Cv into

a prefix tree (trie), each in O(n) time, and ignoring encoun-
tered duplicates.

Definition 3.5 (chips touching). We say that two chips
C1, C2 ∈ C, C1 6= C2, touch each other, denoted C1 ∼ C2, if
C1 ∩ C2 6= ∅ or E(C1, C2) 6= ∅.

The following lemma provides an alternative definition of
touching that we will find useful.

Lemma 3.6. C1 ∈ C touches C2 ∈ C if and only if N(C1)∩
C2 6= ∅.

Proof. From right to left, if v ∈ N(C1) ∩ C2 then there
exists a neighbour u of v that belongs to C1, and conse-
quently uv ∈ E(C1, C2).

From left to right, first assume C1 ∩ C2 6= ∅. Since C
contains only inclusion-wise maximal chips, we have that
C2 \ C1 6= ∅. By the properties of chips, the graph G[C2]
is connected, hence there is an edge between C2 \ C1 and
C1 ∩ C2 inside G[C2]. This proves N(C1) ∩ C2 6= ∅.

In the other case, assume that C1 ∩ C2 = ∅ but there
exists uv ∈ E(C1, C2) such that u ∈ C1 and v ∈ C2. Since
C1 ∩C2 = ∅, it follows that v /∈ C1, and hence v ∈ N(C1) ∩
C2.

The next result provides the most important tool for bound-
ing the size of adhesions in the constructed decomposition.

Lemma 3.7. Any chip C ∈ C touches at most 3k · 43k

other chips of C.

Proof. Assume that C touches some C′ ∈ C. By Lemma 3.6
there exists a vertex v ∈ N(C) ∩ C′. Observe that since
N(C′) is an important C′ −S separator, then N(C′) is also
an important v − S separator. By Lemma 2.4 there are at
most 43k important v−S separators of size at most 3k. Since
|N(C)| ≤ 3k (by the properties of chips), we infer that C
touches at most 3k · 43k chips from C.

3.3 Local decomposition
Equipped with basic properties of chips we are ready to

prove the main step of the decomposition part of the paper.
In what follows we show that given a (2k, k)-unbreakable
set S of size bounded in k one can find a (potentially large)
unbreakable part A ⊆ V of the graph, such that S ⊆ A and
each connected component of G \ A is adjacent to a small
number of vertices of A. In what follows, let us define

η = 3k · (3k · 43k + 1), τ = (3k)2 · 83k + 2k.

Theorem 3.8. There is an O(2O(k)nm) time algorithm
that, given a connected graph G together with an integer k
and a (2k, k)-unbreakable set S ⊆ V (G), computes a set
A ⊆ V (G) such that:

(a) S ⊆ A,

(b) for each connected component D of G\A we have |NG(D)| ≤
η,

(c) A is (τ, k)-unbreakable in G, and

(d) if |S| > 3k, G \ S is connected and N(V (G) \ S) = S,
then S 6= A.

Proof. Let C be the set of inclusion-wise maximal chips,
enumerated by Lemma 3.4. We define

A =

(⋂
C∈C

V (G) \N [C]

)
∪
⋃
C∈C

N(C).

In the definition we assume that when C is empty, then A =
V (G). The claimed running time of the algorithm follows
directly from Lemma 3.4.

For property (a), note that no vertex of S is contained in
a chip of C, hence S ⊆ A. We now show property (d). Note
that N(V (G)\S) = S and |S| > 3k implies S 6= V (G). Con-
sequently, if C = ∅, property (d) is straightforward. Other-
wise, let C ∈ C. Note that |S| > 3k implies that S\N(C) 6= ∅
and the connectivity of G\S together with N(V (G)\S) = S
further implies that N(C) \ S 6= ∅. Consequently, A \ S 6= ∅
and property (d) is proven.

We now move to the remaining two properties.



Claim 3.9. For any connected component D of G \ A
there exists a chip C1 ∈ C such that D ⊆ C1.

Proof. Observe that a vertex which is not contained in
any chip belongs to the set A, as it is either contained in
N(C) for some C ∈ C or it belongs to V (G)\N [C] for every
C ∈ C. Let D be an arbitrary connected component of G\A
and let v ∈ D be its arbitrary vertex. As v /∈ A, there is a
chip Cv ∈ C such that v ∈ Cv. Recall that by its definition
the set A contains all the neighbours of all the chips in C,
hence N(Cv) ∩ D = ∅ and by the connectivity of G[D] we
have D ⊆ Cv. y

In the following claim we show that the set A satisfies
property (b) of Theorem 3.8.

Lemma 3.10. For any connected component D of G \ A
it holds that |N(D)| ≤ η.

Proof. Let D be an arbitrary connected component of
G \ A. By Claim 3.9 there exists C ∈ C such that D ⊆ C.
Intuitively each vertex of N(D) belongs to the set A for one
of two reasons: (i) it belongs to N(C), or (ii) it is adjacent
to a vertex of some other chip, which touches C. In both
cases we show that there is only a bounded number of such
vertices, which is formalized as follows.

Let v be any vertex of N(D). Clearly v ∈ N [C], hence
we either have v ∈ N(C) or v ∈ C. Observe that if v ∈ C,
then since v ∈ A, by the definition of the set A we have
v ∈ N(C′) for some C′ ∈ C, C′ 6= C. Since v ∈ N(C′) ∩ C,
then C′ touches C by Lemma 3.6. We infer that N(D) ⊆
N(C) ∪

⋃
C′∈C,C∼C′ N(C′). The claimed upper bound on

|N(D)| follows from Lemma 3.7.

Next, we show that the set A is unbreakable. A short an
informal rationale behind this property is that everything
what could be easily cut out of the graph was already ex-
cluded in the definition of A.

Lemma 3.11. The set A is (τ, k)-unbreakable.

Proof. Assume the contrary, and let (X,Y ) be a wit-
nessing separation, i.e. we have that |X ∩Y | ≤ k, |(X \Y )∩
A| > τ and |(Y \X)∩A| > τ . Since S is (2k, k)-unbreakable,
then either |(X \Y )∩S| ≤ 2k or |(Y \X)∩S| ≤ 2k. Without
loss of generality we assume that |(X \ Y ) ∩ S| ≤ 2k. Let
us define a set Q = (X ∩ Y ) ∪ (X ∩ S) and observe that
|Q| ≤ 3k.

Note that each connected component of G \ Q is either
entirely contained in X \ Y or in Y \X (see Fig. 1a). Con-
sider connected components of the graph G \ Q that are
contained in X \ Y and observe that they contain at least
|((X \Y )∩A)\S| > τ −2k vertices of A in total. Therefore,
by grouping the connected components of G\Q contained in
X \Y by their neighbourhoods in Q, we infer that there ex-
ists a set of connected components D = {D1, . . . , Dr}, such
that ∀1≤i,j≤rNG(Di) = NG(Dj) and∣∣∣∣∣

r⋃
i=1

Di ∩A

∣∣∣∣∣ > τ − 2k

23k
= (3k)2 · 43k . (1)

We now need the following claim.

Claim 3.12. There is a subset C0 ⊆ C, such that each
v ∈

⋃r
i=1Di ∩ A belongs to some chip of C0, and there are

at most 3k · 43k chips in C that touch some chip of C0.

Proof. Observe that, for each 1 ≤ i ≤ r, Q is a Di − S
separator (see Fig. 1a) of size at most 3k. Therefore, for
each Di there is an important Di − S separator of size at
most 3k disjoint with Di, hence each Di is contained in some
chip of C. Consider two cases.

First, assume that for each 1 ≤ i ≤ r we have Di ∈ C.
As C0 take {D1, . . . , Dr}. Observe that as components Di
have the same neighbourhoods in G, then by Lemma 3.6
each chip of C that touches some chip Di touches also D1.
Therefore, by Lemma 3.7 there are at most 3k · 43k chips in
C that touch some chip of C0.

In the second case assume that there exist 1 ≤ i0 ≤ r and
a chip C ∈ C such that Di0 ( C. We shall prove that for
each 1 ≤ i ≤ r we have Di ⊆ C. Since C is connected and
C \ Di0 is non-empty, we have that C ∩ N(Di0) 6= ∅. Let
C′ = C∪

⋃
1≤i≤rDi. Clearly C′∩S = ∅, and C′ is connected

since each component Di is adjacent to every vertex of C ∩
N(Di0). Moreover, as each Di has the same neighbourhood
in Q we have |N(C′)| ≤ |N(C)| ≤ 3k (see Fig. 1b).As C
contains only maximal chips we have C′ = C and hence⋃

1≤i≤rDi ⊆ C. Define C0 as {C}. By Lemma 3.7 a single

chip touches at most 3k · 43k other chips, which finishes the
proof of Claim 3.12 y

Let v ∈ A∩Di for some 1 ≤ i ≤ r. Since v is contained in
some C′ ∈ C0, we have v /∈ V (G) \N [C′]. Consequently, by
the definition of the set A there exists a chip Cv ∈ C such
that v ∈ N(Cv). Note that C′ 6= Cv and N(Cv) ∩ C′ 6= ∅,
hence by Lemma 3.6 C′ touches Cv. By Claim 3.12 there
are at most 3k · 43k chips touching a chip of C0. As each Cv
satisfies |N(Cv)| ≤ 3k, we infer that the number of vertices
of A in

⋃
1≤i≤rDi is at most (3k)243k, which contradicts (1)

and finishes the proof of Lemma 3.11.

Lemma 3.10 and Lemma 3.11 ensure properties (b) and
(c) of the set A, respectively. This concludes the proof of
Theorem 3.8.

3.4 Strengthening unbreakability of adhesions
So far Theorem 3.8 provides us with a construction of

the bag that meets almost all the requirements, apart from
(2k, k)-unbreakability of adhesions. For this reason, in this
section we want to show that the set A from Theorem 3.8
can be extended to a set A′ in such a way that for each
connected component D of G \ A′ the set NG(D) is even
(2k, k)-unbreakable. During this extension we may weaken
unbreakability of A′, but if we are careful enough then this
loss will be limited to a single-exponential function of k. In
the following we let

τ ′ = τ +

((
τ + k

2

)
· k + k

)
· kη .

Lemma 3.13. Let G be a graph, and L ⊆ V (G) be a sub-
set of vertices of size at least 2k + 1. Then one can in
O(|L|4k+3kn(n + m)) time find a set L′, L ⊆ L′, such that
|L′ \ L| ≤ (|L| − 2k − 1) · k and for each connected compo-
nent D of G \ L′, we have that |NG(D)| ≤ |L| and NG(D)
is (2k, k)-unbreakable in G.

Proof. We prove the lemma by induction on |L|, with
the following two base cases. If L = V (G), clearly we
may return L′ = L. In the second base case we assume
that L is (2k, k)-unbreakable in G, which can be checked in
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Figure 1: Illustrations of the proof of Theorem 3.8

O(|L|4k+2k(n + m)) time using Lemma 2.7. Then for each
connected component D of G \ L we have that NG(D) ⊆
L, and thus |NG(D)| ≤ |L| and NG(D) is also (2k, k)-
unbreakable in G. Hence we can set L′ = L, and since
|L| ≥ 2k + 1, we have that |L′ \ L| ≤ (|L| − 2k − 1) · k.

Now let us assume that L is (2k, k)-breakable in G, and
hence there exists a separation (X,Y ) of G such that |X ∩
Y | ≤ k, |(X \ Y ) ∩ L| > 2k and |(Y \ X) ∩ L| > 2k,
found by the algorithm of Lemma 2.7. We use inductively
Lemma 3.13 for the pair (G1 = G[X], L1 = (X∩L)∪(X∩Y ))
and for the pair (G2 = G[Y ], L2 = (Y ∩ L) ∪ (X ∩ Y )),
to obtain sets L′1 and L′2, respectively. Note here that
|L1|, |L2| ≥ 2k+ 1 and |L1|, |L2| < |L|. Define L′ = L′1 ∪L′2.
Each connected component D of G\L′ is either a connected
component of G1 \ L′1 and is adjacent only to L′1, or is a
connected component of G2 \L′2 and is adjacent only to L′2.
Assume without of loss of generality the first case. By induc-
tive assumption we infer that |NG1(D)| ≤ |L1| and NG1(D)
is (2k, k)-unbreakable in G1, and since NG1(D) = NG(D),
|L1| < |L|, and G1 is a subgraph of G, then it follows that
|NG(D)| ≤ |L| and NG(D) is (2k, k)-unbreakable in G. It
remains to argue that the cardinality of L′ \ L is not too
large. Observe that

L′ \ L ⊆ (L′1 \ L1) ∪ (L′2 \ L2) ∪ (X ∩ Y ) ;

therefore, by induction we have

|L′ \ L| ≤ (|L1| − 2k − 1) · k + (|L2| − 2k − 1) · k + k

≤ (|L1|+ |L2| − 4k − 1) · k
≤ (|L|+ 2|X ∩ Y | − 4k − 1) · k
≤ (|L| − 2k − 1) · k .

Let us now bound the running time of the recursion. Clearly,
as the size of the set L decreases in the recursive calls, the
depth of the recursion is at most |L|. Moreover, note that
any vertex may appear in V (G) \L in at most one recursive
call (G,L) at any fixed level of the recursion tree. Hence,
there are at most |L|n recursive calls that do not corre-
spond to the first base case, and, consequently, at most
2|L|n + 1 recursive calls in total. As each recursive call
takes O(|L|4k+2k(n+m)) time, the promised running time
bound follows.

Theorem 3.14. There is an O(2O(k2)nm) time algorithm
that, given a connected graph G together with an integer k
and a (2k, k)-unbreakable set S, computes a set A′ ⊆ V (G)
such that:

(a) S ⊆ A′,

(b) for each connected component D of G\A′ the set NG(D)
is (2k, k)-unbreakable, and |NG(D)| ≤ η,

(c) A′ is (τ ′, k)-unbreakable in G,

(d) moreover, if |S| > 3k, G \S is connected and N(V (G) \
S) = S, then S 6= A′.

Proof. We start by finding the set A by running the
algorithm Theorem 3.8. Next, for each connected compo-
nent D of G \ A using Lemma 2.7 we check whether N(D)
is (2k, k)-breakable in G. By Theorem 3.8, the cardinality
of N(D) is bounded by η, hence all tests take total time

O(η4k+2knm) = O(2O(k2)nm) time. Note that if N(D)
is (2k, k)-breakable in G, then in particular |N(D)| > 2k,
hence we can use Lemma 3.13 for the pair (G[N [D]], LD =
N(D)); let L′D be the obtained set. As |LD| ≤ η, the
algorithm of Lemma 3.13 runs in O(η4k+3k|N [D]|m) time
for a fixed component D, and total time taken by calls to
Lemma 3.13 is:∑

D

O(η4k+3k(|D|+ |N(D)|)m)

≤ O(η4k+3km) ·

(∑
D

|D|+
∑
D

η

)
= O(η4k+4knm) = O(2O(k2)nm).

In the case when N(D) is (2k, k)-unbreakable, let LD =
L′D = N(D). Define A′ = A ∪ (

⋃
D L
′
D), where the union is

taken over all the connected components D of G \A.
Since S ⊆ A ⊆ A′, we have that S ⊆ A′, and, more-

over, the property (d) follows directly from property (d) of
Theorem 3.8. Moreover, as |LD| ≤ η for each connected
component D of G \ A, then by Lemma 3.13 for each con-
nected component D′ of G \ A′ we also have |NG(D′)| ≤ η.
The fact that NG(D′) is (2k, k)-unbreakable in G follows



directly from Lemma 3.13. It remains to show that A′ is
(τ ′, k)-unbreakable in G.

Consider any separation (X,Y ) of G of order at most k.
By Theorem 3.8 the set A is (τ, k)-unbreakable, hence either
|(X \ Y ) ∩ A| ≤ τ or |(Y \ X) ∩ A| ≤ τ , and without loss
of generality assume the former. As (X,Y ) is an arbitrary
separation of order at most k, to show that A′ is (τ ′, k)-
unbreakable it suffices to prove that |(X \ Y ) ∩ (A′ \ A)| ≤
(
(
τ+k
2

)
· k + k) · kη.

Note that A′ \ A ⊆
⋃
D L
′
D \ LD. As for each D we

have |L′D \ LD| ≤ kη by Lemma 3.13, to finish the proof of
Theorem 3.14 we are going to show that there are at most(
τ+k
2

)
· k + k connected components D of G \ A such that

D∩(X \Y ) 6= ∅ and L′D 6= LD. As (X,Y ) is of order at most
k, there are at most k connected componentsD ofG\A inter-
secting X ∩Y . Hence we restrict our attention to connected
components D of G\A, such that D ⊆ X \Y , which in turn
implies N(D) ⊆ A ∩X. Recall that if L′D 6= LD for such a
connected component D, then N(D) is (2k, k)-breakable in
G, and hence there exist two vertices va, vb ∈ N(D) ⊆ A∩X,
such that the minimum vertex cut separating va and vb in
G is at most k. However, such a pair of vertices va, vb may
be simultaneously contained in neighbourhoods of at most
k connected components D, since each component D adja-
cent both to va and to vb contributes with at least one path
between them. As |A∩X| ≤ τ +k, the theorem follows.

3.5 Constructing a decomposition
In this subsection we prove our main decomposition theo-

rem, i.e. Theorem 3.1. However, for the inductive approach
to work we need a bit stronger statement, where addition-
ally we have a set S ⊆ V (G) that has to be contained in the
top bag of the tree decomposition. Note that Theorem 3.1
follows from the following by setting S = ∅.

Theorem 3.15. There is an O(2O(k2)n2m) time algorithm
that, given a connected graph G together with an integer k
and a set S ⊆ V (G) of size at most η such that G\S is con-
nected and N(V (G)\S) = S, computes a tree decomposition
(T, β) such that S is contained in the top bag of the tree de-
composition, and the following conditions are satisfied:

(i) for each t ∈ V (T ), the graph G[γ(t)]\σ(t) is connected
and N(γ(t) \ σ(t)) = σ(t),

(ii) for each t ∈ V (T ), the set β(t) is (τ ′, k)-unbreakable in
G[γ(t)],

(iii) for each non-root t ∈ V (T ), we have that |σ(t)| ≤ η
and σ(t) is (2k, k)-unbreakable in G[γ(parent(t))].

(iv) |V (T )| ≤ |V (G) \ S|.

Proof. If |V (G)| ≤ τ ′, the algorithm creates a single
bag containing the entire V (G). It is straightforward to
verify that such a decomposition satisfies all the required
properties. Thus, in the rest of the proof we assume that
|V (G)| > τ ′, in particular, |V (G)| > 3k.

Define S′ = S and, if |S| ≤ 3k, add 3k+ 1− |S| arbitrary
vertices of V (G) \ S to S′. Note that, as η > 3k, we have
3k < |S′| ≤ η.

We now define a set A′ as follows. First, we verify, using
Lemma 2.7, whether S′ is (2k, k)-breakable in G or not. If it
turns out to be (2k, k)-breakable in G, we apply Lemma 3.13
to the pair (G,S′), obtaining a set which we denote by A′.

Otherwise, we can use Theorem 3.14 on the pair (G,S′) to
obtain a set A′. Note that in both cases S ⊆ S′ ⊆ A′ and

all computations so far take O(2O(k2)nm) time in total.
Regardless of the way the set A′ was obtained, we proceed

with it as follows. For each connected componentD ofG\A′,
we use Theorem 3.15 inductively for the graph G[N [D]] and
SD = N(D). Let us now verify that (a) each SD is (2k, k)-
unbreakable in G, (b) that the assumptions of the theorem
are satisfied, and (c) that the recursive call is applied to a
strictly smaller instance in the sense defined in the following.

For the first two claims, if S is (2k, k)-breakable, Lemma 3.13
asserts that |SD| ≤ |S| ≤ η and SD is (2k, k)-unbreakable
in G. Otherwise, property (b) of Theorem 3.14 ensures that
|SD| ≤ η and SD is (2k, k)-unbreakable in G. The other as-
sumptions on the set SD in the recursive calls follow directly
from the definitions of these calls.

For the last claim, we show that either |N [D]| < |V (G)| or
N [D] = V (G) and |D| < |V (G) \ S|. Assume the contrary,
that is, D = V (G) \ S and N(D) = SD = S = S′ = A′.
In particular, as SD is (2k, k)-unbreakable in G, the set A′

was obtained using Theorem 3.14. However, as |S′| > 3k,
property (d) of Theorem 3.14 ensures that S′ ( A′, a con-
tradiction.

Let (TD, βD) be the tree decomposition obtained in the
recursive call for the pair (G[N [D]], SD). Construct a tree
decomposition (T, β), by creating an auxiliary node r, which
will be the root of T , and attach TD to r, by making the root
rD of TD a child of r in T . Finally, define β =

⋃
D βD and

set β(r) = A′. A straightforward check shows that (T, β) is
indeed a valid tree decomposition. We now proceed to verify
its promised properties.

Clearly, S ⊆ S′ ⊆ A′. For any connected component D of
G \ A′, note that γ(rD) = N [D] and σ(rD) = N(D) = SD.
This, together with inductive assumptions on recursive calls,
proves properties (i) and (iii).

If A′ is obtained using Lemma 3.13, then |A′| ≤ k|S′| ≤
kη < τ ′, hence clearly A′ = β(r) is (τ ′, k)-unbreakable. In
the other case, property (c) of Theorem 3.14 ensures the
unbreakability promised in property (ii).

It remains to bound the number of bags of (T, β); as each

bag is processed in O(2O(k2)nm) time this would also prove
the promised running time bound. Note that by property
(iv) for the recursive calls we have that |V (TD)| ≤ |D| and,
consequently, |V (T )| ≤ |V (G) \ A′| + 1 = |V (G) \ S| + 1 −
|A′ \ S|. To finish the proof of property (iv) it suffices to
show that S ( A′. If S ( S′, the claim is straightforward.
Otherwise, if S = S′ is (2k, k)-breakable, then Lemma 3.13
cannot return A′ = S′ as G \S′ is connected and N(V (G) \
S′) = S′ is not (2k, k)-unbreakable. Consequently, S′ ( A′

in this case. In the remaining case, when S = S′ is (2k, k)-
unbreakable, property (d) of Theorem 3.14 ensures that S′ (
A′. This finishes the proof of Theorem 3.15.

4. BISECTION
In this section we give a very brief overview on how to

prove Theorem 3.1, that is, how to solve Minimum Bisec-
tion by dynamic programing on the tree decomposition ob-
tained from Theorem 1.2.

The information we need to compute for each bag t of
the tree decomposition is quite natural. In what follows, we
interpret a partition of the vertex set of G into two sides
as a colouring of vertices into colours B and W; any edge



with endpoints of different colours is called a cut edge. In
the dynamic programming algorithm, for each node t of the
tree decomposition, for each colouring col : σ(t) → {B,W}
and for each integer µ we would like to find a colouring of
γ(t) that extends col, colours exactly µ vertices with B and
minimizes the number of cut edges that are not present in
G[σ(t)]. Moreover, we can discard any such colouring that
has more than k such cut edges.

The essence of computation task for one bag of the de-
composition is captured by the following definition.

Hypergraph Paintinga

Input: Positive integers k, b, d, q, a multihypergraph
H with hyperedges of size at most d, a partial function
col0 : V (H) 9 {B,W}, and a function fF : {B,W}F ×
{0, . . . , b} → {0, 1, . . . , k,∞} for each F ∈ E(H).
Goal: For each 0 ≤ µ ≤ b, compute the value wµ,

wµ = min
col⊇col0,(aF )F∈E(H)

∑
F∈E(H)

fF (col|F , aF ) ,

where the minimum is taken over colourings col : V (H)→
{B,W} extending col0 and partitions of µ into non-
negative integers µ =

∑
F∈E(H) aF , and the sum attains

value ∞ whenever its value exceeds k.
aWe are intentionally not using the name Hypergraph
Colouring, as it has an established, and different, mean-
ing.

In each node t of the decomposition, we create auxiliary
Hypergraph Painting instances as follows. We set b = n.
The partial colouring col0 iterates through all colourings of
the adhesion σ(t). Each edge F of the multihypergraph H
corresponds either to a vertex, an edge of G[β(t)], or an
adhesion σ(t′) for some child t′ of t.

In the case of F corresponding to an adhesion σ(t′), the
function fF represents the already computed information
for the subtree rooted at t′. That is, fF (colF , aF ) is the
minimum number of cut edges not present in G[β(t)] that
can be attained by a colouring of γ(t′) extending colF that
colours exactly aF vertices of γ(t′) \ σ(t′) with B. If this
minimum exceeds k, we set fF (colF , aF ) =∞.

In the case of F corresponding to an edge uv of G[β(t)],
we define fF in a straightforward manner to fit into the
same interpretation and count the number of cut edges in-
side G[β(t)]. That is, fF ((B,B), 0) = fF ((W,W), 0) = 0,
fF ((B,W), 0) = fF ((W,B), 0) = 1 and the value ∞ is at-
tained otherwise.

Finally, the edges F for single vertices are designed to
count the number of vertices coloured B in β(t): fF (B, 1) =
fF (W, 0) = 1 and the value ∞ is attained otherwise.

By the properties of the decomposition obtained from
Theorem 1.2, the instances (k, b, d, q,H, col0, (fF )F∈E(H)) of
Hypergraph Painting encountered by the algorithm sat-
isfy the following properties (henceforth called proper in-
stances):

• (local unbreakability), for each F ∈ E(H), each
col : F → {B,W} marking more than 3k vertices of
each colour, i.e. |col−1(B)|, |col−1(W)| > 3k, and each
0 ≤ µ ≤ b the value fF (col, µ) equals ∞,

• (connectivity), for each F ∈ E(H), each col : F →
{B,W} marking at least one vertex with each colour,

i.e. |col−1(B)|, |col−1(W)| > 0, and each 0 ≤ µ ≤ b
the value fF (col, µ) is non-zero,

• (global unbreakability) for each 0 ≤ µ ≤ b such that
wµ < ∞ there is a witnessing colouring col : V (H) →
{B,W}, which colours at most q vertices with one of
the colours, i.e. min(|col−1(B)|, |col−1(W)|) ≤ q.

Note that, by local unbreakability, for proper instances each
function fF can be represented by at most (2

∑3k
i=0 d

i) · (b+

1) ≤ 4(b+ 1)d3k values which are smaller than ∞.
By a quite involved application of the “randomized con-

tractions” framework we prove the following (the O? nota-
tion supresses factors polynomial in the input size):

Lemma 4.1. There is an O?(qO(k) ·dO(k2)) time algorithm
solving the Hypergraph Painting problem for proper in-
stances.

Hence, Lemma 4.1 allows us to perform all necessary com-
putations in a bottom-to-top manner, eventually resolving
the input Minimum Bisection instance. A detailed anal-
ysis of the polynomial factor of Lemma 4.1, together with
the sparsification technique of Nagamochi and Ibaraki [22],
gives the running time bound promised by Theorem 1.1.

5. CONCLUSIONS
In this paper we have settled the parameterized complex-

ity of Minimum Bisection. Our algorithm also works in
the more general setting when the edges are weighted, when
the vertex set is to be partitioned into a constant number
of parts rather than only two, and when the cardinality of
each of the parts is given as input.

The core component of our algorithm is a new decompo-
sition theorem for general graphs. Intuitively, we show that
it is possible to partition any graph in a tree-like manner
using small separators so that each of the resulting pieces
cannot be broken any further. This uncovered structure is
very natural in the context of cut-problems, and we strongly
believe that our decomposition theorem will find many fur-
ther algorithmic applications.

Having settled the parameterized complexity of Minimum
Bisection it is natural to ask whether the problem also ad-
mits a polynomial kernel, i.e. a polynomial-time preprocess-
ing algorithm that would reduce the size of the input graph
to some polynomial of the budget k. This question, how-
ever, has been already resolved by van Bevern et al. [25],
who showed that Minimum Bisection does not admit a
polynomial kernel unless coNP ⊆ NP/poly. We conclude
with a few intriguing open questions.

(a) Can the running time of our algorithm be improved? In
particular, does there exist an algorithm for Minimum
Bisection with running time 2O(k)nO(1), that is with
linear dependence on the parameter in the exponent?

(b) The running time dependence of our algorithm on the
input size is roughly cubic. Is it possible to obtain a
fixed-parameter tractable algorithm with quadratic, or
even nearly-linear running time dependence on input
size? Note that the best known algorithm for graphs
of bounded treewidth has quadratic dependence on the
input size [16].



(c) Are the parameters in the decomposition theorem tight?
For example, is it possible to lower the adhesion size
from 2O(k) to polynomial in k? Similarly, can one make
the bags (kO(1), k)-unbreakable rather than (2O(k), k)-
unbreakable? Is it possible to achieve both simultane-
ously? We remark that if the latter question has a pos-
itive answer, this would improve the parameter depen-
dence in the running time of our algorithm for Minimum
Bisection to kO(k).

(d) Is it possible to compute our decomposition faster, say

in 2O(k log k)nO(1) or even in 2O(k)nO(1) time? Currently
the main bottleneck is the very simple Lemma 2.7, which
we are unable to speed up.
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O. Suchý. On the parameterized complexity of
computing graph bisections. In A. Brandstädt,
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