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[sotropic realizability of current fields in R?

M. Briane* G.W. Milton'
September 26, 2014

Abstract

This paper deals with the isotropic realizability of a given regular divergence free
field j in R3 as a current field, namely to know when j can be written as oVu for some
isotropic conductivity o > 0, and some gradient field Vu. The local isotropic realizability
in R? is obtained by Frobenius’ theorem provided that j and curl j are orthogonal in R3.
A counter-example shows that Frobenius’ condition is not sufficient to derive the global
isotropic realizability in R?. However, assuming that (4, curl j, j x curl j) is an orthogonal
basis of R3, an admissible conductivity o is constructed from a combination of the three
dynamical flows along the directions j/|j|, curl j/|curl j| and (j/|j|?) x curl j. When the
field j is periodic, the isotropic realizability in the torus needs in addition a boundedness
assumption satisfied by the flow along the third direction (j/[j|?) xcurlj. Several examples
illustrate the sharpness of the realizability conditions.

Keywords: current field, isotropic conductivity, Frobenius’ condition, dynamical flow

Mathematics Subject Classification: 35B27, 78A30, 37C10

1 Introduction

In the theory of composite conductors (see, e.g., [5]), we are naturally led to study periodic
composites. The effective properties of a periodic composite are obtained by passing from a
local Ohm’s law

j=oe, (1.1)

between a periodic divergence free current field j and a periodic electric field e, to an effective
Ohm'’s law
(j) = o*(e), with () the average over the period cell, (1.2)

where o(y) is the local conductivity which is isotropic, and ¢* is the (constant) effective con-
ductivity of the composite which is in general anisotropic. In this context, it is natural to
characterize the periodic current fields arising in the solution of these equations among all the
divergence free fields. More precisely, the paper deals with the following question: Given a
periodic regular divergence free field j from R? into R?, under which conditions j is an isotropi-
cally realizable current field, namely there exists an isotropic conductivity o > 0 and a gradient
field such that j = oVu? An additional motivation comes from the success of transformation
optics (see, e.g., [6, 7]) where the objective is to choose moduli (in our case the conductivity o)
to achieve desired fields (in our case the prescribed current field j).
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In [3] we have studied the isotropic realizability of a given regular electric field e = Vu
in R?, for any d > 2. The key ingredient of our approach was the associated gradient system

{ X'(t,2) = Vu(X(t, x))7 for t € R, (1.3)

X(0,2) ==,

which allowed us to prove the following isotropic realizability result for a gradient field in the
whole space and in the torus:

Theorem 1.1 ([3], Theorems 2.15 & 2.17). Let u be a function in C3(RY) satisfying the non-
vanishing condition
inf [Vu| > 0. (1.4)
R

Then, there exists a unique function 7 € CY(R?) such that for any © € R?, the trajectory
t — X(t,x) meets the equipotential {u = 0} at the times T(x), namely

u(X(r(z),z)) = 0. (1.5)

Moreover, the positive function o defined in R? by

(z)
o(x):=exp (/o Au(X(s,z)) ds) , forx€RY (1.6)

satisfies the conductivity equation div (cVu) = 0 in RY,
On the other hand, when Vu is periodic, the conductivity o can be chosen periodic if and
only if there exists a constant C' > 0 such that

7()
/ Au(X(t,z))dt| < C, VzeR™ (1.7)
0

In the case of a gradient field, the local isotropic realizability which follows from the non-
vanishing condition (1.4) thanks to the rectification theorem (see [3], Theorem 2.2 7)), is thus
equivalent to the global realizability given by the previous theorem.

The case of a regular divergence free field j in R? is much more intricate. First of all,
a necessary condition for the isotropic realizability is the orthogonality of j and curlj in R3.
Conversely, if j is non-zero and orthogonal to curl j in R?, then Frobenius’ theorem implies that
j is isotropically realizable locally in R? (see Proposition 2.2). However, contrary to the case
of a gradient field, these two conditions are not sufficient to ensure the global realizability (see
Section 3.2 for a counter-example). This strictly local nature of Frobenius’ theorem is strongly
connected to cohomology which is outside the scope of this paper. On the other hand, we
cannot use for a current field the properties of a gradient system which permits us in particular
to define the time 7(z) satisfying (1.5).

Our approach concerning the isotropic realizability of a current field is still based on dynam-
ical systems. But now, the procedure to construct an admissible conductivity associated with
a given regular divergence free field j, uses a combination of three dynamical flows which are
not of gradient type. To this end, we need that the three fields j, curl j and j x curl 7 make an
orthogonal basis of R3, including in this way Frobenius’ condition. Then, the method consists
in flowing from a fixed point xy € R3, first with the flow X along the direction j/|j| during a
time ¢, next with the flow X5 along the direction curl j/|curl j| during a time ¢, finally with



the flow X3 along the direction j/[j|? X curl j during a time #3. So, we obtain the triple time
dynamical flow

(t1,t2,t3) = Xso(ts, ta, t1) = X3(t3,X2(t2,X1(t1))), with  X355(0,0,0) = o, (1.8)

which is assumed to be a C!-diffeomorphism onto R®. Under these assumptions we prove (see
Theorem 2.4) that the field j is isotropically realizable with the conductivity o defined by

| curl j? 5
O'(ng(tl, tg,tg)) = exp (/ |j|2 (XgQ(S, tQ, tl)) dS) s for (tl, tQ, tg) eR s (]_9)
0

This result can be regarded as a global Frobenius’ theorem, and is illustrated by the very simple
current field j of Section 3.1, which yields an infinite set of (not obvious) admissible conduc-
tivities. Unfortunately, Section 3.3 shows that the approach with the triple time dynamical
flow fails for a periodic regular field j of a particular form which is everywhere perpendicular
to a constant vector, since curl j does vanish in R? (see Remark 3.3). However, in this case
the divergence free field can be written as an orthogonal gradient, which allows us to apply
Theorem 1.1 for a two-dimensional electric field.

When the field 7 is periodic, the isotropic realizability in the torus needs an extra assumption
as in the case of a periodic electric field [3] (Theorem 2.17). Under the former conditions which
ensure the isotropic realizability of j in the whole space R?, we prove (see Corollary 2.9) that
the field 7 is isotropically realizable in the torus, namely reads as cVu with both ¢ and Vu
periodic, if and only if

oo 1 |12
sup </ jourl (Xs2(s, b2, 1)) ds) < 00, (1.10)

(t1,t2)€R? 0o |j|2

which is equivalent to the boundedness from below and above of the conductivity (1.9) in R?.
The sharpness of condition (1.10) is illustrated by Proposition 3.5 and Example 3.6 below.

The paper is divided in two parts. In Section 2 we study the validity of the isotropic
realizability of a regular divergence free field first in the whole space R3, then in the torus
when the current field is assumed to be periodic. Section 3 is devoted to examples and counter-
examples which illustrate the theoretical results of Section 2.

Notations

o YV :=10,1 and Y’ := [0, 1]

(-) denotes the average over Y.

Cﬁk (Y) denotes the space of k-continuously differentiable Y-periodic functions on R%.

L;(Y') denotes the space of Y-periodic functions in L*(R?), and H}(Y") denotes the space
of functions ¢ € LZ(Y) such that Vo € L (Y)".

For any open set € of RY, C>°(Q) denotes the space of smooth functions with compact
support in 2, and Z'(2) the space of distributions on (2.



2 Results of isotropic realizability

2.1 Realizability in the whole space

Let us start by the following definition:

Definition 2.1. Let j be a divergence free field in L°°(R?®)? — j will be taken regular in the
sequel — The field j is said to be isotropically realizable in R? as a current field, if there exist an
isotropic conductivity o > 0 with o,07! € L>*(R?), and a potential u € W1>(R?)3, such that
j = oVu. Moreover, when j is Y-periodic, j is said to be isotropically realizable in the torus if
o and Vu can be chosen Y-periodic.

First of all we have the following result which provides a criterion for the local isotropic
realizability of a regular current field:

Proposition 2.2. Let j be a vector-valued function such that
jEeC* (R j#£0 inR® and divj=0 inR> (2.1)

Then, a necessary and sufficient condition for the current field j to be locally isotropically
realizable in R® with some positive C' conductivity o is that

j-curlj =0 in R3. (2.2)

Proof. 1f j is isotropically realizable with some conductivity o € C'(R3), then j = oVu with
o € CY(R?), and

curl j = curl (6Vu) = Vo x Vu+ o curl (Vu) = Vo xj in R (2.3)
o

which yields immediately (2.2). Conversely, if (2.1) and (2.2) are both satisfied, then by
Frobenius’ theorem (see, e.g., [4], Theorem 6.6.2 and example p. 279) there exists locally a
non-zero C'! function o and a C! function u, such that j = cVu. The function o can be chosen
positive by a continuity argument, which shows the isotropic realizability of j locally in R3.
Actually, the divergence free condition is not necessary to obtain the local realizability. O

Frobenius’ condition (2.2) implies the local isotropic realizability for a current field j satis-
fying condition (2.1). However, contrary to the case [3] of an electric field for which the local
realizability and the global realizability turn out to be equivalent, these two conditions are not
sufficient to ensure the global isotropic realizability of j, as shown by the counter-example of
Section 3.2. To overcome this difficulty we will use an alternative approach based on the flows
along the three orthogonal directions 7, curl 7 and j x curl j under suitable assumptions which
are detailed below:

Let j be a current field satisfying conditions (2.1). Beyond condition (2.2) we assume that

(j, curl j, 7 X Curlj) is an orthogonal basis of R3. (2.4)

Then, for a fixed zy € R? and for any (t,t,13) € R3, consider the flows X (¢, z), X»(¢, ),
X3(t, z) along the orthogonal directions j/|j|, curl j/|curl j|, j/|j|* x curl j respectively, that is

(0X '
a—tl<t7 .T) = |j—|(X1<t,.§L’)), X1<0) =T,
0X5 _curly B 3
W( ,x) = el | (Xa(t,2)), X5(0) =z, for (t,z) € R x R”. (2.5)
0X | % curl §
T3 (,2) = L2201, 2)), Xu(0,2) =
L Ot U‘




Note that the flows X; and X, are well defined in the whole set R x R3, since by (2.1) j/|4]
and curl j/|curl j| belong to C*(R?) and are bounded in R? (see, e.g., [1], Chap. 2.6). In the
sequel, we will assume that the flow X3 is also defined in the whole set R x R3. That is the
case if for example j € CF(Y)?.

Remark 2.3. In view of the normalization of the flows X;, X5, and to avoid the latter assump-
tion, it seems a priori more logical to renormalize the flow X3 with |j||curl j| rather than |j|?.
The derivation of the isotropic realizability is quite similar in both cases (see Theorem 2.4 and
Remark 2.5 just below). However, the normalization by |j|* arises naturally in the orthogonal
decomposition (2.18) which is a key-ingredient for the construction of an admissible conductiv-
ity associated with the isotropic realizability of j. Moreover, it gives a necessary condition for
the isotropic realizability in the torus without the need to assume that curl 7 does not vanish
in R? (see the first part of Corollary 2.9 below). Actually, there are lots of examples where
curl j vanishes somewhere (see Section 3.3 below), but the normalization of the flow X3 by |j|?
may be relevant in some cases (see Proposition 3.2 and Remark 3.3).

Next, denote for a fixed point 2y € R3,

Xi(t1) == Xy (t1, mo)
Xo3(s2, 83,t1) 1= Xo(s2, X3(s3, X1(t1,20)))  for (sq, s2, 83,1, 12, t3) € RO (2.6)
Xso(ts, to, t1) = X3 (t37X2(t2,X1(t17370)))7

So, the dynamical flow X35 is obtained by flowing from the point zy along the direction j/|j]
during the time t;, then from the point X;(¢;) along the direction curlj/|curl j| during the
time to, finally from the point X(ta, X;(#1)) along the direction (j/[j|?) % curlj during the
time ¢3. The end point is thus X3a(t3,t2,¢1). A similar construction holds for Xo3(ts, t3,t1) by
commuting the flows X, and X5. Now, the main assumption is that any point = in R?® can be
attained by the composition of the three flows, so that x can be represented in a unique way
by the system of coordinates (¢y, ta,13), that is

(t1,t2,t3) — Xso(tz, to,t1) is a C'-diffeomorphism onto R?. (2.7)
Then, we have the following sufficient condition for the global isotropic realizability in R3:

Theorem 2.4. Let j be a field in R? satisfying (2.1) and (2.4). Also assume that condition (2.7)
holds true. Then, the field j is isotropically realizable in R® with the conductivity ¥ € C1(R3?),
where the function w is defined by

' |curl j|?
1417

w(x) = U}(ng(tg,tg,tl)) = /O (ng(s,tg,tl)) dS, f07" (tl, tQ, tg) € Rg. (28)

Remark 2.5. In view of Remark 2.3, if we renormalize the flow X3 by |j|[curl j|, it is replaced
by the flow X3 defined by

X, ~ jxcurlj

oy (t,z) = W(Xg(t,x)), X3(0,2) =z, (2.9)

which by condition (2.4) is defined in R x R3. Then, similarly to (2.7), assuming that the triple
flow . .
Xag : (ty, 1o, t3) = X (ts, Xo(ta, X1(t1, 0)) (2.10)



is a C'-diffeomorphism onto R?, we obtain that the field j is isotropically realizable in R? with
the conductivity e® € C*(R?), where

' Jcurl 4
171

’lIJ(l‘) = w(ng(tg, tg,tl)) = / (ng(s,tg,tl)) dS, for (tl,tg, tg) € R3. (211)
0

The proof is quite similar to the proof of Theorem 2.4 replacing formula (2.12) by

Vi - (j.x Cuﬂ.j) _ lewdj] _ (‘7 . ?‘;ﬂj) : <j.x C“ﬂ,j) in R?. (2.12)
|j]|curl j| |1 |1 |j]|curl 4|

Remark 2.6. Alternatively, we can replace the diffeomorphism condition (2.7) by
(t1,ta,t3) — Xso(t3,ta,11) is a homeomorphism onto R? of class C*, (2.13)

so that the Jacobian of X35 may vanish somewhere. In compensation we have to assume that
the function w of (2.8) belongs to C*(R?). See the application to the example of Section 3.1.

Remark 2.7. Condition (2.7) is not sharp to ensure the isotropic realizability of the current
field. Indeed, the planar example of Proposition 3.2 below shows that the isotropic realizability
can be satisfied while condition (2.4) is violated. See also Example 3.6 below.

Proof of Theorem 2.4.
First step: Construction of an admissible conductivity.

Let j be a field satisfying (2.1). Assume that j is isotropically realizable in R?, namely there
exists u, w € C''(R3) such that
j=¢e"Vu inR> (2.14)

It seems that we can choose the potential u arbitrarily along the trajectory X;(t), provided Vu
does not vanish along this trajectory. So, define

u(Xi(t)) := /0 }j(Xl(s))’ds, for t € R. (2.15)

Taking the derivative with respect to ¢ of (2.15) and using (2.5), (2.14), we get that

0 , 0 —w(xey J T
which implies that
w(Xi(t)) =0, forteR. (2.17)
Next, taking the curl of (2.14) we get that curl j = Vw X j, hence
. L
‘7*% — Vw — IL,(Vw) inR?, (2.18)
J

where II; is the orthogonal projection on the subspace Rj. Hence, integrating (2.18) along the
trajectory X3, we have

w(Xaa(ts, ta, 11)) — w(X32(0, 12, 1)) = w(Xsa(ts, ta2, 1)) — w(Xa(ta, X1(t1)))

s 0X fs ?
2/ Vw(X32(S,t2,t1))- 832(8,t2,t1)d5:/ ‘
0 S 0

t3 14|12
:/ %()(},2(8,152,151)) ds.
0 J

J x curly
117

(XgQ(S, tQ, tl)) ds



Then, integrating (2.18) along the trajectory X, and using (2.2), we get that

w(Xs(tz, X1(t1))) — w(X2(0, X1(t1))) = w(Xa(ta, X1(t1))) — w(X1(t1))

:/OQVw(XQ(s,tl)) . %(s,tl)ds :/Ong(Xz(Satl))

curl j

. ‘Curlj| (X2(87t1)) ds = 0.

The two previous equalities combined with (2.17) yield the desired expression (2.8).

Second step: Construction of a grid on the surface {t; = ¢}, generated by the flows Xy, X3.

Let us prove that for any (ci,th, ts,t3) € RY, the flows X, and X3 generate on the regular
surface {t;=c;1}, a thin grid whose:

e step is of small enough size v > 0,

e horizontal lines are trajectories along the flow X,
e vertical lines are trajectories along the flow X3,

e two opposite vertices are the points

l‘, = Xg(té,Xl(Cl)) and x:= Xg(tg,XQ(tQ, ZL‘I)) = ng(tg,t; -+ tg, Cl). (219)

First, we divide the flows in small time steps, as shown the diagram

(2.20)

— e —e— e —8

r—e—e—e—0— 0

where the horizontal arrows represent the flow X5, and the vertical ones the flow X5. Then, we
commute step by step the flows Xy and X3, while remaining on the surface {t; =¢; }, as shown
the commutation diagram

X
q e — q
— @ — @
p X, p X,

to finally obtain the desired grid

N
r 1 1 1 1 1
e —> 0 —He —>0 —0 —> e (2.22)
T_}T_}T_}T_)T_}T
LT T T T
r— e — e — e — e —y



where by (2.19) there exists (s2,s3) € R? such that
7= Xo(ty, Xi(er), ¢ = Xa(s3,07), y:=Xo(te,2), 2= X5(t3,9) = Xa(s2,9). (2:23)

The vertices z’, ', y, x of the grid (2.22) satisfy the commutative diagram

Xo
Y = Xs(s3,2) — Xo(s2,y) = Xs(ts,y) =2
X5 7 T X5 (2.24)

= Xo(th, X1(c1)) — Xo(tg, 2') = y.
X
Note that the grid (2.22) is schematic. A more realistic grid is represented in figure 1 below.

Frobenius’ theorem will allow us to make the local switching (2.21) thanks to a potential
u satisfying j = oVu. To this end, we proceed by induction on the number n of switchings,
for an appropriate time step v > 0 which will be chosen later. The induction hypothesis, for
a given n € N, consists in the existence of a partial grid G,,(v), with n switchings, represented
by the diagram

e — 00—

qg— & —

[

e — e —p—e— e —

r 1 1T 1 1

 — e —> e —>0 —> 0 —

(2.25)

e — O —

which lies on the surface {t;=c;}.

First, the result holds for n = 0. Indeed, the points 2’ and = defined by (2.19) clearly belong
to the surface {t; =c;}, so does the initial diagram (2.20) for any time step 7.

Next, assume that after a number n of switchings, we are led to the grid G, (v) (2.25) which,
by the induction hypothesis, lies on the surface {t; =c¢; }. By virtue of Frobenius’ theorem there
exist an open neighborhood V' of p, and a potential v € C'(V) such that j = oVu in V. Then,
we may chose 7 > 0 small enough so that

q € Sa(p,7) := { X303, Xo(02,p)) : [6a] +[85] <7} CV (2.26)
Ss(0,7) 1= { Xo(b2, Xs(85,0)) : 102] + 165] < 7} € V. |

independently of the point p in a given compact set of R3. Since the potential u is constant
along the flows X, and X3, we have for any point r € Sss(p, 7),

u(r) = u(Xs(d3, X2(62,p))) = u(X3(0, X2(02,p))) = u(X2(02,p)) = u(X2(0,p)) = u(p).
The same equality holds for any point r € Sa3(p, 7), hence
q € Ssp(p,7) C{u=ulp)} NV and Sxu(p,7) C {u=u(p)}nV. (2.27)

Moreover, since the trajectory along the flow X5, passing through the point p in diagram (2.25)
lies on the surface {t; =c;} (by the induction hypothesis), thanks to the semi-group property
satisfied by the flow X3, we have that for any |dy| + |d3] < ¢, there exists ({2, t3) € R? such that

X5(05, X5(02,p)) = X3(05, Xsa(ts, 12, 1)) = Xsa(03 + t3, 12, ¢1) € {t1=c1}. (2.28)

8



Hence, by the definition (2.26) of Ssa(p, 7), we get that
Vit > O, 532 p, {tl—Cl} (229)

However, thanks to the condition (2.4) which yields Vu # 0 in V, the sets Ssa(p, 7), Sas(p, T)
and {u = u(p)} NV are regular open surfaces in V. Hence, from the inclusions (2.27) we deduce
that the surfaces Ss(p, 7) and Saz(p, 7) actually agree with the equipotential {u = wu(p)} in
some neighborhood of p containing ¢, but independent of p in a given compact set K of R3.
This combined with the condition (2.29) (which does not depend on time), implies that the
time step v < 7 may be chosen small enough, but independently of the point p in K, so that

q € Sas(p,v) C {ti=c1}. (2.30)

Therefore, the following grid G,,41(v) which completes (2.25)

e — g —> e —> e (2_31)

1 1 1

e —> o —>p—e—0—e

r1T 1T 1 1 1

r— e —Se —>e —e —e

also lies on the surface {t; = ¢;}. The induction proof is thus done, which establishes the
existence of the grid (2.22).

Third step: Proof of the isotropic realizability with the conductivity e*.

Let us prove that the function w defined by (2.8) combined with condition (2.7) satisfies the
equality (2.18). This yields the global isotropic realizability of j, since by (2.1), (2.2) and (2.18)
we have

: 1) i
curl (e7¥j) = e (curlj — Vw x j) =e (curlj _Ux Cﬁj) . ‘7) = 0. (2.32)
J

On the one hand, taking the derivative of (2.8) with respect to t3, we have

) x curl j curl j|?
Vuw - (W) (ng(tg,tg,tl)) = %(X?)Q(t?nt%tl))a v(t17t27t3) € Rgv (233)

which together with condition (2.7) implies that

J x curl j lcurl j|2 |j xcurlj|* | 3
vo (U)o e .

Moreover, taking the derivative of (2.8) with respect to ty for t3 = 0, we get that

0= Vw(Xs2(0,t2,t1)) - 5at22 (0,82, 1) = Vw(Xa(ts, X1(t1))) - 8;(2 (t2, X1(t1))
= V(X (s, X1(1))) - ‘ZEi' (Xa(ts, X (1))



/////:f fod ‘s:\\\\\
e

NN
W

Figure 1: The square Q) split in small squares Q) on the surface {t; = c1}

which yields
Vw - Clll'lj =0 on {XQ(tQ, X1<t1)) . (tl,tQ) € Rz} (235)

On the other hand, for a constant ¢; € R, consider on the surface {t; = ¢;} the curvilinear
integral over 0Q) defined by

t3 1 2 S3 1 -2
/ﬂ / 'C“r I x5, 9)) ds / I (s, 07)) ds, (2.36)
oQ 0

1417

where Q = Qu 4y 42, With 2,9, y, x defined by (2.23), is the “square” lying on the surface
{t1 = 1}, whose:

e horizontal sides are trajectories associated with the flow X5 along curl j/|curl j|,
e vertical sides are trajectories associated with the flow X3 along j/[j|* x curl j,
e vertices x’, ¥, y,  make the loop (2.24).

Now, consider the thin grid on @), associated with the grid (2.22), whose lines are parallel to the
trajectories along curl j/|curl j| and (j/|j|?) x curl j, and which splits @ in small squares Qy,
as shown in figure 1. According to the second step of the proof, we may choose the time step
of the grid so that Frobenius’ theorem applies in some open neighborhood Vj, of R?, containing
the closed square Q). Namely, there exists wy, € C'(V}) such that

curl (e7™* j) =0 in Vg,

which implies formulas (2.18) and (2.34) for wy. Using the loops induced by the boundaries
OQx, the contributions of the interior vertical lines (along j/|7]? x curl j) two by two cancel (see

figure 1), which leads to
W= L w. (2.37)
/ij ; /BQk

Vwg-curlj =0 in Vj, D Qp,

However, since

the curvilinear integrals of dwy on the two horizontal lines of 0@y (along curl j/|curlj|) are
equal to 0, while by putting (2.34) in (2.36) the curvilinear integrals of dwy, on the two vertical

10



lines of AQ;, (along j/|j]* x curlj) agree with the curvilinear integral of w over 9Q;, which

yields
/h w:/n dwy, = 0. (2.38)
0Qy 0Qy

The last equality is due to the fact that dw; is an exact differential on the closed loop 0Q).
Hence, from (2.37) and (2.38) we deduce that

/5&zw 0. (2.39)

Next, consider the function w defined by (2.8). Taking the loop (2.24) in the anti-clockwise
direction, the contributions of the vertical lines (along (j/]j|?) x curl ) of the curvilinear integral
of dw over Q) in the anti-clockwise direction, read as, in view of (2.34) and (2.36),

/OtS Vuw - (%) (Xs(s,y)) ds — /083 Vuw - (ijc%lj) (Xa(s,2')) ds = /522 w. (240)

Moreover, again by (2.24) the contributions of the horizontal lines (along curl j/|curl j|) of the
curvilinear integral of dw over d(Q) in the anti-clockwise direction, read as

to -
/ Vw - Curl‘? (Xs(t, / Vw - curl) (Xa(s,y)) ds. (2.41)
0

|curl 7| |curl j|

From (2.40) and (2.41) we deduce that

0 :/A dw
0Q

to 1 52 g
N /n w "‘/ Vo o (Xo(ta,a")) ds _/ Vi (Xa(s,y) ds,
Q 0 0

|Cur1 Jl

which by (2.39) implies that

52 1 1 1
/ V- (s ) d / Vo (X, (1, 2')) ds. (2.42)
0

Equality (2.42) combined with (2.23) and (2.35) yields

1 [ 14
e ‘7 (XQ(S,Xg(Sg,ZL‘I))) ds =0, where z’'= X5(th, Xi(c1)). (2.43)

sy Jo |curl 7|

Then, making to — 0 — which, by the continuity of the flows in the diagram (2.24), implies that
sy — 0 and Xj3(s3,2") — X;3(t3,2") — and using the continuity of the integrand in the left-hand
side of (2.43), we get that

Vw - curl j (Xso(t3, ), ¢1)) = Vw - curl j (X5(ts,2")) =0, V(c1,th,3) € R (2.44)
This combined with the diffeomorphism condition (2.7) leads to
Vw-curlj =0 in R (2.45)

Finally, combining the equalities (2.45) and (2.34) with (2.4), we derive the formula (2.18).
Therefore, thanks to (2.32) we may conclude that the current field j is isotropically realizable
with the conductivity e* defined by (2.8), which concludes the proof of Theorem 2.4. U
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2.2 Isotropic realizability in the torus

As in the case of an electric field [3] the isotropic realizability of a periodic current field in
R? does not imply in general the isotropic realizability in the torus, as shown in Example 3.6
below.

First of all, we have the following criterion of isotropic realizability in the torus:

Proposition 2.8. Let j be a Y -periodic divergence free field in LEO(Y)?’. Then, the field j is
isotropically realizable in the torus with a conductivity o > 0 satisfying 0,0~ € LB’O(Y), if and
only if there exists w € L>®(R) such that

curl (e7“5) =0 in R®. (2.46)

Proof. Assume that j is isotropically realizable in the torus with a conductivity o > 0 satisfying
o,07" € LE(Y). Then, defining w := Ino € L™(R?), the function e~*j is a gradient, which
implies (2.46).

Conversely, assume that (2.46) holds with w € L>°(R). Then, there exists u € W1 (R?)
such that e”j = Vu, or equivalently j = ¢* Vu in R?. It is not clear that e is periodic.
However, we can construct a suitable periodic conductivity by adapting the average argument
of [3] (proof of Theorem 2.17). To this end, define the sequence (wy,)nem {0y, by

1
wp(x) = n 1y Z w(xr + k), forz € R®  where |k|s := max (|ky], |ka|, |k3|) .

keZ3, |kloo<n

Since w is in L>®(R3), the sequence w, is bounded in L>(R), and thus converges weakly-*
to some function wy in L>(R?). It is easy to check that wy is Y-periodic. Moreover, by the
periodicity of j we have

m Z curl (Vu(-+k)) = 0.

k€Z3, |kloo<n

- 1 Cw(eak) -
curl (e "]):m Z curl (e UM (. + k) =

keZ3,|k|o<n
As e"*nj converges weakly-* to e“#j in L>°(R?)3, the previous equality leads to
curl (e7"#j) =0 in 2'(R?)®.

Therefore, e"#j is a periodic gradient and j is isotropically realizable in the torus with the
conductivity e":. O

As a consequence of Proposition 2.8 and Theorem 2.4, we have the following result:
Corollary 2.9. Let j be a Y -periodic current field satisfying conditions (2.1) and (2.2).

i) Assume that the field j is isotropically realizable in the torus with a positive conductivity
o€ Cﬁl(Y). Then, there exists a constant C' > 0 such that

o] -2
/ jourl /1 (X5(s,2))ds < C, VaeR? (2.47)

o P
where the flow X3 is defined by (2.5).
i1) Alternatively, assume that the conditions (2.4) and (2.7) are satisfied. Then, the field j

is isotropically realizable in the torus if and only if estimate (2.47) holds true.
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Remark 2.10. Corollary 2.9 with the boundedness condition (2.47) is illustrated in Proposi-
tion 3.5 below.

Proof of Corollary 2.9.

Proof of i). Denoting o = e* € C*(R3), we have j = ¢*Vu, with Vu € C'(R?)3. Then, from
(2.18) we deduce that

(X5(t,z)), V(t,z) € RxR?

which yields
" leurl 42
ik

Therefore, due to the boundedness of w € C/(Y'), the estimate (2.47) holds.

Proof of ii). By Theorem 2.4 we already know that j is isotropically realizable with the
conductivity o = ¥ € C*(R?) defined by (2.8). If the field j is isotropically realizable in the
torus, then by 7) the estimate (2.47) holds. Conversely, in view of the estimate (2.47) combined
with the definition (2.6) of X3,, the function w defined by (2.8) clearly belongs to L>(RR?).

Therefore, applying Proposition 2.8 with the conductivity e”, we get that j is isotropically
realizable in the torus. OJ

w(Xs(t,x)) —w(z) = (Xs(s,2))ds, V(t,z) e R xR (2.48)

3 Examples and counter-examples

In this section a point of R? is denoted by the coordinates (z,y, z), and (e, e, €,) denotes the
canonical basis of R3.

3.1 Example of global realizability in the space

We will illustrate the construction of Theorem 2.4 with the current field

1
jlx,y,2) = [sinhz |, for (x,y,2) € R®, (3.1)
0
which is clearly non-zero and divergence free in R3. We have
0 sinh x cosh x
curl j(z,y, z) = 0 and j x curl j(x,y,z2) = —coshz : (3.2)
cosh z 0

so that the field j satisfies (2.1) and Frobenius’ condition (2.2).
Noting that [j| = |curl j| = | cosh x|, and using the solutions to one-dimensional first-order
odes, the flows X7, X5, X3 of (2.5) associated with the field j are given by

argsinh (¢ + sinh (21(0))) 5(0)
Xi(t) = \/1 + (t + sinh (xl(O)))2 +41(0) — cosh(z1(0)) |,  Xa(t) = y2(0) ;
21 (0) t+ Z9 (O)
argsinh (e’ sinh (z5(0))) (3.3)

Xs(t) = |~ /O & +y3(0)

V1 €2 sinh? (25(0))
2’3(0)
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Hence, starting from the point o = (0, 1,0), the composed flows X3s, Xo3 of (2.6) are given by
argsinh (¢ e'?)

s ds 5 3
Xag(ts, o, 1) = —/ B 12|, for (f o, ts) € R 3.4
s2(ts, b2, 1) v iten T (t1, 12, 13) (3.4)
lo

Making classical changes of variables in the integral term, formula (3.4) can be written

( 0
1—t3 1ft1:0
123

Xao(tz, ta, 1) = argsinh (t; e'?) (3.5)
1
argtanh ( + f(ty) | ifty #0,

wl—i—t%e%)

to

\

where

f(t) := — argtanh (

The function f satisfies

1
\/1+—752) +V1+1t2, fort#0. (3.6)

&) =It| +1—1n2+0(1) and f/(t) =" lt“g = % +o(1), (3.7)

and is a C''-diffeomorphism from (0, c0) onto R, and from (—oco,0) onto R. Hence, we have

V(z,y) e R\ {0} xR, 3!t; e R, xt; >0 and y—argtanh( ) = f(t1), (3.8)

cosh z

which together with (3.5) implies that for this ¢,

(

=0
z = tg
(z,y,2) = Xaats, ta, 1) & sinhz =ty e (3.9)
y — argtanh < ) = f(ty) ift, #0.
cosh x
L z = t2.

As a consequence of (3.5), (3.6), the first equality of (3.7), (3.8) and (3.9), the mapping X3o
define a homeomorphism onto R?, which is of class C! by (3.4). Unhappily, we can check that
the Jacobian of X3 vanishes (exclusively) on the line {¢; = 0}. However, taking into account the
equality sinh z = t; €3, Xy3 does establish a C'-diffeomorphism from the half-spaces {£¢; > 0}
onto the half-spaces {£x > 0}. Therefore, condition (2.7) holds true restricting ourselves on
these half-spaces.

On the other hand, since |j| = |curl j|, the function w defined by (2.8) reads as

11—y iftex=0
w(z,y,2) =ty = (sinhx
In

1
) if x #£0, where zt>0, y—argtanh< ) = f(t).
cosh z
(3.10)
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It is easy to check that the asymptotic expansions (3.7) satisfied by f imply that w € C*(R3).
Hence, the conditions of Theorem 2.4 are fulfilled in the two half-spaces {2 > 0}. Therefore,
the field 7 defined by (3.1) is isotropically realizable in the half-spaces {2 > 0}, with the
conductivity o € C'(R3) given by

e~V  ifzr=0

U(:anaz) = sinh «

if  #0, where xt >0, y— argtanh (
cosh x

):m» (3.11)

Finally, the C'-regularity of j and o ensure the isotropic realizability in the whole space R3.
Since X3 is a homeomorphism onto R? of class C' and the function w of (3.10) is in C1(R?),
we can also conclude thanks to Remark 2.6.

Remark 3.1. The previous example allows us to show that there exists an infinite set of
admissible conductivities which cannot be derived from a multiple of the conductivity (3.11)
defined with the function (3.6). To this end, consider any function f: R\ {0} — R which is a
Cl-diffeomorphism from (0, c0) onto R and from (—o0,0) onto R, which satisfies the following
asymptotic expansions around 0:

1
f@)=Inlt|+c+o(1) and [f'(t)= ; +d +0(1), for some ¢,c € R. (3.12)

Then, define the conductivity oy by

2¢Y ifx=0

Uf(l‘,y,Z) = sinh z

(3.13)
if x 20, where zt >0, y—argtanh( ) = f(t).

Thanks to (3.6), (3.7) and (3.12) the function o; belongs to C*(R). Moreover, we have for any
(z,y) € R\ {0} xR,

cosh x

t 0
1 sinh z 0
curl (O'flj) = curl + = o 1 o | (3.14)
0 Oxr  sinhz Jy
This combined with
0 1 1 ot ot
— — |argtanh = = —f'(t d 1= f(t 1
ox [arg o <COSh x)] sinhz  Ox () an y F@), (3.15)

yields that curl (U;lj) = 01in R\ {0} x R. Since o is in C'(R), the equality holds in R
Therefore, the field j defined by (3.1) is isotropically realizable in R?* with any conductivity o
defined by (3.13) and (3.12).

3.2 Example of non-global realizability under Frobenius’ condition

The following example shows that condition (2.2) is not sufficient to derive a global realizabil-
ity result in accordance with the local character of Frobenius’ theorem. This example is an
extension to a divergence free non-vanishing field in R? of the counterexample of [2] obtained
for a non-vanishing field in R2.
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Define the function j in R3 by

f (@)
jlx,y,2) = f'(x) |, where f(z):=82"—62"—1, (3.16)
—z f'(x)
which satisfies condition (2.1). We have
0
curlj(z,y,2) = | 2 ["(2) |,
/()

so that Frobenius’ condition (2.2) holds, but not (2.4) since f”(1/2/3) = 0.
Now, assume that j can be written ocVu for some positive continuous function ¢ in the
closed strip {0 < x < 1}. We have for any = € (0,1), f'(z) # 0 and

ou
f e o hence Ju _ f(x) Ou (3.17)
fl<.§lf> — 0 %’ ox f/(.’lf) 8y

Then, the method of characteristics implies that for a fixed z € R, there exists a function ¢, in
C(R) such that

u(z,y,2) = g:(y + F(x)), ¥(z,y) €(0,1) xR, (3.18)
where F'is the primitive of f/f" on (0,1) defined by
> x In(l—z) Iz 1
F(z) = T 13 9 o + Y for x € (0,1). (3.19)

This combined with (3.16), (3.17), (3.18) yields

1 1

g.(t) = o(7.9.2) f'(x)

1
t5500 24 o(0,y,2) 2

As x — 1, z > 1, we have by (3.19)

1 In(1 —
t=y+F(z)=y+ — — u+0(1), hence 1—a ~ 2224
12 24 t—00

which implies that
1 24 24y +2

/ t — /
04t) = s

Therefore, the two asymptotic expansions of g.(t) as t — oo, lead to a contradiction.

t:oo (7(17 v, z)
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3.3 The case where the current field lies in a fixed plane

Consider a periodic field j in C7(Y)? satisfying (2.1) and (2.2) which remains perpendicular to
a fixed direction. By an orthogonal change of variables we may assume that j lies in the plane
{z = 0}, namely j = (ju,jy,0). From now on, any vector of R? will be identified to a vector
of R? with zero z-coordinate. Hence, we deduce that

jrewrlj=0 < 0,57 in R (3.20)

Then, using the representation of a divergence-free field by an orthogonal gradient in R?, the
most general expression for a divergence free field j satisfying (3.20) is

—8yv(x,y)
iy, 2) = alz,y, 2) Vio(z,y) = alz,y,2) | Oo(z,y) | for (z,y,2) € R3, (3.21)
O .

with 9,0 d,v — dy,ad,v =0 in R,

where v € C7(Y), @ > 0, and v € C*(R?)?, with Vv Y’-periodic. For the sake of simplicity,
we assume from now on that the function a only depends on the coordinate z. Therefore, we
are led to

jlx,y, 2) = a(z) Viu(z,y), for (z,y,z) € R?, (3.22)

where o € C7([0,1]), a > 0, and v € C*(R?)?, with Vv Y'-periodic and Vv # 0 in R? by (2.1).

Following the isotropic realizability procedure for a gradient field [3], consider the gradient
system

Z'(t,x,y) = Vou(Z(t,z,y)), forteR,
(0. = Vo(#(t..9) .
Z(0,z,y) = (v,y) € R%
Then, by virtue of Theorem 1.1 there exists a unique function 7, € C*(IR?) such that
v(Z(r(z,y),2,y)) =0, for any (z,y) € R?, (3.24)
and the function w, defined by
Tv(xvy)
wy(z,y) = —/ Av(Z(s,z,y))ds, for (z,y) € R?, (3.25)
0

satisfies the conductivity equation div (e”**Vv) = 0 in R?.
We have the following isotropic realizability result:

Proposition 3.2. If the function w, of (3.25) is in L>°(R?), then the field j defined by (3.22)
is isotropically realizable in the torus. Conversely, if j is isotropic realizable in the torus with
a positive conductivity o € C{(Y'), then the function w, is in L°(R*). On the other hand, if
w, belongs to L=(R?), then condition (2.47) holds.

Remark 3.3. The criterion for the isotropic realizability of j in the torus given in Proposi-
tion 3.2, that is the boundedness of w,, implies condition (2.47). The converse is not clear.
The reason is that the field j defined by (3.22) does not satisfy condition (2.4). More precisely,
the curl of j

curl j(z,y,2) = — o/ (2) Vo(z,y) + a(2) Av(z,y) e., for (z,y,2) € R?, (3.26)
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does vanish in R3. Indeed, due to the periodicity of a and Vv we have

1
/ a(z)dz :/ Av(z,y) dxdy = 0.
0 I

This combined with the continuity of o’ and Av implies the existence of a point (x,vy, z) € R3
such that o/(z) = Av(z,y) = 0. Therefore, we cannot use Theorem 2.4.

Proof of Proposition 3.2. Assume that the function w, of (3.25) is in L>(R?). Then, by
Theorem 1.1 the gradient field Vv is isotropically realizable in the torus, namely there exists a
periodic positive conductivity o, with o, 07! € L (Y"), such that div (cVv) = 0 in R2. Hence,
there exists a stream function u, with Vu € Lg(Y’)z, such that oVv = —V+u in R2. Therefore,
by (3.22) j = ao~'Vu is isotropically realizable in the torus.

Conversely, assume that j is isotropically realizable in the torus with a positive conductivity
o € C}(Y). Then, since j, = 0, we have j = oVu in R*, with Vu € C}(Y’)*. Equating this
equality with (3.22) at z = 0, we get that

a(0) B n 2
m VU(Q?,ZJ) =-V u(x,y), for (SL’,y) € R%

Thus, Vv is isotropically realizable in the torus with the conductivity a(0) o~'(-,0) € C}(Y”),
which by virtue of Theorem 1.1 implies that w, belongs to L>(R?).
Now, assume that w, is in L>(R?). By (2.5), (3.22) and (3.26) we have

0X3  jxcurlj
ot i

Av(Xs) ;
) = 9oy VS

o (X3 -e,)
— e,
a(Xs-e,)

Moreover, by (3.25) we have div (e**Vv) = 0 in R?, or equivalently Av = —Vuw,, - Vv in R?

hence
an O/(Xg . 62)

ot a(Xs-e) F

where Ily, denotes the orthogonal projection on RVwv. However, since Vw, — Ilg,(Vw,) is
parallel to j by (3.22) and thus orthogonal to 9;X3 by (2.5), we get that

- _HVU(VU}U)(X?)) + (327)

8X3 2 . 8X3 O/(Xg : €z> 8X3
'W = Iy, (Vw,)(X3) - ot a(Xs-c.) Of ‘e,
X "(X3 - X
— —VwU(X3) . a 3 + (% ( 3 €z) 8 3 e, = g [_w(XB) -+ ln (Oé(Xg . ez>)]

ot a(Xz-e) Ot 7 0Ot

2

It follows that for any (¢, z,y,2) € R,
a(XS(ta T, Y, Z) : ez)
ds = wy(zr,y,z) — wv(Xg(t,x, Y, z)) +1In

/ot a(z)

The function In« is periodic and continuous in R, hence it is bounded. Therefore, equality
(3.28) shows that the boundedness of w, implies condition (2.47).

%(s Ty, 2)
as Y 7y7

] . (3.28)

Remark 3.4. Note that the field current j defined by (3.1) has a zero z-coordinate, and

j=V*tv with wv(z,y):= coshz —y, (3.29)
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so that we could a priori use the above method. However, in this case the solution of the
gradient system (3.23) is given by

2 argtanh (e’ tanh (x/2))) 7 (3.30)

Zit.ay) = (PrEb

which is clearly not a global solution. Therefore, the present two-dimensional approach does
not work for the very simple current field (3.1).

3.4 A particular class of current fields

Let f,g,h € C*(R) be three 1-periodic functions such that f has only isolated roots in R which
are not roots of f’, while g, h do not vanish in R. Then, the following isotropic realizability
result holds:

Proposition 3.5. The Y -periodic field 7 defined by

9(y) h(z)
j(x,y,2) = [ flx)h(z) |, for(z,y,2) € R (3.31)
f(x) h(z)

satisfies the conditions (2.1) and (2.2). On the other hand, consider the following assertions:
(i) the function f does not vanish in R3,
(13) the field j is isotropically realizable in the torus with a positive conductivity o € C'ﬁl(Y),
(7ii) condition (2.47) holds.

Then, (i) and (ii) are equivalent conditions and they imply assertion (iii). Moreover, when
g = h =1 all three assertions (1), (ii) and (iii) are equivalent.

Proof. Condition (2.1) clearly holds. We have

f(x) (9'(y) — 1 (2))
curlj = | g(y) (W'(z) = f'(x)) |, for (z,y,2) € R, (3.32)
g

hence condition (2.2) is also satisfied. However, note that condition (2.7) does not hold.

(1) = (di). If f does not vanish in R, we can write

dt
Fo2) = £ ) o) Vo), with aey.2) = [ e [ [ 0
0
Therefore, j is isotropically realizable in the torus with the conductivity

o(@,y,2) = | f(x) g(y) h(z)| > 0,

which belongs to C}(Y).

(7i) = (i). More precisely, we will prove that if f vanishes in R, then j is not isotropically
realizable with any positive continuous conductivity o(x,y, z) which is Y'-periodic with respect

o (y, 2).
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To this end, assume by contradiction that both f vanishes in R and j is isotropically
realizable with a positive continuous conductivity o(z,y, z) which is Y’-periodic with respect
to (y,2), Y =[0,1]%. Let a < b be such that f(a) = 0 and f(b) # 0. Starting from the equality
curl (c71j) = 0, integrating by parts over the cube [a,b] X Y’, and denoting by n the outside
normal, we have

0 :/ curl(alj)-eydxdydz:/ (nxo'j)-e,ds
[a.xY" Oletb) (3.34)

:/{ } (nxalj)-eyds+/ (nx o 'j)-e,ds.
a,b}xY’

[a,b]x0Y"

The integral over [a,b] x Y in (3.34) is equal to zero due to the Y'-periodicity of 15 with
respect to (y, z). Hence, using that f(a) = 0 and (e, x j) - e, = —j. = —f(x) g(y), it follows
that the integral over {a,b} x Y’ in (3.34) satisfies

0=~ f)g(y) o by, 2) dydz. (335)

This leads to a contradiction, since the function (y, z) — f(b) g(y) o=1(b,y, 2) is continuous and
has a constant sign in Y”.

(13) = (i4i). This is a straightforward consequence of Corollary 2.9 7).

(1ii) = (i), when g = h = 1. Assume by contradiction that f vanishes at some point a € R.
Since f'(a) # 0, we may assume that, for instance, there exists a real number b > a such that
f>0in (a,b] and f' > 0in [a,b)].

By (3.31) and (3.32) we have

2f () f'(x)
j xcurlj = —f'(x) , forx e R,

—f'(z)
hence the flow X3 of (2.5) reads as

(i) = DO )
2f2(x(t) +1 7

D C0)
2f2(x(t)) + 1’

iy @) _
\Z(t)__W’ 2(0) = 2,

Define the function F' in (a,b] by

z(0) =2z

y'(t) = y(0)=y  for (z,y,z) € R% (3.36)

=

= x72f2(8)+1 S or r a
F(x)._/b e free

The function F' is an increasing bijection from (a, b] onto (—o0, 0], and the solution of the first
equation of (3.36) is given by

x(t) = F ' (t+ F(z)), fort<0,
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where F~! denotes the reciprocal of F. Making the change of variables r = z(s), we have for
any t <0,

Lo e T ey NP2p(r) 1, [ f'(r) .
/ﬁ (v'(s)) ds-jc (2f200kl) 2f0ﬁf%f)dr__/£ 270 P+ )

Then, since z(t) tends to a as t — —oo and f(r) ~ f'(a) (r — a), we get that
’ t f'(r)

/_OO ds > _tgznoo i (¥'(s)) ds = —/x 270 P 1) dr = o00. (3.37)

Therefore, the L?(R)-norm of t — 9, X3(t, x,y, 2) is infinite for any = € (a, b]. This proves the
implication (i#ii) = (i), when g = h = 1.

%(s x,y, 2)
as ) 7y7

O

Example 3.6. Consider the particular case of (3.31) where ¢ = h = 1. When the function
f vanishes in R, the field j € CF(Y)? still satisfies conditions (2.1) and (2.2). Since condition
(2.4) does not hold, Theorem 2.4 does not apply. However, the field j is actually isotropically
realizable in the whole space R?, but not in the torus due to Proposition 3.5.

It is not obvious how to derive an explicit conductivity associated with j, but we now
proceed to do so. To this end, we may assume that f € C?*(R) is a l-periodic function
satisfying f(0) = 0, f’(0) # 0, and f > 0 in (0,1). Then, j lies in the plane {j, = j.}, so
that we can apply the procedure of Section 3.3 based on the representation of two-dimensional
divergence-free functions by orthogonal gradients. This combined with the approach of [3]
(Proposition 2.11) allows us to construct a conductivity o € C'(R?) such that curl (6715) = 0
in R3, as follows:

Let F' be the function defined in (0, 1) by

F(z) = ; %,

The function F is a C''-diffeomorphism from (0, 1) onto R. Then, denoting by F~! its reciprocal,
an admissible conductivity o is given by

for x € (0, 1). (3.38)

- G ifxe(nn+1)
o(r,y,2) = f(F_ (y+z+F(z - n))) for n € Z, (3.39)
eI Ow+2) if z =n,

which is 1-periodic with respect to x. Let us prove that o € C*(R?), and curl (c7'5) = 0 in R.
For z € (0,1) and (y,2) € R? set t := F~'(y + 2z + F(z)) € (0,1). Since f'(0) # 0 and
f € C*(R), we have for n = 0,1,

y+z‘f%>m(i:ZN :‘H”_F“”‘f%>m<;:zﬂ

(3.40)

which implies that

' t— ,
im L0 i L2l 06 fop 0,1, (3.41)
—n



This shows the continuity of the function . Moreover, we have for any = € (0, 1),

/ gl /
00 _[@) =) | 00 0o @) /(1) 52
Ox f(@) dy 0z ft)
which together with (3.41) implies that Vo has finite limits as  — 0 or 1. Therefore, the
function o belongs to C'(R?).

Set w :=Ino. By (3.39) and (3.42) we have for any x € (0, 1),

ow 10900  f'(x)— f'(1) ow odw 100
or o dv f(x) and oy 0z oy S,
which implies that w solves the equations
ow , . Ow Ow . _g
f(x) o (x) = oy~ 0- in R”. (3.43)

By (3.31) and (3.32) with g = h = 1, equations (3.43) lead to the equation
curlj — Vw x j =0 in R?,

or equivalently, curl (e7*5) = 0 in R?.

Therefore, the current field j = (1, f(z), f(z)) is isotropically realizable with the conductiv-
ity o € C'(R?) defined by (3.38) and (3.39). Note that the function o is 1-periodic with respect
to x, but is not periodic with respect to (y, z) in accordance with Proposition 3.5. Finally, the
isotropic realizability of j in R? can be written

1 y+z
flx) | =o(x,y,2) V |z + f(F ' (s+F(z—n)))ds)|, forze(nn+1), ne€Z,
) o oe e )

where the conductivity o is defined by (3.39).
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