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Abstract

In the Proper Interval Completion problem we are given a graph G and an integer k, and the
task is to turn G using at most k edge additions into a proper interval graph, i.e., a graph admitting
an intersection model of equal-length intervals on a line. The study of Proper Interval Completion
from the viewpoint of parameterized complexity has been initiated by Kaplan, Shamir and Tarjan [FOCS
1994; SIAM J. Comput. 1999], who showed an algorithm for the problem working in O(16k · (n + m))

time. In this paper we present an algorithm with running time kO(k2/3) +O(nm(kn + m)), which is the
first subexponential parameterized algorithm for Proper Interval Completion.

1 Introduction

A graph G is an interval graph if it admits a model of the following form: each vertex is associated with
an interval on the real line, and two vertices are adjacent if and only if the associated intervals overlap. If
moreover the intervals can be assumed to be of equal length, then G is a proper interval graph; equivalently,
one may require that no associated interval is contained in another [17]. Interval and proper interval graphs
appear naturally in molecular biology in the problem of physical mapping, where one is given a graph with
vertices modelling contiguous intervals (called clones) in a DNA sequence, and the edges indicate which
intervals overlap. Based on this information one would like to reconstruct the layout of the clones. We refer
to [10, 11, 13] for further discussion on biological applications of (proper) interval graphs.

The biological motivation was the starting point of the work of Kaplan et al. [13], who initiated the study
of (proper) interval graphs from the point of view of parameterized complexity. It is namely natural to expect
that some information about overlaps will be lost, and hence the model will be missing a small number of
edges. Thus we arrive at the problems of Interval Completion (IC) and Proper Interval Completion
(PIC): given a graph G and an integer k, one is asked to add at most k edges to G to obtain a (proper)
interval graph. Both of the problems are known to be NP-hard [19], and hence it is natural to ask for an
FPT algorithm parameterized by the expected number of additions k. For Proper Interval Completion
Kaplan et al. [13] presented an algorithm with running time O(16k · (n + m)), while fixed-parameterized
tractability of Interval Completion was resolved much later by Villanger et al. [18]. Recently, Liu et al.
[15] obtained O(4k + nm(n+m))-time algorithm for PIC.

The approach of Kaplan et al. [13] is based on a characterization by forbidden induced subgraphs, pioneered
by Cai [4]: proper interval graphs are exactly graphs that are chordal, i.e., do not contain any induced cycle
C` for ` ≥ 4, and moreover exclude three special structures as induced subgraphs: a claw, a tent, and a
net. Therefore, when given a graph which is to be completed into a proper interval graph, we may apply
a basic branching strategy. Whenever a forbidden induced subgraph is encountered, we branch into several
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Figure 1: Graph classes and corresponding graph parameters. Inequalities on the right side are with ±1
slackness.

possibilities of how it is going to be destroyed in the optimal solution. A cycle C` can be destroyed only by
triangulating it, which requires adding exactly `− 3 edges and can be done in roughly 4`−3 different ways.
Since for special structures there is only a constant number of ways to destroy them, the whole branching
procedure runs in cknO(1) time for some constant c.

The approach via forbidden induced subgraphs has driven the research on the parameterized complexity of
graph modification problems ever since the pioneering work of Cai [4]. Of particular importance was the work on
polynomial kernelization; recall that a polynomial kernel for a parameterized problem is a polynomial-time pre-
processing routine that shrinks the size of the instance at hand to polynomial in the parameter. While many nat-
ural completion problems admit polynomial kernels, there are also examples where no polynomial kernel exists
under plausible complexity assumptions [14]. In particular, PIC admits a kernel with O(k3) vertices which can
be computed in O(nm(kn+m)) time [2], while the kernelization status of IC remains a notorious open problem.

The turning point came recently, when Fomin and Villanger [8] proposed an algorithm for Fill-in, i.e.

Chordal Completion, that runs in subexponential parameterized time, more precisely kO(
√
k)nO(1). As

observed by Kaplan et al. [13], the approach via forbidden induced subgraphs leads to an FPT algorithm
for Fill-in with running time 16knO(1). Observe that in order to achieve a subexponential running time
one needs to completely abandon this route, as even branching on encountered obstacles as small as, say,
induced C4-s, leads to running time at least 2knO(1). To circumvent this, Fomin and Villanger proposed the
approach of gradually building the structure of a chordal graph in a dynamic programming manner. The
crucial observation was that the number of ‘building blocks’ (in their case, potential maximal cliques) is
subexponential in a YES-instance, and thus the dynamic program operates on a subexponential space of states.

This research direction was continued by Ghosh et al. [9] and by Drange et al. [6], who identified several more
graph classes for which completion problems have subexponential parameterized complexity: threshold graphs,
split graphs, pseudo-split graphs, and trivially perfect graphs (we refer to [6, 9] for respective definitions). Let us
remark that problems admitting subexponential parameterized algorithms are very scarce, since for most natu-
ral parameterized problems existence of such algorithms can be refuted under the Exponential Time Hypothesis
(ETH) [12]. Up to very recently, the only natural positive examples were problems on specifically constrained
inputs, like H-minor free graphs [5] or tournaments [1]. Thus, completion problems admitting subexponential
parameterized algorithms can be regarded as ‘singular points on the complexity landscape’. Indeed, Drange
et al. [6] complemented their work with a number of lower bounds excluding (under ETH) subexponential
parameterized algorithms for completion problems to related graphs classes, like for instance cographs.

Interestingly, threshold graphs, trivially perfect graphs and chordal graphs, which are currently our main
examples, correspond to graph parameters vertex cover, treedepth, and treewidth in the following sense: the
parameter is equal to the minimum possible maximum clique size in a completion to the graph class (±1),
see Fig. 1. It is therefore natural to ask if Interval Completion and Proper Interval Completion,
which likewise correspond to pathwidth and bandwidth, also admit subexponential parameterized algorithms.

Our Results. In this paper we answer the question about Proper Interval Completion in affirmative
by proving the following theorem:

Theorem 1.1. Proper Interval Completion can be solved in kO(k2/3) +O(nm(kn+m)) time.

In a companion paper [3] we also present an algorithm for Interval Completion with running time

kO(
√
k)nO(1), which means that the completion problems for all the classes depicted on Figure 1 in fact do
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admit subexponential parameterized algorithms. We now describe briefly our techniques employed to prove
Theorem 1.1, and main differences with the work on interval graphs [3].

From a space-level perspective, both the approach of this paper and of [3] follows the route laid out by
Fomin and Villanger in [8]. That is, we enumerate a subexponential family of potentially interesting building
blocks, and then try to arrange them into a (proper) interval model with a small number of missing edges
using dynamic programming. In both cases, a natural candidate for this building block is the concept of a cut:
given an interval model of a graph, imagine a vertical line placed at some position x that pins down intervals
containing x. A potential cut is then a subset of vertices that becomes a cut in some minimal completion to
a (proper) interval graph of cost at most k. The starting point of both this work and of [3] is enumeration of
potential cuts. Using different structural insights into the classes of interval and proper interval graphs, one can

show that in both cases the number of potential cuts is at most nO(
√
k), and they can be enumerated efficiently.

Since in the case of proper interval graphs we can start with a cubic kernel given by Bessy and Perez [2], this

immediately gives kO(
√
k) potential cuts for the PIC problem. In the interval case the question of existence of a

polynomial kernel is widely open, and the need of circumventing this obstacle causes severe complications in [3].
Afterwards the approaches diverge completely, as it turns out that in both cases the potential cuts

are insufficient building blocks to perform dynamic programming, however for very different reasons. For
Interval Completion the problem is that the cut itself does not define what lies on the left and on the
right of it. Even worse, there can be an exponential number of possible left/right alignments when the graph
contains many modules that neighbour the same clique. To cope with this problem, the approach taken in [3]
remodels the dynamic programming routine so that, in some sense, the choice of left/right alignment is taken
care of inside the dynamic program. The dynamic programming routine becomes thus much more complicated,
and a lot of work needs to be put into bounding the number of its states, which can be very roughly viewed
as quadruples of cuts enriched with an ‘atomic’ left/right choice (see the definition of a nested terrace in [3]).

Curiously, in the proper interval setting the left/right choice can be easily guessed along with a potential
cut at basically no extra cost. Hence, the issue causing the most severe problems in the interval case is
simply non-existent. The problem, however, is in the order of intervals in the cut: while performing a natural
left-to-right dynamic program that builds the model, we would need to ensure that intervals participating
in a cut begin in the same order as they end. Therefore, apart from the cut itself and a partition of the other
vertices into left and right, we would need to include in a state also the order of the vertices of the cut; as
the cut may be very large, we cannot afford constructing a state for every possible order.

Instead we remodel the dynamic program, this time by introducing two layers. We first observe that the
troublesome order may be guessed expeditiously providing that the cut in question has only a sublinear in
k number of incident edge additions. Hence, in the first layer of dynamic programming we aim at chopping
the optimally completed model using such cheap cuts, and to conclude the algorithm we just need to be able
to compute the best possible completed model between two border cuts that are cheap, assuming that all
the intermediate cuts are expensive. This task is performed by the layer-two dynamic program. The main
observation is that since all the intermediate cuts are expensive, there cannot be many disjoint such cuts
and consequently the space between the border cuts is in some sense ‘short’. As the border cuts can be large,
it is natural to start partitioning the space in between ‘horizontally’ instead of ‘vertically’ — shortness of
this space guarantees that the number of sensible ‘horizontal’ separations is subexponential. The horizontal
partitioning method that we employ resembles the classic O?(10n) exact algorithm for bandwidth of Feige [7].

2 Preliminaries

Graph notation. In most cases, we follow standard graph notation.
An ordering of a vertex set of a graph G is a bijection σ : V (G) → {1, 2, . . . , |V (G)|}. We say that a

vertex v is to the left or before a vertex w if σ(v) < σ(w) and to the right or after w if σ(v) > σ(w). We
also extend these notions to orderings of subsets of vertices: for any X ⊆ V (G), any injective function
σ : X → {1, 2, . . . , |V (G)|} is called an ordering. We sometimes treat such σ as an ordering of the vertex
set of G[X] as well, implicitly identifying σ(X) with {1, 2, . . . , |X|} in the monotonous way.
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a b c

Figure 2: An umbrella property for triple a, b, c. The existence of an edge ac implies the existence of edges
ab and bc.

For any graph G we shall speak about, we implicitly fix one arbitrary ordering σ0 on V (G). We shall
use this ordering to break ties and canonize some objects (orderings, completion sets, solutions, etc.). That
is, assume that X = {x1, x2, . . . , x|X|} ⊆ V (G) with σ0(x1) < σ0(x2) < . . . < σ0(x|X|). Then with every
ordering σ : X → {1, 2, . . . , |V (G)|} we associate a sequence (σ(x1), σ(x2), . . . , σ(x|X|)), and sort the orderings
of X according to this sequence lexicographically. In many places we consider some family of orderings for
a fixed choice of X; if we pick the lexicographically minimum ordering of this family, we mean the one with
lexicographically minimum associated sequence.

Observe that an ordering σ of V (G) naturally defines a graph σ(G) with vertex set {1, 2, . . . , |V (G)|}
and pq ∈ E(σ(G)) if and only if σ−1(p)σ−1(q) ∈ E(G). Clearly, σ(G) and G are isomorphic with σ being
an isomorphism between them.

For any integers a, b we denote [a, b] = {a, a+ 1, . . . , b}.
We use n and m to denote the number of vertices and edges of the input graph.

Proper interval graphs. A graph G is a proper interval graph if it admits an intersection model, where
each vertex is assigned a closed interval on a line such that no interval is a proper subset of another one,
and two vertices are adjacent if and only if their intervals intersect. In our work it is more convenient to
use an equivalent combinatorial object, called an umbrella ordering.

Definition 2.1 (umbrella ordering). Let G be a graph and σ : V (G) → {1, 2, . . . , n} be an ordering of
its vertices. We say that σ satisfies the umbrella property for a triple a, b, c ∈ V (G) if ac ∈ E(G) and
σ(a) < σ(b) < σ(c) implies ab, bc ∈ E(G). Furthermore, σ is called an umbrella ordering if it satisfies the
umbrella property for any a, b, c ∈ V (G).

The following result is due to Looges and Olariu.

Theorem 2.2 ([16]). A graph is a proper interval graph if and only if it admits an umbrella ordering.

Observe that we may equivalently define an umbrella ordering σ as an ordering such that for every ab ∈ E(G)
with σ(a) < σ(b) the subgraph σ(G)[[a, b]] is a complete graph. Alternatively, σ is an umbrella ordering of G if
and only if for any a, a′, b′, b ∈ V (G) such that σ(a) ≤ σ(a′) < σ(b′) ≤ σ(b) and ab ∈ E(G), it also holds that
a′b′ ∈ E(G). We will use these alternative definitions implicitly in the sequel. See also Fig. 2 for an illustration.

Observe also the following simple fact that follows immediately from the definition of an umbrella ordering.

Lemma 2.3. Let G1, G2 be two proper interval graphs with V (G1) = V (G2) = V . Assume further that some
ordering σ of V is an umbrella ordering of both G1 and G2. Then σ is also an umbrella ordering of H↓ :=
(V,E(G1) ∩ E(G2)) and H↑ := (V,E(G1) ∪ E(G2)), and in particular H↓ and H↑ are proper interval graphs.

We use the assumed fixed ordering σ0 to canonize umbrella orderings: for a proper interval graph G, the
canonical umbrella ordering of G is the one with its associated sequence being lexicographically minimum.

Proper interval completion. For a graph G, a completion of G is a set F ⊆
(
V (G)

2

)
\ E(G) such that

G+ F := (V (G), E(G) ∪ F ) is a proper interval graph. The Proper Interval Completion problem asks
for a completion of G of size not exceeding a given budget k.

However, in our paper it is more convenient to work with orderings as a basic notion, instead of comple-
tions. Moreover, for technical reasons, we also need a slightly more general sandwich version of the Proper
Interval Completion problem, henceforth called Sandwich Proper Interval Completion (SPIC
for short). Here, apart from a graph G and budget k, we are given
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1. for each u ∈ V (G) a set of allowed positions Σu ⊆ {1, 2, . . . , V (G)};

2. two graphs G↓ and G↑ with vertex set {1, 2, . . . , |V (G)|} satisfying

(a) G↓ is a subgraph of G↑;

(b) both G↓ and G↑ are proper interval graphs, and the identity is an umbrella ordering for both of them.

The Sandwich Proper Interval Completion problem asks for a completion F of G, together with an
ordering σ of V (G), such that

1. σ is an umbrella ordering of G+ F ;

2. σ(u) ∈ Σu for each u ∈ V (G);

3. E(G↓) ⊆ E(σ(G+ F )) ⊆ E(G↑);

4. the cost of the ordering σ and completion F , defined as c(σ, F ) = |F |, is at most k.

We now observe that an ordering σ in fact yields a unique ‘best’ completion F . Formally, for any ordering
σ of V (G) we define Fσ to be the set of such unordered pairs xy /∈ E(G) for which one of the following holds:

1. σ(x)σ(y) ∈ E(G↓); or

2. there exist x′, y′ ∈ V (G) such that x′y′ ∈ E(G) and σ(x′) ≤ min(σ(x), σ(y)) ≤ max(σ(x), σ(y)) ≤ σ(y′).

We need he following property of Fσ.

Lemma 2.4. Set Fσ is a completion of G, σ is an umbrella ordering of G + Fσ, and G↓ is a subgraph
of σ(G + Fσ). Furthermore, Fσ is the unique inclusion-wise minimal completion of G for which σ is an
umbrella ordering of G+ Fσ and G↓ is a subgraph of σ(G+ Fσ).

Proof. The claim that G↓ is a subgraph of σ(G) is straightforward from the definition, as we explicitely add
the edges of E(G↓). We now show that σ is an umbrella ordering of G+ Fσ. To this end, consider a triple
a, b, c ∈ V (G) with σ(a) < σ(b) < σ(c) and ac ∈ E(G + Fσ). We consider three cases, depending on the
reason why ac ∈ E(G+ Fσ).

If ac ∈ E(G) then, by the second criterion of belonging to Fσ, we have that ab ∈ Fσ unless ab ∈ E(G),
and bc ∈ Fσ unless bc ∈ E(G). Similarly, if ac ∈ Fσ because of the second criterion for belonging to Fσ, then
there exist a′, c′ ∈ V (G) with a′c′ ∈ E(G) and σ(a′) ≤ σ(a) < σ(c) ≤ σ(c′); clearly a′, c′ also witness that
ab, bc ∈ E(G) ∪ Fσ. Finally, if σ(a)σ(c) ∈ E(G↓), then the assumption that G↓ is a proper interval graph
with identity being an umbrella ordering implies that σ(a)σ(b) ∈ E(G↓) and σ(b)σ(c) ∈ E(G↓). Consequently,
the umbrella property is satisfied for the triple a, b, c, and σ is an umbrella ordering for G+ Fσ.

To show the second claim of the lemma, simply observe that every completion F of G for which G↓ is
a subgraph of σ(G+ Fσ) contains the edges of Fσ falling into the first criterion, whereas every completion
F of G for which σ is an umbrella ordering contains the edges of Fσ that fall into the second criterion.

Hence, Lemma 2.4 allows us to use the notion of the cost of an ordering σ (instead of the cost of a pair
(σ, F ) or completion F ), where we use the completion Fσ. That is, we denote c(σ) = |Fσ|.

We say that an ordering σ is feasible if σ(u) ∈ Σu for each u ∈ V (G) and additionally E(σ(G)) ⊆ E(G↑).
It is straightforward to verify using Lemma 2.3, minimality of Fσ, and the fact that σ is an umbrella ordering
of G↑, that the second condition for σ being feasible is equivalent to E(σ(G + Fσ)) ⊆ E(G↑). Hence, by
Lemma 2.4, the SPIC problem may equivalently ask for a feasible ordering σ of cost at most k.

Finally, observe that SPIC is a generalization of Proper Interval Completion, as we may take
Σu = {1, 2, . . . , |V (G)|} for each u ∈ V (G), G↓ to be edgeless andG↑ to be a complete graph. Note that for such
an instance, any ordering of V (G) is feasible. In this way, given a Proper Interval Completion instance
(G, k) and an ordering σ of V (G), the notions of Fσ and c(σ) are well-defined. Hence, the Proper Interval
Completion problem equivalently asks for an ordering σ of cost at most k, that is, for which |Fσ| ≤ k.
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We now set up a few more notions. For a completion F ofG and a vertex v ∈ V (G) by F (v) we denote the set
of edges e ∈ F that are incident with v. We extend this notion to vertex sets X ⊆ V (G) by F (X) =

⋃
v∈X F (v).

For a SPIC instance (G, k, (Σu)u∈V (G), G↓, G↑) and a feasible ordering σ we denote Gσ := G + Fσ.
We extend the notion of feasibility and of Fσ to orderings σ of subsets of V (G) in the following natu-
ral manner. If X ⊆ V (G) and σ : X → {1, 2, . . . , |V (G)|} is injective, then σ is feasible if and only if
σ(u) ∈ Σu for each u ∈ X and E(σ(G[X])) ⊆ E(G↑). The set Fσ is defined as follows: xy ∈ Fσ if and
only if x, y ∈ X, xy /∈ E(G), but either σ(x)σ(y) ∈ E(G↓) or there exists an edge x′y′ ∈ E(G[X]) with
σ(x′) ≤ min(σ(x), σ(y)) < max(σ(x), σ(y)) ≤ σ(y′). Again, the same argument shows that the second
condition of feasibility is equivalent to E(σ(G[X] + Fσ)) ⊆ E(G↑).

We use the assumed fixed ordering σ0 to canonize a solution of a SPIC instance (G, k, (Σu)u∈V (G), G↓, G↑).
An ordering σ of V (G) is called the canonical umbrella ordering of (G, k, (Σu)u∈V (G), G↓, G↑) if σ is feasible,
its cost is minimum possible, and σ is lexicographically smallest with this property. This notion projects to
the notion of a canonical umbrella ordering of a graph G by taking again Σu = {1, 2, . . . , n} for any u ∈ V (G),
G↓ to be edgeless and G↑ to be a complete graph. Observe that this notion thus extends the notion of
canonical umbrella ordering for proper interval graphs, as in the case of a proper interval graph the unique
minimum completion is empty.

The associated completion Fσ with the canonical umbrella ordering σ is called the canonical comple-
tion. If additionally the cost of σ is at most k, we call σ the canonical solution to the SPIC instance
(G, k, (Σu)u∈V (G), G↓, G↑), or, in the special case, to a Proper Interval Completion instance (G, k).

A polynomial kernel. Our starting point for the proof of Theorem 1.1 is the polynomial kernel for
Proper Interval Completion due to Bessy and Perez.

Theorem 2.5 ([2]). Proper Interval Completion admits a kernel with O(k3) vertices computable in
time O(nm(kn+m)).

That is, in time O(nm(kn+m)) we can construct an equivalent instance of Proper Interval Com-
pletion with O(k3) vertices.

The algorithm of Theorem 1.1 starts with applying the kernelization algorithm of Theorem 2.5. This

step contributes O(nm(kn+m)) to the running time, and all further computation will take kO(k2/3) time,
yielding the promised time bound. Hence, in the rest of the paper we assume that we are given a Proper
Interval Completion instance (G, k) with n = |V (G)| = O(k3), and we are targeting at the canonical
umbrella ordering of G provided that it yields a completion of size at most k. Moreover, we assume that
G is connected, as we may otherwise solve each connected component of G independently, determining in
each component the size of minimum possible solution.

Lexicographically minimum perfect matching. In a few places we need the following greedy procedure
to find some canonical object.

Lemma 2.6. Given two linearly ordered sets X = {x1 ≺ x2 ≺ · · · ≺ xs} and Y = {y1 ≺ y2 ≺ · · · ≺ ys}, and
allowed sets Ai ⊆ Y for each 1 ≤ i ≤ s, one can in polynomial time either find a bijection f : X → Y that
satisfies

f(xi) ∈ Ai for any 1 ≤ i ≤ s (2.1)

and, subject to (2.1), yields lexicographically minimum sequence (f(x1), f(x2), . . . , f(xs)), or correctly conclude
that such a bijection does not exist.

Proof. We model the task of satisfying the condition (2.1) as a problem of finding a perfect matching in a
bipartite graph, which can be solved in polynomial time. We construct an auxiliary bipartite graph H with
bipartition classes X and Y , and make each xi ∈ X adjacent to all yj ∈ Ai. Clearly, any perfect matching
in H corresponds to a bijection f satisfying (2.1).

To obtain the lexicographically minimum sequence (f(x1), f(x2), . . . , f(xs)), we use the self-reducibility of
the task of finding a perfect matching. That is, for each i = 1, 2, . . . , s we try to match xi. When we consider
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pvpLv pRv

Figure 3: The definition of values pv, p
L
v and pRv for an expensive vertex v. The gray area denotes NGσ [v].

xi, we try each j = 1, 2, . . . , s and, whenever yj is yet unmatched and yj ∈ Ai, we temporarily match xi
with yj and compute whether the subgraph induced by the currently unmatched vertices contains a perfect
matching. If this is true, we fix the match f(xi) = yj , and otherwise we proceed to the next vertex yj . It
is straightforward to verify that this procedure indeed yields f as desired.

3 Expensive vertices

Recall that we are given a Proper Interval Completion instance (G, k) and we want to reason about its
canonical umbrella ordering, denoted σ, provided that (G, k) is a YES-instance. In this section we deal with
vertices that are incident with many edges of Fσ. Formally, we set a threshold τ := (2k)1/3 and say that
a vertex v is expensive with respect to σ if |Fσ(v)| > τ , and cheap otherwise. Note that there are at most
(2k)2/3 = τ2 expensive vertices, and given that |V (G)| is bounded polynomially in k, we may afford guessing a
lot of information about expensive vertices within the promised time bound. Our goal is to get rid of expensive
vertices, at the cost of turning our Proper Interval Completion instance (G, k) into a SPIC instance.

More formally, we branch into kO(k/τ) = kO(k2/3) subcases, considering all possible values for the following
(see also Figure 3).

1. A set V$ ⊆ V (G) of all expensive vertices with respect to σ.

2. For every v ∈ V$, integers pv, p
L
v and pRv satisfying pv = σ(v), pLv = min{σ(w) : w ∈ NGσ [v]} and

pRv = max{σ(w) : w ∈ NGσ [v]}.

In each branch, we look for the canonical minimum solution to the instance (G, k), assuming that the
aforementioned guess is a correct one. The correct branch is the one where this assumption is indeed true.

We now perform some cleanup operations. First, observe that from the definition of an umbrella ordering
it follows that in the correct branch w ∈ NGσ [v] if and only if pLv ≤ σ(w) ≤ pRv . In particular, pLv ≤ pv ≤ pRv .
Consider now a pair v1, v2 ∈ V$ and observe the following. If pv1 ≤ pv2 then the properties of an umbrella
ordering implies that pLv1 ≤ pLv2 and pRv1 ≤ pRv2 . Hence, we terminate all the branches where any of these
inequalities is not satisfied, or where pv1 = pv2 for some v1 6= v2.

Furthermore, note that in the correct branch we have v1v2 ∈ E(Gσ) iff pv2 ∈ [pLv1 , p
R
v1 ] and pv1 ∈ [pLv2 , p

R
v2 ],

and v1v2 /∈ E(Gσ) iff neither of the two aforementioned inclusions hold. Thus, we terminate the branch if
exactly one of these inclusions holds, or if v1v2 ∈ E(G) and at least one of them does not hold.

Denote Σ$ = {pv : v ∈ V$} to be the set of positions guessed to be used by the expensive vertices, and
Σ = {1, 2, . . . , n} \ Σ$ to be the set of the remaining positions. For every 1 ≤ i ≤ |Σ|, by π(i) we denote the
i-th position of Σ. Define also σ$ : V$ → Σ$ as σ$(v) = pv.

We compute a set F$ consisting of all (unordered) pairs v1, v2 ∈ V$ such that v1v2 /∈ E(G), but
pv2 ∈ [pLv1 , p

R
v1 ], that is, the guessed values imply that v1v2 ∈ E(Gσ) and, consequently, F$ = Fσ ∩

(
V$

2

)
in

the correct branch. Observe the following.

Lemma 3.1. In all branches F$ is a completion of G[V$], and σ$, treated as an ordering of V$, is an umbrella
ordering of G[V$] + F$.

Proof. Consider any a, b, c ∈ V$ with σ$(a) < σ$(b) < σ$(c). If ac ∈ E(G)∪ F$ then it follows from the clean-
up operations and the definition of F$ that σ$(c) ∈ [pLa , p

R
a ] and σ$(a) ∈ [pLc , p

R
c ]. Recall that σ$(a) ∈ [pLa , p

R
a ]

and σ$(c) ∈ [pLc , p
R
c ]. Hence, σ$(b) ∈ [σ$(a), σ$(c)] ⊆ [pLa , p

R
a ] ∩ [pLc , p

R
c ] and ab, bc ∈ E(G) ∪ F$.

7



Consider now a vertex u /∈ V$. For any v ∈ V$, if uv ∈ E(G) then in the correct branch σ(u) ∈ [pLv , p
R
v ].

This motivates us to define:

Σu = π−1

Σ ∩
⋂

v∈V$∩NG(u)

[pLv , p
R
v ]

 .

Observe that in the correct branch π−1(σ(u)) ∈ Σu.
Furthermore, observe that, in the correct branch, if uv /∈ E(G) for some u /∈ V$ and v ∈ V$, then exactly

one of the following holds: uv ∈ Fσ or σ(u) /∈ [pLv , p
R
v ]. In other words, a vertex v ∈ V$ has degree exactly

pRv − pLv in the graph Gσ. This motivates us to define the following cost value for every branch:

c$ = −|F$|+
∑
v∈V$

((pRv − pLv )− degG(v)).

Observe that this cost function is actually meaningful for every branch:

Lemma 3.2. Let σ′ be an ordering of V (G) and F be a completion of G such that

(i) σ′ is an umbrella ordering of G+ F , and

(ii) for every v ∈ V$ we have σ′(v) = pv and σ′(NG+F [v]) = [pLv , p
R
v ]. Then there are exactly c$ edges of

F that are incident with V$.

Proof. Observe that the degree of v ∈ V$ in G + F is exactly pRv − pLv . Hence, exactly pRv − pLv − degG(v)
edges of F are incident with v and the sum

∑
v∈V$

((pRv − pLv )− degG(v)) counts the edges of F incident with
V$, but double-counts the edges of F with both endpoints in V$. However, the set of double-counted edges
is exactly F ∩

(
V$

2

)
= F$. The lemma follows.

We define graphs G↓ and G↑ with vertex set {1, 2, . . . , |Σ|} as follows. For 1 ≤ i < j ≤ |Σ|, we set
ij ∈ E(G↓) if and only if there is a witness vertex x ∈ V$ such that either pLx ≤ π(i) < π(j) < px, or
px < π(i) < π(j) ≤ pRx . For G↑, we set ij /∈ E(G↑) if and only if there exists a witness vertex y ∈ V$ such
that either π(i) < pLy ≤ py < π(j), or π(i) < py ≤ pRy < π(j).

The next lemma shows that G↓ and G↑ satisfy the requirements for being a part of a SPIC instance.

Lemma 3.3. Both G↓ and G↑ are proper interval graphs and the identity is an umbrella ordering of both
of them. Moreover, in the correct branch E(G↓) ⊆ E(π−1((σ(Gσ))[Σ])) ⊆ E(G↑).

Proof. For the first claim, observe that in the case of G↓, for every edge ij ∈ E(G↓) with i < j, its witness
x also witnesses that i′j′ ∈ E(G↓) for every i ≤ i′ < j′ ≤ j. Similarly, in the case of G↑, for any nonedge
ij /∈ E(G↑) with i < j, its witness y also witnesses that i′j′ /∈ E(G↑) for each i′ ≤ i < j ≤ j′.

We now move to the second claim, so assume we are in the correct branch. For G↓, observe that if
ij ∈ E(G↓), then σ−1(π(i))σ−1(π(j)) ∈ E(Gσ) by the umbrella property as σ−1(pLx )σ−1(px) ∈ E(Gσ) and
σ−1(px)σ−1(pRx ) ∈ E(Gσ). For G↑, if i, j are such that σ−1(π(i))σ−1(π(j)) ∈ E(Gσ) and π(i) < py < π(j) for
some y ∈ V$, then by the umbrella property we have that yσ−1(π(i)), yσ−1(π(j)) ∈ E(Gσ) and consequently
pLy ≤ π(i) < py < π(j) ≤ pRy . Since y was chosen arbitrarily, it follows that ij ∈ E(G↑) and the lemma
follows.

By Lemma 3.3, we may terminate the branches where G↓ is not a subgraph of G↑.
Define W = V (G) \ V$, H = G[W ] and ` = k − c$. Recall that in the remaining branches I :=

(H, `, (Σu)u∈V (G), G↓, G↑) is a valid SPIC instance. In the next lemmata we show that it is sufficient to solve
it instead of (G, k).

Lemma 3.4. If (G, k) is a YES-instance to Proper Interval Completion with the canonical umbrella
ordering σ, then in the correct branch the function σH := π−1 ◦ σ|W is a feasible ordering of the SPIC
instance I with FσH ⊆ Fσ ∩

(
W
2

)
=: FW ; in particular, for any u ∈ W we have |FσH (u)| ≤ τ . Moreover,

c(σH) = |Fσ| − c$ − |FW \ FσH | ≤ |Fσ| − c$.
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Proof. Observe that σH is indeed an ordering of W . We first verify that it is feasible. Clearly, in the
correct branch σH(u) = π−1(σ(u)) ∈ Σu for any u ∈ W . Consider any pair u, v with σH(u) < σH(v) and
σH(u)σH(v) /∈ E(G↑). Let y be a witness that σH(u)σH(v) /∈ E(G↑). If σH(u) < pLy ≤ py < σH(v) then
uy /∈ E(Gσ) and, by the umbrella property, uv /∈ E(Gσ), so in particular uv /∈ E(G). Symmetrically, if
σH(u) < py ≤ pRy < σH(v) then yv /∈ E(Gσ) and, by the umbrella property, uv /∈ E(Gσ), so in particular
uv /∈ E(G). Consequently, uv /∈ E(G) in both cases and σH is feasible.

We now show that FσH ⊆ FW . Consider any uv ∈ FσH and w.l.o.g. assume σH(u) < σH(v). If there exist
u′, v′ ∈W with σH(u′) ≤ σH(u) < σH(v) ≤ σH(v′) and u′v′ ∈ E(G), then σ(u′) ≤ σ(u) < σ(v) ≤ σ(v′) by the
monotonicity of π and hence uv ∈ Fσ. Otherwise, by the definition of FσH , we have that σH(u)σH(v) ∈ E(G↓).
By the definition of G↓, there exists x ∈ V$ with pLx ≤ π(σH(u)) = σ(u) < σ(v) = π(σH(v)) < px or
px < π(σH(u)) = σ(u) < σ(v) = π(σH(v)) ≤ pRx . In the first case, by the umbrella property we have that
uv ∈ Fσ because σ−1(pLx )x ∈ E(Gσ). Similarly, in the second case, uv ∈ Fσ since σ−1(pRx )x ∈ E(Gσ).

We now compute the cost of σH . By Lemma 3.2, there are exactly c$ edges of Fσ incident with V$.
Therefore |FW | = |Fσ| − c$. The already proven inclusion FσH ⊆ FW finishes the proof of the formula for
the cost of σH .

Lemma 3.5. Let σH be a feasible ordering of the SPIC instance I in some branch. Let also σ′ be an ordering
of V (G) such that σ′(u) = π(σH(u)) for u ∈W and σ′(u) = σ$(u) for u 6∈W . Then |Fσ′ | ≤ c(σH) + c$.

Proof. We define

F = FσH ∪ F$ ∪ {uv : u ∈W ∧ v ∈ V$ ∧ uv /∈ E(G) ∧ π(σH(u)) ∈ [pLv , p
R
v ]}.

We now show that σ′ is an umbrella ordering of G+ F . Observe that if this is true, then Lemma 3.2 will
yield that |Fσ′ | ≤ |F | = |FσH |+ c$, finishing the proof of the lemma; the condition (ii) of Lemma 3.2 can
be directly checked from the definitions of σ′, F .

Consider then a triple a, b, c ∈ V (G) with σ′(a) < σ′(b) < σ′(c) and ac ∈ E(G) ∪ F . We consider a few
cases, depending on the intersection V$ ∩ {a, b, c}.

First, consider the case a, c ∈ V$. If b ∈ V$, then ab, bc ∈ E(G) ∪ F by Lemma 3.1. Otherwise, observe
that the cleanup operation imply that σ′(a) = pa ∈ [pLc , p

R
c ] and σ′(c) = pc ∈ [pLa , p

R
a ] and we obtain

σ′(b) = π(σH(b)) ∈ [pLa , p
R
a ] ∩ [pLc , p

R
c ]. Hence ab, bc ∈ E(G) ∪ F directly from the definition of F .

Second, consider the case a ∈ V$ and c ∈W . We claim that ac ∈ E(G)∪F implies that σ′(c) = π(σH(c)) ∈
[pLa , p

R
a ]. Indeed, if ac ∈ F then this follows directly from the definition of F . If ac ∈ E(G), however, then

σ′(c) = π(σH(c)) ∈ π(Σc) ⊆ [pLa , p
R
a ] since σH is feasible. Now observe that since σ′(a) = pa ∈ [pLa , p

R
a ], then

we have also that σ′(b) ∈ [pLa , p
R
a ]. Since σ′(a) < σ′(b) < σ′(c), then in fact σ′(b), σ′(c) ∈ [pa, p

R
a ].

Assume first that b ∈ V$. Then ab ∈ E(G)∪F$ by the definition of F$. Moreover, as σ′(b) = pb > σ′(a) =
pa, by the cleanup operations we have that pRb ≥ pRa and, consequently, σ′(c) = π(σH(c)) ∈ [pLb , p

R
b ]. Hence,

in this case bc ∈ E(G) ∪ F by the definition of F .
Assume now b ∈W . Clearly σ′(b) ∈ [pLa , p

R
a ] implies that ab ∈ E(G)∪F by the definition of F . Moreover,

observe that as both σ′(b) = π(σH(b)) and σ′(c) = π(σH(c)) belong to [pa, p
R
a ], we have σH(b)σH(c) ∈ G↓

and hence bc ∈ E(G) ∪ FσH .
Third, observe that the case a ∈W and c ∈ V$ is symmetrical to the previous one.
Finally, consider the case a, c ∈W , so ac ∈ E(G)∪FσH . If b ∈W then ab, bc ∈ E(G)∪FσH as σH is an um-

brella ordering of G[W ]+FσH . Hence, assume b ∈ V$. Observe that ac ∈ E(G)∪FσH implies that ac ∈ E(G↑).
However, we have that π(σH(a)) < pb < π(σH(c)). Thus, by the definition of G↑, we have pLb ≤ π(σH(a)) <
π(σH(c)) ≤ pRb and, by the definition of F , ab, bc ∈ E(G) ∪ F . This concludes the proof of the lemma.

Lemma 3.6. If (G, k) is a YES-instance to Proper Interval Completion with the canonical umbrella
ordering σ, then in the correct branch the function σH := π−1 ◦ σ|W is the canonical umbrella ordering of
the SPIC instance I of cost at most `. Moreover, FσH = Fσ ∩

(
W
2

)
; in particular, for any u ∈W we have

|FσH (u)| ≤ τ .
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Proof. We focus on the correct branch. By Lemma 3.4, there exists a feasible ordering of the SPIC instance
I. Let σ′H be the canonical ordering of this instance. Define σ′ as in Lemma 3.5 for the ordering σ′H .

By Lemma 3.5 and the optimality of σ, we have that

|Fσ| ≤ |Fσ
′
| ≤ c(σ′H) + c$.

On the other hand, by Lemma 3.4 and the optimality of σ′H , we have that

c(σ′H) ≤ c(π−1 ◦ σ|W ) ≤ |Fσ| − c$.

Hence, all aforementioned inequalities are in fact equalities, and FσH = Fσ ∩
(
W
2

)
. In particular, Fσ

′
is a

minimum completion of G and π−1 ◦ σ|W is of minimum possible cost. By the monotonicity of π, we infer
that the lexicographical minimization in fact chooses σ′H = σH and the lemma is proven.

In the next sections we will show the following.

Theorem 3.7. There exists an algorithm that, given a branch with a SPIC instance I, runs in time
nO(`/τ+τ2) and, if given the correct branch, computes the canonical ordering of I.

The equivalence shown in Lemmata 3.4, 3.5 and 3.6, together with the bound n = O(k3), allows us to
solve the Proper Interval Completion instance (G, k) by applying the algorithm of Theorem 3.7 to each

branch separately. Observe that we have kO(k2/3) branches, and for τ = (2k)1/3, ` ≤ k and n = O(k3) we

have nO(`/τ+τ2) = kO(k2/3); therefore, the running time will be as guaranteed in Theorem 1.1.
Hence, it remains to prove Theorem 3.7. In its proof it will be clear that the algorithm runs within the

given time bound. Hence, we assume that we work in the correct branch and we will mostly focus on proving
that we indeed find the canonical ordering of I.

4 Sections

We now proceed with the proof of Theorem 3.7. Assume we are given the correct branch with a SPIC
instance I = (H, `, (Σu)u∈V (G), G↓, G↑). Recall that we look for the canonical ordering σH of I and we
assume that σH is of cost at most ` and |FσH (u)| ≤ τ for every u ∈ V (G). The last assumption allows us
to guess edges FσH (u) for a set of carefully chosen vertices u ∈ V (H). In this section we use this property
to show the following statement.

Definition 4.1. A section is a subset A of V (H). A section A is consistent with an ordering σH if σH maps
A onto the first |A| positions.

Theorem 4.2. In kO(τ) time one can enumerate a family S of kO(τ) sections that contains all sections
consistent with the canonical ordering σH .

The proof of Theorem 4.2 is divided into two steps. First, we investigate true twin classes in the graph
HσH , and show that we can efficiently enumerate a small family of candidates for these twin classes. Then we
use the twin class residing at position |A|+ 1 to efficiently ‘guess’ a section A consistent with the canonical
ordering σH . Henceforth we assume that the canonical ordering σH is of cost at most k.

4.1 Potential twin classes

Recall that two vertices x and y are true twins if N [x] = N [y]; in particular, this implies that they are adjacent.
The relation of being a true twin is an equivalence relation, and an equivalence class of this relation is called a
twin class. We remark the following observation, straightforward from the definition of an umbrella ordering.

Lemma 4.3. In an umbrella ordering of a proper interval graph, the vertices of any twin class occupy
consecutive positions.
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a

b1 b2c1 c2
Λ

Figure 4: The guessed vertices a, b1, b2, c1 and c2 with respect to a twin class Λ. The gray area denotes
NHσH (Λ).

The main result of this section is the following.

Theorem 4.4. In kO(τ) time one can enumerate a family T of kO(τ) triples (L,Λ, σΛ) such that for any twin
class Λ of HσH , if L is the set of vertices of H placed to the left of Λ in the ordering σH , then (L,Λ, σH |Λ) ∈ T .

We describe the algorithm of Theorem 4.4 as a branching algorithm that produces kO(τ) subcases and,
in each subcase, produces one pair (L,Λ, σΛ). We fix one twin class Λ of HσH and argue that the algorithm
in one of the branches produces (L,Λ, σH |Λ), where L is defined as in Theorem 4.4. We perform this task
in two phases: we first reason about L and Λ, and then we deduce the ordering σH |Λ.

4.1.1 Phase one: L and Λ

The algorithm guesses the following five vertices (see also Figure 4):

1. a is any vertex of Λ,

2. b1 is the rightmost vertex outside NHσH [Λ] in σH that lies before Λ, or b1 = ⊥ if no such vertex exists;

3. c1 is the leftmost vertex of NHσH [Λ] in σH ;

4. c2 is the rightmost vertex of NHσH [Λ] in σH ;

5. b2 is the leftmost vertex outside NHσH [Λ] in σH that lies after Λ, or b2 = ⊥ if no such vertex exists.

Moreover, for each u ∈ {a, b1, b2, c1, c2}\{⊥} the algorithm guesses FσH (u). This leads us to kO(τ) subcases.
We now argue that, if the guesses are correct, we can deduce the pair (L,Λ). The crucial step is the following.

Lemma 4.5. In the branch where the guesses are correct, the following holds for any u ∈ NHσH [a],

1. if u ∈ NHσH [b1] or u /∈ NHσH [c2], then u /∈ Λ and u lies before Λ in the ordering σH ;

2. if u ∈ NHσH [b2] or u /∈ NHσH [c1], then u /∈ Λ and u lies after Λ in the ordering σH ;

3. if none of the above happens, then u ∈ Λ.

Here we take the convention that NHσH [⊥] = ∅.

Proof. By the definition of b1, b2, c1 and c2, we have that every vertex u ∈ Λ lies in NHσH [c1] and NHσH [c2],
but not in NHσH [b1] nor in NHσH [b2]. Consequently, any vertex of Λ falls into the third category of the
statement of the lemma.

We now show that any other vertex of NHσH [a] falls into one of the first two categories, depending on its
position in the ordering σH . By symmetry, we may only consider a vertex u ∈ NHσH [a] \ Λ that lies before Λ
in σH . Note that the umbrella property together with a /∈ NHσH [b2] implies that u /∈ NHσH [b2], and together
with ac1 ∈ E(HσH ) implies uc1 ∈ E(HσH ). Consequently, u does not fall into the second category in the
statement of the lemma. We now show that it falls into the first one.

As u /∈ Λ and u ∈ NHσH [a], either NHσH (u) \NHσH [a] is not empty or NHσH (a) \NHσH [u] is not empty.
In the first case, let uw ∈ E(HσH ) but aw /∈ E(HσH ). Since also ua ∈ E(HσH ), by the umbrella property
it easily follows that w lies before u in the ordering σH , so in particular before Λ. By the definition of b1,
b1 exists and σH(b1) ≥ σH(w). By the umbrella property, b1u ∈ E(HσH ) and hence u ∈ NHσH [b1].
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In the second case, assume uw /∈ E(HσH ) but aw ∈ E(HσH ). Again, since ua ∈ E(HσH ), by the umbrella
property it easily follows that w lies after Λ in the ordering σH , so in particular after u. By the definition
of c2 and the existence of w, c2 /∈ Λ and σH(c2) ≥ σH(w). By the umbrella property, c2u /∈ E(HσH ) and
u /∈ NHσH [c2]. Hence, u falls into the first category and the lemma is proven.

The knowledge of a and FσH (a) allows us to compute NHσH [Λ] = NHσH [a]. By making use of Lemma 4.5,
we can further partition NHσH [Λ] into Λ, the vertices of NHσH (Λ) that lie before Λ in the ordering σH , and
the ones that lie after Λ. We are left with the vertices outside NHσH [Λ].

We guess the position i such that the first vertex of Λ in the ordering σH is in position i. Note that, by
Lemma 4.3, the vertices of Λ occupy positions i, i+ 1, . . . , i+ |Λ| − 1 in σH .

Let C be a connected component of H \ NHσH [Λ]. Recall that by Lemma 3.6, σH = π−1 ◦ σ|W and
FσH = Fσ ∩

(
W
2

)
. As no vertex of C is incident with Λ in HσH , by the properties of an umbrella ordering we

infer that all vertices of NG[C] lie before position π(i) or all vertices of NG[C] lie after position π(i+ |Λ| − 1)
in the ordering π ◦ σH = σ|W . As G is assumed to be connected, NG(C) contains a vertex of NHσH [Λ] or
of V$. Any such vertex allows us to deduce which of the two aforementioned options is true for C in σ. This
allows us to decide whether C ⊆ L or L ∩ C = ∅, and consequently deduce the set L. Note that it must hold
that |L| = i− 1, and otherwise we may discard the guess.

4.1.2 Phase two: the ordering σH |Λ
We are left with determining σH |Λ. Note that we already know the domain Λ and the codomain {i, i +
1, . . . , i+ |Λ| − 1} of this bijection. We prove the following.

Lemma 4.6. The bijection σH |Λ is the lexicographically minimum bijection σΛ : Λ→ {i, i+1, . . . , i+ |Λ|−1}
among those bijections σΛ that satisfy σΛ(u) ∈ Σu for any u ∈ Λ.

Proof. Let σΛ : Λ→ {i, i+ 1, . . . , i+ |Λ| − 1} be the lexicographically minimum bijection among those that
satisfy σΛ(u) ∈ Σu for any u ∈ Λ; note that at least one such bijection exists, since σH |Λ is one. Consider an
ordering σ′ of V (H) defined as follows: σ′(u) = σΛ(u) if u ∈ Λ and σ′(u) = σH(u) otherwise. Observe that
σ′ is an ordering of V (H). Moreover, as Λ is a twin class of HσH , we have σ′(HσH ) = σ(HσH ). Hence σ′ is a
feasible ordering of H and umbrella ordering of HσH . We infer that Fσ

′ ⊆ FσH . On the other hand, as σH is
the canonical solution, we have c(σH) ≤ c(σ′). Hence, both aforementioned inequalities are in fact tight and
Fσ

′
= FσH . Furthermore, the lexicographical minimization criterion implies that σΛ = σH |Λ and σ′ = σH .

Finally, observe that the characterization of σH |Λ given by Lemma 4.6 fits into the conditions of Lemma 2.6
and, consequently, σH |Λ can be computed in polynomial time given L, Λ and the index i. This concludes
the proof of Theorem 4.4.

4.2 Proof of Theorem 4.2

Given Theorem 4.4, the proof of Theorem 4.2 is now straightforward. We first compute the family T of
Theorem 4.4. Then, for each (L,Λ, σΛ) ∈ T and each position p ∈ {1, 2, . . . , |V (H)|} we output a set

A := L ∪ {u ∈ Λ : σΛ(u) < p}.

Additionally, we output a section V (H). Clearly, the algorithm outputs kO(τ) sections and works within the
promised time bound. It remains to argue that it outputs all sections consistent with σH .

Consider a section A consistent with σH , that is, A = σ−1({1, 2, . . . , |A|}). If A = V (H), the statement
is obvious, so assume otherwise. Consider the position p := |A|+ 1, let u = σ−1(p) and let Λ be the twin
class of u in HσH . Moreover, let L be the set of vertices of H placed before Λ in σH . By Theorem 4.4,
(L,Λ, σH |Λ) ∈ T . Moreover, note that the algorithm outputs exactly the set A when it considers the triple
(L,Λ, σH |Λ) and position p. This concludes the proof of Theorem 4.2.
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p jump(p)Xp

Ap V (G) \Ajump(p)

Figure 5: A jump at position p and the corresponding jump set. The jump set Xp, denoted with gray, is
a clique in Gσ, and no edge of Gσ connects Ap with V (G) \Ajump(p).

5 Dynamic programming

In this section we conclude the proof of Theorem 3.7 by showing the following.

Theorem 5.1. Given a SPIC instance I = (G, k, (Σu)u∈V (G), G↓, G↑) with n = |V (G)|, a threshold τ and

a family S ⊆ 2V (G), one can in nO(k/τ+τ)|S|O(τ) time find the canonical ordering σ of I, assuming that

1. c(σ) ≤ k;

2. for each u ∈ V (G), |Fσ(u)| ≤ τ ;

3. each section consistent with σ belongs to S.

Observe that if we apply Theorem 5.1 to a branch with a SPIC instance I, the threshold τ and family
S output by Theorem 4.2, then we obtain the algorithm promised by Theorem 3.7.

The algorithm of Theorem 5.1 is a dynamic programming algorithm. Henceforth assume that the instance
I with threshold τ and family S is as promised in the statement of Theorem 5.1, and let σ be the canonical
ordering of I. We develop two different ways of separating the graphs G and Gσ into smaller parts, suitable
for dynamic programming. Consequently, the dynamic programming algorithm has in some sense ‘two layers’,
and two different types of states.

5.1 Layer one: jumps and jump sets

We first develop a way to split the graphs G and Gσ ‘vertically’. To this end, first denote for any position p the
section Ap = {v ∈ V (G) : σ(v) < p}; note that this definition also makes sense for p =∞ and A∞ = V (G).
Second, for any position p define

jump(p) = min{q : q > p ∧ σ−1(p)σ−1(q) /∈ E(Gσ)};

in this definition we follow the convention that the minimum of an empty set is ∞. Moreover, we define a
jump set for position p as

Xp = σ−1([p, jump(p)− 1]) = Ajump(p) \Ap.

See also Fig. 5 for an illustration.
The next two lemmata follow directly from the definition of a jump and the properties of umbrella orderings.

Lemma 5.2. For any positions p and q, if p ≤ q then jump(p) ≤ jump(q).

Lemma 5.3. Jump set Xp is a clique in Gσ, but no edge of Gσ connects a vertex of Ap with a vertex of
V (G) \Ajump(p).

We now slightly augment the graph G so that jump(p) 6=∞ for all interesting positions; see also Figure 6.
We take O(n2) branches, guessing the first and the last vertex of G in the ordering σ; denote them by α and ω.
We introduce new vertices, α1, α2, ω1, ω2, ω3 and new edges α1α2, αα1, ω2ω3, ω1ω2, ωω1 inG. We also introduce
new positions −1, 0, n+1, n+2, n+3, isolated in G↓ and connected by edges {−1, 0}, {0, 1}, {n, n+1}, {n+1, n+
2}, {n+ 2, n+ 3} in G↑. We define Σα1

= {0}, Σα2
= {−1}, Σω1

= {n+ 1}, Σω2
= {n+ 2} and Σω3

= {n+ 3}.
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Jσ(1) Jσ(n− 2)

Figure 6: Augmentation of the input graph G.

Moreover, we put α2 and α1 before all vertices of G in the ordering σ0, and ω1, ω2 and ω3 after them. Note that,
if we precede all the vertices in the ordering σ with α2, α1 and succeed with ω1, ω2, ω3 we obtain an ordering with
no higher cost. Due to the way we have extended σ0 to the new vertices, the extended ordering σ defined in this
way is the canonical ordering of the extended graph G. Hence, we may abuse the notation and denote by G the
graph after the addition of these five new vertices, and assume that V (G↓) = V (G↑) = {1, 2, . . . , |V (G)|} again.

Observe now that jump(1) = 3 and X1 = {α2, α1}, as σ−1(1) = α2 and σ−1(3) = α. Moreover,
jump(n− 2) = n and Xn−2 = {ω1, ω2}, as σ−1(n− 2) = ω1, σ−1(n− 1) = ω2, and σ−1(n) = ω3

The main observation now is that a jump set, together with all edges of Fσ incident with it (i.e., Fσ(Xp))
contains all sufficient information to divide the problem into parts before and after a jump set.

Lemma 5.4. For any position p, the following holds.

1. For any u1, u2 ∈ Xp such that σ(u1) ≤ σ(u2) we have

NGσ (u1) ∩Ap ⊇ NGσ (u2) ∩Ap, (5.1)

NGσ (u1) \Ajump(p) ⊆ NGσ (u2) \Ajump(p). (5.2)

2. For any bijection σp : Xp → [p, jump(p)−1] such that σp(u) ∈ Σu for any u ∈ Xp and both inclusions (5.1)
and (5.2) hold for any u1, u2 ∈ Xp with σp(u1) ≤ σp(u2), if we define an ordering σ′ of V (G) as σ′(u) =

σp(u) if u ∈ Xp and σ′(u) = σ(u) otherwise, then σ′ is feasible and σ′(Gσ
′
) is a subgraph of σ(Gσ).

Proof. The first statement is straightforward from the properties of an umbrella ordering. Let σp and σ′

be as in the second statement. Observe that inclusions (5.1) and (5.2), together with the fact that Xp is a
clique in σ(Gσ), imply that σ′ and σ differ only on the internal order of twin classes of Gσ and consequently
σ′(Gσ) = σ(Gσ). Together with the fact that σ′(u) ∈ Σu for any u ∈ V (G), this means that σ′ is a
feasible ordering of G and an umbrella ordering of Gσ. Consequently Fσ

′ ⊆ Fσ, σ′(Gσ
′
) is a subgraph of

σ′(Gσ) = σ(Gσ), and the lemma is proven.

We use Lemma 5.4 to fit the task of computing σ|Xp into Lemma 2.6.

Lemma 5.5. Given a position p and the sets Xp, Ap and Fσ(Xp), one can in polynomial time compute the
ordering σ|Xp .

Proof. First, observe that the data promised in the lemma statement allows us to compute NGσ (u) ∩Ap and
NGσ(u) \ Ajump(p) for every u ∈ Xp. Define a binary relation � on Xp as u1 � u2 if and only if both (5.1)
and (5.2) hold for u1 and u2. Lemma 5.4 asserts that � is a total quasi-order on Xp. That is, the set Xp

can by partitioned into sets U1, U2, . . . , Us such that u1 � u2 and u2 � u1 for any 1 ≤ j ≤ s and u1, u2 ∈ Uj ,
and u1 � u2, u2 6� u1 for any 1 ≤ j1 < j2 ≤ s and u1 ∈ Uj1 , u2 ∈ Uj2 . (Formally, we terminate the current
branch if � does not satisfy these properties.)

Observe that σ|Xp maps Xp onto [p, jump(p)− 1]. Lemma 5.4 asserts that all vertices of U1 are placed by
σ on the first |U1| positions of the range of σ|Xp , all vertices of U2 are placed on the next |U2| positions etc.
We use Lemma 2.6 to find a lexicographically minimum ordering σp that satisfies the above and additionally
σp(u) ∈ Σu for each u ∈ Xp. Define σ′ as in Lemma 5.4. By the minimality of σ, we have c(σ′) ≥ c(σ),

but Lemma 5.4 asserts that σ′(Gσ
′
) is a subgraph of σ(Gσ). Hence, σ′ is of minimum possible cost. By the

lexicographical minimality of σp, we have σp = σ|Xp and the lemma is proven.

With help of family S, Lemma 5.5 allows us to efficiently enumerate jump sets with their surroundings.
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Theorem 5.6. One can in nO(k/τ)|S|2 time enumerate a family J of at most nO(k/τ)|S|2 tuples (A,X, σX)
such that:

1. in each tuple (A,X, σX) we have

(a) A,X ⊆ V (G) and A ∩X = ∅,
(b) G↓[[|A|+ 1, |A|+ |X|]] is a complete graph,

(c) σX is a bijection between X and [|A|+ 1, |A|+ |X|];

2. for any position p, if there are at most 2k/τ edges of Fσ incident to Xp, then the tuple Jσ(p) :=
(Ap, Xp, σ|Xp) belongs to J .

Proof. We provide a procedure of guessing at most nO(k/τ)|S|2 candidate tuples that will constitute the
family J . Since the promised properties of elements of J can be checked in polynomial time, it suffices to
argue that every triple of the form (Ap, Xp, σ|Xp) will be among the guessed candidates.

The number of choices for Ap and Ajump(p) is |S|2. Observe that then Xp = Ajump(p) \Ap. Furthermore,

there are nO(k/τ) ways to choose Fσ(Xp) and, by Lemma 5.5, we can further deduce σ|Xp . Finally, observe
that by the definition of a jump it follows that every triple (Ap, Xp, σ|Xp) satisfies the promised properties
of the elements of J .

We are now ready to describe the first layer of our dynamic programming algorithm.

Definition 5.7 (layer-one state). A layer-one state is a pair (J1, J2) of two elements of J , J1 = (A1, X1, σ1
X),

J2 = (A2, X2, σ2
X) such that A1 ⊆ A2 and (A1 ∪X1) ⊆ (A2 ∪X2). The value of a layer-one state (J1, J2)

is a bijection f [J1, J2] : (A2 ∪X2) \A1 → [|A1|+ 1, |A2 ∪X2|] satisfying the following:

1. f [J1, J2] is a feasible ordering of its domain, that is, for any u ∈ (A2∪X2)\A1 we have f [J1, J2](u) ∈ Σu
and for any u1, u2 ∈ (A2∪X2)\A1 such that u1u2 ∈ E(G), we have f [J1, J2](u1)f [J1, J2](u2) ∈ E(G↑);

2. f [J1, J2](u) = σ1
X(u) for any u ∈ X1 and f [J1, J2](u) = σ2

X(u) for any u ∈ X2;

3. among all functions f satisfying the previous conditions, f [J1, J2] minimizes the cardinality of F f

(where in the expression F f the function f is treated as an ordering of the set (A2 ∪X2) \A1 in the
SPIC instance (G, k, (Σu)u∈V (G), G↓, G↑));

4. among all functions f satisfying the previous conditions, f [J1, J2] is lexicographically minimum.

We first observe the following consequence of the above definition.

Lemma 5.8. For any p1 ≤ p2 such that Jσ(p1), Jσ(p2) ∈ J , we have that (Jσ(p1), Jσ(p2)) is a layer-one
state and

f [Jσ(p1), Jσ(p2)] = σ|Ajump(p2)\Ap1 .

In particular, σ = f [Jσ(1), Jσ(n− 2)] ∪ {(ω3, n)}.

Proof. Let M := Ajump(p2) \Ap1 . It is straightforward to verify that (Jσ(p1), Jσ(p2)) is a layer-one state and
σ|M satisfies the first 2 properties of the value of a layer-one state. Also, no edges of Fσ are incident to X1

nor to Xn−2, and hence Jσ(1), Jσ(n− 2) ∈ J and (Jσ(1), Jσ(n− 2)) is a layer-one state.
Let f be any function satisfying the first 3 conditions of the definition of a value of the layer-one state

(Jσ(p1), Jσ(p2)). Let σ′ be an ordering of V (G) defined as σ′(u) = f(u) if u is the domain of f , and
σ′(u) = σ(u) otherwise. It is straightforward to verify that σ′ is feasible, using the separation property
provided by Lemma 5.3 and the fact that σ′|X1∪X2 = σ|X1∪X2 . For the same reasons, by the definition of σ′

we have that Fσ
′

=
(
Fσ \

(
M
2

))
∪ F f . By the optimality of f we have that |F f | ≤ |Fσ|M | ≤ |Fσ ∩

(
M
2

)
|, and

so |Fσ′ | ≤ |Fσ|. By the optimality of σ we infer that |Fσ′ | = |Fσ|, and Fσ
′

is also a minimum completion
of G. Since Fσ is also lexicographically minimum, it is easy to see that the last criterion of the definition
of the value of the layer-one state (Jσ(p1), Jσ(p2)) indeed chooses σ|M .
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By Lemma 5.8, our goal is to compute f [Jσ(1), Jσ(n− 2)] by dynamic programming. Observe that both
Jσ(1) and Jσ(n− 2) are known, due to the augmentation performed at the beginning of this section.

Our dynamic programming algorithm computes value g[J1, J2] for every layer-one state (J1, J2), and
we will ensure that g[Jσ(p1), Jσ(p2)] = f [Jσ(p1), Jσ(p2)] for any p1 ≤ p2 with Jσ(p1), Jσ(p2) ∈ J ; we will
not necessarily guarantee that the values of f and g are equal for other states. (Formally, g[J1, J2] may also
take value of ⊥, which implies that either J1 or J2 is not consistent with σ; we assign this value to g[J1, J2]
whenever we find no candidate for its value.)

Consider now one layer-one state (J1, J2) with J1 = (A1, X1, σ1
X), J2 = (A2, X2, σ2

X). The base case
for computing g[J1, J2] is the case where A2 ⊆ A1 ∪X1. Then σ1

X ∪ σ2
X is the only candidate for the value

f [J1, J2], provided that σ1
X and σ2

X agree on the intersection of their domains.
In the other case, we iterate through all possible tuples J3 = (A3, X3, σ3

X), with A1 ⊂ A3 ⊂ A2 such that
both (J1, J3) and (J3, J2) are layer-one states, and try g[J1, J3]∪ g[J3, J2] as a candidate value for g[J1, J2].
That is, we temporarily pick g[J1, J2] with the same criteria as for f [J1, J2], but taking into account only
values g[J1, J3] ∪ g[J3, J2] for different choices of J3.

Since the minimization for g[J1, J2] is taken over smaller set of functions than for f [J1, J2], we infer that

1. the cardinality of F f [J1,J2] is not larger than the cardinality of F g[J
1,J2];

2. even if these two sets are of equal size, f [J1, J2] is lexicographically not larger than g[J1, J2].

However, observe that if J1 = Jσ(p1) and J2 = Jσ(p2) and there exists p3 such that p1 < p3 < p2 and
Jσ(p3) ∈ J , then g[J1, Jσ(p3)] ∪ g[Jσ(p3), J2] is taken into account when evaluating g[J1, J2]. If we com-
pute the values for the states (J1, J2) in the order of non-decreasing values of |A2 \ A1|, then the values
g[J1, Jσ(p3)], g[Jσ(p3), J2] have been computed before, and moreover by induction hypothesis they are equal
to f [J1, Jσ(p3)] and f [Jσ(p3), J2], respectively. Therefore,

f [J1, Jσ(p3)] ∪ f [Jσ(p3), J2] = σ|Ajump(p2)\Ap1

is taken as a candidate value for g[J1, J2] and, consequently, g[J1, J2] = f [J1, J2] = σAjump(p2)\Ap1 .

Finally, we need to ensure that g[J1, J2] = f [J1, J2] in the case when such position p3 does not exist. To
this end, we take also more candidate values for g[J1, J2], computed by the layer-two dynamic programming
in the next section. We ensure that, if J1 = Jσ(p1), J2 = Jσ(p2) but for any p1 < q < p2 we have Jσ(q) /∈ J ,
then the layer-two dynamic programming actually outputs f [J1, J2] as one of the candidates, and runs in
time (n|S|)O(τ) for any choice of J1, J2. By Theorem 5.6 there are at most nO(k/τ)|S|4 layer-one states.
Hence by using (n|S|)O(τ) work for each of them will give the running time promised in Theorem 5.1.

5.2 Layer two: chains

In this section we are given a layer-one state (J1, J2) with J1 = (A1, X1, σ1
X), J2 = (A2, X2, σ2

X); denote
pα = |Aα|+ 1, rα = |Aα ∪Xα|+ 1 for α = 1, 2. We are to compute, in time (n|S|)O(τ), the value f [J1, J2],
assuming: J1 = Jσ(p1), J2 = Jσ(p2), and for no position p1 < q < p2 it holds that Jσ(q) ∈ J . By
Theorem 5.6, it implies that the number of edges of Fσ incident to any set Xq for p1 < q < p2 is more than
2k/τ . Observe that the following holds Xα = Ajump(pα) \Apα , and hence rα = jump(pα) for α = 1, 2.

For any position q, consider the following sequence: zq(0) = q and zq(i + 1) = jump(zq(i)) (with the
convention that jump(∞) =∞). Observe the following.

Lemma 5.9. For any q ≥ p1 it holds that zq(τ) ≥ p2.

Proof. Consider any q ≥ p1. For any i > 0 such that zq(i) < p2 we have that there are more than 2k/τ
edges of Fσ incident to Xzq(i). However, the sets Xzq(i) are pairwise disjoint for different values of i. Since
|Fσ| ≤ k, we infer that for less than τ values i > 0 we may have zq(i) < p2, and the lemma is proven.

By a straightforward induction from Lemma 5.2 we obtain the following.
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Figure 7: The separation property provided by Lemma 5.11. The sequences zc(i) and zd(i) are denoted
with rectangular and hexagonal shapes, respectively. The sets Ci and Di are denoted with dots and lines,
respectively.

Lemma 5.10. For any two positions c, d with c ≤ d ≤ jump(c) and for any i ≥ 0 it holds that

zc(i) ≤ zd(i) ≤ zc(i+ 1).

The next observation gives us the crucial separation property for the layer-two dynamic programming
(see also Figure 7).

Lemma 5.11. For any positions c, d with c ≤ d ≤ jump(c) define

Ci = σ−1([zc(i), zd(i)− 1]),

Di = σ−1([zd(i), zc(i+ 1)− 1]).

Then

1. sets Ci, Di form a partition of V (G) \Ac;

2. for any i ≥ 0, it holds that both Ci ∪Di and Di ∪ Ci+1 are cliques in Gσ;

3. for any j > i ≥ 0 there is no edge in Gσ between Ci and Dj;

4. for any i > j + 1 > 0 there is no edge in Gσ between Ci and Dj.

Proof. All statements follow from the definitions zc(i+ 1) = jump(zc(i)) and zd(i+ 1) = jump(zd(i)), and
from Lemmata 5.3 and 5.10.

Intuitively, Lemma 5.11 implies that we may independently consider the vertices of
⋃
i≥0 Ci and of⋃

i≥0Di: the sequences zc(i) and zd(i) give us some sort of ‘horizontal’ partition of the graphs G and Gσ.
We now formalize this idea.

Definition 5.12 (chain). A chain is a quadruple (s, z, u,B), where

s ∈ {0, 1, . . . , τ},
z : {0, 1, . . . , s} → [p1, r2],

u : {0, 1, . . . , s} → V (G),

B : {0, 1, . . . , s} → 2V (G)

with the following properties:

1. z(i) ∈ [p2, r2] if and only if i = s;

2. z(i) < z(i+ 1) for any 0 ≤ i < s;

3. |B(i)| = z(i)− 1 for any 0 ≤ i ≤ s;

4. B(i) ⊂ B(i+ 1), for any 0 ≤ i < s;

5. u(i) ∈ B(j) if and only if 0 ≤ i < j ≤ s;
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6. no edge of G connects a vertex of B(i) with a vertex of V (G) \B(i+ 1) for any 0 ≤ i < s.

A chain (s, z, u,B) is consistent with the ordering σ if s = min{i : zz(0)(i) ≥ p2} and for all 0 ≤ i ≤ s

1. z(i) = zz(0)(i);

2. σ(u(i)) = z(i);

3. B(i) = Az(i).

We remark here that if p2 ≤ n − 2 then jump(q) ≤ r2 for any q ≤ p2, and hence zz(0)(s) ≤ r2 for any
z(0) ≤ r2 in the definition above.

Our next lemma follows immediately from the definition of a chain.

Lemma 5.13. For q ∈ [p1, r2], let s = min{i : zq(i) ≥ p2}. For every 0 ≤ i ≤ s, let

z(i) = zq(i),

u(i) = σ−1(z(i)),

B(i) = Az(i).

Then Iσ(q) := (s, z, u,B) is a chain consistent with σ.

Moreover, the bound of Lemma 5.9 gives us the following enumeration algorithm.

Theorem 5.14. In (n|S|)O(τ) time one can enumerate a family C of at most (n|S|)O(τ) chains that contains
all chains consistent with σ.

Proof. There are 1 + τ ≤ n possible values for s. For each 0 ≤ i ≤ s, there are at most n choices for z(i),
n choices for u(i) and |S| choices for B(i). The bound s ≤ τ due to Lemma 5.9 yields the desired bound.
Observe that the properties of a chain can be verified in polynomial time.

We are now finally ready to state the definition of a layer-two state with its value.

Definition 5.15 (layer-two state). A layer-two state consists of two chains I1 = (s1, z1, u1, B1), I2 =
(s2, z2, u2, B2) with I1, I2 ∈ C such that

1. s2 ≤ s1 ≤ s2 + 1,

2. z1(i) ≤ z2(i), B1(i) ⊆ B2(i) for any 1 ≤ i ≤ s2 and z2(i) ≤ z1(i+1), B2(i) ⊆ B1(i+1) for any 1 ≤ i < s1;

3. u1(i) = u2(j) if and only if z1(i) = z2(j) for any 1 ≤ i ≤ s1 and 1 ≤ j ≤ s2;

Furthermore, we denote

Ci[I
1, I2] = B2(i) \B1(i) for any 0 ≤ i ≤ s2,

Di[I
1, I2] = B1(i+ 1) \B2(i) for any 0 ≤ i < s1,

Zi[I
1, I2] = [z1(i), z2(i)− 1] for any 0 ≤ i ≤ s2,

Cs1 [I1, I2] = (A2 ∪X2) \B1(s1) if s2 < s1,

Zs1 [I1, I2] = [z1(s1), r2 − 1] if s2 < s1,

and require that for any 0 ≤ i ≤ s1 all positions of Zi[I
1, I2] are pairwise adjacent in G↑. We define G∗↓ to

be equal to G↓ with additionally [p2, r2 − 1] and each Zi[I
1, I2] turned into a clique, for every 0 ≤ i ≤ s1.

Note that by Lemma 2.3, G∗↓ is a proper interval graph with identity being an umbrella ordering. Moreover,

it holds that E(G∗↓) ⊆ E(G↑) by the construction of E(G∗↓) and the fact that J2 ∈ J .

The value of a layer-two state (I1, I2) is a bijection f [I1, I2] :
⋃s1
i=0 Ci[I

1, I2]→
⋃s1
i=0 Zi[I

1, I2] such that:
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q←

q1 q2

Figure 8: The last case of the definition of a relevant pair (q1, q2). Both positions q1 and q2 need to belong
to the gray area.

1. f [I1, I2] is a feasible ordering of its domain, that is, for any u in the domain of f [I1, I2] we have
f [I1, I2](u) ∈ Σu, and for any u1, u2 in the domain of f [I1, I2] such that u1u2 ∈ E(G), it holds that
f [I1, I2](u1)f [I1, I2](u2) ∈ E(G↑);

2. f [I1, I2](u) ∈ Zi[I1, I2] whenever u ∈ Ci[I1, I2];

3. f [I1, I2](u1(i)) = z1(i) for all 0 ≤ i ≤ s1;

4. f [I1, I2](u) = σ1
X(u) whenever u ∈ X1 and f [I1, I2](u) = σ2

X(u) whenever u ∈ X2;

5. among all functions f satisfying the previous conditions, f [I1, I2] minimizes the cardinality of F f,∗,
where the set F f,∗ is defined as the unique minimal completion for the ordering f of the subgraph of
G induced by the domain of f and SPIC instance (G, k, (Σu)u∈V (G), G

∗
↓, G↑);

6. among all functions f satisfying the previous conditions, f [I1, I2] is lexicographically minimum.

Note that in the definition of a layer-two state we do not require that any of the chains begins in [p1, r1],
i.e. that z1(0) or z2(0) are in this interval. The values for the states where these chains begin at arbitrary
positions within [p1, r2] will be essential for computing the final value we are interested in.

Similarly as in the case of layer-one states, we have the following claim.

Definition 5.16 (relevant pair). A pair (q1, q2) with p1 ≤ q1 ≤ q2 ≤ min(jump(q1), r2) is called relevant if
one of the following holds:

1. q2 ≤ r1,

2. q1 = q2, or

3. there exists a position q← ≥ p1 such that jump(q←) ≤ q1 ≤ q2 ≤ jump(q← + 1) (see also Figure 8).

Lemma 5.17. For any q1, q2 such that p1 ≤ q1 ≤ q2 ≤ min(jump(q1), r2), the pair (Iσ(q1), Iσ(q2)) is a
layer-two state. If moreover (q1, q2) is a relevant pair, then f [Iσ(q1), Iσ(q2)] is a restriction of σ to the
domain of f [Iσ(q1), Iσ(q2)]. In particular, f [Iσ(p1), Iσ(r1)] = f [Jσ(p1), Jσ(p2)].

Proof. By somehow abusing the notation, we denote X1 = Xp1 and X2 = Xp2 . It is straightforward
to verify from the definition that (Iσ(q1), Iσ(q2)) is a layer-two state and the restriction of σ to Y :=⋃
i Ci[I

σ(q1), Iσ(q2)] satisfies the first 4 requirements of the definition of a value of a layer-two state, even

if (q1, q2) is not a relevant pair. Moreover, observe that Lemma 5.11 implies that Fσ ∩
(
Y
2

)
is a completion

for the ordering σ|Y of Y in the instance (G, k, (Σu)u∈V (G), G
∗
↓, G↑). Hence, Fσ|Y ,∗ ⊆ Fσ ∩

(
Y
2

)
.

Now assume that (q1, q2) is a relevant pair and denote f = f [Iσ(q1), Iσ(q2)] and Iσ(qα) = (sα, zα, uα, Bα)
for α = 1, 2. If q1 = q2, then observe that the sets Ci[I

σ(q1), Iσ(q2)] are empty, and the state in question
asks for an empty function. Hence, assume q1 < q2. Define an ordering σ′ of V (G) so that σ′(u) = f(u) for
any u ∈ Y , and σ′(u) = σ(u) otherwise.

Let us define F := (Fσ \
(
Y
2

)
) ∪ F f,∗. In the subsequent claims we establish some properties of the graph

G+ F and ordering σ′.

Claim 5.18. σ′(G+ F )[[1, r1 − 1] ∪ [p2, n]] = σ(Gσ)[[1, r1 − 1] ∪ [p2, n]].
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Proof. Note here that σ′ and σ agree on positions before r1 and after p2 − 1. Observe also that [p1, r1 − 1]
and [p2, r2 − 1] are cliques in σ(Gσ), and [p1, r1 − 1] can have non-empty intersection only with the first of

the intervals Zi[I
σ(q1), Iσ(q2)]. Since

(
[p2,r2−1]

2

)
,
(
Zi[I

σ(q1),Iσ(q2)]
2

)
⊆ E(G∗↓) ∩

(
σ(Y )

2

)
⊆ E(σ′(G[Y ] + F f,∗)), it

follows by the definition of F that that intervals [p1, r1 − 1] and [p2, r2 − 1] are cliques in σ′(G+ F ) as well.
Since Y ⊆ σ−1([p1, r2 − 1]), the claim follows. y

Claim 5.19. σ′ is a umbrella ordering of G+ F .

Proof. Consider any a, b, c ∈ V (G) with ac ∈ E(G + F ) and σ′(a) < σ′(b) < σ′(c); we want to show the
umbrella property for the triple a, b, c in the graph G + F . We consider a few cases, depending on the
intersection {a, b, c} ∩ Y .

1. If a, b, c ∈ Y or a, b, c /∈ Y , then the umbrella property holds by the definition of Fσ and F f,∗.

2. If σ′(a) ≥ p2 or σ′(c) < r1, then recall that σ′(G+ F )[[1, r1 − 1] ∪ [p2, n]] = σ(Gσ)[[1, r1 − 1] ∪ [p2, n]].
Then the umbrella property for a, b, c follows from the fact that σ is an umbrella ordering of Gσ.

Hence, in the remaining cases we have in particular that a /∈ X2 and c /∈ X1. Observe also that the
assumption ac ∈ E(G+F ) implies that p1 ≤ σ′(a) < σ′(c) < r2, since r1 = jump(p1) and r2 = jump(p2).

3. If a, c ∈ Y and b /∈ Y then, by the structure of Y , we have a ∈ Ci[Iσ(q1), Iσ(q2)], c ∈ Cj [Iσ(q1), Iσ(q2)]
for some 1 ≤ i < j ≤ s1. We claim that j = i+1. Assume the contrary. Observe that if i+1 < j then in
particular i < s2. By Lemma 5.11, no edge of Gσ connects Azq2 (i) with V (G)\Azq2 (i+1), so in particular

there is no such edge neither in G, which is subgraph of Gσ. Likewise, there is no edge between [1, zq2(i)]
and [zq2(i+ 1), n] in G∗↓. By the construction of F f,∗ it follows that also no edge of F f,∗ connects Azq2 (i)

with V (G) \Azq2 (i+1). As σ and σ′ differ only on the internal ordering of each set Ci[I
σ(q1), Iσ(q2)],

and ac ∈ E(G + F ), we have a contradiction, and hence c ∈ Ci+1[Iσ(q1), Iσ(q2)]. It follows that
b ∈ Di[I

σ(q1), Iσ(q2)] and, by Lemma 5.11, ab, bc ∈ E(Gσ). By the definition of F , ab, bc ∈ E(G) ∪ F .

In the remaining cases we have that either a or c does not belong to Y . Hence ac ∈ E(Gσ) by the
definition of F .

4. If a ∈ Y \X2 and c /∈ Y , then, by Lemma 5.11, we have a ∈ Ci[Iσ(q1), Iσ(q2)] and c ∈ Di[I
σ(q1), Iσ(q2)]

for some 0 ≤ i < s1. By Lemma 5.11, Ci[I
σ(q1), Iσ(q2)] ∪ Di[I

σ(q1), Iσ(q2)] is a clique in Gσ, and,
by the definition of G∗↓, Ci[I

σ(q1), Iσ(q2)] is a clique in G + F . Hence, ab, bc ∈ E(G) ∪ F regardless
whether b ∈ Y or not.

5. If a /∈ Y and c ∈ Ci[Iσ(q1), Iσ(q2)] for some i > 0, then, by Lemma 5.11, a ∈ Di−1[Iσ(q1), Iσ(q2)].
As in the previous case, Lemma 5.11 asserts that Di−1[Iσ(q1), Iσ(q2)] ∪ Ci[Iσ(q1), Iσ(q2)] is a clique
in Gσ, and the definition of G∗↓ gives us that Ci[I

σ(q1), Iσ(q2)] is a clique in G + F . Consequently,
ab, bc ∈ E(G) ∪ F regardless whether b ∈ Y or not.

6. If a /∈ Y and c ∈ C0[Iσ(q1), Iσ(q2)] = σ−1([q1, q2 − 1]) then, as σ′(c) ≥ r1, we have that pair
(q1, q2) is a relevant pair due to existence of some position q←. Since ac ∈ E(Gσ), we have that
σ′(a) = σ(a) ≥ q← + 1. As jump(q← + 1) ≥ q2, we have that also ab ∈ E(Gσ) and bc ∈ E(Gσ). By
the definition of F we infer that ab ∈ E(G) ∪ F and, additionally, bc ∈ E(G) ∪ F in the case b /∈ Y .
If b ∈ Y then b ∈ C0[Iσ(q1), Iσ(q2)] and bc ∈ E(G) ∪ F by the definition of G∗↓.

7. If a, c /∈ Y and b ∈ Y , then let b ∈ Ci[Iσ(q1), Iσ(q2)] for some 0 ≤ i ≤ s1. Since σ and σ′ differ only
on internal ordering of sets Ci[I

σ(q1), Iσ(q2)] and a, c /∈ Y , then the condition σ′(a) < σ′(b) < σ′(c)
implies also σ(a) < σ(b) < σ(c). Since ac ∈ E(Gσ) and σ is an umbrella ordering of Gσ, we infer that
ab, bc ∈ E(Gσ). By the definition of F this implies that ab, bc ∈ E(G+ F ).

y

Claim 5.20. E(G∗↓) ⊆ E(σ′(G+ F )).
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Proof. Consider any pq ∈ E(G∗↓). Denote a = σ−1(p), b = σ−1(q) and similarly denote a′ and b′ for the
ordering σ′; we want to show that a′b′ ∈ E(G) ∪ F . As E(G∗↓) ⊆ E(σ(Gσ)) we have ab ∈ E(Gσ). If

p, q ∈
⋃
i Zi[I

σ(q1), Iσ(q2)] then a′b′ ∈ E(G) ∪ F f,∗ by the definition of F f,∗. Otherwise, without loss of
generality assume that q /∈

⋃
i Zi[I

σ(q1), Iσ(q2)], and hence b = b′. If additionally a = a′ then a′b′ ∈ E(G)∪F
follows directly from the definition of F and the fact that ab ∈ E(Gσ). In the remaining case, if a 6= a′, we have
p ∈ Zi[Iσ(q1), Iσ(q2)] and a, a′ ∈ Ci[Iσ(q1), Iσ(q2)] for some 0 ≤ i ≤ s1. Moreover, from the assumption a 6= a′

we infer that r1 ≤ p < p2, and consequently i < s1. By the definition of F , we need to show that a′b ∈ E(Gσ).
We consider two cases, depending on the relative order of p and q. If p < q, then we have z2(i) ≤ q < z1(i+1)

by Lemma 5.11 and consequently b ∈ Di[I
σ(q1), Iσ(q2)]. By Lemma 5.11 again, b is adjacent to all vertices

of Ci[I
σ(q1), Iσ(q2)] in the graph Gσ, and a′b ∈ E(Gσ). A similar argument holds if q < p and i > 0: by

Lemma 5.11, we have first that b ∈ Di−1[Iσ(q1), Iσ(q2)] and, second, that b is adjacent in Gσ to all vertices of
Ci[I

σ(q1), Iσ(q2)], and hence a′b ∈ E(Gσ). In the remaining case, if q < p and i = 0 (hence p ∈ [q1, q2 − 1]),
from p ≥ r1 it follows that the reason why (q1, q2) is a relevant pair is existence of some position q←. Since
ab ∈ E(Gσ), we infer that q ≥ q← + 1. Hence, b is adjacent in Gσ to all vertices of C0[Iσ(q1), Iσ(q2)], in
particular to a′, and the claim is proven. y

Claim 5.21. E(σ′(G)) ⊆ G↑ and σ′ is a feasible ordering of G.

Proof. Observe that it follows directly from the definition of σ′ that σ′(u) ∈ Σu for any vertex u. Hence, to
show feasibility of σ′ it suffices to show that E(σ′(G)) ⊆ G↑.

Consider any ab ∈ E(G). If both a and b belong to Y or both do not belong, then the claim is ob-
vious by the feasibility of both σ and f . Assume then a ∈ Y and b /∈ Y . If σ(a) = σ′(a) then clearly
σ′(a)σ′(b) = σ(a)σ(b) ∈ E(G↑). Otherwise, a /∈ X2 and a ∈ Ci[I

σ(q1), Iσ(q2)] for some 0 ≤ i < s1. If
σ(b) ≥ zq2(i) then Lemma 5.11 implies that b ∈ Di[I

σ(q1), Iσ(q2)]. By Lemma 5.11 again, [zq1(i), zq1(i+1)−1]
is a clique in σ(Gσ) and hence in G↑ as well, so σ′(a)σ′(b) ∈ E(G↑). A similar situation happens if σ(b) < zq1(i)
and i > 0: b ∈ Di−1[Iσ(q1), Iσ(q2)] and again Lemma 5.11 together with feasibility of σ proves the claim.
In the remaining case i = 0 and σ(b) < q1. As σ(a) 6= σ′(a) we have a /∈ X1 and hence the reason why
(q1, q2) is a relevant pair must be existence of some position q←. As ab ∈ E(G) we have σ(b) ≥ q← + 1.
As jump(q← + 1) ≥ q2, the position b is adjacent to all positions of [q1, q2 − 1] in σ(Gσ) and hence
σ′(a)σ′(b) ∈ E(σ(Gσ)) ⊆ E(G↑) as claimed. y

From the above claims we infer that |Fσ′ | ≤ |F f,∗|+|Fσ\
(
Y
2

)
|, whereas Fσ|Y ,∗ ⊆ Fσ∩

(
Y
2

)
. By the minimal-

ity of both f and σ, including the lexicographical minimality, we have f = σ|Y and the lemma is proven.

The layer-two dynamic programming algorithm computes, for any layer-two state (I1, I2), a function
g[I1, I2] that satisfies the first 4 conditions of f [I1, I2], and we will inductively ensure that g[Iσ(q1), Iσ(q2)] =
f [Iσ(q1), Iσ(q2)] for any relevant pair (q1, q2). We compute the values g[I1, I2] in the order of decreasing
value of z1(0) and, subject to that, increasing value of z2(0). (Formally, g[I1, I2] may also take value of ⊥,
which implies that either I1 or I2 is not consistent with σ; we assign this value to g[I1, I2] whenever we find
no candidate for its value.)

Consider now a fixed layer-two state (I1, I2) with I1 = (s1, z1, u1, B1) and I2 = (s2, z2, u2, B2). We start
with the the base case when we have that either z1(0) = z2(0) or z1(0) ≥ p2 − 1. Observe that in this
situation we have that the domain of g[I1, I2] is either X2 or X2 with an additional element u1(0) which
must be mapped to z1(0) = p2 − 1. Hence all the values of f [I1, I2] are fixed by σ2

X , u1 and z1, and there
is only one candidate for this value. It is straightforward to verify that, in the case when I1 = Iσ(q1) and
I2 = Iσ(q2), this unique candidate is indeed a restriction of σ and hence equals f [I1, I2].

In the inductive step we have z1(0) < z2(0) and z1(0) < p2 − 1. We consider two cases, depending on
the value of z2(0)− z1(0).

First assume z2(0) − z1(0) > 1. In this case consider all possible chains I3 = (s3, z3, u3, B3) such that
both (I1, I3) and (I3, I2) are layer-two states, and z1(0) < z3(0) < z2(0). We take as candidate value for
g[I1, I2] the union g[I1, I3] ∪ g[I3, I2], and pick g[I1, I2] using the criteria from the definition of the value
f [I1, I2], but taking only functions g[I1, I3] ∪ g[I3, I2] for all choices of I3 as candidates.
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We claim that if I1 = Iσ(q1), I2 = Iσ(q2) and (q1, q2) is a relevant pair, then g[I1, I2] = f [I1, I2]. Note
that it suffices to show that f [I1, I2] is considered as a candidate for g[I1, I2] in the aforementioned process for
some choice of I3. Consider any q1 < q3 < q2 and observe that if (q1, q2) is a relevant pair, then also (q1, q3)
and (q3, q2) are relevant pairs: this is clearly true for the case q2 ≤ r1 and, in the last case of the definition of
a relevant pair, notice that the same position q← witnesses also that (q1, q3) and (q3, q2) are relevant. Denote
I3 = Iσ(q3) and observe that we consider a candidate g[I1, I3]∪g[I3, I2] for g[I1, I2]. By Lemma 5.17 and the
inductive assumption, this candidate is a restriction of σ, and hence, again by Lemma 5.17, equals f [I1, I2].

We are left with the case z2(0) = z1(0) + 1. As z1(0) < p2 − 1, we have z2(0) < p2. For α = 1, 2 define
sα∗ = sα − 1, and zα∗ (i) = zα(i + 1), uα∗ (i) = uα(i + 1) and Bα∗ (i) = Bα(i + 1) for any 0 ≤ i ≤ sα∗ , and
Iα∗ = (sα∗ , z

α
∗ , u

α
∗ , B

α
∗ ). In this case we consider only one candidate for g[I1, I2], being g[I1

∗ , I
2
∗ ], extended with

g[I1, I2](u1(0)) = z1(0).
It remains to show that if I1 = Iσ(q1), I2 = Iσ(q2) and (q1, q2) is an relevant pair, then g[I1, I2] = f [I1, I2].

Observe that I1
∗ = Iσ(jump(q1)) and I2

∗ = Iσ(jump(q2)). Moreover, the position q1 witnesses that
(jump(q1), jump(q2)) is a relevant pair, and hence g[I1

∗ , I
2
∗ ] = f [I1

∗ , I
2
∗ ] by induction. This completes the

proof that g[Iσ(q1), Iσ(q2)] = f [Iσ(q1), Iσ(q2)] for all relevant pairs (q1, q2).
As candidates for the value f [J1, J2] of the layer-one state (J1, J2) we are currently processing, we take

all the values g[I1, I2] for all the layer-two states (I1, I2) for which the domain of f [I1, I2] is equal to the
domain of f [J1, J2]. By Theorem 5.14, there are at most (n|S|)O(τ) guesses for such states, and they can be
enumerated in (n|S|)O(τ) time. Observe also that if indeed J1 = Jσ(p1) and J2 = Jσ(p2), then the layer-two
state (I1, I2) = (Iσ(p1), Iσ(r1)) will be among the enumerated states. Since (p1, r1) is a relevant pair, we have
that g[Iσ(p1), Iσ(r1)] = f [Iσ(p1), Iσ(r1)], while by Lemma 5.17 we have that f [Iσ(p1), Iσ(r1)] is equal to the
restriction of σ to its domain, which in turn is equal to the domain of g[J1, J2]. Hence, the restriction of σ
to the domain of g[J1, J2], which is exactly equal to f [J1, J2] by Lemma 5.8, will be among the enumerated
candidate values — this was exactly the property needed by the layer-one dynamic program.

By Theorem 5.14 there are (n|S|)O(τ) layer-two states, thus the entire computation of f [J1, J2] takes
(n|S|)O(τ) time, as was promised. This concludes the proof of Theorem 5.1, and hence finishes the proof of
Theorem 1.1.

6 Conclusions

We have presented the first subexponential algorithm for Proper Interval Completion, running in time

kO(k2/3) +O(nm(kn+m)). As many algorithms for completion problems in similar graph classes [3, 6, 8, 9]

run in time O?(kO(
√
k)), it is tempting to ask for such a running time also in our case. The bottleneck in

the presented approach is the trade-offs between the two layers of our dynamic programming.

Also, observe that every O?(2o(
√
k))-time algorithm for PIC would be in fact also a 2o(n)-time algorithm.

Since existence of such an algorithm seems unlikely, we would like to ask for a 2Ω(
√
k) lower bound, under

the assumption of the Exponential Time Hypothesis. Note that no such lower bound is known for any other
completion problem for related graph classes.
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