
Smoothed Analysis of the Successive Shortest Path Algorithm∗

Tobias Brunsch† Kamiel Cornelissen‡ Bodo Manthey‡ Heiko Röglin†

Clemens Rösner†

Abstract

The minimum-cost flow problem is a classic problem in combinatorial optimization
with various applications. Several pseudo-polynomial, polynomial, and strongly poly-
nomial algorithms have been developed in the past decades, and it seems that both the
problem and the algorithms are well understood. However, some of the algorithms’
running times observed in empirical studies contrast the running times obtained by
worst-case analysis not only in the order of magnitude but also in the ranking when
compared to each other. For example, the Successive Shortest Path (SSP) algorithm,
which has an exponential worst-case running time, seems to outperform the strongly
polynomial Minimum-Mean Cycle Canceling algorithm.

To explain this discrepancy, we study the SSP algorithm in the framework of
smoothed analysis and establish a bound of O(mnφ) for the number of iterations,
which implies a smoothed running time of O(mnφ(m+n logn)), where n andm denote
the number of nodes and edges, respectively, and φ is a measure for the amount of
random noise. This shows that worst-case instances for the SSP algorithm are not
robust and unlikely to be encountered in practice. Furthermore, we prove a smoothed
lower bound of Ω(m ·min {n, φ} ·φ) for the number of iterations of the SSP algorithm,
showing that the upper bound cannot be improved for φ = Ω(n).

1 Introduction
Flow problems have gained a lot of attention in the second half of the twentieth cen-
tury to model, for example, transportation and communication networks [1, 9]. Plenty
of algorithms have been developed over the last fifty years. The first pseudo-polynomial
algorithm for the minimum-cost flow problem was the Out-of-Kilter algorithm indepen-
dently proposed by Minty [19] and by Fulkerson [10]. The simplest pseudo-polynomial
algorithms are the primal Cycle Canceling algorithm by Klein [16] and the dual Succes-
sive Shortest Path (SSP) algorithm by Jewell [14], Iri [13], and Busacker and Gowen [5].
By introducing a scaling technique Edmonds and Karp [8] modified the SSP algorithm to
∗This research was supported by ERC Starting Grant 306465 (BeyondWorstCase) and NWO grant

613.001.023. The upper bound (Theorem 1) of this paper has been presented at the 24th ACM-SIAM
Symp. on Discrete Algorithms (SODA 2013).
†University of Bonn, Department of Computer Science, Germany. Email:

{brunsch,roeglin,roesner}@cs.uni-bonn.de
‡University of Twente, Department of Applied Mathematics, Enschede, The Netherlands. Email:

{k.cornelissen,b.manthey}@utwente.nl

1

ar
X

iv
:1

50
1.

05
49

3v
2

 [
cs

.D
S]

 1
5

Se
p

20
15

obtain the Capacity Scaling algorithm, which was the first polynomial time algorithm for
the minimum-cost flow problem.

The first strongly polynomial algorithms were given by Tardos [25] and by Orlin [20].
Later, Goldberg and Tarjan [11] proposed a pivot rule for the Cycle Canceling algorithm to
obtain the strongly polynomial Minimum-Mean Cycle Canceling (MMCC) algorithm. The
fastest known strongly polynomial algorithm up to now is the Enhanced Capacity Scaling
algorithm due to Orlin [21] and has a running time of O(m log(n)(m+ n logn)), where n
and m denote the number of nodes and edges, respectively. For an extensive overview
of minimum-cost flow algorithms we suggest the paper of Goldberg and Tarjan [12], the
paper of Vygen [27], and the book of Ahuja, Magnanti, and Orlin [1].

Zadeh [28] showed that the SSP algorithm has an exponential worst-case running time.
Contrary to this, the worst-case running times of the Capacity Scaling algorithm and the
MMCC algorithm are O(m(logU)(m + n logn)) [8] and O(m2n2 min{log(nC),m}) [22],
respectively. Here, U denotes the maximum edge capacity and C denotes the maximum
edge cost. In particular, the former is polynomial whereas the latter is even strongly
polynomial. However, the notions of pseudo-polynomial, polynomial, and strongly poly-
nomial algorithms always refer to worst-case running times, which do not always resemble
the algorithms’ behavior on real-life instances. Algorithms with large worst-case running
times do not inevitably perform poorly in practice. An experimental study of Kovács [15]
indeed observes running time behaviors significantly deviating from what the worst-case
running times indicate. The MMCC algorithm is completely outperformed by the SSP
algorithm. The Capacity Scaling algorithm is the fastest of these three algorithms, but
its running time seems to be in the same order of magnitude as the running time of the
SSP algorithm. In this article, we explain why the SSP algorithm comes off so well by
applying the framework of smoothed analysis.

Smoothed analysis was introduced by Spielman and Teng [23] to explain why the
simplex method is efficient in practice despite its exponential worst-case running time.
In the original model, an adversary chooses an arbitrary instance which is subsequently
slightly perturbed at random. In this way, pathological instances no longer dominate
the analysis. Good smoothed bounds usually indicate good behavior in practice because
in practice inputs are often subject to a small amount of random noise. For instance,
this random noise can stem from measurement errors, numerical imprecision, or rounding
errors. It can also model influences that cannot be quantified exactly but for which there
is no reason to believe that they are adversarial. Since its invention, smoothed analysis has
been successfully applied in a variety of contexts. Two recent surveys [18, 24] summarize
some of these results.

We follow a more general model of smoothed analysis due to Beier and Vöcking [2].
In this model, the adversary is even allowed to specify the probability distribution of the
random noise. The power of the adversary is only limited by the smoothing parameter φ.
In particular, in our input model the adversary does not fix the edge costs ce ∈ [0, 1], but
he specifies for each edge e a probability density function fe : [0, 1] → [0, φ] according to
which the costs ce are randomly drawn independently of the other edge costs. If φ = 1,
then the adversary has no choice but to specify a uniform distribution on the interval [0, 1]
for each edge cost. In this case, our analysis becomes an average-case analysis. On the
other hand, if φ becomes large, then the analysis approaches a worst-case analysis since

2

the adversary can specify a small interval Ie of length 1/φ (which contains the worst-case
costs) for each edge e from which the costs ce are drawn uniformly.

As in the worst-case analysis, the network graph, the edge capacities, and the balance
values of the nodes are chosen adversarially. The edge capacities and the balance values
of the nodes are even allowed to be real values. We define the smoothed running time of
an algorithm as the worst expected running time the adversary can achieve and we prove
the following theorem.

Theorem 1. The SSP algorithm requires O(mnφ) augmentation steps in expectation and
its smoothed running time is O(mnφ(m+ n logn)).

If φ is a constant – which seems to be a reasonable assumption if it models, for example,
measurement errors – then the smoothed bound simplifies to O(mn(m+n logn)). Hence,
it is unlikely to encounter instances on which the SSP algorithm requires an exponential
amount of time.

The following theorem, which we also prove in this article, states that the bound for
the number of iterations of the SSP algorithm stated in Theorem 1 cannot be improved
for φ = Ω(n).

Theorem 2. For given positive integers n, m ∈ {n, . . . , n2}, and φ ≤ 2n there exists a
minimum-cost flow network with O(n) nodes, O(m) edges, and random edge costs with
smoothing parameter φ on which the SSP algorithm requires Ω(m ·min {n, φ} ·φ) augmen-
tation steps with probability 1.

The main technical section of this article is devoted to the proof of Theorem 1 (Sec-
tion 4). In Section 5 we derive the lower bound stated in Theorem 2. At the end of
this article (Section 6), we point out some connections between SSP and its smoothed
analysis to the simplex method with the shadow vertex pivot rule, which has been used
by Spielman and Teng in their smoothed analysis [23].

1.1 The Minimum-Cost Flow Problem

A flow network is a simple directed graph G = (V,E) together with a capacity func-
tion u : E → R≥0. For convenience, we assume that there are no directed cycles of length
two. In the minimum-cost flow problem there are an additional cost function c : E → [0, 1]
and a balance function b : V → R indicating how much of a resource some node v re-
quires (b(v) < 0) or offers (b(v) > 0). A feasible b-flow for such an instance is a func-
tion f : E → R≥0 that obeys the capacity constraints 0 ≤ fe ≤ ue for any edge e ∈ E and
Kirchhoff’s law adapted to the balance values, i.e., b(v) +

∑
e=(u,v)∈E fe =

∑
e′=(v,w)∈E fe′

for all nodes v ∈ V . (Even though u, c, and f are functions, we use the notation ue, ce,
and fe instead of u(e), c(e), and f(e) in this article.) If

∑
v∈V b(v) 6= 0, then there does

not exist a feasible b-flow. We therefore always require
∑
v∈V b(v) = 0. The cost of a

feasible b-flow is defined as c(f) =
∑
e∈E fe · ce. In the minimum-cost flow problem the

goal is to find the cheapest feasible b-flow, a so-called minimum-cost b-flow, if one exists,
and to output an error otherwise.

3

1.2 The SSP Algorithm

For a pair e = (u, v), we denote by e−1 the pair (v, u). Let G be a flow network, let c be
a cost function, and let f be a flow. The residual network Gf is the directed graph with
vertex set V , arc set E′ = Ef ∪ Eb, where

Ef =
{
e : e ∈ E and fe < ue

}
is the set of so-called forward arcs and

Eb =
{
e−1 : e ∈ E and fe > 0

}
is the set of so-called backward arcs, a capacity function u′ : E′ → R, defined by

u′e =
{
ue − fe if e ∈ E ,
fe−1 if e−1 ∈ E ,

and a cost function c′ : E′ → R, defined by

c′e =
{
ce if e ∈ E ,
−ce−1 if e−1 ∈ E .

In practice, the simplest way to implement the SSP algorithm is to transform the instance
to an equivalent instance with only one supply node (a node with positive balance value)
and one demand node (a node with negative balance value). For this, we add two nodes s
and t to the network which we call master source and master sink, edges (s, v) for any
supply node v, and edges (w, t) for any demand node w. The capacities of these auxiliary
edges (s, v) and (w, t) are set to b(v) > 0 and −b(w) > 0, respectively. The costs of
the auxiliary edges are set to 0. Now we set b(s) = −b(t) = z where z is the sum of the
capacities of the auxiliary edges incident with s (which is equal to the sum of the capacities
of the auxiliary edges incident with t due to the assumption that

∑
v∈V b(v) = 0). All

other balance values are set to 0.
This is a well-known transformation of an arbitrary minimum-cost flow instance into

a minimum-cost flow instance with only a single source s, a single sink t, and b(v) = 0 for
all nodes v ∈ V \ {s, t}. Nevertheless, we cannot assume without loss of generality that
the flow network we study has only a single source and a single sink. The reason is that in
the probabilistic input model introduced above it is not possible to insert auxiliary edges
with costs 0 because the costs of each edge are chosen according to some density function
that is bounded from above by φ. We have to consider the auxiliary edges with costs 0
explicitly and separately from the other edges in our analysis.

The SSP algorithm run on the transformed instance computes the minimum-cost b-
flow for the original instance. In the remainder of this article we use the term flow to
refer to a feasible b-flow for an arbitrary b with b(s) = −b(t) and b(v) = 0 for v /∈ {s, t}.
We will denote by |f | the amount of flow shipped from s to t in flow f , i.e., |f | =∑
e=(s,v)∈E fe −

∑
e=(v,s)∈E fe.

The SSP algorithm for a minimum-cost flow network with a single source s, a single
sink t, and with b(s) = −b(t) = z > 0 is given as Algorithm 1.

4

Algorithm 1 SSP for single-source-single-sink minimum-cost flow networks with b(s) =
−b(t) = z > 0.

1: start with the empty flow f0 = 0
2: for i = 1, 2, . . . do
3: if Gfi−1 does not contain a (directed) s-t path then output that there does not

exist a flow with value z
4: find a shortest s-t path Pi in Gfi−1 with respect to the arc costs
5: augment the flow as much as possible∗ along path Pi to obtain a new flow fi
6: if |fi| = z then output fi
7: end for
∗ Since the value |fi| of flow fi must not exceed z and the flow fi must obey all capacity constraints,
the flow is increased by the minimum of min{ue−fi−1(e) | e ∈ Pi∩E}, min{fi−1(e) | e ∈ Pi ∧

←
e∈

E} and z − |fi−1|.

Theorem 3. In any round i, flow fi is a minimum-cost bi-flow for the balance function bi
defined by bi(s) = −bi(t) = |fi| and bi(v) = 0 for v /∈ {s, t}.

Theorem 3 is due to Jewell [14], Iri [13], and Busacker and Gowen [5]. We refer to Korte
and Vygen [17] for a proof. As a consequence, no residual network Gfi

contains a directed
cycle with negative total costs. Otherwise, we could augment along such a cycle to obtain
a bi-flow f ′ with smaller costs than fi. In particular, this implies that the shortest paths
in Gfi

from s to nodes v ∈ V form a shortest path tree rooted at s. Since the choice of
the value z only influences the last augmentation of the algorithm, the algorithm performs
the same augmentations when run for two different values z1 < z2 until the flow value |fi|
exceeds z1. We will exploit this observation in Lemma 9.

Note that one could allow the cost function c to have negative values as well. As long
as the network does not contain a cycle with negative total costs, the SSP algorithm is
still applicable. However, as we cannot ensure this property if the edge costs are random
variables, we made the assumption that all edge costs are non-negative.

1.3 A Connection to the Integer Worst-case Bound

We can concentrate on counting the number of augmenting steps of the SSP algorithm since
each step can be implemented to run in time O(m + n logn) using Dijkstra’s algorithm.
Let us first consider the case that all edge costs are integers from {1, . . . , C}. In this
case the length of any path in any residual network is bounded by nC. We will see that
the lengths of the augmenting paths are monotonically increasing. If there is no unique
shortest path to augment flow along and ties are broken by choosing one with the fewest
number of arcs, then the number of successive augmenting paths with the same length
is bounded by O(mn) (this follows from the analysis of the Edmonds-Karp algorithm for
computing a maximum flow [6]). Hence, the SSP algorithm terminates within O(mn2C)
steps.

Now let us perturb the edge costs of such an integral instance independently by, for
example, uniform additive noise from the interval [−1, 1]. This scenario is not covered by
bounds for the integral case. Indeed, instances can be generated with positive probability

5

for which the number of augmentation steps is exponential in m and n. Nevertheless, an
immediate consequence of Theorem 1 is that, in expectation, the SSP algorithm terminates
within O(mnC) steps on instances of this form.

2 Terminology and Notation
Consider the run of the SSP algorithm on the flow network G. We denote the set
{f0, f1, . . .} of all flows encountered by the SSP algorithm by F0(G). Furthermore, we
set F(G) = F0(G) \ {f0}. (We omit the parameter G if it is clear from the context.)

Let us remark that we have not specified in Algorithm 1 which path is chosen if the
shortest s-t path is not unique. This is not important for our analysis because we will see
in Section 4 that this happens only with probability 0 in our probabilistic model. We can
therefore assume F0(G) to be well-defined.

By f0 and fmax, we denote the empty flow and the maximum flow, i.e., the flow that
assigns 0 to all edges e and the flow of maximum value encountered by the SSP algorithm,
respectively.

Let fi−1 and fi be two consecutive flows encountered by the SSP algorithm and let Pi
be the shortest path in the residual network Gfi−1 , i.e., the SSP algorithm augments
along Pi to increase flow fi−1 to obtain flow fi. We call Pi the next path of fi−1 and
the previous path of fi. To distinguish between the original network G and some residual
network Gf in the remainder of this article, we refer to the edges in the residual network
as arcs, whereas we refer to the edges in the original network as edges.

For a given arc e in a residual network Gf , we denote by e0 the corresponding edge
in the original network G, i.e., e0 = e if e ∈ E (i.e. e is a forward arc) and e0 = e−1 if
e /∈ E (i.e. e is a backward arc). An arc e is called empty (with respect to some residual
network Gf) if e belongs to Gf , but e−1 does not. Empty arcs e are either forward arcs
that do not carry flow or backward arcs whose corresponding edge e0 carries as much flow
as possible. We say that an arc becomes saturated (during an augmentation) when it is
contained in the current augmenting path, but it does not belong to the residual network
that we obtain after this augmentation.

In the remainder, a path is always a simple directed path. Let P be a path, and
let u and v be contained in P in this order. By u P

 v, we refer to the sub-path of P
starting from node u going to node v, by

←
P we refer to the path we obtain by reversing

the direction of each edge of P . We call any flow network G′ a possible residual network
(of G) if there is a flow f for G such that G′ = Gf . Paths and cycles in possible residual
networks are called possible paths and possible cycles, respectively. Let ←→G = (V,E ∪E−1)
for E−1 =

{
e−1 : e ∈ E

}
denote the flow network that consists of all forward arcs and

backward arcs.

3 Outline of Our Approach
Our analysis of the SSP algorithm is based on the following idea: We identify a flow fi ∈ F0
with a real number by mapping fi to the length `i of the previous path Pi of fi. The flow f0
is identified with `0 = 0. In this way, we obtain a sequence L = (`0, `1, . . .) of real numbers.

6

We show that this sequence is strictly monotonically increasing with probability 1. Since
all costs are drawn from the interval [0, 1], each element of L is from the interval [0, n]. To
count the number of elements of L, we partition the interval [0, n] into small sub-intervals
of length ε and sum up the number of elements of L in these intervals. By linearity of
expectation, this approach carries over to the expected number of elements of L. If ε is
very small, then – with sufficiently high probability – each interval contains at most one
element. If this is the case then it suffices to bound the probability that an element of L
falls into some interval (d, d + ε] because this probability equals the expected number of
elements in (d, d+ ε].

To do so, we assume for the moment that there is an integer i such that `i ∈ (d, d +
ε]. By the previous assumption that for any interval of length ε there is at most one
path whose length is within this interval, we obtain that `i−1 ≤ d. We show that the
augmenting path Pi uses an empty arc e. Moreover, we will see that we can reconstruct
the flow fi−1 and the path Pi without knowing the costs of edge e0 that corresponds to
arc e in the original network. This allows us to use the principle of deferred decisions: to
bound the probability that `i falls into the interval (d, d + ε], we first reveal all costs ce′
with e′ 6= e0. Then Pi is known and its length, which equals `i, can be expressed as a
linear function κ + ce0 or κ − ce0 for a known constant κ. Consequently, the probability
that `i falls into the interval (d, d+ ε] is bounded by εφ, as the probability density of ce0

is bounded by φ. Since the arc e is not always the same, we have to apply a union bound
over all 2m possible arcs. Summing up over all n/ε intervals the expected number of flows
encountered by the SSP algorithm can be bounded by roughly (n/ε) · 2m · εφ = 2mnφ.

There are some parallels to the analysis of the smoothed number of Pareto-optimal
solutions in bicriteria linear optimization problems by Beier and Vöcking [3], although
we have only one objective function. In this context, we would call fi the loser, fi−1 the
winner, and the difference `i−d the loser gap. Beier and Vöcking’s analysis is also based on
the observation that the winner (which in their analysis is a Pareto-optimal solution and
not a flow) can be reconstructed when all except for one random coefficients are revealed.
While this reconstruction is simple in the setting of bicriteria optimization problems, the
reconstruction of the flow fi−1 in our setting is significantly more challenging and a main
difficulty in our analysis.

4 Proof of the Upper Bound
Before we start with the analysis, note that due to our transformation of the general
minimum-cost flow problem to a single-source-single-sink minimum-cost flow problem the
cost perturbations only affect the original edges. The costs of the auxiliary edges are not
perturbed but set to 0. Thus, we will slightly deviate from what we described in the
outline by treating empty arcs corresponding to auxiliary edges separately.

The SSP algorithm is in general not completely specified, since at some point during the
run of the algorithm there could exist multiple shortest s-t paths in the residual network
of the current flow. The SSP algorithm then allows any of them to be chosen as the next
augmenting path. Due to Lemma 4 and Property 5 we can assume that this is not the
case in our setting and that the SSP algorithm is completely specified.

7

Lemma 4. For any real ε > 0 the probability that there are two nodes u and v and
two distinct possible u-v paths whose lengths differ by at most ε is bounded from above
by 2n2nεφ.

Proof. Fix two nodes u and v and two distinct possible u-v paths P1 and P2. Then there
is an edge e such that one of the paths – without loss of generality path P1 – contains arc e
or e−1, but the other one does not. If we fix all edge costs except the cost of edge e, then
the length of P2 is already determined whereas the length of P1 depends on the cost ce.
Hence, ce must fall into a fixed interval of length 2ε in order for the path lengths of P1
and P2 to differ by at most ε. The probability for this is bounded by 2εφ because ce is
chosen according to a density function that is bounded from above by φ. A union bound
over all pairs (u, v) and all possible u-v paths concludes the proof.

The proof also shows that we can assume that there is no s-t path of length 0 and
according to Lemma 4 we can assume that the following property holds since it holds with
a probability of 1.

Property 5. For any nodes u and v the lengths of all possible u-v paths are pairwise
distinct.

Lemma 6. Let di(v) denote the distance from s to node v and d′i(v) denote the distance
from node v to t in the residual network Gfi

. Then the sequences d0(v), d1(v), d2(v), . . .
and d′0(v), d′1(v), d′2(v), . . . are monotonically increasing for every v ∈ V .

Proof. We only show the proof for the sequence d0(v), d1(v), d2(v), The proof for
the sequence d′0(v), d′1(v), d′2(v), . . . can be shown analogously. Let i ≥ 0 be an arbitrary
integer. We show di(v) ≤ di+1(v) by induction on the depth of node v in the shortest
path tree Ti+1 of the residual network Gfi+1 rooted at s. For the root s, the claim
holds since di(s) = di+1(s) = 0. Now assume that the claim holds for all nodes up
to a certain depth k, consider a node v with depth k + 1, and let u denote its parent.
Consequently, di+1(v) = di+1(u) + ce for e = (u, v). If arc e has been available in Gfi

,
then di(v) ≤ di(u) + ce. If not, then the SSP algorithm must have augmented along e−1 in
step i+ 1 to obtain flow fi+1 and, hence, di(u) = di(v) + ce−1 = di(v)− ce. In both cases
the inequality di(v) ≤ di(u) + ce holds. Applying the induction hypothesis for node u, we
obtain di(v) ≤ di(u) + ce ≤ di+1(u) + ce = di+1(v).

Definition 7. For a flow fi ∈ F0, we denote by `G−(fi) and `G+(fi) the length of the previous
path Pi and the next path Pi+1 of fi, respectively. By convention, we set `G−(f0) = 0 and
`G+(fmax) = ∞. If the network G is clear from the context, then we simply write `−(fi)
and `+(fi). By C we denote the cost function that maps reals x from the interval

[
0, |fmax|

]
to the cost of the cheapest flow f with value x, i.e., C (x) = min {c(f) : |f | = x}.

The lengths `−(fi) correspond to the lengths `i mentioned in the outline. The apparent
notational overhead is necessary for formal correctness. In Lemma 9, we will reveal a
connection between the values `−(fi) and the function C . Based on this, we can focus on
analyzing the function C .

Lemma 6 implies in particular that the distance from the source s to the sink t is
monotonically increasing, which yields the following corollary.

8

Corollary 8. Let fi, fj ∈ F0 be two flows with i < j. Then `−(fi) ≤ `−(fj).

Lemma 9. The function C is continuous, monotonically increasing, and piecewise linear,
and the break points of the function are the values of the flows f ∈ F0 with `−(f) < `+(f).
For each flow f ∈ F0, the slopes of C to the left and to the right of |f | equal `−(f)
and `+(f), respectively.

Proof. The proof follows from Theorem 3 and the observation that the cost of the flow
is linearly increasing when gradually increasing the flow along the shortest path in the
residual network until at least one arc becomes saturated. The slope of the cost function
is given by the length of that path.

Example 10. Consider the flow network depicted in Figure 1. The cost ce and the capac-
ity ue of an edge e are given by the notation ce, ue. For each step of the SSP algorithm,
Figure 3 lists the relevant part of the augmenting path (excluding s, s′, t′, and t), its
length, the amount of flow that is sent along that path, and the arcs that become saturated.
As can be seen in the table, the values |f | of the encountered flows f ∈ F0 are 0, 2, 3, 5,
7, 10, and 12. These are the breakpoints of the cost function C , and the lengths of the
augmenting paths equal the slopes of C (see Figure 2).

s t

u

v

w

1, 4

5, 5

6, 6

1, 2

1, 3

7, 6

1, 3

3, 50, 12 0, 12s′ t′

b(s) = 12 b(t) = −12

Figure 1: Minimum-cost flow network with mas-
ter source s and master sink t.

1 2 3 4 5 6 7 8 9 10 11 12

10

20

30

40

50

60

70

80

90

100

0
x

C (x)

4
6

7

8

9

12

c

Figure 2: Cost function C .

step 1 2 3 4 5 6
path u, v, w w w, v u v v, u

path length 4 6 7 8 9 12
amount of flow 2 1 2 2 3 2
saturated arcs (u, v) (w, t′) (w, v) (s′, u) (v, t′) (v, u)

Figure 3: The augmenting paths for Example 10.

With the following definition, we lay the foundation for distinguishing between original
edges with perturbed costs and auxiliary edges whose costs are set to 0.

Definition 11. Let f ∈ F0 be an arbitrary flow. An empty arc e in the residual network Gf
that does not correspond to an auxiliary edge is called a good arc. We call f a good flow if

9

f 6= f0 and if the previous path of f contains a good arc in the previous residual network.
Otherwise, f is called a bad flow.

Before we can derive a property of good arcs that are contained in the previous path
of good flows, we need to show that for each flow value the minimum-cost flow is unique
with probability 1.

Lemma 12. For any real ε > 0 the probability that there exists a possible cycle whose
costs lie in [0, ε] is bounded from above by 2n2nεφ.

Proof. Assume that there exists a cycle K whose costs lie in [0, ε]. Then K contains two
nodes u and v and consists of a u-v path P1 and a v-u path P2. Then P1 and

←
P2 are two

distinct u-v paths. Since K has costs in [0, ε], the costs of P1 and
←
P2 differ by at most ε.

Now Lemma 4 concludes the proof.

According to Lemma 12 we can assume that the following property holds since it holds
with a probability of 1.

Property 13. There exists no possible cycle with costs 0.

With Property 13 we can show that the minimum-cost flow is unique for each value.

Lemma 14. For each value B ∈ R≥0 there either exists no flow f with |f | = B or there
exists a unique minimum-cost flow f with |f | = B.

Proof. Assume that there exists a value B ∈ R≥0 and two distinct minimum-cost flows f
and f ′ with |f | = |f ′| = B. Let E∆ := {e ∈ E | fe 6= f ′e} be the set of edges on which f
and f ′ differ. We show in the following that the set E∆ contains at least one undirected
cycle K. Since f and f ′ are distinct flows, the set E∆ cannot be empty. For v ∈ V , let
us denote by f−(v) =

∑
e=(u,v)∈E fe the flow entering v and by f+(v) =

∑
e=(v,w)∈E fe

the flow going out of v (f ′−(v) and f ′+(v) are defined analogously). Flow conservation and
|f | = |f ′| imply f−(v)− f ′−(v) = f+(v)− f ′+(v) for all v ∈ V . Now let us assume E∆ does
not contain an undirected cycle. In this case there must exist a vertex v ∈ V with exactly
one incident edge in E∆. We will show that this cannot happen.

Assume f−(v)− f ′−(v) 6= 0 for some v ∈ V . Then the flows f and f ′ differ on at least
one edge e = (u, v) ∈ E. Since this case implies f+(v)− f ′+(v) 6= 0, they also differ on at
least one edge e′ = (v, w) ∈ E and both these edges belong to E∆. It remains to consider
nodes v ∈ V with f−(v)−f ′−(v) = f+(v)−f ′+(v) = 0 and at least one incident edge in E∆.
For such a node v there exists an edge e = (u, v) ∈ E (or e = (v, w) ∈ E) with fe 6= f ′e. It
follows

∑
e′=(u′,v)∈E,e′ 6=e fe′ − f ′e′ 6= 0 (or

∑
e′=(v,w′)∈E,e′ 6=e fe′ − f ′e′ 6= 0) which implies that

there exists another edge e′ = (u′, v) 6= e (or e = (v, w′) 6= e) with fe′ 6= f ′e′ .
For the flow f ′′ = 1

2f + 1
2f
′, which has the same costs as f and f ′ and is hence a

minimum-cost flow with |f ′′| = B as well, we have f ′′(e) ∈ (0, ue) for all e ∈ E∆. The
flow f ′′ can therefore be augmented in both directions along K. Due to Property 13,
augmenting f ′′ in one of the two directions along K will result in a better flow. This is a
contradiction.

10

Now we derive a property of good arcs that are contained in the previous path of good
flows. This property allows us to bound the probability that one of the lengths `−(fi) falls
into a given interval of length ε.

Lemma 15. Let f ∈ F0 be a predecessor of a good flow for which `G−(f) < `G+(f) holds
Additionally, let e be a good arc in the next path of f , and let e0 be the edge in G that
corresponds to e. Now change the cost of e0 to c′e0 = 1 (c′e0 = 0) if e0 = e (e0 = e−1),
i.e., when e is a forward (backward) arc. In any case, the cost of arc e increases. We
denote the resulting flow network by G′. Then f ∈ F0(G′). Moreover, the inequalities
`G
′
− (f) ≤ `G−(f) < `G+(f) ≤ `G′+ (f) hold.

Proof. Let C and C ′ be the cost functions of the original network G and the modified
network G′, respectively. Both functions are of the form described in Lemma 9. In
particular, they are continuous and the breakpoints correspond to the values of the flows
f̃ ∈ F0(G) and f̂ ∈ F0(G′) with `G−(f̃) < `G+(f̃) and `G′− (f̂) < `G

′
+ (f̂), respectively.

We start with analyzing the case e0 = e. In this case, we set C ′′ = C ′ and observe
that increasing the cost of edge e0 to 1 cannot decrease the cost of any flow in G. Hence,
C ′′ ≥ C . Since flow f does not use arc e, its costs remain unchanged, i.e., C ′′(|f |) = C (|f |).

If e0 = e−1, then we set C ′′ = C ′ + ∆e0 for ∆e0 = ue0 · ce0 . This function is also
piecewise linear and has the same breakpoints and slopes as C ′. Since the flow on edge e0
cannot exceed the capacity ue0 of edge e0 and since the cost on that edge has been reduced
by ce0 in G′, the cost of each flow is reduced by at most ∆e0 in G′. Furthermore, this
gain is only achieved for flows that entirely use edge e0 like f does. Hence, C ′′ ≥ C and
C ′′(|f |) = C (|f |).

x

C (x)

c

|f |

C ′′(x)

Figure 4: Cost function C and function C ′′.

Due to C ′′ ≥ C , C ′′(|f |) = C (|f |), and the form of both functions, the left-hand
derivative of C ′′ at |f | is at most the left-hand derivative of C at |f | (see Figure 4).
Since |f | is a breakpoint of C , this implies that |f | is also a breakpoint of C ′′ and that
the slope of C ′′ to the left of |f | is at most the slope of C to the left of |f |. For the same
reasons, the right-hand derivative of C ′′ at |f | is at least the right-hand derivative of C
at |f | and the slope of C ′′ to the right of |f | is at least the slope of C to the right of |f |.
These properties carry over to C ′. Hence, F0(G′) contains a flow f ′ with |f ′| = |f |. Since
f is a minimum-cost flow with respect to c, f ′ is a minimum-cost flow with respect to c′,
we have c′(f) = c(f) and c′(f∗) ≥ c(f∗) for all possible flows f∗, Lemma 14 yields f = f ′

11

Algorithm 2 Reconstruct(e, d).
1: let e0 be the edge that corresponds to arc e in the original network G
2: change the cost of edge e0 to c′e0 = 1 if e is a forward arc or to c′e0 = 0 if e is a backward

arc
3: start running the SSP algorithm on the modified network G′
4: stop when the length of the shortest s-t path in the residual network of the current

flow f ′ exceeds d
5: output f ′

and therefore f ∈ F0(G′). Recalling the fact that the slopes correspond to shortest s-t
path lengths, the stated chain of inequalities follows.

Lemma 15 suggests Algorithm 2 (Reconstruct) for reconstructing a flow f based on a
good arc e that belongs to the shortest path in the residual network Gf and on a threshold
d ∈

[
`−(f), `+(f)

)
. The crucial fact that we will later exploit is that for this reconstruction

the cost ce0 of edge e0 does not have to be known. (Note that we only need Reconstruct
for the analysis in order to show that the flow f can be reconstructed.)

Corollary 16. Let f ∈ F0 be a predecessor of a good flow, let e be a good arc in the next
path of f , and let d ∈

[
`−(f), `+(f)

)
be a real number. Then Reconstruct(e, d) outputs

flow f .

Proof. By applying Lemma 15, we obtain f ∈ F0(G′) and `G′− (f) ≤ d < `G
′

+ (f). Together
with Corollary 8, this implies that Reconstruct(e, d) does not stop before encountering
flow f and stops once it encounters f . Hence, Reconstruct(e, d) outputs flow f .

Corollary 16 is an essential component of the proof of Theorem 1 but it only describes
how to reconstruct predecessor flows f of good flows with `−(f) < `+(f). In the next part
of this section we show that most of the flows are good flows and that, with a probability
of 1, the inequality `−(f) < `+(f) holds for any flow f ∈ F0.

Lemma 17. In any step of the SSP algorithm, any s-t path in the residual network
contains at least one empty arc.

Proof. The claim is true for the empty flow f0. Now consider a flow fi ∈ F , its predecessor
flow fi−1, the path Pi, which is a shortest path in the residual network Gfi−1 , and an
arbitrary s-t path P in the current residual network Gfi

. We show that at least one arc
in P is empty.

For this, fix one arc e = (x, y) from Pi that is not contained in the current residual
network Gfi

since it became saturated by the augmentation along Pi. Let v be the first
node of P that occurs in the sub-path y

Pi t of Pi, and let u be the last node in the
sub-path s

P
 v of P that belongs to the sub-path s

Pi x of Pi (see Figure 5). By the
choice of u and v, all nodes on the sub-path P ′ = u

P
 v of P except u and v do not

belong to Pi. Hence, the arcs of P ′ are also available in the residual network Gfi−1 and
have the same capacity in both residual networks Gfi−1 and Gfi

.

12

s tx yu v

P

Pi

P ′

C

e

Figure 5: Paths P and Pi in the residual network Gfi
.

In the remainder of this proof, we show that at least one arc of P ′ is empty. Assume
to the contrary that none of the arcs is empty in Gfi

and, hence, in Gfi−1 . This implies
that, for each arc e ∈ P ′, the residual network Gfi−1 also contains the arc e−1. Since Pi is
the shortest s-t path in Gfi−1 and since the lengths of all possible s-t paths are pairwise
distinct, the path s Pi u

P
 v

Pi t is longer than Pi. Consequently, the path P ′ = u
P
 v is

longer than the path u Pi v. This contradicts the fact that flow fi−1 is optimal since the
arcs of path u Pi v combined with the reverse arcs e−1 of all the arcs e of path P ′ form a
directed cycle C in Gfi−1 of negative costs.

We want to partition the interval [0, n] into small sub-intervals of length ε and treat the
number of lengths `−(fi) that fall into a given sub-interval as a binary random variable.
This may be wrong if there are two possible s-t paths whose lengths differ by at most ε. In
this case whose probability tends to 0 (see Lemma 4) we will simply bound the number of
augmentation steps of the SSP algorithm by a worst-case bound according to the following
lemma.

Lemma 18. The number |F0| of flows encountered by the SSP algorithm is bounded
by 3m+n.

Proof. We call two possible residual networks equivalent if they contain the same arcs.
Equivalent possible residual networks have the same shortest s-t path in common. The
length of this path is also the same. Assume that for two distinct flows fi, fj ∈ F0 with
i < j, the residual networks Gfi

and Gfj
are equivalent. We then have `−(fi+1) = `+(fi)

= `+(fj) = `−(fj+1) and due to Corollary 8, `−(fi+1) = `−(fk) = `−(fj+1) for all i <
k ≤ j + 1. Property 5 then implies Pi+1 = Pk for all i < k ≤ j + 1 and especially
Pi+1 = Pi+2, which is a contradiction. Therefore the number of equivalence classes is
bounded by 3m+n since there are m original edges and at most n auxiliary edges. This
completes the proof.

Lemma 19. There are at most n bad flows f ∈ F .

Proof. According to Lemma 17, the augmenting path contains an empty arc e in each step.
If e is an arc that corresponds to an auxiliary edge (this is the only case when e is not a
good arc), then e is not empty after the augmentation. Since the SSP algorithm does not
augment along arcs e−1 if e is an arc that corresponds to an auxiliary edge, non-empty
arcs that correspond to auxiliary edges cannot be empty a second time. Thus, there can
be at most n steps where the augmenting path does not contain a good arc. This implies
that there are at most n bad flows f ∈ F .

13

We can now bound the probability that there is a flow fi ∈ F whose previous path’s
length `−(fi) falls into a given sub-interval of length ε. Though we count bad flows
separately, they also play a role in bounding the probability that there is a good flow fi ∈ F
such that `−(fi) falls into a given sub-interval of length ε.
Lemma 20. For a fixed real d ≥ 0, let Ed,ε be the event that there is a flow f ∈ F
for which `−(f) ∈ (d, d + ε], and let Bd,ε be the event that there is a bad flow f ′ ∈ F
for which `−(f ′) ∈ (d, d + ε]. Then the probability of Ed,ε can be bounded by Pr [Ed,ε] ≤
2mεφ+ 2 ·Pr [Bd,ε].
Proof. Let Ad,ε be the event that there is a good flow f ∈ F for which `−(f) ∈ (d, d+ ε].
Since Ed,ε = Ad,ε∪Bd,ε, it suffices to show that Pr [Ad,ε] ≤ 2mεφ+Pr [Bd,ε]. Consider the
event that there is a good flow whose previous path’s length lies in the interval (d, d+ ε].
Among all these good flows, let f̂ be the one with the smallest value `−(f̂), i.e., f̂ is the
first good flow f encountered by the SSP algorithm for which `−(f) ∈ (d, d + ε], and
let f∗ be its previous flow. Flow f∗ always exists since f̂ cannot be the empty flow f0.
Corollary 8 and Property 5 yield `−(f∗) < `−(f̂). Thus, there can only be two cases: If
`−(f∗) ∈ (d, d+ ε], then f∗ is a bad flow by the choice of f̂ and, hence, event Bd,ε occurs.
The interesting case, which we consider now, is when `−(f∗) ≤ d holds. If this is true,
then d ∈ [`−(f∗), `+(f∗)) due to `+(f∗) = `−(f̂).

As f̂ is a good flow, the shortest path in the residual network Gf∗ contains a good arc
e = (u, v). Applying Corollary 16 we obtain that we can reconstruct flow f∗ by calling
Reconstruct(e, d). The shortest s-t path P in the residual network Gf∗ is the previous path
of f̂ and its length equals `−(f̂). Furthermore, P is of the form s

P
 u → v

P
 t, where

s
P
 u and v

P
 t are shortest paths in Gf∗ from s to u and from v to t, respectively.

These observations yield

Ad,ε ⊆
⋃
e∈E

Re,d,ε ∪
⋃
e∈E

Re−1,d,ε ∪Bd,ε ,

where Re,d,ε for some arc e = (u, v) denotes the following event: The event Re,d,ε occurs
if ` ∈ (d, d + ε], where ` is the length of the shortest s-t path that uses arc e in Gf ,
the residual network of the flow f obtained by calling the procedure Reconstruct(e, d).
Therefore, the probability of event Ad,ε is bounded by∑

e∈E
Pr [Re,d,ε] +

∑
e∈E

Pr
[
Re−1,d,ε

]
+ Pr [Bd,ε] .

We conclude the proof by showing Pr [Re,d,ε] ≤ εφ. For this, let e0 be the edge corre-
sponding to arc e = (u, v) in the original network. If we fix all edge costs except cost ce0

of edge e0, then the output f of Reconstruct(e, d) is already determined. The same holds
for the shortest s-t path in Gf that uses arc e since it is of the form s u→ v t where
P1 = s u is a shortest s-u path in Gf that does not use v and where P2 = v t is a
shortest v-t path in Gf that does not use u. The length ` of this path, however, depends
linearly on the cost ce0 . To be more precise, ` = `′ + ce = `′ + sgn(e) · ce0 , where `′ is the
length of P1 plus the length of P2 and where

sgn(e) =
{

+1 if e0 = e ,

−1 if e0 = e−1 .

14

Hence, ` falls into the interval (d, d + ε] if and only if ce0 falls into some fixed interval
of length ε. The probability for this is bounded by εφ as ce0 is drawn according to a
distribution whose density is bounded by φ.

Corollary 21. The expected number of augmentation steps the SSP algorithm performs
is bounded by 2mnφ+ 2n.

Proof. Let X = |F| be the number of augmentation steps of the SSP algorithm. For reals
d, ε > 0, let Ed,ε and Bd,ε be the events defined in Lemma 20, let Xd,ε be the number of
flows f ∈ F for which `−(f) ∈ (d, d + ε], and let Zd,ε = min {Xd,ε, 1} be the indicator
variable of event Ed,ε.

Since all costs are drawn from the interval [0, 1], the length of any possible s-t path is
bounded by n. Furthermore, according to Corollary 8, all lengths are non-negative (and
positive with a probability of 1). Let Fε denote the event that there are two possible s-t
paths whose lengths differ by at most ε. Then, for any positive integer k, we obtain

X =
k−1∑
i=0

Xi·n
k
,n

k

=
k−1∑
i=0

Zi·n
k
,n

k
if Fn

k
does not occur ,

≤ 3m+n if Fn
k
occurs .

Consequently,

E [X] ≤
k−1∑
i=0

E
[
Zi·n

k
,n

k

]
+ 3m+n ·Pr

[
Fn

k

]

=
k−1∑
i=0

Pr
[
Ei·n

k
,n

k

]
+ 3m+n ·Pr

[
Fn

k

]

≤ 2mnφ+ 2 ·
k−1∑
i=0

Pr
[
Bi·n

k
,n

k

]
+ 3m+n ·Pr

[
Fn

k

]
≤ 2mnφ+ 2n+ 3m+n ·Pr

[
Fn

k

]
.

The second inequality is due to Lemma 20 whereas the third inequality stems from
Lemma 19. The claim follows since Pr

[
Fn

k

]
→ 0 for k → ∞ in accordance with

Lemma 4.

Now we are almost done with the proof of our main theorem.

Proof. Since each step of the SSP algorithm runs in time O(m+ n logn) using Dijkstra’s
algorithm (see, e.g., Korte [17] for details), applying Corollary 21 yields the desired result.

5 Proof of the Lower Bound
This section is devoted to the proof of Theorem 2. For given positive integers n, m ∈
{n, . . . , n2}, and φ ≤ 2n let k = blog2 φc − 5 = O(n) and M = min

{
n, 2blog2 φc/4− 2

}
=

Θ(min{n, φ}). In the following we assume that φ ≥ 64, such that we have k,M ≥ 1. If

15

φ < 64, the lower bound on the number of augmentation steps from Theorem 2 reduces to
Ω(m) and a simple flow network like the network G1, as explained below, which we will
use as initial network in case φ ≥ 64, with O(n) nodes, O(m) edges, and uniform edge
costs proves the lower bound.

We construct a flow network with 2n + 2k + 2 + 4M = O(n) nodes, m + 2n + 4k −
4 + 8M = O(m) edges, and smoothing parameter φ on which the SSP algorithm requires
m · 2k−1 · 2M = Θ(m · φ ·min{n, φ}) augmentation steps in expectation. To be exact, we
show that for any realization of the edge costs for which there do not exist multiple paths
with exactly the same costs (Property 5) the SSP algorithm requires that many iterations.
Since this happens with probability 1, we will assume in the following that Property 5
holds without further mention.

For the sake of simplicity we consider edge cost densities fe : [0, φ] → [0, 1] instead
of fe : [0, 1] → [0, φ]. This is an equivalent smoothed input model because both types of
densities can be transformed into each other by scaling by a factor of φ and because the
behavior of the SSP algorithm is invariant under scaling of the edge costs. Furthermore,
our densities fe will be uniform distributions on intervals Ie with lengths of at least 1. In
the remainder of this section we only construct these intervals Ie. Also, all minimum-cost
flow networks constructed in this section have a unique source node s and a unique sink
node t, which is always clear from the context. The balance values of the nodes are defined
as b(v) = 0 for all nodes v /∈ {s, t} and −b(t) = b(s) =

∑
e=(s,v) ue =

∑
e=(w,t) ue, that is,

each b-flow equals a maximum s-t-flow.
The construction of the desired minimum-cost flow network G consists of three steps,

which we sketch below and describe in more detail thereafter. Given Property 5, our
choice of distributions for the edge costs ensures that the behavior of the SSP algorithm
is the same for every realization of the edge costs.

1. In the first step we define a simple flow network G1 with a source s1 and a sink t1
on which the SSP algorithm requires m augmentation steps.

2. In the second step we take a flow network Gi, starting with i = 1, as the basis for
constructing a larger flow network Gi+1. We obtain the new flow network by adding
a new source si+1, a new sink ti+1, and four edges connecting the new source and
sink with the old source and sink. Additionally, the latter two nodes are downgraded
to “normal” nodes (nodes with a balance value of 0) in Gi+1 (see Figure 7). By a
careful choice of the new capacities and cost intervals we can ensure the following
property: First, the SSP algorithm subsequently augments along all paths of the
form

si+1 → si
P
 ti → ti+1 ,

where P is an si-ti path encountered by the SSP algorithm when run on the net-
work Gi. Then, it augments along all paths of the form

si+1 → ti

←
P si → ti+1 ,

where P is again an si-ti path encountered by the SSP algorithm when run on the
network Gi. Hence, by adding two nodes and four edges we double the number
of iterations the SSP algorithm requires. For this construction to work we have to

16

double the maximum edge cost of our flow network. Hence, this construction can
be repeated k − 1 ≈ log φ times, yielding an additional factor of 2k−1 ≈ φ for the
number of iterations required by the SSP algorithm.

3. In the third step we add a global source s and a global sink t to the flow network Gk
constructed in the second step, and add four directed paths of lengthM ≈ min{n, φ},
where each contains M new nodes and has exactly one node in common with Gk.
The first path will end in sk, the second path will end in tk, the third path will start
in sk, and the fourth path will start in tk. We will also add an arc from s to every new
node in the first two paths and an arc from every new node in the last two paths to t
(see Figure 8). We call the resulting flow network G. By the right choice of the edge
costs and capacities we will ensure that for each sk-tk path P in Gk encountered by
the SSP algorithm on Gk the SSP algorithm on G encounters M augmenting paths
having P as a sub-path and M augmenting paths having

←
P as a sub-path. In this

way, we gain an additional factor of 2M for the number of iterations of the SSP
algorithm.

In the following we say that the SSP algorithm encounters a path P on a flow net-
work G′ if it augments along P when run on G′.

Construction of G1. For the first step, consider two sets U = {u1, . . . , un} and W =
{w1, . . . , wn} of n nodes and an arbitrary set EUW ⊆ U×W containing exactly |EUW | = m
edges. The initial flow network G1 is defined as G1 = (V1, E1) for V1 = U ∪W ∪ {s1, t1}
and

E1 = ({s1} × U) ∪ EUW ∪ (W × {t1}) .
The edges e from EUW have capacity 1 and costs from the interval Ie = [7, 9]. The edges
(s1, ui), ui ∈ U have a capacity equal to the out-degree of ui, the edges (wj , t1), wj ∈ W
have a capacity equal to the in-degree of wj and both have costs from the interval Ie = [0, 1]
(see Figure 6). (Remember that we use uniform distributions on the intervals Ie.)

EUW

[0, 1] [7, 9] [0, 1]

G1

s1

u1

u2

u3

w1

w2

w3

t1

2

3

2

2

2

3

Figure 6: Example for G1 with n = 3 and m = 7 with capacities different from 1 shown
next to the edges and the cost intervals shown below each edge set.

17

Lemma 22. The SSP algorithm requires exactly m iterations on G1 to obtain a max-
imum s1-t1-flow. Furthermore all augmenting paths it encounters have costs from the
interval [7, 11].

Proof. First we observe that the SSP algorithm augments only along paths that are of the
form s1 → ui → wj → t1 for some ui ∈ U and wj ∈W : Consider an arbitrary augmenting
path P the SSP algorithm encounters and assume for contradiction that P is not of this
form. Due to the structure of G1, the first two edges of P are of the form (s1, ui) and
(ui, wj) for some ui ∈ U and wj ∈ W . The choice of the capacities ensures that the
edge (wj , t1) cannot be fully saturated if the edge (ui, wj) is not. Hence, when the SSP
algorithm augments along P , the edge (wj , t1) is available in the residual network. Since
this edge is not used by the SSP algorithm, the sub-path wj

P
 t1 has smaller costs than

the edge (wj , t1). This means that the distance of wj to the sink t1 in the current residual
network is smaller than in the initial residual network for the zero flow. This contradicts
Lemma 6.

Since every path the SSP algorithm encounters onG1 is of the form s1 → ui → wj → t1,
every such path consists of two edges with costs from the interval [0, 1] and one edge with
costs from the interval [7, 9]. This implies that the total costs of any such path lie in the
interval [7, 11].

The choice of capacities ensures that on every augmenting path of the form s1 → ui →
wj → t1 the edge (ui, wj) is a bottleneck and becomes saturated by the augmentation. As
flow is never removed from this edge again, there is a one-to-one correspondence between
the paths the SSP algorithm encounters on G1 and the edges from EUW . This implies
that the SSP algorithm encounters exactly m paths on G1.

Construction of Gi+1 from Gi. Now we describe the second step of our construction
more formally. Given a flow network Gi = (Vi, Ei) with a source si and a sink ti, we define
Gi+1 = (Vi+1, Ei+1), where Vi+1 = Vi ∪ {si+1, ti+1} and

Ei+1 = Ei ∪ ({si+1} × {si, ti}) ∪ ({si, ti} × {ti+1}) .

Let Ni = 2i−1 · m, which is the value of the maximum si-ti flow in Gi. The new edges
e ∈ {(si+1, si), (ti, ti+1)} have capacity ue = Ni and costs from the interval Ie = [0, 1].
The new edges e ∈ {(si+1, ti), (si, ti+1)} also have capacity ue = Ni, but costs from the
interval Ie = [2i+3 − 1, 2i+3 + 1] (see Figure 7).

Next we analyze how many iterations the SSP algorithm requires to reach a maximum
si+1-ti+1 flow in Gi+1 when run on the network Gi+1. Before we can start with this
analysis, we prove the following property of the SSP algorithm.

Lemma 23. After augmenting flow via a cheapest v-w-path P in a network without a
cycle with negative total costs,

←
P is a cheapest w-v-path.

Proof. Since we augmented along P , all edges of
←
P will be part of the residual network.

←
P

will therefore be a feasible w-v-path. Assume that after augmenting along P there exists
a w-v-path P ′ that is cheaper than

←
P . Let us take a look at the multi-set X = P ∪ P ′,

18

Gi+1

si

ti

si+1 ti+1Gi

[0,1]

≈ 2i+3

≈ 2i+3

[0,1]

Figure 7: Gi+1 with Gi as sub-graph with edge costs next to the edges.

which contains every arc e ∈ P ∩ P ′ twice. The total costs of this multi-set are negative
because

c(P) + c(P ′) = −c(
←
P) + c(P ′) < 0

by the assumption that P ′ is cheaper than
←
P . Furthermore, for each node the number of

incoming and outgoing arcs from X is the same. This property is preserved if we delete
all pairs of a forward arc e and the corresponding backward arc e−1 from X, resulting in
a multi-set X ′ ⊆ X. The total costs of the arcs in X ′ are negative because they equal the
total costs of the arcs in X.

For every arc e ∈ X that did not have positive residual capacity before augmenting
along P , the arc e−1 must be part of P and therefore be part of X as well. This is due to
the fact that only for arcs e with e−1 ∈ P the residual capacity increases when augmenting
along P . Since all such pairs of arcs are deleted, the set X ′ will only contain arcs that
had a positive residual capacity before augmenting along P . Since each node has the same
number of outgoing and incoming arcs from X ′, we can partition X ′ into subsets, where
the arcs in each subset form a cycle. Since the total costs of all arcs are negative at least
one of these cycles has to have negative costs, which is a contradiction.

Since during the execution of the SSP algorithm all residual networks have conservative
costs on the arcs, Lemma 23 always applies.

Lemma 24. Let i ≥ 1. All si-ti-paths the SSP algorithm encounters when run on the
network Gi have costs from the interval [7, 2i+3 − 5]. Furthermore the SSP algorithm
encounters on the network Gi+1 twice as many paths as on the network Gi.

Proof. We prove the first half of the lemma by induction over i. In accordance with
Lemma 22, all paths the SSP algorithm encounters on G1 have costs from the inter-
val [7, 11] = [7, 24 − 5].

Now assume that all paths the SSP algorithm encounters in Gi, for some i ≥ 1, have
costs from the interval [7, 2i+3 − 5]. We distinguish between three different kinds of si+1-
ti+1-paths in Gi+1.

Definition 25. We classify the possible si+1-ti+1-paths P in Gi+1 as follows.

1. If P = si+1 → si ti → ti+1, then P is called a type-1-path.

19

2. If P = si+1 → si → ti+1 or P = si+1 → ti → ti+1, then P is called a type-2-path.
3. If P = si+1 → ti si → ti+1, then P is called a type-3-path.

For any type-2-path P we have

c(P) ∈ [0 + (2i+3 − 1), 1 + (2i+3 + 1)] = [2i+3 − 1, 2i+3 + 2] ⊆ [7, 2i+4 − 5] .

Since due to Lemma 6 the distance from ti to ti+1 does not decrease during the run of
the SSP algorithm, the SSP algorithm will only augment along a type-3-path P once the
edge (ti, ti+1) is saturated. Otherwise the ti-ti+1-sub-path of P could be replaced by the
edge (ti, ti+1) to create a cheaper path. Once the edge (ti, ti+1) has been saturated, the
SSP algorithm cannot augment along type-1-paths anymore. Therefore, the SSP algorithm
will augment along all type-1-paths it encounters before it augments along all type-3-paths
it encounters.

Since during the time the SSP algorithm augments along type-1-paths no other aug-
mentations alter the part of the residual network corresponding to Gi, the correspond-
ing sub-paths P ′ are paths in Gi that the SSP algorithm encounters when run on the
network Gi. Using the induction hypothesis, this yields that all type-1-paths the SSP
algorithm encounters have costs from the interval

[0 + 7 + 0, 1 +
(
2i+3 − 5

)
+ 1] = [7, 2i+3 − 3] ⊆ [7, 2i+4 − 5] .

Since all of these type-1-paths have less costs than the two type-2-paths, the SSP algorithm
will augment along them as long as there still exists an augmenting si-ti-sub-path P ′. Due
to the choice of capacities this is the case until both edges (si+1, si) and (ti, ti+1) are
saturated. Therefore, the SSP algorithm will not augment along any type-2-path.

When analyzing the costs of type-3-paths, we have to look at the ti-si-sub-paths. Let
` be the number of si-ti-paths the SSP algorithm encounters when run on the network Gi
and let P1, P2, . . . , P` be the corresponding paths in the same order, in which they were
encountered. Then Lemma 23 yields that for any j ∈ {1, . . . , `} after augmenting along the
paths P1, P2, . . . , Pj the cheapest ti-si-path in the residual network is

←
Pj . Property 5 yields

that it is the only cheapest path. Also the residual network we obtain, if we then augment
via

←
Pj is equal to the residual network obtained, when only augmenting along the paths

P1, P2, . . . , Pj−1. Starting with j = ` this yields that the ti-si-sub-paths corresponding to
the type-3-paths the SSP algorithm encounters are equal to

←
P`, . . . ,

←
P1. By induction the

cost of each such path Pj lies in [7, 2i+3 − 5]. This yields that every type-3-path the SSP
algorithm encounters has costs from the interval

[(2i+3 − 1)− (2i+3 − 5) + (2i+3 − 1), (2i+3 + 1)− 7 + (2i+3 + 1)]
= [2i+3 + 3, 2i+4 − 5] ⊆ [7, 2i+4 − 5] .

The previous argument also shows that the SSP algorithm encounters on Gi+1 twice
as many paths as on Gi because it encounters ` type-1-paths, no type-2-path, and ` type-
3-paths, where ` denotes the number of paths the SSP algorithm encounters on Gi.

Since the SSP algorithm augments along m paths when run on the network G1, it will
augment along 2i−1 ·m paths when run on the network Gi. Note, that at the end of the
SSP algorithm, when run on Gi for i > 1, only the 4 arcs incident to si and ti carry flow.

20

Construction of G from Gk. Let Nk = 2k−1 · m, which is the value of a maximum
sk-tk flow in Gk. We will now use Gk to define G = (V,E) as follows (see also Figure 8).

• V := Vk ∪A∪B ∪C ∪D ∪ {s, t}, with A := {a1, a2, . . . , aM}, B := {b1, b2, . . . , bM},
C := {c1, c2, . . . , cM}, and D := {d1, d2, . . . , dM}. E := Ek ∪ Ea ∪ Eb ∪ Ec ∪ Ed.

• Ea contains the edges (ai, ai−1), i ∈ {2, . . . ,M}, with cost interval [2k+5 − 1, 2k+5]
and infinite capacity, (s, ai), i ∈ {1, . . . ,M}, with cost interval [0, 1] and capacity
Nk, and (a1, sk) with cost interval [2k+4 − 1, 2k+4] and infinite capacity.

• Eb contains the edges (bi, bi−1), i ∈ {2, . . . ,M}, with cost interval [2k+5 − 1, 2k+5]
and infinite capacity, (s, bi), i ∈ {1, . . . ,M}, with cost interval [0, 1] and capacity
Nk, and (b1, tk) with cost interval [2k+5 − 1, 2k+5] and infinite capacity.

• Ec contains the edges (ci−1, ci), i ∈ {2, . . . ,M}, with cost interval [2k+5 − 1, 2k+5]
and infinite capacity, (ci, t), i ∈ {1, . . . ,M}, with cost interval [0, 1] and capacity
Nk, and (sk, c1) with cost interval [2k+5 − 1, 2k+5] and infinite capacity.

• Ed contains the edges (di−1, di), i ∈ {2, . . . ,M}, with cost interval [2k+5 − 1, 2k+5]
and infinite capacity, (di, t), i ∈ {1, . . . ,m}, with cost interval [0, 1] and capacity Nk,
and (tk, d1) with cost interval [2k+4 − 1, 2k+4] and infinite capacity.

tk

sk

s t

a1a2a3a4a5 c1 c2 c3 c4 c5

b1b2b3b4b5 d1 d2 d3 d4 d5 capacity ∞

capacity ∞

capacity F

capacity F

Gk

2k+5 2k+5 2k+5 2k+5 2k+4

2k+5 2k+5 2k+5 2k+5 2k+5

2k+5 2k+5 2k+5 2k+5 2k+5

2k+4 2k+5 2k+5 2k+5 2k+5

00000

00000

0 0 0 0 0

0 0 0 0 0

Figure 8: G with Gk as sub-graph with approximate edge costs on the edges. A value c
below an edge e means the the cost of e is drawn uniformly at random from the interval
[c− 1, c].

Theorem 26. The SSP algorithm encounters m · 2k−1 · 2M paths on the network G.

Proof. We categorize the different s-t-paths the SSP algorithm encounters on G by the
node after s and the node before t. Each such s-t-path can be described as an {ai, cj}-,
{ai, dj}-, {bi, cj}-, or {bi, dj}-path for some i, j ∈ {1, . . . ,M}.

21

All sk-tk-paths encountered by the SSP algorithm, when run on Gk, have costs from
the interval [7, 2k+3 − 5] in accordance with Lemma 24. For any i ∈ {1, . . . ,m}, the costs
of the s-ai-sk-path and the tk-di-t-path lie in [αi, αi+(i+1)] with αi = 2k+5i−2k+4−i and
the costs of the s-bi-tk-path and the sk-ci-t-path lie in [βi, βi + (i+ 1)] with βi = 2k+5i− i.
Furthermore i < M + 1 < 2k+3.

Therefore, the SSP algorithm will only augment along {ai, cj}-paths if no {ai, dj}-paths
are available. Also, any {ai, di}-path is shorter than any {bi, ci}-path and any {bi, ci}-
path is shorter than any {ai+1, di+1}-path. Finally, any {bi, cj}-path is shorter than any
{ai+1, cj}-path or {bi, dj+1}-path. Therefore, the SSP algorithm will start with augment-
ing along {a1, d1}-paths. After augmenting along {ai, di}-paths it will augment along
{bi, ci}-paths and after augmenting along {bi, ci}-paths it will augment along {ai+1, di+1}-
paths. Due to the choice of the capacities we can see that once the SSP algorithm starts
augmenting along an {ai, di}-path it keeps augmenting along {ai, di}-paths until there is
no sk-tk-path in the residual network that lies completely in the sub-network correspond-
ing to Gk. Also, once the SSP algorithm starts augmenting along an {bi, ci}-path it keeps
augmenting along {bi, ci}-paths until there is no tk-sk-path in the residual network that lies
completely in the sub-network corresponding to Gk. After the SSP algorithm augmented
along the last {ai, di}-path the residual network in the sub-network corresponding to Gk
is equal to the residual network of a maximum flow in Gk. After the SSP algorithm aug-
mented along the last {bi, ci}-path the residual network in the sub-network corresponding
to Gk is equal to Gk. We can see that the SSP algorithm augments along an {ai, di}-path
for every path P it encounters on Gk and along an {bi, ci}-path for the backwards path
←
P of every path P it encounters on Gk. Therefore, the SSP-algorithm will augment M
times along paths corresponding to the paths it encounters on Gk and M times along
paths corresponding to the backward paths of these paths and therefore augment along
2M times as many paths in G as in Gk.

To show that G contains 2n+ 2k+ 2 + 4M nodes and m+ 2n+ 4k− 4 + 8M edges, we
observe that G1 has 2n+ 2 nodes and m+ 2n edges, the k− 1 iterations to create Gk add
a total of 2k − 2 nodes and 4k − 4 edges and the construction of G from Gk adds 4M + 2
nodes and 8M edges. This gives a total of 2n+ 2 + 2k− 2 + 4M + 2 = 2n+ 2k + 2 + 4M
nodes and m+ 2n+ 4k−4 + 8M edges. Since k,M = O(n) and m ≥ n, G has O(n) nodes
and O(m) edges and forces the SSP algorithm to encounter m · 2k−1 · 2M = Ω(mφM) =
Ω(φ · m · min(φ, n)) paths on G. For φ = Ω(n) this lower bound shows that the upper
bound of O(mnφ) augmentation steps in Theorem 1 is tight.

6 Smoothed Analysis of the Simplex Algorithm
In this section we describe a surprising connection between our result about the SSP
algorithm and the smoothed analysis of the simplex algorithm. Spielman and Teng’s
original smoothed analysis [23] as well as Vershynin’s [26] improved analysis are based on
the shadow vertex method. To describe this pivot rule, let us consider a linear program
with an objective function zTx and a set of constraints Ax ≤ b. Let us assume that a non-
optimal initial vertex x0 of the polytope P of feasible solutions is given. The shadow vertex
method computes an objective function uTx that is optimized by x0. Then it projects the

22

polytope P onto the 2-dimensional plane that is spanned by the vectors z and u. If we
assume for the sake of simplicity that P is bounded, then the resulting projection is a
polygon Q.

The crucial properties of the polygonQ are as follows: both the projection of x0 and the
projection of the optimal solution x∗ are vertices of Q, and every edge of Q corresponds to
an edge of P . The shadow vertex method follows the edges of Q from the projection of x0
to the projection of x∗. The aforementioned properties guarantee that this corresponds to
a feasible walk on the polytope P .

To relate the shadow vertex method and the SSP algorithm, we consider the canonical
linear program for the maximum-flow problem with one source and one sink. In this linear
program, there is a variable for each edge corresponding to the flow on that edge. The
objective function, which is to be maximized, adds the flow on all outgoing edges of the
source and subtracts the flow on all incoming edges of the source. There are constraints
for each edge ensuring that the flow is non-negative and not larger than the capacity, and
there is a constraint for each node except the source and the sink ensuring Kirchhoff’s law.

The empty flow x0 is a vertex of the polytope of feasible solutions. In particular, it is
a feasible solution with minimum costs. Hence, letting u be the vector of edge costs is a
valid choice in the shadow vertex method. For this choice every feasible flow f is projected
to the pair (|f |, c(f)). Theorem 3 guarantees that the cost function depicted in Figure 2
forms the lower envelope of the polygon that results from projecting the set of feasible
flows. There are two possibilities for the shadow vertex method for the first step: it can
choose to follow either the upper or the lower envelope of this polygon. If it decides for
the lower envelope, then it will encounter exactly the same sequence of flows as the SSP
algorithm.

This means that Theorem 1 can also be interpreted as a statement about the shadow
vertex method applied to the maximum-flow linear program. It says that for this particular
class of linear programs, the shadow vertex method has expected polynomial running time
even if the linear program is chosen by an adversary. It suffices to perturb the costs, which
determine the projection used in the shadow vertex method. Hence, if the projection is
chosen at random, the shadow vertex method is a randomized simplex algorithm with
polynomial expected running time for any flow linear program.

In general, we believe that it is an interesting question to study whether the strong
assumption in Spielman and Teng’s [23] and Vershynin’s [26] smoothed analysis that all
coefficients in the constraints are perturbed is necessary. In particular, we find it an
interesting open question to characterize for which class of linear programs it suffices to
perturb only the coefficients in the objective function or just the projection in the shadow
vertex method to obtain polynomial smoothed running time.

Two of us have studied a related question [4]. We have proved that the shadow vertex
method can be used to find short paths between given vertices of a polyhedron. Here,
short means that the path length is O(mn2

δ2), where n denotes the number of variables, m
denotes the number of constraints, and δ is a parameter that measures the flatness of the
vertices of the polyhedron. This result is proven by a significant extension of the analysis
presented in this article.

23

References
[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network flows –

theory, algorithms and applications. Prentice Hall, 1993.

[2] René Beier and Berthold Vöcking. Random knapsack in expected polynomial time.
Journal of Computer and System Sciences, 69(3):306–329, 2004.

[3] René Beier and Berthold Vöcking. Typical properties of winners and losers in discrete
optimization. SIAM Journal on Computing, 35(4):855–881, 2006.

[4] Tobias Brunsch and Heiko Röglin. Finding Short Paths on Polytopes by the Shadow
Vertex Algorithm. In Proceedings of the 40th International Colloquium on Automata,
Languages and Programming (ICALP), pages 279–290, 2013.

[5] Robert G. Busacker and Paul J. Gowen. A procedure for determining a family of
minimum-cost network flow patterns. Technical Paper 15, Operations Research Office,
Johns Hopkins University, 1960.

[6] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. In-
troduction to Algorithms. MIT Press, 2009.

[7] Ali Dasdan and Rajesh K. Gupta. Faster maximum and minimum mean cycle al-
gorithms for system-performance analysis. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 17:889–899, 1997.

[8] Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic effi-
ciency for network flow problems. Journal of the ACM, 19(2):248–264, 1972.

[9] Lester R. Ford, Jr. and Delbert R. Fulkerson. Flows in Networks. Princeton University
Press, 1962.

[10] Delbert R. Fulkerson. An out-of-kilter algorithm for minimal cost flow problems.
Journal of the SIAM, 9(1):18–27, 1961.

[11] Andrew V. Goldberg and Robert E. Tarjan. Finding minimum-cost circulations by
canceling negative cycles. Journal of the ACM, 36(4):873–886, 1989.

[12] Andrew V. Goldberg and Robert E. Tarjan. Finding minimum-cost circulations by
successive approximation. Mathematics of Operations Research, 15(3):430–466, 1990.

[13] Masao Iri. A new method for solving transportation-network problems. Journal of
the Operations Research Society of Japan, 3(1,2):27–87, 1960.

[14] William S. Jewell. Optimal flow through networks. Operations Research, 10(4):476–
499, 1962.

[15] Péter Kovács. Minimum-cost flow algorithms: an experimental evaluation. Optimiza-
tion Methods and Software, DOI: 10.1080/10556788.2014.895828, 2014.

24

[16] Morton Klein. A primal method for minimal cost flows with applications to the
assignment and transportation problems. Management Science, 14(3):205–220, 1967.

[17] Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and Algo-
rithms. Springer, 4th edition, 2007.

[18] Bodo Manthey and Heiko Röglin. Smoothed analysis: analysis of algorithms beyond
worst case. it – Information Technology, 53(6):280-286, 2011.

[19] George J. Minty. Monotone networks. In Proceedings of the Royal Society of London
A, pages 194–212, 1960.

[20] James B. Orlin. Genuinely polynomial simplex and non-simplex algorithms for the
minimum cost flow problem. Technical report, Sloan School of Management, MIT,
Cambridge, MA, 1984. Technical Report No. 1615-84.

[21] James B. Orlin. A faster strongly polynomial minimum cost flow algorithm. Opera-
tions Research, 41(2):338–350, 1993.

[22] Tomasz Radzik and Andrew V. Goldberg. Tight bounds on the number of minimum-
mean cycle cancellations and related results. Algorithmica, 11(3):226–242, 1994.

[23] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the
simplex algorithm usually takes polynomial time. Journal of the ACM, 51(3):385–463,
2004.

[24] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis: an attempt to explain
the behavior of algorithms in practice. Communications of the ACM, 52(10):76–84,
2009.

[25] Éva Tardos. A strongly polynomial minimum cost circulation algorithm. Combina-
torica, 5(3):247–256, 1985.

[26] Roman Vershynin. Beyond Hirsch conjecture: Walks on random polytopes and
smoothed complexity of the simplex method. SIAM Journal on Computing,
39(2):646–678, 2009.

[27] Jens Vygen. On dual minimum cost flow algorithms. Mathematical Methods of Op-
erations Research, 56(1):101–126, 2002.

[28] Norman Zadeh. A bad network problem for the simplex method and other minimum
cost flow algorithms. Mathematical Programming, 5(1):255–266, 1973.

25

	1 Introduction
	1.1 The Minimum-Cost Flow Problem
	1.2 The SSP Algorithm
	1.3 A Connection to the Integer Worst-case Bound

	2 Terminology and Notation
	3 Outline of Our Approach
	4 Proof of the Upper Bound
	5 Proof of the Lower Bound
	6 Smoothed Analysis of the Simplex Algorithm

