
ar
X

iv
:1

50
2.

03
48

2v
2

 [
cs

.C
C

]
 6

 O
ct

 2
01

5

Necessary Conditions for Tractability of Valued CSPs∗

Johan Thapper

Université Paris-Est, Marne-la-Vallée, France

thapper@u-pem.fr

Stanislav Živný

University of Oxford, UK

standa.zivny@cs.ox.ac.uk

Abstract

The connection between constraint languages and clone theory has been a fruitful line of
research on the complexity of constraint satisfaction problems. In a recent result, Cohen et
al. [SICOMP’13] have characterised a Galois connection between valued constraint languages
and so-called weighted clones. In this paper, we study the structure of weighted clones. We
extend the results of Creed and Živný from [CP’11/SICOMP’13] on types of weightings neces-
sarily contained in every nontrivial weighted clone. This result has immediate computational
complexity consequences as it provides necessary conditions for tractability of weighted clones
and thus valued constraint languages. We demonstrate that some of the necessary conditions
are also sufficient for tractability, while others are provably not.

1 Introduction

The constraint satisfaction problem (CSP) is a general framework capturing decision problems
arising in many contexts of computer science [1, 16, 21]. The CSP is NP-hard in general but
there has been much success in finding tractable fragments of the CSP by restricting the types
of relation allowed in the constraints. A set of allowed relations has been called a constraint lan-
guage [18, 25]. For some constraint languages the associated constraint satisfaction problems with
constraints chosen from that language are solvable in polynomial-time, whilst for other constraint
languages this class of problems is NP-hard [18, 26]; these are referred to as tractable languages
and NP-hard languages, respectively. Dichotomy theorems, which classify each possible constraint
language as either tractable or NP-hard, have been established for constraint languages over two-
element domains [40], three-element domains [6], for conservative (containing all unary relations)
constraint languages [8], for maximal constraint languages [5, 9], for graphs (corresponding to lan-
guages containing a single binary symmetric relation) [20], and for digraphs without sources and
sinks (corresponding to languages containing a single binary relations without sources and sinks) [3].
The most successful approach to classifying the complexity of constraint languages has been the
algebraic approach [2, 7, 26].

The valued constraint satisfaction problem (VCSP) is a generalisation of the CSP that captures
not only decision problems but also optimisation problems [12,24,50]. A VCSP instance associates
with each constraint a weighted relation, which is a Q-valued function, where Q = Q ∪ {∞} is the
set of extended rational numbers, and the goal is to minimise the sum of the weighted relations
associated with all constraints. Tractable fragments of the VCSP have been identified by restricting
the types of allowed weighted relations that can be used to define the valued constraints. A set of
allowed weighted relations has been called a valued constraint language [12]. Classifying the com-
plexity of all valued constraint languages is a challenging task as it includes as a special case the

∗Stanislav Živný was supported by a Royal Society University Research Fellowship.

1

http://arxiv.org/abs/1502.03482v2

classification of {0,∞}-valued languages (i.e., constraint languages), which would answer the con-
jecture of Feder and Vardi [18], which asserts that every constraint language is either tractable or
NP-hard, and its algebraic refinement, which specifies the precise boundary between tractable and
NP-hard languages [7]. However, several nontrivial results are known. Dichotomy theorems, which
classify each possible valued constraint language as either tractable or NP-hard, have been estab-
lished for valued constraint languages over two-element domains [12], for conservative (containing
all {0, 1}-valued unary cost functions) valued constraint languages [34], and for minimum-solution
languages (containing relations and a single unary injective weighted relation) [47]. Furthermore,
it has been shown that a dichotomy for constraint languages implies a dichotomy for valued con-
straint languages [32]. Moreover, the power of the basic linear programming relaxation [31,33,45]
and the power of the Sherali-Adams relaxations [47] for valued constraint languages have been
characterised.

Cohen et al. have recently introduced an algebraic theory of weighted clones [10] for classifying
the computational complexity of valued constraint languages. This theory establishes a one-to-one
correspondence between valued constraint languages closed under expressibility (which does not
change the complexity of the associated class of optimisation problems), called weighted relational
clones, and weighted clones [10]. This is an extension of (part of) the algebraic approach to
CSPs which relies on a one-to-one correspondence between constraint languages closed under pp-
definability (which does not change the complexity of the associated class of decision problems),
called relational clones, and clones [7], thus making it possible to use deep results from universal
algebra.

Creed and Živný initiated the study of weighted clones and have used the theory of weighted
clones to determine certain necessary conditions on nontrivial weighted clones and thus on tractable
valued constraint languages [13], see also [10]. In particular, [13] simplifies the NP-hardness part
of the complexity classification of Boolean valued constraint languages from [12].

Contributions We continue the study of weighted clones started in [10, 13]. After introducing
valued constraint satisfaction problems and all necessary tools in Section 2, we study, in Section 3,
structural properties of nontrivial weighted clones. Our main result on weighted clones, Theorem 5,
is an extension of a result from [10] that provides a more fine-grained characterisation of what
conditions on weighted clones are necessary for tractability. Moreover, we demonstrate that some
of the necessary conditions are also sufficient for tractability, while others are provably not. Overall,
we give a structural result that shows what types of weightings are guaranteed to exist in nontrivial
weighted clones. As a direct consequence, we narrow down the possible structure of tractable
weighted clones. A proof of our main result is presented in Section 4 and is based on an application
of Gordan’s theorem, which is a variant of LP duality. The introduced technique is novel and might
prove useful in future work on weighted clones. Finally, we relate our results to maximal tractable
valued constraint languages, or equivalently, to minimal tractable weighted clones.

Related work Given the generality of the VCSP, there have been results on the complexity of
special types of VCSPs. Finite-valued CSPs are VCSPs in which all weighted relations are Q-valued.
In other words, finite-valued CSPs are purely optimisation problems and thus do not include as
a special case (decision) CSPs. The authors have recently classified all finite-valued constraint
languages on arbitrary finite domains [46]. Minimum Solution (Min-Sol) problems are Valued
CSPs with one unary injective Q-valued weighted relation and {0,∞}-valued weighted relations.
Min-Sols generalise Min-Ones [14] and bounded integer linear programs. Min-Sols have been only
very recently classified [47] with respect to computational complexity, thus improving on previous

2

partial classifications [27–30, 48]. Minimum Cost Homomorphism (Min-Cost-Hom) problems are
Valued CSPs in which all but unary weighted relations are {0,∞}-valued. Thus the optimisation
part of the problem is only given by a sum of unary terms. This may seem very restrictive but it
is known [11,39] that any VCSP is equivalent to a VCSP where only the (not necessarily injective)
unary constraints involve optimisation. Min-Cost-Hom problems with all unary cost functions
have been classified in [43]. Also, Min-Cost-Hom problems with all unary {0,∞}-valued cost
functions [44,48] and on three-element domains [49] have been classified.

2 Preliminaries

2.1 Valued CSPs

Throughout the paper, let D be a fixed finite set of size at least two.

Definition 1. An m-ary relation over D is any mapping φ : Dm → {c,∞} for some c ∈ Q. We

denote by R
(m)
D the set of all m-ary relations and let RD =

⋃
m≥1 R

(m)
D .

An m-ary relation over D is commonly defined as a subset of Dm. Note that Definition 1 is
equivalent to the standard definition as any subset of Dm can be associated with the set {x ∈
Dm | φ(x) <∞}. Consequently, we shall use both definitions interchangeably.

Given an m-tuple x ∈ Dm, we denote its ith entry by x[i] for 1 ≤ i ≤ m.
Let Q = Q ∪ {∞} denote the set of rational numbers with (positive) infinity.

Definition 2. An m-ary weighted relation1 over D is any mapping φ : Dm → Q. We denote by

Φ
(m)
D the set of all m-ary weighted relations and let ΦD =

⋃
m≥1 Φ

(m)
D .

From Definition 2 we have that relations are a special type of weighted relations. If needed we
call a weighted relation unweighted to emphasise the fact that φ is a relation.

Example 1. An important example of a (weighted) relation is the binary equality φ= on D:
φ=(x, y) = 0 if x = y and φ=(x, y) =∞ if x 6= y.

For any m-ary weighted relation φ ∈ Φ
(m)
D , we denote by Feas(φ) = {x ∈ Dm|φ(x) <∞} ∈ R

(m)
D

the underlying feasibility relation.
A weighted relation φ : Dm → Q is called finite-valued if Feas(φ) = Dm.

Definition 3. Let V = {x1, . . . , xn} be a set of variables. A valued constraint over V is an

expression of the form φ(x) where φ ∈ Φ
(m)
D and x ∈ V m. The number m is called the arity of the

constraint, the weighted relation φ is called the constraint weighted relation, and the tuple x the
scope of the constraint.

We call D the domain, the elements of D labels (for variables), and say that the weighted
relation in ΦD take values.

Definition 4. An instance of the valued constraint satisfaction problem (VCSP) is specified by
a finite set V = {x1, . . . , xn} of variables, a finite set D of labels, and an objective function I
expressed as follows:

I(x1, . . . , xn) =

q∑

i=1

φi(xi) , (1)

1In some paper weighted relations are called cost functions.

3

where each φi(xi), 1 ≤ i ≤ q, is a valued constraint over V . Each constraint can appear multiple
times in I.

The goal is to find an assignment (or a labelling) of labels to the variables that minimises I.

CSPs are a special case of VCSPs with (unweighted) relations with the goal to determine the
existence of a feasible solution.

Example 2. The Max-Cut problem for a graph is to find a cut with the largest possible size. This
problem is NP-hard [19] and equivalent to the Min-UnCut problem with respect to exact solvability.
For a graph (V,E) with V = {x1, . . . , xn}, this problem can be expressed as the VCSP instance
I(x1, . . . , xn) =

∑
(i,j)∈E φxor(xi, xj) over the Boolean domain D = {0, 1}, where φxor : {0, 1}2 → Q

is defined by φxor(x, y) = 1 if x = y and φxor(x, y) = 0 if x 6= y.

Definition 5. Any set Γ ⊆ ΦD is called a valued constraint language2 over D, or simply a
language. We will denote by VCSP(Γ) the class of all VCSP instances in which the constraint
weighted relations are all contained in Γ.

Definition 6. A valued constraint language Γ is called tractable if VCSP(Γ′) can be solved (to
optimality) in polynomial time for every finite subset Γ′ ⊆ Γ, and Γ is called intractable if VCSP(Γ′)
is NP-hard for some finite Γ′ ⊆ Γ.

A valued constraint language is called finite-valued if every weighted relation φ from the language
is finite-valued. Example 2 shows that the finite-valued constraint language {φxor} is intractable.

We denote by Feas(Γ) = {Feas(φ)|φ ∈ Γ} the set of underlying relations of all weighted relations
from Γ.

2.2 Weighted relational clones

Definition 7. We say that an m-ary weighted relation φ is expressible over a valued constraint lan-
guage Γ if there exists a VCSP instance I ∈ VCSP(Γ) with variables V = {x1, . . . , xn, y1, . . . , ym},
such that

φ(y1, . . . , ym) = min
x1∈D,...,xn∈D

I(x1, . . . , xn, y1, . . . , ym) . (2)

A valued constraint language Γ is closed under expressibility if every weighted relation φ ex-
pressible over Γ belongs to Γ.

Definition 8. A valued constraint language Γ ⊆ ΦD is called a weighted relational clone if it
contains the binary equality relation φ= on D and is closed under expressibility, scaling by non-
negative rational constants (where we define 0 · ∞ =∞), and addition of rational constants.

For any Γ, we define wRelClone(Γ) to be the smallest weighted relational clone containing Γ.

Note that for any weighted relational clone Γ if φ ∈ Γ then Feas(φ) ∈ Γ as Feas(φ) = 0φ.

Definition 9. A relational clone is a weighted relational clone containing only (unweighted) rela-
tions.3 For a set of relations Γ, we denote by RelClone(Γ) the smallest relational clone containing
Γ.

It has been shown that Γ is tractable if and only if wRelClone(Γ) is tractable [10]. Conse-
quently, when trying to identify tractable valued constraint languages, it is sufficient to consider
only weighted relational clones.

2A valued constraint language Γ is sometimes called general-valued to emphasise the fact that weighted relations
from Γ are not necessarily finite-valued.

3Equivalently, a set of relations containing the binary equality relation and closed under conjunction and existential
quantification.

4

2.3 Weighted clones

Any mapping f : Dk → D is called a k-ary operation. We will apply a k-ary operation f to k
m-tuples x1, . . . ,xk ∈ Dm coordinatewise, that is,

f(x1, . . . ,xk) = (f(x1[1], . . . ,xk[1]), . . . , f(x1[m], . . . ,xk[m])) . (3)

Definition 10. Let φ be an m-ary weighted relation on D and let f be a k-ary operation on D.
Then f is a polymorphism of φ if, for any x1,x2, . . . ,xk ∈ Dm with xi ∈ Feas(φ) for all 1 ≤ i ≤ k,
we have that f(x1,x2, . . . ,xk) ∈ Feas(φ).

For any valued constraint language Γ over a set D, we denote by Pol(Γ) the set of all operations
on D which are polymorphisms of all φ ∈ Γ. We write Pol(φ) for Pol({φ}).

A k-ary projection is an operation of the form e
(k)
i (x1, . . . , xk) = xi for some 1 ≤ i ≤ k.

Projections are (trivial) polymorphisms of all valued constraint languages.

Definition 11. The superposition of a k-ary operation f : Dk → D with k ℓ-ary operations
gi : Dℓ → D for 1 ≤ i ≤ k is the ℓ-ary function f [g1, . . . , gk] : Dℓ → D defined by

f [g1, . . . , gk](x1, . . . , xℓ) = f(g1(x1, . . . , xℓ), . . . , gk(x1, . . . , xℓ)) . (4)

Definition 12. A clone of operations, C, is a set of operations on D that contains all projections
and is closed under superposition. The k-ary operations in a clone C will be denoted by C(k).

Example 3. For any D, let JD be the set of all projections on D and OD be the set of all operations
on D. By Definition 12, both JD and OD are clones.

It is well known that Pol(Γ) is a clone for all valued constraint languages Γ [17].

Definition 13. A k-ary weighting of a clone C is a function ω : C(k) → Q such that ω(f) < 0
only if f is a projection and ∑

f∈C(k)

ω(f) = 0 . (5)

We define supp(ω) = {f ∈ C(k) | ω(f) > 0}.

Definition 14. For any clone C, any k-ary weighting ω of C, and any g1, . . . , gk ∈ C(ℓ), the
superposition of ω and g1, . . . , gk, is the function ω[g1, . . . , gk] : C(ℓ) → Q defined by

ω[g1, . . . , gk](f ′) =
∑

{f∈C(k) | f [g1,...,gk]=f ′}

ω(f) . (6)

If ω satisfies (5) then so does ω[g1, . . . , gk]. If the result of a superposition is a valid weighting (that
is, negative weights are only assigned to projections) then that superposition will be called a proper
superposition.

We remark that the superposition (of an operation with other operations) is also known as
composition. On the other hand, the superposition of a k-ary weighting ω with k ℓ-ary operations
g1, . . . , gk can be seen as multiplying ω, seen as a (row) vector, by a matrix with rows indexed by
k-ary operations and columns indexed by ℓ-ary operations; given a row operation f and a column
operation f ′ the corresponding entry in the matrix is 1 if f [g1, . . . , gk] = f ′ and 0 otherwise. The
result of this matrix multiplication is a vector of weights assigned to ℓ-ary operations.

5

Definition 15. A weighted clone, W , is a non-empty set of weightings of some fixed clone C, called
the support clone of W , which is closed under nonnegative scaling, addition of weightings of equal
arity, and proper superposition with operations from C. We define supp(W) =

⋃
ω∈W supp(ω).

Example 4. Let C be a clone. We give examples of two weighted clones with support clone C.

1. W0
C is the zero-valued weighted clone, that is, the weighted clone containing, for each arity

k, a weighting ωk ∈W0
C with ωk(f) = 0 for all f ∈ C(k).

2. WC is the weighted clone containing all possible weightings of C.

By Definition 4, weighted clones are closed under nonnegative scaling. Consequently, by scaling
by zero, any weighted clone W with support clone C contains W0

C , which is the inclusion-wise
smallest weighted clone with support clone C. On the other hand, WC is the inclusion-wise largest
weighted clone with support clone C.

Example 5. It is easy to show that supp(W) ∪ JD is a clone for any weighted clone W defined on
D [10], see also [35,47].

We now establish a correspondence between weightings and weighted relations, which will allow
us to link weighted clones and weighted relational clones.

Definition 16. Let φ be an m-ary weighted relation on D and let ω be a k-ary weighting of a
clone C of operations on D. We call ω a weighted polymorphism of φ if C ⊆ Pol(φ) and for any
x1,x2, . . . ,xk ∈ Dm with xi ∈ Feas(φ) for all 1 ≤ i ≤ k, we have

∑

f∈C(k)

ω(f)φ(f(x1,x2, . . . ,xk)) ≤ 0 . (7)

If ω is a weighted polymorphism of φ we say that φ is improved by ω.

Example 6. Consider the class of submodular functions [37]. These are precisely the functions φ
defined on D = {0, 1} satisfying φ(min(x1,x2)) + φ(max(x1,x2)) − φ(x1)− φ(x2) ≤ 0, where min
and max are the two binary operations that return the smaller and larger of its two arguments
respectively with respect to the usual order 0 < 1. In other words, the set of submodular functions
is the set of weighted relations with a binary weighted polymorphism ωsub defined by: ωsub(f) = −1

if f ∈ {e
(2)
1 , e

(2)
2 }, ωsub(f) = +1 if f ∈ {min,max}, and ωsub(f) = 0 otherwise.

Definition 17. For any Γ ⊆ ΦD, we define wPol(Γ) to be the set of all weightings of Pol(Γ) which
are weighted polymorphisms of all weighted relations φ ∈ Γ. We write wPol(φ) for wPol({φ}).

Definition 18. We define WD to be the union of the sets WC over all clones C on D.

Any W ⊆WD may contain weightings of different clones over D. We can then extend each of
these weightings with zeros, as necessary, so that they are weightings of the same clone C, where
C is the smallest clone containing all the clones associated with weightings in W .

Definition 19. We define wClone(W) to be the smallest weighted clone containing this set of
extended weightings obtained from W .

For any W ⊆ WD, we denote by Imp(W) the set of all weighted relations in ΦD which are
improved by all weightings ω ∈W .

6

Input Mj S1 S2 S3 P1 P2 P3 Mn

(x,x,y) x x x y x y y y
(x,y,x) x x y x y x y y
(y,x,x) x y x x y y x y

Table 1: Sharp ternary operations

Example 7. Every weighting in W0
JD

is a weighted polymorphism of any possible weighted relation.

Hence Imp(W0
JD

) = ΦD.
The weighted relations that are improved by all weightings are precisely those which take at

most one value. Hence Imp(WJD
) = RD.

Definition 20. A weighted clone W is called tractable if Imp(W) is tractable, and intractable if
Imp(W) is intractable.

The main result in [10] establishes a 1-to-1 correspondence between weighted relational clones
and weighted clones.

Theorem 1 ([10]).

1. For any finite D and any finite Γ ⊆ ΦD, Imp(wPol(Γ)) = wRelClone(Γ).

2. For any finite D and any finite W ⊆WD, wPol(Imp(W)) = wClone(W).

Thus, when trying to identify tractable valued constraint languages, it is sufficient to consider
only languages of the form Imp(W) for some weighted clone W .

Definition 21. A weighting is called positive if it assigns positive weight to at least one operation
that is not a projection.

Positive weightings are necessary for tractability: any tractable weighted clone W contains
a positive weighting [10, Corollary 7.4]. Consequently, throughout this paper we will be only
concerned with weighted clones that contain a positive weighting.

2.4 Properties of operations

We finish this section with a discussion of certain types of operations. For any k ≥ 2, a k-ary
operation f is called sharp if f is not a projection, but the operation obtained by equating any two
inputs in f is a projection [15]. All sharp operations must satisfy the identity f(x, x, . . . , x) = x;
such operations are called idempotent. Ternary sharp operations may be classified according to
their labels on tuples of the form (x, x, y), (x, y, x) and (y, x, x), which must be equal to either x or
y. There are precisely 8 possibilities, as listed in Table 1.

The first column in Table 1 corresponds to operations that satisfy the identities f(x, x, y) =
f(x, y, x) = f(y, x, x) = x for all x, y ∈ D; such operations are called majority operations. The last
column in the table corresponds to operations that satisfy the identities f(x, x, y) = f(x, y, x) =
f(y, x, x) = y for all x, y ∈ D; such operations are called minority operations. Columns 5, 6, and 7
in Table 1 correspond to operations that satisfy the identities f(y, y, x) = f(x, y, x) = f(y, x, x) = y
for all x, y ∈ D (up to permutations of inputs); such operations are called Pixley operations [15].
For any k ≥ 3, a k-ary operation f is called a semiprojection if it is not a projection, but there is

an index 1 ≤ i ≤ k such that f(x1, . . . , xk) = e
(k)
i for all x1, . . . , xk ∈ D such that x1, . . . , xk are not

7

pairwise distinct. In other words, a semiprojection is a particular form of sharp operation where
the operation obtained by equating any two inputs is always the same projection. Columns 2, 3,
and 4 in Table 1 correspond to semiprojections.

It turns out that the only sharp operations of arity k ≥ 4 are semiprojections. In other words,
given an operation of arity ≥ 4, if every operation arising from the identification of two variables
is a projection, then these projections coincide.

Lemma 1 (Świerczkowski’s Lemma [41]). The only sharp operations of arity k ≥ 4 are semipro-
jections.

We will need a technical lemma. But first we will introduce some notation. We denote by Cyclk
the set of k cyclic permutations on {1, . . . , k}. We denote by ◦ the composition of two permutations,
that is, for any σ, π ∈ Cyclk we have σ ◦ π ∈ Cyclk is defined by σ ◦ π(x) = σ(π(x)). For a k-ary

operation f and a permutation π ∈ Cyclk we will denote by fπ the operation fπ = f [e
(k)
π(1), . . . , e

(k)
π(k)],

that is, fπ(x1, . . . , xk) = f(xπ(1), . . . , xπ(k)).

Lemma 2. Let W be a weighted clone and ω ∈ W a positive k-ary weighting. Then there is a
positive k-ary weighting µ ∈W with the following properties:

1. supp(µ) =
⋃

f∈supp(ω)

⋃

π∈Cycl
k

fπ;

2. µ(e
(k)
i) = −1 for every 1 ≤ i ≤ k;

3. µ(f) = µ(fπ) for every f ∈ supp(µ) and π ∈ Cyclk.

Proof. Let

ω′ =
∑

π∈Cyclk

ω[e
(k)
π(1)

, . . . , e
(k)
π(k)

] . (8)

Let f ∈ supp(ω) and π ∈ Cyclk. We have

ω′(f) =
∑

g∈supp(ω)

∑

σ ∈ Cyclk
gσ = f

ω(g) =
∑

g∈supp(ω)

∑

σ ◦ π ∈ Cyclk
gσ◦π = fπ

ω(g) =

=
∑

g∈supp(ω)

∑

σ′ ∈ Cycl
k

gσ
′

= fπ

ω(g) = ω′(fπ) . (9)

Thus ω′ satisfies the first and the third property of the lemma.

Since ω is positive we have that
∑k

i=1 ω(e
(k)
i) < 0 and thus, by (9), we have ω′(e

(k)
i) < 0 for

every 1 ≤ i ≤ k. Let ω′(e
(k)
1) = w. By (9) again, ω′(e

(k)
i) = w for every 1 ≤ i ≤ k. Thus µ = 1

w
ω′

satisfies all three properties of the lemma.

2.5 Cores

We show that with respect to tractability, the only interesting weighted clones (and thus weighted
relational clones) are those whose unary weightings can assign positive weight only to very special
operations.

The idea of cores and rigid cores originated in the algebraic approach to CSPs [7, 25] and has
also proved useful in the complexity classification of finite-valued CSPs [23,46].

8

Definition 22. A weighted clone W is a core if for every unary weighting ω ∈W every operation
f ∈ supp(ω) is bijective. A valued constraint language Γ is a core if W = wPol(Γ) is a core.

Theorem 2. Let Γ be a valued constraint language on D. If Γ is not a core then there is a core
valued constraint language Γ′ on D′ ⊆ D such that Γ is tractable if and only if Γ′ is tractable and
Γ is intractable if and only if Γ′ is intractable.

Proof. Let ω ∈ wPol(Γ) be a positive unary weighting. By scaling by 1/|ω(e
(1)
1)|, we have ω(e

(1)
1) =

−1 and thus
∑

f∈supp(ω) ω(f) = 1. For any weighted relation φ ∈ Γ of arity m and any m-tuple
x ∈ Dm, we have (∗) φ(x) ≥

∑
f∈supp(ω) ω(f)φ(f(x)). Suppose that y is a minimal-cost assignment

for φ; that is, φ(y) ≤ φ(x) for all x ∈ Dm. Then for every f ∈ supp(ω), we have f(y) is also a
minimal-cost assignment. Assume for contrary that for some f ′ ∈ supp(ω), we have φ(f ′(y)) > φ(y);
write φ(f ′(y)) = φ(y) + ǫ, where ǫ > 0. Then we claim that there is an f ∈ supp(ω) such that
φ(f(y)) < φ(y), which contradicts the choice of y. To prove the claim assume that φ(f(y)) ≥ φ(y)
for every f ∈ supp(ω)\{f ′}. Hence we get

∑
f∈supp(ω) ω(f)φ(f(y)) =

∑
f∈supp(ω)\{f ′} ω(f)φ(f(y))+

ω(f ′)φ(f ′(y)) ≥ (1− ω(f ′)φ(y) + ω(f ′)(φ(y) + ǫ) = φ(y) + ω(f ′)ǫ > φ(y), which contradicts (∗).
Consequently, given an instance I ∈ VCSP(Γ) and a solution s to I, we can take any unary

weighting ω ∈ wPol(Γ) and any unary operation f ∈ supp(ω) and get another solution f(s) to I;
the solution f(s) uses only labels from f(D). Consider a unary non-bijective operation f ∈ supp(ω)
with the minimum |f(D)| over all unary weightings ω ∈ wPol(Γ). We denote by D′ = f(D) the
range of f . We denote by Γ′ language containing the restriction of every φ ∈ Γ to D′.

Given any instance I ∈ VCSP(Γ) we can create, by replacing each weighted relation φ in I by
φ′, in polynomial time an instance I ′ ∈ VCSP(Γ′) with the following properties: any solution to I ′

is also a solution to I, and for any solution s to I we have that f(s) is a solution to I ′. If Γ′ is not
a core we can repeat the same construction with Γ′.

Theorem 2 was independently obtained in [35], where it was also shown that, with respect to
tractability, it suffices to restrict to rigid cores.

Definition 23. A weighted clone W is a rigid core if the only unary operation in the support clone

of W is the unary projection e
(1)
1 . A valued constraint language Γ is a rigid core if W = wPol(Γ)

is a rigid core; that is if the only unary polymorphism of Γ is e
(1)
1 .

Theorem 3 ([35]). Let Γ be a valued constraint language on D. If Γ is not a rigid core then there
is a rigid core valued constraint language Γ′ on D′ ⊆ D such that Γ is tractable if and only if Γ′ is
tractable and Γ is intractable and only if Γ′ is intractable.

It is not hard to show that a weighted clone W (a valued constraint language Γ) is a rigid
core if and only if all operations in the support clone of W (polymorphisms of Γ, respectively) are
idempotent.

3 Conditions for Tractability

In this section we will present our main results.
Creed and Živný obtained the following result on the structure of weighted clones with a positive

weighting [13, Theorem 2]; see also [10, Corollary 7.7].

Theorem 4 ([13]). Any weighted clone W containing a positive weighting contains a weighting
whose support is either:

9

1. a set of unary operations that are not projections; or

2. a set of binary idempotent operations that are not projections; or

3. a set of ternary operations that are majority operations, minority operations, Pixley operations
or semiprojections; or

4. a set of k-ary semiprojections (for some k > 3).

Since rigid cores require all unary weightings be zero-valued, case (1) of Theorem 4 can be easily
eliminated. Moreover, using Gordan’s Theorem (a variant of Farkas’ Lemma) we will strengthen
Theorem 4 by refining the ternary case, thus obtaining the following result, which is the main result
of this paper.

Theorem 5 (Main). Any weighted clone W that is a rigid core and contains a positive weighting
also contains a weighting whose support is either:

1. a set of binary idempotent operations that are not projections; or

2. a set of ternary operations that are either:

(a) a set of majority operations; or

(b) a set of minority operations; or

(c) a set of majority operations with total weight 2 and a set of minority operations with
total weight 1; or

3. a set of k-ary semiprojections (for some k ≥ 3).

The proof of Theorem 5 can be found in Section 4.
Note that compared to Theorem 4 the inequality in case (3) of Theorem 5 is not strict as it

includes one of the ternary cases.
We remark that Theorem 5 holds for any weighted clone W with any support clone C as long

as W contains a positive weighting.
Theorem 5 tells us that (i) Pixley operations are not necessary for tractability, (ii) semipro-

jections can be separated from the other types of ternary operations, and (iii) the only possible
interplay between majority and minority operations, as described in case (2c) of Theorem 5.

We now focus on the weighted clones containing one of the weightings described in Theorem 5.

Case (1) of Theorem 5 A weighting described in Theorem 5 (1) can lead both to tractable and
intractable weighted clones, as the next two examples demonstrate, but the precise boundary of
tractability is currently unknown.

Example 8. A binary operation f : D2 → D is called conservative if f(x, y) ∈ {x, y} for all x, y ∈ D
and commutative if f(x, y) = f(y, x) for all x, y ∈ D. Moreover, f is called a tournament operation
if f is both conservative and commutative. Let W be a weighted clone such supp(W) contains a
tournament operation. Then, by a recent result of the authors [47], W is tractable.

Example 9. Let D = {0, 1, 2, 3} and let f be a binary operation defined by Table 2. Note that f is
an idempotent operation but not a projection. In fact, f is an example of a rectangular band [36],
which is an idempotent and associative binary operation f : D2 → D satisfying f(x, f(y, z)) =
f(x, z) for all x, y, z ∈ D. Let W be the weighted clone generated by the weighting ω defined by

ω(e
(2)
1) = ω(e

(2)
2) = −1 and ω(f) = +2. It is known that W is intractable [26,38].

10

f 0 1 2 3

0 0 1 0 1
1 0 1 0 1
2 2 3 2 3
3 2 3 2 3

Table 2: Definition of f from Example 9.

Case (2a) of Theorem 5 A weighting as described in Theorem 5 (2a) implies tractable weighted
clones, as we will now show.

A weighted relational clone that contains only relations (and thus is a relational clone) is called
crisp. A weighted clone W is called crisp if Imp(W) is a crisp weighted relational clone.

Proposition 6. Let W be a weighted clone with a positive ternary weighting ω ∈ W such that all
operations f ∈ supp(ω) are majority operations. Then W is crisp.

In order to prove Proposition 6, we prove a more general result. A k-ary operation f : Dk → D,
where k ≥ 3, is called a near-unanimity operation if for all x, y ∈ D,

f(y, x, x, . . . , x) = f(x, y, x, x, . . . , x) = · · · = f(x, x, . . . , x, y) = x . (10)

Note that a ternary near-unanimity operation is a majority operation.

Proposition 7. Let W be a weighted clone with a positive weighting ω ∈W such that all operations
f ∈ supp(ω) are near-unanimity operations. Then W is crisp.

Proof. Let ω be k-ary. Note that if f is a k-ary near-unanimity operation then so is g(x1, . . . , xk) =
f(xπ(1), . . . , xπ(k)) for any permutation π on {1, . . . , k}. Thus, by Lemma 2, we can assume ω
assigns weight −1 to each of the k projections (and still every f ∈ supp(ω) is a near-unanimity
operation).

Let φ ∈ Imp(W) be an m-ary weighted relation and let x,y ∈ Dm be such that x,y ∈ Feas(φ).
Since ω ∈ wPol(φ), we have, by (7) with x1 = y and xi = x for all 2 ≤ i ≤ k, and by (10),
−φ(y) − (k − 1)φ(x) + kφ(x) ≤ 0, which gives φ(x) ≤ φ(y). By swapping x and y in (7), we
get −φ(x) − (k − 1)φ(y) + kφ(y) ≤ 0, which gives φ(y) ≤ φ(x). Together, φ(x) = φ(y) for all
x,y ∈ Feas(φ).

Since crisp weighted relational clones with a near-unanimity polymorphism are tractable [26],
we get the following.

Corollary 1. A weighted clone containing a positive weighting ω with all operations in supp(ω)
being near-unanimity operations is tractable.

Case (2b) of Theorem 5 A weighting as described in Theorem 5 (2b) also implies tractable
weighted clones, as we will now show.

Proposition 8. Let W be a weighted clone with a positive ternary weighting ω ∈ W such that all
operations f ∈ supp(ω) are minority operations. Then W is crisp.

11

Proof. Note that if f is a minority operation then so is g(x1, x2, x3) = f(xπ(1), xπ(2), xπ(3)) for any
permutation π on {1, 2, 3}. Thus, by Lemma 2, we can assume ω assigns weight −1 to each of the
three projections (and still every f ∈ supp(ω) is a minority operation).

Let φ ∈ Imp(W) be an m-ary weighted relation and let x,y ∈ Dm be such that x,y ∈ Feas(φ).
Since ω ∈ wPol(φ), we have, by (7) with x1 = x and x2 = x3 = y, −φ(x) − 2φ(y) + 3φ(x) ≤ 0,
which gives φ(x) ≤ φ(y). By swapping x and y in (7), we get −φ(y) − 2φ(x) + 3φ(y) ≤ 0, which
gives φ(y) ≤ φ(x). Together, φ(x) = φ(y) for all x,y ∈ Feas(φ).

Since crisp weighted relational clones with a minority polymorphism are tractable [26], we get
the following.

Corollary 2. A weighted clone containing a positive weighting ω with all operations in supp(ω)
being minority operations is tractable.

Case (2c) of Theorem 5 In a recent paper the authors have shown [47] that any weighting
described in Theorem 5 (2c) implies tractability. This is a corollary of the following result.

Theorem 9 ([47]). Let W be a weighted clone. If there is a weighting ω ∈ W such that supp(ω)
contains a majority operation then W is tractable.

Previously, only a special type of the weightings described in Theorem 5 (2c) has been known
to imply tractability.

Example 10. A k-ary weighting ω is a multimorphism if ω(f) ∈ N for all f ∈ supp(ω) and ω(e
(k)
i) =

−1 for all 1 ≤ i ≤ k [12]. It has been shown that if a weighted clone W contains a weighting ω
described in Theorem 5 (2c) such that ω is a multimorphism then W is tractable [34].

Case (3) of Theorem 5 We show that the weightings described in Theorem 5 (3) alone are not
sufficient for tractability. As in case (1), the precise boundary of tractability is currently unknown.

Example 11. Let D be a fixed set with |D| > 2. Fix two distinct labels from D, say 0, 1 ∈ D. Let
φ be the following ternary weighted relation: φ(x, y, z) = ∞ if {x, y, z} = {0}, or {x, y, z} = {1},
or {x, y, z} 6= {0, 1}; and φ(x, y, z) = 0 otherwise. The weighted relation φ corresponds to the
Not-All-Equal Satisfiability problem [19], which is NP-hard [40]. It is easy to show that
every semiprojection on D is a polymorphism of φ. Take a k-ary semiprojection f for some k ≥ 3
and x1, . . . ,xk ∈ Feas(φ). From the definition of φ, we have xi ∈ {0, 1}

3 for every 1 ≤ i ≤ k. Since
there are at most two distinct labels in each coordinate, f(x1, . . . ,xk) reduces to a projection (from
the definition of semiprojections) and thus f is a polymorphism of φ as f(x1, . . . ,xk) = xi for some
1 ≤ i ≤ k.

Let C be the clone of operations on D generated by all semiprojections on D. Let W = WC be
the weighted clone containing all possible weightings of C. In particular, W contains all possible
weightings whose support contains only semiprojections. Since C ⊆ Pol(φ) and φ is a relation we
have that φ ∈ Imp(W). Consequently, W is intractable.

Finite-Valued Weighted Clones Recall that valued constraint languages capture both decision
and optimisation problems. Clones, which capture crisp valued constraint languages and thus purely
decision problems, have been studied extensively in universal algebra [22, 42]. We now focus on
an important special type of weighted clones that correspond to valued constraint languages that
capture purely optimisation problems. Such valued constraint languages are called finite-valued as
they only contain finite-valued weighted relations.

12

Weighted clones corresponding to finite-valued constraint languages (together with the binary
equality relation φ=) are those with support clone OD. To see this, we denote, for a clone C, by
Inv(C) the relational clone that consists of relations R with f ∈ Pol(R) for every f ∈ C. Then, it
is well known that Inv(OD) = RelClone({φ=}) and observe that Feas(Imp(W)) ⊆ Inv(OD) for any
weighted clone W with support clone OD.4

However, as we have limited our scope to rigid cores (which, by Theorem 3, does not change
tractability), we will define a weighted clone W to be finite-valued if its support clone is equal to
ID, the clone of all idempotent operations on D.

Definition 24. A weighted clone W on D is called finite-valued if the support clone of W is ID.

For any d ∈ D, the unary constant relation φd is defined by φd(x) = 0 if x = d and φd(x) =∞
otherwise. Let R = RelClone({φ=} ∪ ∪d∈D{φd}). It is known that Inv(ID) = R [7].

The weighted relational clones corresponding to finite-valued weighted clones are those that are
subsets of the weighted relational clone generated by R and finite-valued weighted relations.

We already know that weighted clones containing any of the weightings described in Theo-
rem 5 (2a-c) are tractable. In fact, in the finite-valued case, the corresponding weighted relational
clones are rather trivial as we will now show.

Let W be a finite-valued weighted clone on D. Then for any weighted relation φ ∈ Imp(W) we
have Feas(φ) ∈ R.

If W contains a weighting described in Theorem 5 (2a) then, by Proposition 6, Imp(W) is crisp
and thus every φ ∈ Imp(W) can be written as the addition of a rational constant to a weighted
relation in R. Hence Imp(W) is tractable. Similarly, if W contains a weighting described in
Theorem 5 (2b) then, by Proposition 8, Imp(W) is crisp and thus every φ ∈ Imp(W) can be written
as the addition of a rational constant to a weighted relation in R. Hence Imp(W) is tractable.

The next result shows that a weighting described in Theorem 5 (2c) also suffices for tractability
in the finite-valued case.

Proposition 10. Let W be a finite-valued weighted clone. If W contains a positive weighting
described in Theorem 5 (2c) then every weighted relation φ ∈ Imp(W) can be expressed as a sum of
unary weighted relations and the binary equality relation φ=.

Proof. By Lemma 2, we can assume the weighting assigns weight −1 to each of the three projections
and still is as described in Theorem 5 (2c).

An m-ary relation R on D is called trivial if R = Dm. First we show than any relation R ∈ R
can be expressed as a sum of unary relations, trivial relations, and φ=. The claim holds true for
the generators of R, that is, for φ= and φd for all d ∈ D. Next, if R = R1 ∧R2 and the claim holds
true for both R1 and R2 the it also holds true for R. Finally, let R = ∃xR′ and assume that R′

satisfies the claim. If x appears in some φ= in R′, say φ=(x, x′), then we can replace all occurrences
of x by x′. Otherwise, x appears only in constant and trivial relations in R′. If the conjunction of
the unary relations that x appears in is empty then the claim holds trivially. Otherwise, we can
replace x by any other variable.

Consequently, for any φ ∈ Imp(W), Feas(φ) can be written as a sum of unary relations, trivial
relations, and φ=. Observe that any φ with Feas(φ) = φ= can be written as a sum of φ= and
the unary weighted relation φ′(x) = φ(x, x). Thus, it remains to show that any φ ∈ Imp(W) with
Feas(φ) being a trivial relation can be written as a sum of unary weighted relations.

4More generally, we have Feas(Imp(W)) = Inv(C) for any nonempty weighted clone W with support clone C. On
the one hand, if φ ∈ Imp(W) then, by Definition 16, C ⊆ Pol(φ), which implies Feas(φ) ∈ Inv(Pol(φ)) ⊆ Inv(C). On
the other hand, if R ∈ Inv(C) then C ⊆ Pol(R). Since R satisfies (7) we have R ∈ Imp(W).

13

For any m-tuple x ∈ Dm, we will write x[i← d] to denote the tuple with d ∈ D substituted at
position i. In other words, x[i ← d] is the m-tuple identical to x except (possibly) at position i,
where it is equal to d.

We will use [12, Lemma 6.23] which says that a weighted relation φ : Dm → Q can be expressed
as a sum of unary weighted relations if and only if, for all x,y ∈ Dm and all 1 ≤ i ≤ m, we have

φ(x) + φ(y) = φ(x[i← y[i]]) + φ(y[i← x[i]]) . (11)

Take any x,y ∈ Dm and 1 ≤ i ≤ m. Let a = x[i] and b = y[i]. Now consider the tuples x,
x[i← b], and y[i← a]. By applying the weighting from the statement of the proposition as in (7), we
get φ(x)+φ(x[i ← b])+φ(y[i ← a]) ≥ 2φ(x)+φ(y) and thus φ(x[i← b])+φ(y[i ← a]) ≥ φ(x)+φ(y).
Now consider the tuples x, y, and y[i ← a]. By applying the weighting from the statement of the
proposition as in (7), we get φ(x) + φ(y) + φ(y[i ← a]) ≥ 2φ(y[i ← a]) + φ(x[i ← b]) and thus
φ(x) + φ(y) ≥ φ(y[i← a]) + φ(x[i← b]).

Corollary 3. A finite-valued weighted clone containing a positive weighting ω described in Theo-
rem 5 (2c) is tractable.

The only remaining finite-valued weighted clones contain a weighting that is either as described
in Theorem 5 (1) or as described in Theorem 5 (3). We have seen an example of a (tractable)
weighted clone with a weighting as described in Theorem 5 (1) in Example 8.

We now give an example of an intractable finite-valued weighted clone with a weighting as
described in Theorem 5 (1). (We note that the intractability of the weighted clone W from Exam-
ple 9, which contains a weighting as described in Theorem 5 (1), relies on the fact that W is not
finite-valued and thus is not immediately applicable here.)

Example 12. Let D = {0, 1, 2}. Recall from Example 8 that a binary operation f : D2 → D is
conservative if f(x, y) ∈ {x, y} for all x, y ∈ D. For any conservative binary operation f : D2 → D
and any 2-element subdomain {a, b} ⊆ D, the restriction f |{a,b} of f onto {a, b} behaves either as

e
(2)
1 , e

(2)
2 , min, or max, where min and max are the two operations that return the smaller (larger) of

its two arguments with respect to the usual order 0 < 1 < 2, respectively. Consider the operations
in Table 3 described by their behaviour on the various 2-element subdomains.

f {0,1} {0,2} {1,2} ω(f)

f1 e
(2)
1 e

(2)
1 e

(2)
1 -0.5

f2 e
(2)
2 e

(2)
2 e

(2)
2 -0.5

f3 e
(2)
1 min e

(2)
1 0.5

f4 e
(2)
2 min e

(2)
2 0.5

Table 3: Definition of ω

Note that f1 = e
(2)
1 and f2 = e

(2)
2 . The weighting ω is defined by the last column of Table 3.

Note that ω is not commutative. It can be checked that ω is a weighted polymorphism of the
finite-valued weighted relation φ : {0, 1, 2} → Q defined in Table 4.

Now since argminφ = {(0, 1), (1, 0)}, we have that φ satisfies the (MC) condition [46] and thus
can be used to reduce from Max-Cut [12]. Thus, W = wClone({ω}) is intractable.

Thus weightings described in Theorem 5 (1) can lead to both tractable and intractable finite-
valued weighted clones. The authors have recently shown that with respect to tractability of finite-
valued constraint languages the necessary and sufficient condition is having a binary weighting ω

14

φ 0 1 2

0 1 0 1
1 0 1 1
2 1 1 1

Table 4: Definition of φ

that assigns positive weight to idempotent commutative operations only; that is, for every f ∈
supp(ω) we have f(x, y) = f(y, x) for all x, y ∈ D [46].5 However, the precise interplay of case (1)
and case (3) of Theorem 5 is currently unknown.

Minimal Weighted Clones Any weighted relational clone Γ ⊆ ΦD with wRelClone(Γ) = ΦD

is NP-hard. A weighted relational clone on D is called maximal if it is as large as possible but
wRelClone(Γ) 6= ΦD.6

Definition 25. A weighted relational clone Γ ⊆ ΦD is called maximal if wRelClone(Γ) 6= ΦD but
for any φ 6∈ Γ we have wRelClone(Γ ∪ {φ}) = ΦD.

It follows that a valued constraint language Γ is maximal if and only if the weighted relational
clone wRelClone(Γ) is maximal.

As a special case of Definition 25, we get that a relational clone Γ is maximal if Γ 6= RD but
for any R ∈ RD we have RelClone(Γ ∪ {R}) = RD.

A weighted clone is called minimal if it is not zero-valued but the only weighted clone properly
included in it is the zero-valued weighted clone.

Definition 26. A weighted clone W with support clone C is called minimal if W 6= W0
C and every

positive weighting ω ∈W satisfies wClone(ω) = W .

Maximal weighted relational clones correspond, via the Galois correspondence given in Theo-
rem 1, to minimal weighted clones.

We will be interested in maximal tractable weighted relational clones and thus minimal tractable
weighted clones. Maximal crisp weighted relational clones have been classified with respect to
tractability in [5, 9]. We now show that that there are no tractable maximal non-crisp weighted
relational clones.

Theorem 11. All maximal non-crisp weighted relational clones are intractable.

Proof. If Γ contains all finite-valued weighted relations then it is intractable. Otherwise, there is a
finite-valued weighted relation φ 6∈ Γ. Since φ is finite-valued we have Feas(Γ) = Feas(wRelClone(Γ∪
{φ})). But then either Feas(Γ) = RD, in which case Γ is intractable, or Feas(Γ) = Feas(wRelClone(Γ∪
{φ})) 6= RD, in which case Γ is not maximal.

5The result from [46] extends from finite-valued constraint languages to finite-valued weighted relational clones
as adding the binary equality relation and unary constant relations does not affect tractability in the presence of a
binary commutative weighted polymorphism.

6A (tractable) valued constraint language Γ is called maximal in [12] if for any φ 6∈ Γ, Γ ∪ {φ} is intractable.
We require wRelClone(Γ ∪ {φ}) = ΦD, which implies the intractability of Γ ∪ {φ}, thus borrowing the concept of
maximality from [4,5,9,27] and extending it from relational clones to weighted relational clones.

15

4 Proof of Theorem 5

In this section we will prove the following theorem, which is our main result.

Theorem (Theorem 5 restated). Any weighted clone W that is a rigid core and contains a positive
weighting also contains a weighting whose support is either:

1. a set of binary idempotent operations that are not projections; or

2. a set of ternary operations that are either:

(a) a set of majority operations; or

(b) a set of minority operations; or

(c) a set of majority operations with total weight 2 and a set of minority operations with
total weight 1; or

3. a set of k-ary semiprojections (for some k ≥ 3).

We will use the following variant of Farkas’ Lemma.

Theorem 12 (Gordan). Let A ∈ Qn×m be a matrix. Either Ax = 0, where x ∈ Qm with x ≥ 0
and x 6= 0, or ∃y ∈ Qn with y⊺A > 0.

By Definition 15, only proper superpositions are allowed within a weighted clone. However,
the following result from [10] shows that any weighted sum of arbitrary superpositions of a pair of
weightings ω1 and ω2 can be obtained by taking a weighted sum of superpositions of ω1 and ω2 with
projection operations, and then taking a superposition of the result. Given that superpositions with
projections are always proper [10], this result implies that any weighting which can be expressed
as a weighted sum of arbitrary (i.e., possibly improper) superpositions can also be expressed as a
superposition of a weighted sum of proper superpositions.

Lemma 3 ([10, Lemma 6.4]). Let C be a clone, and let ω1 and ω2 be weightings of C, of arity k
and ℓ respectively. For any g1, . . . , gk ∈ C(m) and any g′1, . . . , g

′
ℓ ∈ C(m),

c1 ω1[g1, . . . , gk] + c2 ω2[g
′
1, . . . , g

′
ℓ] = ω[g1, . . . , gk, g

′
1, . . . , g

′
ℓ] ,

where ω = c1 ω1[e
(k+ℓ)
1 , . . . , e

(k+ℓ)
k] + c2 ω2[e

(k+ℓ)
k+1 , . . . , e

(k+ℓ)
k+ℓ]

Before proving Theorem 5 we introduce the following useful notion. For the reader’s convenience,
we repeat here Table 1 from Section 2. We call (ternary) operations corresponding to columns 5,

Input Mj S1 S2 S3 P1 P2 P3 Mn

(x,x,y) x x x y x y y y
(x,y,x) x x y x y x y y
(y,x,x) x y x x y y x y

Table 1 (restated): Sharp ternary operations

6, and 7 in Table 1 Pixley operations of type 1, 2, and 3 respectively, and will denote by P1 (P2
and P3) the Pixley operations of type 1 (2 and 3, respectively). We call (ternary) semiprojections
corresponding to columns 2, 3, and 4 in Table 1 semiprojections of type 1, 2, and 3 respectively, and

16

will denote by S1 (S2 and S3) the semiprojections of type 1 (2 and 3, respectively). More generally,

a k-ary semiprojection f is called of type 1 ≤ i ≤ k if equating any two inputs of f results in e
(k)
i .

For any Pixley operation f of type i ∈ {1, 2, 3} we can obtain, by (cyclically) permuting the argu-
ments of f , Pixley operations of the other two types. For instance, if f ∈ P1 then we have g ∈ P2 and

h ∈ P3, where g(x, y, z) = f [e
(3)
3 , e

(3)
1 , e

(3)
2] = f(z, x, y) and h(x, y, z) = f [e

(3)
2 , e

(3)
3 , e

(3)
1] = f(y, z, x).

Two Pixley operations f and g of different types are called related if there is a permutation π ∈ Cycl3
such that f = gπ. (Note that the requirement of f and g being of different types excludes the iden-
tity permutation (1, 2, 3) and there are only other two permutations in Cycl3, namely (2, 3, 1) and
(3, 1, 2).)

Similarly, two semiprojections f and g of different types are called related if there is a permu-
tation π ∈ Cycl3 such that f = gπ.

The following table, which can be verified using the definitions above, will be useful in the proof
of Theorem 5. It lists the types of ternary sharp operations obtained by superposing a ternary
sharp operation of an arbitrary type (columns in Table 5) with any of the three cyclic permutations
of the three ternary projections (rows in Table 5).

Permutation Mj S1 S2 S3 P1 P2 P3 Mn

e
(3)
1 , e

(3)
2 , e

(3)
3 Mj S1 S2 S3 P1 P2 P3 Mn

e
(3)
2 , e

(3)
3 , e

(3)
1 Mj S2 S3 S1 P3 P1 P2 Mn

e
(3)
3 , e

(3)
1 , e

(3)
2 Mj S3 S1 S2 P2 P3 P1 Mn

Table 5: Types of ternary sharp operations superposed with cyclic permutations of projections

Note that taking a semiprojection f of type i and a Pixley operation g of type i, fπ and gπ can
be of different types; e.g., if f is a semiprojection of type 1 and g is a Pixley operation of type 1
and π = (2, 3, 1) then fπ is a semiprojection of type 2 and gπ is a Pixley operation of type 3.

Proof of Theorem 5. It suffices to consider the ternary case as the rest of the theorem follows from
(the proof of) Theorem 4 and the fact that W is a rigid core, which eliminates the first case of
Theorem 4.

Let W be a weighted clone containing a ternary positive weighting ω such that every f ∈ supp(ω)
is sharp. (If some f ∈ supp(ω) were not sharp then we could show, as in the proof of Theorem 4,
that the case (1) holds.) We denote by C the support clone of W . We assume that none of the
cases (2a), (2b), (2c), (3) (with k = 3) of the theorem applies as we would be done in any of these
cases.

By Lemma 2, we can assume that ω assigns weight −1 to each of the three ternary projections
and thus ∑

f∈supp(ω)

ω(f) = 3 . (12)

Let Pi ⊆ C be the Pixley operations of type i ∈ {1, 2, 3} from C. Since C is a clone we have

|P1| = |P2| = |P3| . (13)

By Lemma 2, we have for any three related Pixley operations p1 ∈ P1, p2 ∈ P2, and p3 ∈ P3,

ω(p1) = ω(p2) = ω(p3) , (14)

17

and ∑

p∈P1

ω(p) =
∑

p∈P2

ω(p) =
∑

p∈P3

ω(p) . (15)

We set P = P1 ∪ P2 ∪ P3 to be the set of all Pixley operations from C and w(P) =
∑

p∈P ω(p).
By Lemma 2, the same holds for the three types of ternary semiprojections. In particular, we

denote by Si ⊆ C the operations from C that are semiprojections of type i ∈ {1, 2, 3}. Since C is
a clone, we have

|S1| = |S2| = |S3| . (16)

For any three related semiprojections s1 ∈ S1, s2 ∈ S2, and s3 ∈ S3,

ω(s1) = ω(s2) = ω(s3) , (17)

and ∑

s∈S1

ω(s) =
∑

s∈S2

ω(s) =
∑

s∈S3

ω(s) . (18)

We set S = S1 ∪ S2 ∪ S3 to be the set of all semiprojections from C and w(S) =
∑

s∈S ω(s).
To simplify the presentation, we use the same notation for weightings, index sets, etc. in the

following three steps since the steps are similar (but independent). Thus, for example, when one
reads J in Step II it refers to J defined in Step II and not in Step I.

Step I: Eliminating Pixley operations.
We now show how to eliminate Pixley operations if needed, that is, assume w(P) > 0 and thus

some operations from P are assigned positive weight.
First assume that ω assigns positive weight to only Pixley operations, that is, supp(ω) ⊆ P .

Hence w(P) = 3. Take arbitrary p1, p
′
1 ∈ P1, p2, p

′
2 ∈ P2, and p3, p

′
3 ∈ P3. The following claims

can be verified from the definitions: p1[e
(3)
1 , e

(3)
2 , p′1] is a majority operation, p2[e

(3)
1 , e

(3)
2 , p′1] = e

(3)
1 ,

and p3[e
(3)
1 , e

(3)
2 , p′1] = e

(3)
2 . Consequently, ω[e

(3)
1 , e

(3)
2 , p′1] assigns weight −1 to p′1, +1 to majority

operations, and 0 otherwise. Similarly, ω[e
(3)
1 , p′2, e

(3)
3] assigns weight −1 to p′2, +1 to majority oper-

ations, and 0 otherwise. Finally, ω[p′3, e
(3)
2 , e

(3)
3] assigns weight −1 to p′3, +1 to majority operations,

and 0 otherwise. Overall, the weighting

µ = ω +
∑

p∈P1

ω(p)ω[e
(3)
1 , e

(3)
2 , p] +

∑

p∈P2

ω(p)ω[e
(3)
1 , p, e

(3)
3] +

∑

p∈P3

ω(p)ω[p, e
(3)
2 , e

(3)
3] (19)

assigns weight −1 to each of the three ternary projections and weight 3 to majority operations.
By Lemma 3, the intermediate superpositions in (19) can be improper as long as the resulting
weighting µ is indeed a weighting. Thus µ ∈W and case (2a) of the theorem holds.

Let assume that supp(ω) 6⊆ P , that is, ω assigns positive weight not only to Pixley operations.

Let J = {(p1, p2, p3) ∈ P1 × P2 × P3 | p1, p2, p3 are related} and J̄ = {(e
(3)
1 , e

(3)
2 , e

(3)
3)} ∪ J .

We consider the following linear system: for all Pixley operations p ∈ P ,

∑

(f,g,h)∈J̄

xf,g,hω[f, g, h](p) = 0 . (20)

By Gordan’s Theorem, (20) has a nonzero nonnegative solution if and only if the following
system of strict inequalities is unsatisfiable: for all (f, g, h) ∈ J̄ ,

∑

p∈P

ypω[f, g, h](p) > 0 . (21)

18

Consider the case (f, g, h) = (e
(3)
1 , e

(3)
2 , e

(3)
3). Then ω[f, g, h] = ω and thus ω[f, g, h](p) = ω(p) >

0 for all p ∈ supp(ω) ∩ P , by the definition of P . Moreover, by (15)

∑

p∈P

ypω(p) =
∑

p1∈P1

(yp1 + yp2 + yp3)ω(p1) , (22)

where we denoted (with a slight abuse of notation) by p2 and p3 the related operations of p1.

For (f, g, h) = (e
(3)
1 , e

(3)
2 , e

(3)
3) the LHS of (21) is equal to (22). Thus, for (21) to hold in this

case we must have at least one triple of related operations (p1, p2, p3) ∈ J with yp1 + yp2 + yp3 > 0.
Suppose (p1, p2, p3) ∈ J is chosen to maximise yp1 + yp2 + yp3 . The left-hand side of (21) when

(f, g, h) = (p1, p2, p3) is equal to

− yp1 − yp2 − yp3 +
∑

s∈S

ys[p1,p2,p3]ω(s) , (23)

since o[p1, p2, p3] is equal to a Pixley operation only when o is one of the three projections, which
give the first three terms in (23), or a semiprojection, which gives the last term of (23), the sum
over S.

We have
∑

s∈S

ys[p1,p2,p3]ω(s) =
∑

s1∈S1

ys1[p1,p2,p3]ω(s1) +
∑

s2∈S2

ys2[p1,p2,p3]ω(s2) +
∑

s3∈S3

ys3[p1,p2,p3]ω(s3)

=
∑

(s1,s2,s3)∈S1×S2×S3

s1,s2,s3 related

(ys1[p1,p2,p3] + ys2[p1,p2,p3] + ys3[p1,p2,p3])ω(s1)

≤
ω(S)

3
(yp1 + yp2 + yp3),

(24)

where the first equality follows from the definition of S; the second equality follows from fact that
s[p1, p2, p3] is a Pixley operation of type i given s is a semiprojection of type i, where i ∈ {1, 2, 3},
and hence (s1[p1, p2, p3], s2[p1, p2, p3], s3[p1, p2, p3]) is a triple of related Pixley operations given that
(s1, s2, s3) is a triple of related semiprojections; and the last inequality follows from the definition
of w(S) and the choice of (p1, p2, p3).

Combining (23) and (24), we have

− yp1 − yp2 − yp3 +
∑

s∈S

ys[p1,p2,p3]ω(s) ≤ −yp1 − yp2 − yp3 +
w(S)

3
(yp1 + yp2 + yp3) < 0 , (25)

where the last strict inequality follows from w(S) < 3 since w(P) > 0 and (12).
Hence, (21) is unsatisfiable and, by Gordan’s Theorem, (20) must have a nonzero nonnegative

solution x∗. We finish Step I by using x∗ to prove the existence of a weighting in W that assigns
zero weight to all Pixley operations.

Let
µ′ =

∑

(f,g,h)∈J̄

x∗f,g,hω[f, g, h] , (26)

be a weighted sum of superpositions of ω.
By the choice of x∗, µ′ assigns zero weight to all Pixley operations. From the definition of J̄ ,

µ′ = x∗
e
(3)
1 ,e

(3)
2 ,e

(3)
3

ω[e
(3)
1 , e

(3)
2 , e

(3)
3] +

∑

(f,g,h)∈J

x∗f,g,hω[f, g, h] . (27)

19

We know that x∗ is nonzero and nonnegative. Note that x∗
e
(3)
1 ,e

(3)
2 ,e

(3)
3

> 0 and x∗f,g,h = 0 for all

(f, g, h) ∈ J would contradict that µ′ assigns zero weight to all Pixley operations.
Let (f, g, h) ∈ J and i ∈ {1, 2, 3}. Then o[f, g, h] is a Pixley operation of type i if o is a

semiprojection of type i, o[f, g, h] is a semiprojection of type i if o is a Pixley operation of type
i, o[f, g, h] is a majority operation if o is a minority operation, and finally o[f, g, h] is a minority
operation if o is a majority operation. It follows that x∗

e
(3)
1 ,e

(3)
2 ,e

(3)
3

= 0 would contradict that

µ′ assigns zero weight all Pixley operations since Pixley operations of type i would be assigned
negative weight since w(S) − 3 < 0 as w(P) > 0. Thus x∗

e
(3)
1 ,e

(3)
2 ,e

(3)
3

> 0 and x∗f,g,h > 0 for at least

one (f, g, h) ∈ J . Consequently, µ′ is a nonzero weighting that assigns zero weight to all Pixley
operations. By Lemma 3, µ′ ∈W .

Step II: Eliminating semiprojections.
We now show how to eliminate semiprojections if needed. If µ′ obtained in Step I assigns

positive weight to only semiprojections then we are in case (3) (with k=3) of the theorem. Thus
let assume that µ′ assigns positive weight to semiprojections and at least one majority or minority
operation.

By Lemma 2, we can assume the existence of a ternary weighting ω ∈W which assigns weight
-1 to all three projections (and thus assigns total positive weight 3). We will use the same notation
for S, S1, S2, and S3 as before although note that the weighting ω is now different from the one
we had before and throughout Step I. We have w(S) < 3 and (17), (16), (18) still hold for ω.

We again use Gordan’s Theorem to show that there exists a nonzero ternary weighting in W
that assigns positive weight to majority and minority operations only.

Let J = {(s1, s2, s3) ∈ S1 × S2 × S3 | s1, s2, s3 are related} and J̄ = {(e
(3)
1 , e

(3)
2 , e

(3)
3)} ∪ J .

We consider the following linear system: for all semiprojections s ∈ S,

∑

(f,g,h)∈J̄

xf,g,hω[f, g, h](s) = 0 . (28)

By Gordan’s Theorem, (28) has a nonzero nonnegative solution if and only if the following
system of strict inequalities is unsatisfiable: for all (f, g, h) ∈ J̄ ,

∑

s∈S

ysω[f, g, h](s) > 0 . (29)

As in Step I, we can argue that (29) is unsatisfiable. Consider the case (f, g, h) = (e
(3)
1 , e

(3)
2 , e

(3)
3).

Then ω[f, g, h] = ω and thus ω[f, g, h](s) = ω(s) > 0 for all s ∈ supp(ω)∩ S, by the definition of S.
Moreover, by (18) ∑

s∈S

ω(s)ys =
∑

s1∈S1

(ys1 + ys2 + ys3)ω(s1) , (30)

where we denoted by s2 and s3 the related operations of s1.

Therefore, for (29) to hold when (f, g, h) = (e
(3)
1 , e

(3)
2 , e

(3)
3) we must have at least one triple of

related semiprojections (s1, s2, s3) ∈ J with ys1 + ys2 + ys3 > 0.
Suppose (s1, s2, s3) ∈ J is chosen to maximise ys1 + ys2 + ys3 . The left-hand side of (29) when

(f, g, h) = (s1, s2, s3) is equal to

− ys1 − ys2 − ys3 +
∑

s∈S

ys[s1,s2,s3]ω(s) , (31)

20

since o[s1, s2, s3] is equal to a semiprojection only when o is one of the three projections, which give
the first three terms in (31), or a semiprojection, which gives the last term of (31), the sum over S.

We have
∑

s∈S

ys[s1,s2,s3]ω(s) =
∑

s1∈S1

ys1[s1,s2,s3]ω(s1) +
∑

s2∈S2

ys2[s1,s2,s3]ω(s2) +
∑

s3∈S3

ys3[s1,s2,s3]ω(s3)

=
∑

(s1,s2,s3)∈S1×S2×S3

s1,s2,s3related

(ys1[s1,s2,s3] + ys2[s1,s2,s3] + ys3[s1,s2,s3])ω(s1)

≤
ω(S)

3
(ys1 + ys2 + ys3),

(32)

where the first equality follows from the definition of S; the second equality follows from fact that
s[s1, s2, s3] is a semiprojection of type i given s is a semiprojection of type i, where i ∈ {1, 2, 3},
and hence (s1[s1, s2, s3], s2[s1, s2, s3], s3[s1, s2, s3]) is a triple of related semiprojections given that
(s1, s2, s3) is a triple of related semiprojections; and the last inequality follows from the definition
of w(S) and the choice of (s1, s2, s3).

Combining (31) and (32), we have

− ys1 − ys2 − ys3 +
∑

s∈S

ys[s1,s2,s3]ω(s) ≤ −ys1 − ys2 − ys3 +
w(S)

3
(ys1 + ys2 + ys3) < 0 , (33)

where the last strict inequality follows from w(S) < 3.
Hence, (29) is unsatisfiable and, by Gordan’s Theorem, (28) must have a nonzero nonnegative

solution x∗. We finish Step II by using x∗ to prove the existence of a weighting in W that assigns
zero weight to all semiprojections.

Let
µ =

∑

(f,g,h)∈J

ω[f, g, h]x∗f,g,h , (34)

be a weighted sum of superpositions of ω. By the choice of x∗, µ assigns zero weight to all
semiprojections.

From the definition of J̄ ,

µ = x∗
e
(3)
1 ,e

(3)
2 ,e

(3)
3

ω[e
(3)
1 , e

(3)
2 , e

(3)
3] +

∑

(f,g,h)∈J

x∗f,g,hω[f, g, h] . (35)

We know that x∗ is nonzero and nonnegative. Note that x∗
e
(3)
1 ,e

(3)
2 ,e

(3)
3

> 0 and x∗f,g,h = 0 for all

(f, g, h) ∈ J would contradict that µ′ assigns zero weight to all semiprojections.
Let (s1, s2, s3) ∈ J and i ∈ {1, 2, 3}. Then o[s1, s2, s3] is a semiprojection of type i if o is a

semiprojection of type i, o[s1, s2, s3] is a majority operation if o is a majority operation, and finally
o[s1, s2, s3] is a minority operation if o is a minority operation. (Note that we do not need to
consider the case when f is a Pixley operation as ω assigns zero weight to all Pixley operations.) It
follows that x∗

e
(3)
1 ,e

(3)
2 ,e

(3)
3

= 0 would contradict that µ assigns zero weight all semiprojections since

semiprojections of type i would be assigned negative weight since w(S)−3 < 0 as ω assigns positive
weight to some majority or minority (or possibly both) operations. Thus x∗

e
(3)
1 ,e

(3)
2 ,e

(3)
3

> 0 and x∗f,g,h

for at least one (f, g, h) ∈ J . Consequently, µ is a nonzero weighting that assigns zero weight to all
semiprojections. By Lemma 3, µ ∈W .

Step III: Majority and minority operations.

21

In Steps I and II, we have shown that any weighted clone W with a positive ternary weighting
contains a ternary weighting that assigns nonzero weight to semiprojections alone (case (3) of the
theorem with k = 3), or a mix of majority and minority operations. Finally, we will show that if
W contains a weighting ω that assigns weight to majority and minority operations alone then W
also contains a weighting of one of the three types described in cases (2a), (2b), and (2c) of the
theorem.

Let M1 and M2 denote the sets of majority and minority operations in the support of ω. Suppose
that ω assigns total weight 2 + a to M1 and total weight 1 − a to M2 for some a > 0. For each

f ∈M2, we define µf = ω[e
(3)
1 , e

(3)
1 , f], so µf assigns weight a to e

(3)
1 and weight −a to f . Note that

µf is not a proper weighting, since a > 0. We obtain a weighting µ ∈ W which assigns positive
weight to majority operations only as follows:

µ = ω +
∑

f∈M2

ω(f)

a
µf . (36)

Similarly, suppose that ω assigns total weight 2−a to M1 and total weight 1+a to M2 for some

a > 0. For each f ∈ M1, we define µf = ω[e
(3)
1 , f, f], so µf assigns weight a to e

(3)
1 and weight −a

to f . We obtain a weighting µ ∈ W which assigns positive weight to minority operations only as
follows:

µ = ω +
∑

f∈M1

ω(f)

a
µf . (37)

In both cases µ ∈W by Lemma 3.

5 Conclusions

We have presented new results on the structure of weighted clones that delimit the possibilities for
tractable valued constraint languages. In order to establish our results, we have presented a novel
technique for ruling out certain types of operations from the support of a given weighting. The
method considers certain extreme cases of the dual of the linear program that demonstrates the
existence of a weighted sum of superpositions that assigns zero weight to the forbidden operations.
We believe that our results and techniques will prove useful in further studies of the structure
of weighted clones. However, understanding the structure of weighted clones appears a difficult
problem in general. For instance, whilst the computational complexity of finite-valued constraint
languages is well understood [46], the structure of the corresponding weighted clones is not, as
discussed in Section 3.

In recent work on the tractability of valued constraint languages, it has been shown that a nec-
essary condition for tractability is the existence of a cyclic weighted polymorphism [35].7 Moreover,
it has been also shown that, under the assumption of the dichotomy conjecture of Feder and Vardi
for the decision problem, this condition is also sufficient [32].

Acknowledgements

The authors are grateful to Páid́ı Creed and Peter Fulla for valuable discussions.

7A k-ary operation if cyclic if f(x1, x2, . . . , xk) = f(x2, . . . , xk, x1) for every x1, . . . , xk. A weighting ω is cyclic if
every operation f ∈ supp(ω) is cyclic.

22

References

[1] Krzysztof Apt. Principles of Constraint Programming. Cambridge University Press, 2003.

[2] Libor Barto and Marcin Kozik. Constraint Satisfaction Problems Solvable by Local Consis-
tency Methods. Journal of the ACM, 61(1), 2014. Article No. 3.

[3] Libor Barto, Marcin Kozik, and Todd Niven. The CSP dichotomy holds for digraphs with
no sources and no sinks (a positive answer to a conjecture of Bang-Jensen and Hell). SIAM
Journal on Computing, 38(5):1782–1802, 2009.

[4] Manuel Bodirsky, Hubie Chen, Jan Kára, and Timo von Oertzen. Maximal infinite-valued
constraint languages. Theoretical Computer Science, 410(18):1684–1693, 2009.

[5] Andrei Bulatov. A Graph of a Relational Structure and Constraint Satisfaction Problems. In
Proceedings 19th IEEE Symposium on Logic in Computer Science (LICS’04), pages 448–457.
IEEE Computer Society, 2004.

[6] Andrei Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-element set.
Journal of the ACM, 53(1):66–120, 2006.

[7] Andrei Bulatov, Andrei Krokhin, and Peter Jeavons. Classifying the Complexity of Constraints
using Finite Algebras. SIAM Journal on Computing, 34(3):720–742, 2005.

[8] Andrei A. Bulatov. Complexity of conservative constraint satisfaction problems. ACM Trans-
actions on Computational Logic, 12(4), 2011. Article 24.

[9] Andrei A. Bulatov, Andrei A. Krokhin, and Peter G. Jeavons. The complexity of maximal con-
straint languages. In Proceedings 33rd ACM Symposium on Theory of Computing (STOC’01),
pages 667–674, 2001.

[10] David A. Cohen, Martin C. Cooper, Páid́ı Creed, Peter Jeavons, and Stanislav Živný. An alge-
braic theory of complexity for discrete optimisation. SIAM Journal on Computing, 42(5):915–
1939, 2013.

[11] David A. Cohen, Martin C. Cooper, Peter Jeavons, and Stanislav Živný. Dualisation via
binarisation for valued constraints. In Proceedings of the 29th AAAI Conference on Artificial
Intelligence (AAAI’15). AAAI Press, 2015.

[12] David A. Cohen, Martin C. Cooper, Peter G. Jeavons, and Andrei A. Krokhin. The Complexity
of Soft Constraint Satisfaction. Artificial Intelligence, 170(11):983–1016, 2006.

[13] Páid́ı Creed and Stanislav Živný. On minimal weighted clones. In Proceedings of the 17th Inter-
national Conference on Principles and Practice of Constraint Programming (CP’11), volume
6876 of Lecture Notes in Computer Science, pages 210–224. Springer, 2011.

[14] Nadia Creignou, Sanjeev Khanna, and Madhu Sudan. Complexity Classification of Boolean
Constraint Satisfaction Problems, volume 7 of SIAM Monographs on Discrete Mathematics
and Applications. SIAM, 2001.

[15] Béla Csákány. Minimal clones – a minicourse. Algebra Universalis, 54(1):73–89, 2005.

[16] Rina Dechter. Constraint Processing. Morgan Kaufmann, 2003.

23

[17] Klaus Denecke and Shelly L. Wismath. Universal Algebra and Applications in Theoretical
Computer Science. Chapman and Hall/CRC Press, 2002.

[18] Tomás Feder and Moshe Y. Vardi. The Computational Structure of Monotone Monadic SNP
and Constraint Satisfaction: A Study through Datalog and Group Theory. SIAM Journal on
Computing, 28(1):57–104, 1998.

[19] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, 1979.

[20] Pavol Hell and Jaroslav Nešetřil. On the Complexity of H-coloring. Journal of Combinatorial
Theory, Series B, 48(1):92–110, 1990.

[21] Pavol Hell and Jaroslav Nešetřil. Colouring, constraint satisfaction, and complexity. Computer
Science Review, 2(3):143–163, 2008.

[22] D. Hobby and R.N. McKenzie. The Structure of Finite Algebras, volume 76 of Contemporary
Mathematics. American Mathematical Society, Providence, R.I., 1988.

[23] Anna Huber, Andrei Krokhin, and Robert Powell. Skew bisubmodularity and valued CSPs.
SIAM Journal on Computing, 43(3):1064–1084, 2014.

[24] Peter Jeavons, Andrei Krokhin, and Stanislav Živný. The complexity of valued constraint
satisfaction. Bulletin of the European Association for Theoretical Computer Science (EATCS),
113:21–55, 2014.

[25] Peter G. Jeavons. On the Algebraic Structure of Combinatorial Problems. Theoretical Com-
puter Science, 200(1-2):185–204, 1998.

[26] Peter G. Jeavons, David A. Cohen, and Marc Gyssens. Closure Properties of Constraints.
Journal of the ACM, 44(4):527–548, 1997.

[27] Peter Jonsson, Fredrik Kuivinen, and Gustav Nordh. MAX ONES Generalized to Larger
Domains. SIAM Journal on Computing, 38(1):329–365, 2008.

[28] Peter Jonsson and Gustav Nordh. Introduction to the maximum solution Problem. In
Complexity of Constraints, volume 5250 of Lecture Notes in Computer Science, pages 255–282.
Springer, 2008.

[29] Peter Jonsson, Gustav Nordh, and Johan Thapper. The maximum solution problem on graphs.
In Proceedings of the 32nd International Symposium on Mathematical Foundations of Com-
puter Science (MFCS’07), volume 4708 of Lecture Notes in Computer Science, pages 228–239.
Springer, 2007.

[30] Sanjeev Khanna, Madhu Sudan, Luca Trevisan, and David Williamson. The approximability
of constraint satisfaction problems. SIAM Journal on Computing, 30(6):1863–1920, 2001.

[31] Vladimir Kolmogorov. The power of linear programming for finite-valued CSPs: a constructive
characterization. In Proceedings of the 40th International Colloquium on Automata, Languages
and Programming (ICALP’13), volume 7965 of Lecture Notes in Computer Science, pages 625–
636. Springer, 2013.

[32] Vladimir Kolmogorov, Andrei A. Krokhin, and Michal Roĺınek. The complexity of general-
valued CSPs. Technical report, 2015. arXiv:1502.07327.

24

http://arxiv.org/abs/1502.07327

[33] Vladimir Kolmogorov, Johan Thapper, and Stanislav Živný. The power of linear programming
for general-valued CSPs. SIAM Journal on Computing, 44(1):1–36, 2015.

[34] Vladimir Kolmogorov and Stanislav Živný. The complexity of conservative valued CSPs. Jour-
nal of the ACM, 60(2), 2013. Article No. 10.

[35] Marczin Kozik and Joanna Ochremiak. Algebraic properties of valued constraint satisfaction
problem. In Proceedings of the 42nd International Colloquium on Automata, Languages and
Programming (ICALP’15), Lecture Notes in Computer Science. Springer, 2015.

[36] R.N. McKenzie, G.F. McNulty, and W.F. Taylor. Algebras, Lattices and Varieties, volume I.
Wadsworth and Brooks, California, 1987.

[37] George L. Nemhauser and Laurence A. Wolsey. Integer and Combinatorial Optimization. John
Wiley & Sons, 1988.

[38] Justin K. Pearson and Peter G. Jeavons. A survey of tractable constraint satisfaction problems.
Technical Report CSD-TR-97-15, Royal Holloway, University of London, July 1997.

[39] Robert Powell and Andrei A. Krokhin. A reduction from valued CSP to min cost homomor-
phism problem for digraphs. Technical report, 2015. arXiv:1507.01776.

[40] Thomas J. Schaefer. The Complexity of Satisfiability Problems. In Proceedings of the 10th
Annual ACM Symposium on Theory of Computing (STOC’78), pages 216–226. ACM, 1978.

[41] Stanis lav Świerczkowski. Algebras which are independently generated by every n elements.
Fundamenta Mathematicae, 49:93–104, 1960.

[42] A. Szendrei. Clones in Universal Algebra, volume 99 of Seminaires de Mathematiques Su-
perieures. University of Montreal, 1986.

[43] Rustem Takhanov. A Dichotomy Theorem for the General Minimum Cost Homomorphism
Problem. In Proceedings of the 27th International Symposium on Theoretical Aspects of Com-
puter Science (STACS’10), pages 657–668, 2010.

[44] Rustem Takhanov. Extensions of the Minimum Cost Homomorphism Problem. In Proceedings
of the 16th International Computing and Combinatorics Conference (COCOON’10), volume
6196 of Lecture Notes in Computer Science, pages 328–337. Springer, 2010.

[45] Johan Thapper and Stanislav Živný. The power of linear programming for valued CSPs.
In Proceedings of the 53rd Annual IEEE Symposium on Foundations of Computer Science
(FOCS’12), pages 669–678. IEEE, 2012.

[46] Johan Thapper and Stanislav Živný. The complexity of finite-valued CSPs. In Proceedings
of the 45th ACM Symposium on the Theory of Computing (STOC’13), pages 695–704. ACM,
2013. Full version available at arXiv:1210.2977v3.

[47] Johan Thapper and Stanislav Živný. Sherali-Adams relaxations for valued CSPs. In Pro-
ceedings of the 42nd International Colloquium on Automata, Languages and Programming
(ICALP’15), volume 9134 of Lecture Notes in Computer Science, pages 1058–1069. Springer,
2015.

25

http://arxiv.org/abs/1507.01776
http://arxiv.org/abs/1210.2977

[48] Hannes Uppman. The Complexity of Three-Element Min-Sol and Conservative Min-Cost-
Hom. In Proceedings of the 40th International Colloquium on Automata, Languages, and
Programming (ICALP’13), volume 7965 of Lecture Notes in Computer Science, pages 804–815.
Springer, 2013.

[49] Hannes Uppman. Computational Complexity of the Extended Minimum Cost Homomorphism
Problem on Three-Element Domains. In Proceedings of the 31st International Symposium on
Theoretical Aspects of Computer Science (STACS’14), volume 25, pages 651–662, 2014.

[50] Stanislav Živný. The complexity of valued constraint satisfaction problems. Cognitive Tech-
nologies. Springer, 2012.

26

	1 Introduction
	2 Preliminaries
	2.1 Valued CSPs
	2.2 Weighted relational clones
	2.3 Weighted clones
	2.4 Properties of operations
	2.5 Cores

	3 Conditions for Tractability
	4 Proof of Theorem ??
	5 Conclusions

