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Abstract

A real symmetric tensor is orthogonally decomposable (or odeco) if it can be written
as a linear combination of symmetric powers of n vectors which form an orthonormal
basis of Rn. Motivated by the spectral theorem for real symmetric matrices, we study
the properties of odeco tensors. We give a formula for all of the eigenvectors of an
odeco tensor. Moreover, we formulate a set of polynomial equations that vanish on the
odeco variety and we conjecture that these polynomials generate its prime ideal. We
prove this conjecture in some cases and give strong evidence for its overall correctness.

1 Introduction

The spectral theorem states that every n × n real symmetric matrix M possesses n real
eigenvectors v1, . . . , vn which form an orthonormal basis of Rn. Moreover, one can express
M as M =

∑n
i=1 λ1viv

T
i , where λ1, . . . , λn ∈ R are the corresponding eigenvalues. In this

paper we investigate when such a decomposition is possible for real symmetric tensors. We
address the following two questions.

Question 1. Which real symmetric tensors T can be decomposed as T = λ1v
⊗d
1 +· · ·+λnv⊗dn ,

form some orthonormal basis v1, . . . , vn of Rn and some λ1, . . . , λn ∈ R? More precisely,
can we find equations in the entries of T that cut out the set of tensors for which such a
decomposition exists?

Question 2. Given that a tensor T can be decomposed as T = λ1v
⊗d
1 + · · · + λnv

⊗d
n , where

v1, . . . , vn ∈ Rn are orthonormal, can we express the eigenvectors of T (to be defined) in
terms of v1, . . . , vn?

Let Sd (Rn) denote the space of n × n × · · · × n (d times) symmetric tensors, i.e. ten-
sors whose entries are real numbers Ti1...id invariant under permuting the indices: Ti1...id =
Tiσ(1)...iσ(d) for all permutations σ of the set {1, 2, . . . , d}. For example, when d = 2, the space

S2 (Rn) consists of all n × n real symmetric matrices. We study the elements T ∈ Sd (Rn)
which can be written as T = λ1v

⊗d
1 + · · ·+λnv⊗dn , where v1, . . . , vn ∈ Rn form an orthonormal
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basis of Rn and λ1, . . . , λn ∈ R. We call such tensors T orthogonally decomposable or, for
short, odeco.

The notion of eigenvectors of matrices was extended to symmetric tensors by Lim [12]
and by Qi [16] independently in 2005. A vector w ∈ Cn is an eigenvector of T ∈ Sd (Cn) if
there exists λ ∈ C, the corresponding eigenvalue, such that

Twd−1 :=
[ n∑
i2,...,id=1

Ti,i2,...,idwi2 . . . wid

]
i

= λw.

Two eigenpairs (w, λ) and (w′, λ′) are equivalent if there exists t 6= 0 such that w = tw′ and
λ = td−2λ′. When d = 2, these definitions agree with the usual definitions of eigenvectors,
eigenvalues, and equivalence of eigenpairs for matrices.

The spectral theorem answers both Question 1 and Question 2 in the case d = 2: every
symmetric matrix M ∈ S2 (Rn) can be written as M =

∑n
i=1 λiviv

T
i =

∑n
i=1 λiv

⊗2
i , where

v1, . . . , vn are orthonormal. Moreover, if M is generic (in the sense that its eigenvalues are
distinct), then v1, . . . , vn are all of the eigenvectors of M up to scaling.

In Section 2 we give an explicit algebraic formula of all of the eigenvectors of an odeco
tensor T = λ1v

⊗d
1 + · · ·+ λnv

⊗d
n in terms of v1, . . . , vn, answering Question 2 above. It easily

follows from the definition of eigenvectors that v1, . . . , vn are eigenvectors of T . These are
not all of the eigenvectors of T , but it turns out that one can explicitly express the rest of
them in terms of v1, . . . , vn.

For general d, not all tensors T ∈ Sd (Rn) are odeco. In Section 3, we address Question 1.
We study the set of all odeco tensors and find equations that vanish on this set. In Conjec-
ture 3.2 we claim that these define the prime ideal of the odeco variety, which is the Zariski
closure of the set of odeco tensors inside Sd(Cn). In Theorem 3.6 we prove Conjecture 3.2
for the special case n = 2. In Section 3.1 we conclude the paper by giving evidence for the
correctness of this conjecture.

In the remainder of this section we review symmetric tensor decomposition as well as the
equivalent characterization of symmetric tensors as homogeneous polynomials. We conclude
the section by describing an algorithm, called the tensor power method, which finds the
orthogonal decomposition of an odeco tensor.

1.1 Symmetric tensor decomposition

Orthogonal decomposition is a special type of symmetric tensor decomposition which has
been of much interest in the recent years; references include [3, 11, 13, 14], and many others.
Given a tensor T ∈ Sd (Cn), the aim is to decompose it as

T =
r∑
i=1

λiv
⊗d
i ,

where v1, . . . , vr ∈ Cn are any vectors and λ1, . . . , λr ∈ C. The smallest r for which such a
decomposition exists is called the (symmetric) rank of T . Finding the symmetric decomposi-
tion of a given tensor T is an NP hard problem [7] and algorithms for it have been proposed
by several authors, for example [3, 13].
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The rank of a generic tensor T is
(
n+d−1

d

)
. However, the rank of an odeco tensor T ∈

Sd(Rn) is at most n. This means that the set of odeco tensors is a small subset of the set of
all tensors. We explore this further in Section 3.

Remark 1.1. Orthogonal tensor decomposition has also been studied in the non-symmetric
case [8, 9]. An odeco tensor is also orthogonally decomposable according to the definition in
the non-symmetric case.

1.2 Symmetric tensors as homogeneous polynomials

An equivalent way to think about a symmetric matrix M ∈ S2 (Cn) is via its corresponding
quadratic form fM ∈ C[x1, . . . , xn] given by

fM (x1, . . . , xn) = xTMx =
∑
i,j

Mijxixj.

More generally, a tensor T ∈ Sd (Cn) can equivalently be represented by a homogeneous
polynomial fT ∈ C[x1, . . . , xn] of degree d given by

fT (x1, . . . , xn) = T · xd :=
n∑

i1,...,id=1

Ti1,...,idxi1xi2 . . . xid .

Given T ∈ Sd (Cn), we can describe the notions of eigenvectors, eigenvalues, and symmetric
decomposition in terms of the corresponding polynomial fT ∈ C[x1, . . . , xn] as follows.

A vector x ∈ Cn is an eigenvector of T with eigenvalue λ if and only if

∇fT (x) = λdx.

The tensor T can be decomposed as T =
∑r

i=1 λiv
⊗d
i if and only if the corresponding poly-

nomial fT can be decomposed as

fT (x1, . . . , xn) =
r∑
i=1

λi (vi1x1 + · · ·+ vinxn)d .

Similarly, a real tensor T ∈ Sd (Rn) is orthogonally decomposable with T = λ1v
⊗d
1 +

· · · + λnv
⊗d
n , where λ1, . . . , λk ∈ R and v1, . . . , vk ∈ Rn are orthonormal, if and only if

fT (x1, . . . , xn) = λ1 (v1 · x)d + · · ·+ λn (vn · x)d.
This equivalent characterization of symmetric tensors as homogeneous polynomials proves

to be quite useful in the sequel.

1.3 Finding an orthogonal decomposition

Finding the symmetric decomposition of a given T ∈ Sd (Cn) is NP hard [7]. However,
there are simple algorithms that recover the orthogonal decomposition of an odeco tensor
T ∈ Sd (Rn). One such algorithm is the tensor power method [1].
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Let T ∈ Sd (Rn). If T is orthogonally decomposable, i.e. T =
∑k

i=1 λiv
⊗d
i and v1, . . . , vk ∈

Rn orthonormal, then

T · vd−1j =
r∑
i=1

λi (vi · vj)d−1 vi = λjvj,

for all j = 1, 2, . . . , k. Thus, v1, . . . , vk are eigenvectors of T with corresponding eigenvalues
λ1, . . . , λk. Note that requiring T and v1, . . . , vk to be real forces λ1, . . . , λk to be real as well.

Definition 1.2. A unit vector u ∈ Rn is a robust eigenvector of T ∈ Sd (Rn) if there exists
ε > 0 such that for all θ ∈ {u′ ∈ Rn : ‖u− u′‖ < ε}, repeated iteration of the map

θ 7→ Tθ
d−1

‖Tθd−1‖
, (1.1)

starting from θ converges to u.

The following theorem shows that if T has an orthogonal decomposition T =
∑k

i=1 λiv
⊗d
i ,

then the set of robust eigenvectors of T is precisely the set {v1, v2, . . . , vk}, implying that the
orthogonal decomposition is unique up to the obvious reordering.

Theorem 1.3 (Theorem 4.1, [1]). Let T ∈ Sd (Rn) have an orthogonal decomposition T =∑k
i=1 λiv

⊗d
i , where v1, . . . , vk ∈ Rn are orthonormal.

1. The set of θ ∈ Rn which do not converge to some vi under repeated iteration of (1.1)
has measure 0.

2. The set of robust eigenvectors of T is equal to {v1, v2, . . . , vk}.

Therefore, to recover the orthogonal decomposition of T , one needs to find the robust
eigenvectors. The definition of robust eigenvectors suggests an algorithm to compute them,
using repeated iteration of the map (1.1) starting with random vectors u ∈ Rn.

Algorithm 1 The Tensor Power Method

1: Input: an orthogonally decomposable tensor T .
2: Set i = 1.
3: Repeat until T = 0.
4: Choose random u ∈ Rm.
5: Let vi be the result of repeated iteration of (1.1) starting with u.
6: Compute the eigenvalue λi corresponding to vi, from the equation Tvd−1i = λivi.
7: Set T = T − λiv⊗di .
8: i← i+ 1.
9: Output v1, . . . , vk and λ1, . . . , λk.

In certain cases, this algorithm can be used to find the symmetric decomposition of a
given tensor. For example, the authors of [1] consider a class of statistical models, such
as the exchangeable single topic model, in which one observes tensors T2 and T3, where
Td =

∑k
i=1 ωiµ

⊗d
i for d = 2, 3 and the aim is to recover the unknown parameters ω =
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(ω1, . . . , ωk) ∈ Rk and µ1, . . . , µk ∈ Rn. (Note that T2 and T3 have decompositions using the
same vectors and observing both of them gives more information than observing only T3).
This is done by transforming T2 and T3 (in an invertible way) into orthogonally decomposable
tensors T̃2 and T̃3, where T̃d =

∑k
i=1 ω̃iµ̃

⊗d
i and µ̃1, . . . , µ̃k are orthonormal, d = 2, 3. Then,

they use the tensor power method to find µ̃1, . . . , µ̃k and ω̃1, . . . , ω̃k and use the inverse
transformation to recover the original µ1, . . . , µk and ω1, . . . , ωk.

Remark 1.4. As mentioned above, Theorem 1.3 also implies that an odeco tensor T has
a unique orthogonal decomposition. That is because the elements in the orthogonal decom-
position are uniquely determined as the robust eigenvectors v1, . . . , vk and the corresponding
constants λ1, . . . , λk are uniquely determined by λi = T · vdi .

Another method, described in [3], can also be used to efficiently compute the decom-
position of a symmetric tensor T of rank at most n. It involves computing generalized
eigenvectors of sub-matrices of the Hankel matrices associated to T .

2 The Variety of Eigenvectors of a Tensor

In this section, we are going to study the set of all eigenvectors of a given orthogonally
decomposable tensor.

As we mentioned in the introduction, a symmetric tensor T ∈ Sd (Rn) can equivalently
be represented by a homogeneous polynomial fT ∈ R[x1, . . . , xn] of degree d. Indeed, given
T , we obtain fT by

fT (x1, . . . , xn) =
∑
i1,...,id

Ti1,...,idxi1 · · ·xid .

Then, for x ∈ Cn, Txd−1 = λx is equivalent to ∇fT (x) = dλx, i.e. ∇fT (x) and x are parallel
to each other. This is equivalent to the vanishing of the 2 × 2 minors of the n × 2 matrix[
∇fT (x)

∣∣x].
Definition 2.1. The variety of eigenvectors VT of a given symmetric tensor T with corre-
sponding polynomial fT is the zero set of the 2× 2 minors of the matrix

[
∇fT (x)

∣∣x].
Remark 2.2. Consider the gradient map as a map on projective spaces:

∇fT : CPn−1 → CPn−1

[x] 7→ [∇fT (x)].

Then, the eigenvectors of fT are precisely the fixed points of ∇fT . This map is well-defined
provided the hypersurface {fT = 0} has no singular points.

The aim of this section is to prove the following theorem.

Theorem 2.3. Let T ∈ Sd (Rn) be odeco with fT (x) =
∑l

i=1 λi (vi · x)d, where v1, . . . , vl ∈
Rn are orthonormal. Assume that 1 ≤ l ≤ n and λ1, . . . , λl 6= 0 . Then, T has (d−1)l−1

d−2
eigenvectors in Cn, given explicitly in terms of v1, . . . , vl and the (d− 2)-nd roots of λ1, . . . , λl
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as follows. Let V =

− v1 −
...

− vl −

 ∈ Rl×n. Then, for any 1 ≤ k ≤ l, any I = {i1, i2, . . . , ik} ⊆

[l] and any (k − 1)-tuple η1, . . . , ηk−1 of (d− 2)-nd roots of unity, there is one eigenvector w,
up to scaling, where w = V T (y1, . . . , yl)

T and

yi =


ηjλ

− 1
d−2

ij
if i = ij and j ∈ {1, . . . , k − 1}

λ
− 1
d−2

ik
if i = ik

0 if i 6∈ I.

The rest of the eigenvectors are all the elements in the nullspace of V .

Remark 2.4. It is known by [4] that if a tensor T ∈ Sd (Rn) has finitely many equivalence
classes of eigenpairs (x, λ) over C, then their number, counted with multiplicity, is equal to
(d−1)n−1

d−2 . If the entries of T are sufficiently generic, then all multiplicities are equal to 1, so

there are exactly (d−1)n−1
d−2 equivalence classes of eigenpairs.

In the proof of Theorem 2.3 we independently show that an odeco tensor T with orthogonal
decomposition T = λ1v

⊗d
1 +· · ·+λnv⊗dn , such that λ1, . . . , λn 6= 0 has finitely many equivalence

classes of eigenvectors and their number is exactly (d−1)n−1
d−2 .

We illustrate Theorem 2.3 by two simple concrete examples.

Example 2.5. Let d = n = 3 and consider the odeco tensor T with polynomial form

fT (x, y, z) = λ1x
3 + λ2y

3 + λ3z
3.

This type of polynomial is called a Fermat polynomial. In this case v1 = (1, 0, 0) , v2 =
(0, 1, 0) , v3 = (0, 0, 1) and the matrix V = I. Since d − 2 = 1, taking the (d− 2)-nd root is
the identity map. Thus, the eigenvectors of T are as follows.

When k = 1, I = {1}, {2}, or {3}. The corresponding three eigenvectors are(
1

λ1
, 0, 0

)T
,

(
0,

1

λ2
, 0

)T
,

(
0, 0,

1

λ3

)T
.

When k = 2, I = {1, 2}, {1, 3}, or {2, 3}. The corresponding eigenvectors are(
1

λ1
,

1

λ2
, 0

)T
,

(
1

λ1
, 0,

1

λ3

)T
,

(
0,

1

λ2
,

1

λ3

)T
.

When k = 3, I = {1, 2, 3} and the corresponding eigenvector is(
1

λ1
,

1

λ2
,

1

λ3

)T
.

Figure 1 shows what these eigenvectors look like geometrically.
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v1
v2

v3

v1
λ1

+
v2
λ2

v2
λ2

+
v3
λ3

v1
λ1

+
v3
λ3

v1
λ1

+
v2
λ2

+
v3
λ3

Figure 1: This figure shows the structure of the eigenvectors inside CP2 of an odeco tensor
T ∈ S3 (R3) such that T = λ1v

⊗3
1 + λ2v

⊗3
2 + λ3v

⊗3
3 with λ1, λ2, λ3 6= 0.

Example 2.6. Let d = 4, n = 4 and consider T ∈ S4(R4) with corresponding polynomial

fT (x1, . . . , x4) = x41 + 2x42.

In the notation of Theorem 2.3, the number of nonzero coefficients is l = 2 < n. We have
that v1 = e1, v2 = e2 and λ1 = 1, λ2 = 2. Since d− 2 = 2, the roots ηi can be ±1. Thus, the
eigenvectors of T are as follows.

When k = 1, I = {1}, {2}. The corresponding eigenvectors are

(1, 0, 0, 0)T , (0,
1√
2
, 0, 0)T .

When k = 2, I = {1, 2}. The corresponding eigenvectors are

(1,
1√
2
, 0, 0)T , (−1,

1√
2
, 0, 0)T .

The rest of the eigenvectors are all vectors perpendicular to e1 and e2, i.e.

(0, 0, a, b)T

for any a, b ∈ C not both zero.

In the rest of this section we prove Theorem 2.3. We proceed as follows. First we show
that the theorem is valid when fT = λ1x

d
1 + · · · + λnv

d
n, where λ1, . . . , λn 6= 0. This is done

in Lemma 2.8. For the general case, fT = λ1 (v1 · x)d + · · ·+ λl (vl · x)d, where λ1, . . . , λl 6= 0
and v1, . . . , vl are orthonormal, we observe that setting yi = vi · x the eigenvectors of the
Fermat polynomial tensor λ1y

d
1 + · · ·+ λly

d
l are in a 1-to-1 correspondence with some of the

eigenvectors of T via the transformation given by the matrix V with rows v1, . . . , vl. This is
how we recover the formula in Theorem 2.3.
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Definition 2.7. Given f (x1, . . . , xn) = λ1x
d
1 + · · · + λnx

d
n, I = {i1, . . . , ik} ⊆ {1, 2, . . . , n},

and η = {η1, . . . , ηk−1} such that η1, . . . , ηk−1 are (d− 2)-nd roots of unity, and define the
ideal

II,η = 〈λ
1
d−2

i1
xi1 − η1λ

1
d−2

ik
, . . . , λ

1
d−2

ik−1
xik−1

− ηk−1λ
1
d−2

ik
xik〉+ 〈xj|j 6∈ I〉

in the polynomial ring C[x1, . . . , xn].

Lemma 2.8. Theorem 2.3 is true in the case fT (x1, . . . , xn) = λ1x
d
1 + λ2x

d
2 + · · · + λnx

d
n,

where λ1, . . . , λn 6= 0. In particular, the radical of the ideal I of 2× 2 minors of
[
∇f(x)|x

]
can be decomposed as follows.

√
I =

⋂
I⊆[n],η={η1,...,η|I|−1}

II,η, (2.1)

where η1, . . . , ηk−1 are (d− 2)-nd roots of unity. For every k ∈ {1, . . . , n}, there are
(
n
k

)
(d− 2)k−1

homogeneous prime ideals II,η with |I| = k. Each ideal II,η has exactly one solution in
CPn−1, representing one eigenvector, namely w = (w1 : · · · : wn) such that

wi =


ηl

1
λil

− 1
d−2 if i = il and l ≤ k − 1,

λ
− 1
d−2

ik
if i = ik,

0 if i 6∈ I.

The total number of such solutions is (d−1)n−1
d−2 .

Proof. Note that in this case, up to a factor of d in the first row, we have that

[
∇f (x)

∣∣x] =


λ1x

d−1
1 x1

λ2x
d−1
2 x2
...

...
λnx

d−1
n xn


Therefore, the ideal of 2× 2 minors is given by

I = 〈xixj
(
λix

d−2
i − λjxd−2j

)
: i 6= j〉.

We would like to decompose the variety of this ideal. Note that for any primary ideal
P ⊇ I its associated prime

√
P would either contain xixj or λix

d−2
i − λjxd−2j for all i 6= j.

Suppose that for a given P ⊇ I,
√
P contains exactly n − k of the variables x1, . . . , xn.

Let I = {i1, . . . , ik} ⊆ [n] and assume that
√
P contains exactly those xi for which i 6∈ I.

Thus,
√
P also contains λix

d−2
i − λjxd−2j for i 6= j, i, j ∈ I. Moreover, we can write

√
P as√

P = 〈xi : i 6∈ I〉 +
√
P ∩ C[xi : i ∈ I]. Then, the ideal

√
P ∩ C[xi : i ∈ I] is prime, it

doesn’t contain xi for i ∈ I and contains II ⊆ C[xi : i ∈ I], where

II := 〈λixd−2i − λjxd−2j : i 6= j, i, j ∈ I〉 = 〈λijxd−2ij
− λij+1

xd−2ij+1
: j = 1, . . . , k − 1〉.

Therefore,
√
P ∩ C[xi : i ∈ I] is a prime ideal containing (II : 〈xi : i ∈ I〉∞).
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We now describe the decomposition of the ideal (II : 〈xi : i ∈ I〉∞) following Theorem 2.1
and Corollary 2.5 in [6]. Recall that I = {i1, . . . , ik} ⊆ [n]. Let Lρ := 〈(d− 2)

(
eij − eik

)
:

j = 1, . . . , k − 1〉 be a lattice with partial character ρ : Lρ → C∗ given by

ρ
(
(d− 2)

(
eij − eik

))
=
λik
λij

.

For any partial character σ : Lσ → C∗, define the ideal I+(σ) := 〈xm+−σ (m)xm− : m ∈ Lσ〉,
where m = m+ − m− and m+,m− have nonnegative entries. From this definition, we see
that

I+(ρ) = (II : 〈xi : i ∈ I〉∞).

Then, by Corollary 2.5 in [6], the decomposition of (II : 〈xi : i ∈ I〉∞) = I+ (ρ) is

(II : 〈xi : i ∈ I〉∞) =
⋂

ρ′ extends ρ to L

I+ (ρ′) ,

where L is a sublattice of Zn such that Lρ ⊆ L ⊆ Zn and |L/Lρ| is finite. In this case, we
can choose

L = 〈eij − eik : j = 1, . . . , k − 1〉.

Then, |L/Lρ| = (d− 2)k−1. Moreover, by the same theorem, the number of ρ′ extending ρ

is exactly |L/Lρ| = (d− 2)k−1. Also, note that each such ρ′ : L→ C∗ is uniquely defined by
the values

ηj

(
λik
λij

) 1
d−2

:= ρ′
(
eij − eik

)
for some (d− 2)-nd root of unity ηj. Therefore,

I+ (ρ′) =

〈
xij − ηj

(
λik
λij

) 1
d−2

xik : j = 1, 2, . . . , k − 1

〉

and each such ideal is maximal inside C[x)i : i ∈ I]. Thus, the prime
√
P ∩ C[xi : i ∈ I]

must contain one of the ideals I+(ρ′). Therefore,
√
P contains 〈xi : i 6∈ I〉+ I+(ρ′) for some

ρ′. But this ideal is maximal in C[x1, . . . , xn], therefore,
√
P = 〈xi : i 6∈ I〉+ I+(ρ′).

Therefore, (2.1) holds and the minimal associated primes of the ideal I are

II,η = 〈xi : i 6∈ I〉+

〈
xij − ηj

(
λik
λij

) 1
d−2

xik : j = 1, 2, . . . , k − 1

〉
,

where I = {i1, . . . , ik} ⊆ [n] and η1, . . . , ηk−1 are (d− 2)-nd roots of unity. Each ideal II,η is
zero-dimensional and corresponds to one eigenvector w = (w1 : · · · : wn), where

wi =


ηl

1
λil

− 1
d−2 if i = il and l ≤ k − 1,

λ
− 1
d−2

ik
if i = ik,

0 if i 6∈ I.
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Moreover, since there are
(
n
k

)
options for choosing I ⊆ [n] with |I| = k and (d− 2)k−1

options for choosing η = (η1, . . . , ηk−1), the total number of eigenvectors of f is

n∑
k=1

(
n

k

)
(d− 2)k−1 =

1

d− 2

n∑
k=1

(
n

k

)
(d− 2)k

=
1

d− 2
((d− 2 + 1)n − 1) =

(d− 1)n − 1

d− 2
,

recovering the formula expected by [4].

Now, we proceed with the proof of Theorem 2.3.

Proof of Theorem 2.3. Let T =
∑l

i=1 λiv
⊗d
i be odeco with λ1, . . . , λl 6= 0. Then,

fT (x) =
l∑

i=1

λi (vi · x)d

and
1

d
∇fT (x) =

l∑
i=1

λi (vi · x)d−1 vi.

If x ∈ Cn is an eigenvector, then

1

d
∇fT (x) =

l∑
i=1

λi (vi · x)d−1 vi = λx.

Let vl+1, . . . , vn ∈ Rn complete v1, . . . , vl to an orthonormal basis of Rn. Then, they are also
a basis of Cn and x =

∑n
i=1 (vi · x) vi for any x ∈ Cn, where vi ·x =

∑
j vijxj is still the usual

dot product on Rn. Since the vi form a basis of Cn and

l∑
i=1

λi (vi · x)d−1 vi = λ
n∑
i=1

(vi · x) vi,

then x is an eigenvector if and only if the vectors
(
λ1 (v1 · x)d−1 , . . . , λl (vn · x)d−1 , 0, . . . , 0

)
and (v1 · x, . . . , vn · x) are parallel. Let Ṽ =

− v1 −
...

− vn −

 ∈ Rn×n be the orthogonal matrix

whose rows are v1, . . . , vn. Let

yi = (vi · x) , i.e. y = Ṽ x.

Then, an equivalent description of x being an eigenvector is that
(
λ1y

d−1
1 , . . . , λly

d−1
l , 0, . . . , 0

)
and y are parallel. In other words, the matrix[

λ1y
d−1
1 · · · λly

d−1
l 0 · · · 0

y1 · · · yl yl+1 · · · yn

]
10



has rank at most one. There are two cases.
Case 1: One of the numbers yl+1, . . . , yn is nonzero. This forces y1 = · · · = yl = 0 and

any choice of yl+1, . . . , yn gives a solution. This means that any vector x ∈ span{v1, . . . , vl}⊥
is an eigenvector of the original tensor T .

Case 2: The other case is that yl+1 = · · · = yn = 0. Then the above matrix having rank
at most one is equivalent to the smaller matrix[

λ1y
d−1
1 · · · λly

d−1
l

y1 · · · yl

]
having rank at most one. The ideal of the 2× 2 minors of this matrix is

I = 〈λiyd−1i yj − λjyd−1j yi : i < j ≤ l〉.

By Lemma 2.8, the radical of this ideal decomposes as

√
I =

⋂
I⊆[l],η

II,η

and each ideal II,η with I = {i1, . . . , ik} ⊆ [l] has the form

II,η = 〈λ
1
d−2

i1
yi1 − η1λ

1
d−2

ik
yik , . . . , λ

1
d−2

ik−1
yik−1

− ηk−1λ
1
d−2

ik
, yik〉+ 〈yi : i 6∈ I〉, (2.2)

where η1, . . . , ηk−1 are (d− 2)-nd roots of unity. By the Nullstellensatz, all elements in V(I)
are the same as those in V(

√
I), which are in turn the elements in

⋃
V(II,η). Each ideal II,η

gives exactly one solution in CPn, representing one eigenvector (y1, . . . , yn) such that

yi =


ηs

1
λis

− 1
d−2 if i = is and s ≤ k − 1,

λ
− 1
d−2

ik
if i = ik,

0 if i ∈ [n] \ I.

(2.3)

Note that y = Ṽ x and Ṽ is an orthogonal matrix. Therefore,

x = Ṽ Ty.

By Lemma 2.8, we know that for each k there are
(
l
k

)
(d− 2)k−1 eigenvectors with k nonzero

entries, which makes for a total of

l∑
k=1

(
l

k

)
(d− 2)k−1 =

1

d− 2

(
l∑

k=1

(
n

k

)
(d− 2)k

)

=
1

d− 2

(
l∑

k=0

(
n

k

)
(d− 2)k − 1

)
=

(d− 1)l − 1

d− 2

eigenvectors of T in this case.
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3 The Odeco Variety

The odeco variety is the Zariski closure in Sd (Cn) of the set of all tensors T ∈ Sd (Rn) which
are orthogonally decomposable. If a tensor is odeco, then, in particular, its corresponding
polynomial fT is decomposable as a sum of n d-th powers of linear forms, i.e. it lies in the
n-th secant variety of the d-th Veronese variety, denoted by σn (vd (Cn)).

When d = n = 3, there is one equation defining σ3 (v3 (C3)), called the Aronhold invariant
[10], and it is given by the Pfaffian of a certain skew-symmetric matrix. The corresponding
odeco variety in S3 (C3) has codimension 4 and its prime ideal is generated by six quadrics,
defined in Example 3.4. For higher d and n, the equations defining σn (vd (Cn)) are much
harder to compute. However, the odeco variety is smaller than σn (vd (Cn)) and we believe
that the defining equations of its prime ideal are quadrics that are easy to write down. They
are shown in Conjecture 3.2.

Lemma 3.1. The dimension of the odeco variety in Sd (Cn) is
(
n+1
2

)
.

Proof. Consider the map

φ : Rn × SOn → Sd (Rn) ⊂ Sd (Cn)

given by

(λ1, . . . , λn) , V 7→
n∑
i=1

λiv
⊗d
i ,

where vi is the ith row of the orthogonal matrix V . The image Im(φ) of this map is precisely
the set of orthogonally decomposable tensors in Sd (Rn). The odeco variety is Im (φ) ⊂
Sd (Cn). Note that by Theorem 1.3, φ has a finite fiber (up to permutations of the input).
Then, dim(Im(φ)) = dim (Rn × SOn) = n +

(
n
2

)
=
(
n+1
2

)
. Therefore, the dimension of the

odeco variety is dim
(

Im (φ)
)

=
(
n+1
2

)
.

We are going to conjecture what the defining equations of the odeco variety are. In
Theorem 3.6 we prove the result for the case n = 2.

Consider a tensor T ∈ Sd (Cn) and the corresponding homogeneous polynomial fT (x1, x2,
. . . , xn) ∈ C[x1, . . . , xn] of degree d. To define our equations, it is more convenient to work
with the polynomial version of the tensor. As mentioned before, given T ∈ Sd (Cn), the
corresponding polynomial can be rewritten as

fT (x1, . . . , xn) =
∑
j1,...,jd

Tj1...jdxj1 . . . xjd

=
∑

i1+···+in=d

(
d

i1, . . . , in

)
T 1 . . . 1︸ ︷︷ ︸
i1 times

... n . . . n︸ ︷︷ ︸
in times

xi11 . . . x
in
n =

∑
i1+···+in=d

1

i1! . . . in!
ui1,...,inx

i1
1 . . . x

in
n ,

where
ui1,...,in = d!T 1 . . . 1︸ ︷︷ ︸

i1 times

... n . . . n︸ ︷︷ ︸
in times

.

We write the equations defining the odeco variety in terms of the variables ui1,...,in . Note
that for all such variables i1 + · · ·+ in = d.
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Conjecture 3.2. The prime ideal of the odeco variety inside Sd (Cn) is generated by

n∑
s=1

uy+esuv+es − uw+esuz+es = 0, (3.1)

where y, v, w, z ∈ Zn≥0 are such that
∑

i yi =
∑

i vi =
∑

i zi =
∑

iwi = d−1 and y+v = z+w.

Written in terms of the T -variables, these equations can be expressed as

n∑
s=1

Ti1,...,id−1,sTj1,...,jd−1,s − Tk1,...,kd−1,sTl1,...,ld−1,s = 0, (3.2)

for all indices such that {ir, jr} = {kr, lr}, and also up to permuting the indices due to the
fact that T is symmetric.

Another way to think about (3.2) is as follows. Suppose we contract T along one of its
dimensions, say the d-th dimension resulting into a tensor T ∗d T ∈ S2(Sd−1(Rn)) whose
entry indexed by i1, . . . , id−1, j1, . . . , jd−1 is

(T ∗d T )i1,...,id−1,j1,...,jd−1
=

n∑
s=1

Ti1,...,id−1,sTj1,...,jd−1,s.

Then, the equations (3.2) are equivalent to saying that T ∗d T also lies inside S2(d−1)(Rn).

Example 3.3. When d = 2 the elements of S2 (Rn) are symmetric matrices and the set
of equations (3.1) is empty, which is equivalent to the fact that all symmetric matrices are
odeco.

In essence, the ideal defined by (3.1) is a lifting of the toric ideal defining the Veronese
variety vd−1 (Cn) ⊂ Sd−1 (Cn) to non-toric equations on Sd (Cn).

Example 3.4. Let d = n = 3. We will illustrate how to obtain the equations (3.1) of
the odeco variety in S3 (C3) from the equations of the Veronese variety vd−1 (Cn) = v2 (C3).
Consider the Veronese embedding v2 : C3 → S2 (C3) given by x 7→ x⊗2. The image v2 (C3)
is the set of rank one 3 × 3 symmetric matrices. The space S2 (C3) has coordinates ui1i2i3,
where i1 + i2 + i3 = 2. There are six equations that define the prime ideal of the Veronese
variety v2 (C3) ⊆ S2 (C3) and they are

u200u020 − u2110 = 0, u200u011 − u110u101 = 0,

u200u002 − u2101 = 0, u110u002 − u101u011 = 0, (3.3)

u101u020 − u110u011 = 0, u020u002 − u2011 = 0.

Each of these equations has the form uyuv−uwuz = 0, where y, v, w, z ∈ Z3
≥0,
∑

i y =
∑

i v =∑
iw =

∑
i z = 2, and y + v = w + z. Each such equation leads to one of the equations in

(3.1) as follows

uyuv−uwuz 7→ uy+e1uv+e1 −uw+e1uz+e1 +uy+e2uv+e2 −uw+e2uz+e2 +uy+e3uv+e3 −uw+e3uz+e3 .
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Therefore, using (3.3), we obtain the six equations in (3.1)

u200u020 − u2110 7→ u300u120 − u2210 + u210u030 − u2120 + u201u021 − u2111,
u200u011 − u110u101 7→ u300u111 − u210u201 + u210u021 − u120u111 + u201u012 − u111u102,

u200u002 − u2101 7→ u300u102 − u2201 + u210u012 − u2111 + u201u003 − u2102,
u110u002 − u101u011 7→ u210u102 − u201u111 + u120u012 − u111u021 + u111u003 − u102u012,
u101u020 − u110u011 7→ u201u120 − u210u111 + u111u030 − u120u021 + u102u021 − u111u012,

u020u002 − u2011 7→ u120u102 − u2111 + u030u012 − u2021 + u021u003 − u2012.

Lemma 3.5. The equations (3.1) vanish on the odeco variety.

Proof of Lemma 3.5. Let T =
∑

i λiv
⊗d
i be odeco. Then, by definition of the u-variables, at

the point T

uy1...yn = d!
n∑
i=1

λiv
y1
i1 · · · v

yn
in

= d!
n∑
i=1

λiv
y
i .

Thus, at the point T , the equations (3.1), for y, v, w, z ∈ Zn≥0 with y + v = w + z and∑
i y =

∑
i v =

∑
iw =

∑
i z = d− 1, have the form∑

(

s = 1nuy+esuv+es − uw+esuz+es =

= (d!)2
n∑
s=1

( n∑
i=1

λiv
y+es
i

)( n∑
j=1

λjv
v+es
j

)
−
( n∑
i=1

λiv
w+es
i

)( n∑
j=1

λjv
z+es
j

)
= (d!)2

n∑
s=1

( n∑
i=1

λ2i (�����
vy+v+2es
i −�����vw+z+2es

i ) +
∑
i 6=j

λiλj(v
y+es
i vv+esj − vw+esi vz+esj ))

)
= (d!)2

∑
i 6=j

λiλj(v
y
i v

v
j − vwi vzj )

n∑
s=1

visvjs = 0,

where the last row is 0 since vi and vj are orthogonal and
∑n

s=1 visvjs = vi · vj = 0
Therefore, (3.1) vanish on the odeco variety.

We are going to select a subset of the equations (3.1) that spans the vector space defined
by (3.1). More precisely, consider

fy,v,i,j =
n∑
s=1

uy+esuv+es − uy+ei−ej+esuv−ei+ej+es , (3.4)

for all i 6= j ∈ {1, 2, . . . , n} and all y, v ∈ Zn≥0 whose entries sum to d− 1 and yj ≥ 1, vi ≥ 1.
We now prove Conjecture 3.2 for the case n = 2.

Theorem 3.6. When n = 2, the equations (3.4) form a Gröbner basis with respect to the
term order ≺ (defined below as a refinement of the weight order (3.6)) and the dimension
of the variety they cut out is

(
n+1
2

)
= 3. The ideal defined by (3.4) is the prime ideal of the

Odeco variety.
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Proof. We are going to work over the polynomial ring

C[u] := C[ui1i2 |i1, i2 ≥ 0 and i1 + i2 = d]

= C[ud0, u(d−1)1, . . . , u0d].

Then, the equations (3.4) are

fy,v,1,2 = uy+e1uv+e1 − uy+e1−e2+e1uv−e1+e2+e1 + uy+e2uv+e2 − uy+e1−e2+e2uv−e1+e2+e2 ,

where y, v ∈ Z2
≥0, the sum of the entries of each of y and v is d− 1 and y2 ≥ 1, v1 ≥ 1. Let

the ideal they generate be

I := 〈fy,v,1,2|y, v ∈ Z2
≥0,
∑
i

yi =
∑
i

vi = d− 1, y2 ≥ 1, v1 ≥ 1〉. (3.5)

We introduce the following weights on our variables. Let

weight
(
ui(d−i)

)
= i, (3.6)

for all i = 0, 1, . . . , d. Consider the weighted term order on monomials ≺ given by the above
weights, refined by the lexicographic term order such that ud0 � u(d−1)1 � · · · � u0d in case
of equal weights.

We first show that the equations (3.4) form a Gröbner basis with respect to ≺. Using
Macaulay2, we have shown that they form a Gröbner basis for d = 1, 2, . . . , 9. Now, consider
any d > 9. Take fy′,v′,1,2 and fy′′,v′′,1,2. By Buchberger’s second criterion, we only need to
consider the two polynomials when their initial terms have a common variable. Then, the
two polynomials fy′,v′,1,2 and fy′′,v′′,1,2 contain l ≤ 9 different variables in total. If we restrict
our generators (3.4) to these l variables only, the restriction of the term order is the same
as the term order in the case d = l − 1, and we have shown that in this case, the restricted
generators form a Gröbner basis. Therefore, we can reduce the S-pair of fy′,v′,1,2 and fy′′,v′′,1,2
to 0 using the generators (3.4). Thus, the equations (3.4) form a Gröbner basis.

Next, we show that the ideal I generated by (3.4) has dimension 3. One way to see this
is to use Lemma 3.7 together with the fact that I is prime, which is proven below. Another
way to see that dim I = 3 is to reason with standard monomials as follows.

Note that because of our choice of term order ≺, the initial term of every fu,v,1,2 is square-
free. The reason is that if uy+es = uv+es , then, weight(uy+e1uv+e1) = weight( uy+e1−e2+e1
uv−e1+e2−e1) > weight( uy+e2uv+e2) = weight(uy+e1−e2+e2 uv−e1+e2−e2), but uy+e1−e2+e1 ap-
pears first in ≺, so, uy+e1−e2+e1uv−e1+e2−e1 is the leading term. The reasoning is similar if
uy+e1−e2+e2 = uv−e1+e2−e1 . Therefore, in≺I (and thus I) is a radical ideal.

To show that dim I = 3, let S = {ui1(d−i1), ui2(d−i2), ui3(d−i3), ui4(d−i4)} be a set of four
variables, where i1 > i2 > i3 > i4. We will show that there is a monomial with only variables
from S which is not standard. This would mean that dim I ≤ 3. Indeed, consider

f(i1−1,d−i1+1),(i3+1,d−i3−1),1,2 = u(i1−1)(d−i1+1)u(i3+1)(d−i3+1) − ui1(d−i1)ui3(d−i3)

+u(i1−2)(d−i1+2)ui2(d−i2) − u(i1−1)(d−i1+1)u(i2−1)(d−i2+1).
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Since i1 − 2 ≥ i3, the initial term is ui1(d−i1)ui3(d−i3). Therefore, dim I ≤ 3.
Now, consider the set S = {u2(d−2), u1(d−1), u0d}. Suppose there exists

fy,v,1,2 = uy+e1uv+e1 − uy+e1−e2+e1uv−e1+e2+e1 + uy+e2uv+e2 − uy+e1−e2+e2uv−e1+e2+e2 ,

such that in≺ (f) has both of its variables in S. We know that in≺ (f) = uy+e1uv+e1 or
in≺ (f) = uy+e1−e2+e1uv−e1+e2+e1 . Moreover, if y = (y1, y2) and v = (v1, v2), then, y2, v1 ≥ 1
and y1, v2 ≤ d − 2. Thus, if in≺ (f) = uy+e1uv+e1 and uy+e1 , uv+e1 ∈ S, then, v = (1, d− 2)
and y = (1, d− 2) or y = (0, d− 1). Since fy,v,1,2 is not the trivial polynomial 0, then,
y 6= (0, d− 1). Thus, y = (1, d− 2). But this is impossible since in≺ (f) is square-free for
every generator f . If in≺ (f) = uy+e1−e2+e1uv−e1+e2+e1 and uy+e1−e2+e1 , uv−e1+e2+e1 ∈ S, then,
u(y1+2,y1−1) ∈ S. But y1 ≥ 1, so, y1 + 2 ≥ 3, therefore, u(y1+2,y2−1) 6∈ S. In any case, there
can’t be a monomial with only variables in S, which is a leading term of an element in I.
Thus, dim I = 3.

Another way to see that dim I ≥ 3 is by noting that V (I) contains the odeco variety,
which has dimension 3 in this case.

Finally, we show that the ideal generated by (3.4) is prime. Let J be the ideal generated
by the leading binomials of the elements in (3.4) with respect to the weight order defined by
(3.6) (without considering the refinement given by the order of the variables). Denote by gw
the leading term of a polynomial g just with respect to this weight order. Then, (fy,v,1,2)w =
uy+e1uv+e1 − uy+e1−e2+e1uv−e1+e2+e1 , and J = 〈uy+e1uv+e1 − uy+e1−e2+e1uv−e1+e2+e1 : y, v ∈
Z2
≥0, y1+y2 = v1+v2 = d−1, y2, v1 ≥ 1〉. The ideal J is the prime ideal of the rational normal

curve; in particular, it is prime. Moreover, by Proposition 1.13 in [15], in≺ (I) =in≺ (J).
Therefore, in≺ (I) is an initial ideal of both I and J . In the following paragraph, we show
that J is the initial ideal of I with respect to the weight order given by (3.6). Then, since J
is prime, it follows that I is prime.

Suppose J is not initial, i.e. there exists g ∈ I such that gw 6∈ J . Choose g with in≺ (g) as
small as possible. Since the elements fu,v,1,2 form a Gröbner basis of I, then, there exist y, v
such that in≺ (g) is divisible by in≺ (fy,v,1,2). Then, g = αy,vfy,v,1,2 +g1, where αy,v is a mono-
mial and in≺g1 ≺ in≺g. But note that then, gw = αy,v (uy+e1uv+e1 − uy+e1−e2+e1uv−e1+e2+e1)+
(g1)w. Since uy+e1uv+e1−uy+e1−e2+e1uv−e1+e2+e1 ∈ J and gw 6∈ J , then, (g1)w 6∈ J . But this is
a contradiction since in≺ (g1) ≺ in≺ (g) and we chose in≺ (g) to be as small as possible such
that gw 6∈ J .

Therefore, J is initial. Since it is prime, then, I is also prime. By Lemma 3.7, the
dimension of the odeco variety for n = 2 is 3. Moreover, it is contained in V (I). Since
V (I) is also irreducible and has dimension 3, then, I is exactly the prime ideal of the Odeco
variety.

3.1 Evidence for Conjecture 3.2

Lemma 3.7. The odeco variety is an irreducible component of V (I), where I is the ideal
generated by the equations (3.1).

Proof. We show that the dimension of the component of V (I) containing the odeco variety
is equal to

(
n+1
2

)
. This equals the dimension of the odeco variety. Since it is irreducible, then

it is an irreducible component of V (I).
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Consider the point T ∈ V (I) given by Ti...i = 1 for all i = 1, . . . , n and all other
entries of T are 0. The polynomial corresponding to T is the standard Fermat polynomial
fT (x1, . . . , xn) = xd1 + · · ·+xdn. In the u coordinates, T is represented by the point for which
u0...0d0...0 = udei = 1 for i = 1, . . . , n and all other ui1...in = 0.

We can select generators fv,w for I such that v, w ∈ Zn≥0 with
∑

i vi =
∑

iwi = d− 1 and

fv,w =
s∑
i=1

uv+esuw+es − usort(v,w)1+esusort(v,w)2+es ,

where sort(v, w)1 and sort(v, w)2 are defined as follows. Given v and w, form the corre-
sponding sequences t (v) = 1 . . . 1︸ ︷︷ ︸

v1 times

2 . . . 2︸ ︷︷ ︸
v2 times

. . . n . . . n︸ ︷︷ ︸
vn times

and t (w) = 1 . . . 1︸ ︷︷ ︸
w1 times

2 . . . 2︸ ︷︷ ︸
w2 times

. . . n . . . n︸ ︷︷ ︸
wn times

. Let

t (v, w) = sort (t (v) ∪ t (w)) be the sequence obtained by concatenating t (v) and t (w) and
then sorting. Let t (v, w)1 be the subsequence of elements in odd positions and t (v, w)2 the
subsequence of elements in even positions. Define usort(v,w)1

and usort(v,w)2 be the correspond-
ing u variables. The fact that the polynomials fu,w generate I follows from Theorem 14.2 in
[15].

We form the Jacobian J of I at the point T . Index the rows of J by the generators fv,w
and index the columns by the variables ui1,...,in . Note that ∂f

∂udei
|T = 0 since the monomials

in fv,w containing udei contain another variable ui1,...,in 6= udej for all j = 1, . . . , n. Therefore,
the column corresponding to udei is zero.

Note that the monomials usort(v,w)1+esusort(v,w)2+es cannot contain a variable udei for any
v and w that give a nontrivial fu,v, so they don’t matter in the Jacobian analysis.

Now, the column of J corresponding to the variable u(d−1)ei+ej for i 6= j has 1 only in
the rows corresponding to f(d−1)ei,(d−1)ej and so does the variable u(d−1)ej+ei . Therefore, the
variables u(d−1)ei+ej and the polynomials f(d−1)ei,(d−1)ej form a block in J of rank

(
n
2

)
, which

equals the number of pairs i 6= j.
For any other variable ui1,...,in , such that (i1, . . . , in) 6= dei or (d− 1) ei+ej, its correspond-

ing column is nonzero only at the rows corresponding to the polynomials f(i1,...,in)−es,(d−1)es
for all s such that is > 0. Each such polynomial has no other 1’s in its row except for the
one at ui1,...,in . Therefore, each variable ui1,...,in , such that (i1, . . . , in) 6= dei or (d− 1) ei + ej,
contributes a size 1 × {#s : is > 0} nonzero block to J , so it contributes 1 to the rank.
Therefore, the rank of J is

# variables −#{udei} −#{u(d−1)ei+ej :i 6=j}+

(
n

2

)
= # variables − n− n (n− 1) +

(
n

2

)
= # variables −

(
n+ 1

2

)
.

Thus, the rank of the Jacobian at a smooth point in the irreducible component of T is at
least # variables −

(
n+1
2

)
, so the dimension of an irreducible component containing T is at

most
(
n+1
2

)
.

Since the odeco variety is irreducible, has dimension
(
n+1
2

)
, contains T , and is contained

in V (I), then it is one of the irreducible components of V (I).

Lemma 3.7 shows that one only needs to show that the ideal I is prime in order to confirm
Conjecture 3.2.
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Computations

In Figure 2 we show some computational checks of the conjecture.
Since the ideal I becomes quite large, as n and d grow, it soon becomes hard to check

its primality. It was easy to check the conjecture was correct in the case n = d = 3 using
Macaulay2. The case n = 3, d = 4 was checked using the numerical homotopy software
Bertini. We were unable to confirm the rest of the results using (short) computations.

n d dimension degree # min. gens. conjecture check
3 3 6 10 6 True
3 4 6 35 27 True
3 5 6 84 75
4 3 ≥ 10 20
4 4 ≥ 10 126
5 3 ≥ 15 50

Figure 2: A table of what can be found computationally about the ideal I generated by the
equations in (3.1).

In upcoming work with Jan Draisma, Emil Horobet and Ada Boralevi, we show that a
real symmetric tensor satisfies the proposed equations if and only if it is odeco. A complete
proof of Conjecture 3.2 is still in progress.
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