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Abstract

We consider the effect on tipping from an additive periodic forcing in a canonical model with a saddle node

bifurcation and a slowly varying bifurcation parameter. Here tipping refers to the dramatic change in dynamical

behavior characterized by a rapid transition away from a previously attracting state. In the absence of the

periodic forcing, it is well-known that a slowly varying bifurcation parameter produces a delay in this transition,

beyond the bifurcation point for the static case. Using a multiple scales analysis, we consider the effect of

amplitude and frequency of the periodic forcing relative to the drifting rate of the slowly varying bifurcation

parameter. We show that a high frequency oscillation drives an earlier tipping when the bifurcation parameter

varies more slowly, with the advance of the tipping point proportional to the square of the ratio of amplitude to

frequency. In the low frequency case the position of the tipping point is affected by the frequency, amplitude and

phase of the oscillation. The results are based on an analysis of the local concavity of the trajectory, used for low

frequencies both of the same order as the drifting rate of the bifurcation parameter and for low frequencies larger

than the drifting rate. The tipping point location is advanced with increased amplitude of the periodic forcing,

with critical amplitudes where there are jumps in the location, yielding significant advances in the tipping point.

We demonstrate the analysis for two applications with saddle node-type bifurcations.

1 Introduction

Generally speaking, the term tipping point refers to an abrupt transition in dynamical behavior observed as the
system moves to a qualitatively different state, due to small changes in one or more factors [1]. Tipping points have
been observed in many different fields, including the start and end of ice-ages [2], environmental regime shift [3],
synchronized behaviour of neural activity [4], catastrophic collapse in ecology, and power systems [5]. As many of
these transitions are often irreversible or difficult to reverse, it becomes important to develop analytical techniques
for predicting the location of tipping points and understanding the key contributing factors to tipping.

A number of analyses indicate that tipping points can depend on the bifurcation structure of the system, external
noise or forcing, or the drifting rate of parameters that vary in time [6]. Of course in applications, a combination of
these factors may contribute to the system simultaneously. A significant number of studies have focused on systems
that have a slowly varying parameter approaching a saddle-node bifurcation point, where the transition occurs for
parameter values beyond that of the static bifurcation point, known as a delayed bifurcation. Earlier recognition of
this phenomenon is discussed in the context of optics [7] and neuronal dynamics [8], as well as general bifurcation
theory [9]. The structure appears in many applications, including models of global energy balance [10], extent of
Arctic sea ice [11, 12], and population resilience [5], to name a few. Focal points for prediction of tipping include
statistical measures based on historical data that track the value of the slowly varying parameter where an abrupt
transition occurs [14]. These types of measures have been compared with canonical models, illustrating that in the
presence of noise tipping can occur well before the slowly varying parameter reaches the static bifurcation point
of the model [15]. Whether the location of the tipping point is advanced, that is “early”, or delayed relative to
the static bifurcation point depends on the relationship between the drifting rate and the strength of the noise, as
studied for different underlying bifurcation structures in [16, 18]. Predictive techniques using statistical measures
and time series analyses have been developed to identify signatures of proximity to a tipping point or potential for
early tipping, with examples in [3, 5, 14, 19] and additional references in [20]. However, those measures are not
necessarily applicable if the tipping is driven by changes in the drifting rate or other factors, indicating that a better
understanding of the role of different tipping mechanisms is necessary.
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An additional factor appearing in many applications is periodic variation. Often reduced models, such as those
for the extent of Arctic sea ice [11, 12, 13], are developed for analysis by averaging over oscillations with higher
frequency, but a closer look at these types of models indicates different locations of the tipping points when the
oscillations are included. Periodic variation can occur on different time scales, such as the seasonal variation
considered in [11] or regular fluctuations on the time scale of decades [21]. To explore the effect of periodic forcing
with either low or high frequency, we consider the canonical model for a saddle node bifurcation with a slowly
varying bifurcation parameter and additive periodic forcing. In this setting we explore how the location of the
tipping point depends on the combined effect of frequency, amplitude, and the drifting rate at which bifurcation
parameter approaches the static bifurcation point. The different expansions that are necessary to cover the different
scenarios provide explicit expressions for the tipping points and capture the key contributions that determine them.

For high-frequency forcing, we use a multiple scales approach combined with layer expansions [22, 23]. The outer
expansion uses a multiple scales expansion based on the times scales of the oscillations and the drifing rate. The
outer expansion does not provide the approximation for the tipping point, but indicates the location of the inner
expansion composed of an oscillatory part plus a correction. Combining several multiple scales expansions in terms
of fractional powers of the drifting rate to get the inner expansion, we find that the tipping point is determined
from the averaged equation for the correction to the oscillatory contribution. The form of the averaged equation
is similar to that of the case without oscillations, facilitating explicit expressions for two main contributions to the
location of the tipping point relative to the static bifurcation point: a delay due to the slowly drifting bifurcation
parameter, and an advance proportional to the square of the ratio of amplitude to frequency for the oscillation. The
shift due to high frequency periodic forcing is also compared with the case of white noise forcing. An additional
rescaling is required in the case of both large amplitude and high frequency. That rescaling indicates that in certain
limits, the appropriate expansion for the rescaled system is the low frequency approximation rather than the high
frequency case as might be expected.

The multiple scales approach used for the high frequency oscillations is not applicable for low frequency oscilla-
tions. Rather, the oscillatory outer or regular solution can be written in terms of the slow time only, and where it
does not exist, we find two different types of tipping points. For the first type, the outer solution vanishes but its
derivative does not. Then a local approximation for the equation of the trajectory has a singularity corresponding
to the tipping point. The influence of the oscillation appears through the derivative of the square of the outer
solution. In contrast, for the second type of tipping point the derivative of the square of the outer solution also
vanishes. Then a different local approximation is used to consider the concavity of the trajectory. The concavity
indicates whether or not tipping occurs near this location. In contrast to the high-frequency forcing, where the
location of the tipping point varies smoothly with the other parameters, for parameter values where the concavity
in the low frequency case changes there are discontinuities in the location of the tipping point. From the analysis of
these two types of tipping points, we find that their location is affected not only by the frequency, the amplitude,
and the drifting rate, but also by the behavior of the trajectory as the oscillations cause it to approach zero. This
effect can be related to the phase of the oscillations, given by an initial condition, and can lead to either delayed or
advanced tipping.

We demonstrate the method on two applications, namely a Morris-Lecar model and an energy balance model
describing the persistence of Arctic sea ice. In both cases, we use the approaches developed for the canonical model
directly on normalized versions of these models. The analysis illustrates the importance of this normalization, as it
is within the rescaled system that we can identify the relationships and approximations that lead to quantitative
expressions for the tipping point. We also see that the results can be extended beyond the range of asymptotic
relationships for drifting rate, frequency, and amplitude obtained in the context of the canonical model; for example,
we consider the scenario where the ratio of amplitude to frequency is outside of these limits. The application of the
approaches in these extended ranges is based on recognizing the leading order contributions in the outer and local
expansions that provide information about the relevant features for tipping. These observations guide the inclusion
of the most important terms in reduced equations with singularities corresponding to tipping points. Even without
deriving these reduced equations, the normalized systems combined with the results from the canonical model
already indicate parameter ranges where advanced tipping is predicted, as we discuss in the context of the specific
applications.

In Section 2, we introduce the canonical model with an additive periodic forcing. We briefly review the results
when there is no oscillatory term. In Section 3, we show that a high frequency oscillation changes the position of the
bifurcation point for the case of a constant bifurcation parameter, and likewise triggers an early tipping when the
drifting rate of the bifurcation parameter is slow enough. A brief comparison of the additive noise and the periodic
forcing cases is also shown. In Section 4, we show that the position of the tipping point is affected by the frequency,
amplitude and phase of the low frequency oscillation. For the case where the frequency of the oscillatory forcing is
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the same order of magnitude as the drifting rate of the bifurcation parameter we develop an analysis based on the
local concavity of the trajectory to find the threshold of the amplitude at which there is an abrupt change of the
position of the tipping point. Then we adapt this analysis to consider cases forced by a periodic oscillation with
low frequency that is larger than the drifting rate of the bifurcation parameter. For consideration of the system
with large amplitude, we study a rescaled model to which the analysis from the low or high frequency cases can
be applied for certain parameter combinations. In Sections 5 and 6 we consider two models with saddle node-type
bifurcations, transformed to be similar to the canonical model. Then we can directly apply the approaches from
the previous sections to determine the tipping points in these examples.

Throughout the paper we compare our analytical results to simulations of the model using a second order
Runge-Kutta method, except for the Morris-Lecar model in Section 5, where we use a fourth-order Runge-Kutta
method.

2 The canonical model

We consider a canonical model with additive periodic forcing,

dx

dt
= a− x2 +Asin(Ωt),

da

dt
= −µ,

x(0) = x0, a(0) = a0 > 0, (1)

where a(t) denotes the slowly varying bifurcation parameter with the drifting rate 0 < µ ≪ 1, A is the amplitude
of the oscillation (A > 0), and Ω represents the frequency. We assume a0, A are positive constants and x0 =

√
a0.

The system (1) is generalized from the canonical model for a saddle node bifurcation when a(t) is a constant
and A = 0 [24]. For any constant a > 0, there exist a stable equilibrium x+

e =
√
a and an unstable equilibrium

x−
e = −√

a. For a < 0, no equilibrium exists and the trajectory of (1) decreases exponentially for any initial
condition x0. The bifurcation diagram is shown in Figure 1.

For the system (1) without the periodic forcing term (A = 0), there is no equilibrium because a(t) is slowly
varying. With initial conditions x0 and a0 > 0, the trajectory of the system is exponentially attracted to one
specific solution which we call the slowly varying equilibrium solution, analyzed in [9, 15] for A = 0 which we briefly
summarize here. For a(t) > 0, the slowly varying equilibrium solution is close to x =

√
a for a constant which we

call the stable branch throughout this paper. As a(t) crosses zero, there is a transition from the slowly varying
equilibrium solution to the rapidly decreasing behaviour. This transition occurs for the value a(t) below the static
saddle node bifurcation point at a = x = 0, and thus is called a delayed bifurcation (see [9] and references therein).
When such an abrupt qualitative change occurs, it is often referred to as a tipping point regardless of the value
of a(t). The method of matched asymptotic expansions is applied to find the approximation of the slowly varying
equilibrium solution for A = 0 [9, 16], using a slow time scale µt and solving for x(t) as a function of a(µt),

x(a(µt)) =
√
a+

µ

4a
− 5

32

µ2

a5/2
+O(µ3), (2)

for a(µt) ∼ O(1). Notice that if a(µt) is O(µ2/3), the terms shown in (2) are all O(µ1/3) and the expansion is no
longer valid. Then a local approximation is needed, which yields

x(a(µt)) ∼ −µ1/3Ai
′(a/µ2/3)

Ai(a/µ2/3)
, (3)

where Ai denotes the Airy function. The asymptotic approximation of the slowly varying equilibrium solution of
(1) with A = 0 is shown in Figure 1, and compared with the static saddle node bifurcation diagram. The tipping
happens near the singularity in the expression (3), which is the first zero of the Airy function,

ad = µ2/3 · (−2.33810...) . (4)

The smaller that µ is, the slower a(t) varies, and the closer that the tipping point is to the static bifurcation value
a = 0. The µ2/3 law characterizes the delay of the jump transition and has been verified experimentally in various
physical systems [25, 26, 27]. This scaling law reappears throughout the results in this paper, due to the parabolic
nature of the bifurcation structure near a saddle node bifurcation.

For A > 0 in (1), we explore the effect of the amplitude and frequency of the oscillation on the location of the
tipping point, considering both high and low frequency in combination with the slow drift of the parameter a(t).
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Figure 1: The asymptotic approximation of the slowly varying equilibrium solution (2), (3) of the system (1) without
periodic forcing (A = 0) (black dash-dotted) is compared with the saddle node bifurcation diagram (red solid and
dashed lines). The solid (dashed) line is the stable (unstable) steady state. The solid circle indicates the static
bifurcation point. The vertical blue dotted line indicates the value of ad (4), the singularity of (3). The drifting
rate is µ = 0.0025.

3 High Frequency Oscillation Ω ≫ 1

In order to see how the tipping location is influenced by high frequency periodic forcing, we first consider (1) with
constant a (µ = 0) and determine the critical value of the bifurcation parameter where the bounded attracting
solution loses stability. We identify this bifurcation point denoted ap, analogous to the saddle node bifurcation
point in Section 2, using the methods of multiple scales and matched asymptotic expansions. This result shows
that the periodic forcing shifts the location of the bifurcation point to a value of a > 0. We compare this effect
with the shift in the location of the tipping point for combined slowly varying a(t) and high frequency forcing. We
obtain an expression for this shift in terms of the drifting rate µ of a(t), the frequency Ω, and the amplitude A.
First we consider values of A smaller than Ω or of the same order of magnitude of Ω. For larger values of A, a
different approach is needed, as shown in Section 3.3.

3.1 Constant Bifurcation Parameter

For µ = 0 (a(t) a constant) and A 6= 0, the solution of (1) oscillates periodically around
√
a for a an O(1) constant

but it exponentially decreases for parameter values below the bifurcation value of a = ap. We locate ap, using the
method of multiple scales [22], based on both a fast time scale T = Ωt and the original O(1) time scale t, the slow
time scale in this case. For x = x(T, t), (1) becomes

xT +Ω−1xt = Ω−1a− Ω−1x2 +Ω−1Asin(T ), where xT =
∂x

∂T
, xt =

∂x

∂t
(5)

and the expansion
x ∼ x0(T, t) + Ω−1x1(T, t) + Ω−2x2(T, t) + · · · , (6)

is substituted into (5), yielding

O(1) : x0T = 0, (7)

O(Ω−j) : xjT = Rj(T, t), j = 1, 2, 3 · · · . (8)

The leading order equation (7) indicates that x0 = x0(t) so that x0 depends only on the slow time variable t.
To find xj for j = 0, 1, 2, · · · , we use a solvability condition to eliminate secular terms in the solution of (8) that

monotonously increase in the fast time variable T . The solvability condition is that the right hand side of (8) is
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orthogonal to the homogeneous solution of xjT = 0 [22],

lim
T→∞

1

T

∫ T

0

Rj(u, t)du = 0, j = 1, 2, 3 · · · . (9)

Under the assumptions of the method of multiple scales, t and T are treated as independent variables. For j = 1,

R1(T, t) = a− x2
0 − x0t +Asin(T ). (10)

By applying the solvability condition (9) on (10), we have

x0t = a− x2
0, ⇒ x0 =

√
a,

x1T = Asin(T ), ⇒ x1 = −Acos(T ) + v1(t),
(11)

where v1(t) is a function that needs to be determined in the higher order analysis.
The higher order corrections xj , j = 2, 3 are obtained in Appendix A, yielding the asymptotic approximation

for the attracting solution of (1) for µ = 0, a a constant, as

x ∼
√
a+Ω−1 · [−Acos(T )] + Ω−2 ·

[

2
√
aAsin(T )− A2

4
√
a

]

+ · · · . (12)

Similarly, one can find the approximation of the solution for the case when x0 = −√
a and show it to be unstable.

For A = 0, (12) reduces to x =
√
a with a saddle node bifurcation point at a = 0. For A > 0, (12) is valid when

both A and a are O(1). For a = O(Ω−2), we substitute a = Ω−2b and introduce the expansion (6) into (5) to find
ap. In Appendix A, we find the leading order approximation of the attracting solution for a = O(Ω−2)

x ∼
√

a− A2

2Ω2
− A

Ω
cos(T ) + · · · . (13)

For a a constant, (13) shows that there are no attracting solutions if a < ap = A2/(2Ω2).

3.2 High Frequency Oscillation in a Slowly Varying System

For a(t) as in (1) with µ ≪ 1, we introduce a new parameter λ > 0 by writing Ω = µ−λ in (1). The parameter λ
captures the relationship between frequency and drifting rate, which we relate to the tipping point below. Here we
consider the case A = o(Ω) for Ω ≫ 1, and we consider larger values of A in Section 3.3. To obtain an expression for
the tipping location, we use a combination of the method of multiple scales together with outer and local expansions.
The outer expansion does not provide the location of the tipping point, but it indicates a new scaling for a local
analysis. In the local analysis we use a different combination of multiple scales, and obtain an expression for the
tipping point in terms of the key parameters.

For the outer approximation, we find it is sufficient to use two scales, the fast time scale T = µ−λt from the
oscillatory forcing and the slow time scale τ = µt of the parameter a(τ). In terms of these time scales, (1) becomes

µλ+1xτ + xT = µλ
[

a− x2 +Asin(T )
]

, (14)

aτ = −1,

By substituting the general expansion

x ∼ x0(T, τ) + µλx1(T, τ) + µ2λx2(T, τ) + · · · , (15)

into (14) and solving for each order by applying the solvability condition (9) (details shown in Appendix B), we get
the asymptotic approximation of x for a(τ) = O(1)

x ∼
√
a+

µ

4a
+ µλ [−Acos(T )] + · · · . (16)

This result is similar to (2), with an oscillatory correction term µλ [−Acos(T )] from the high-frequency oscillatory
term in (1). The asymptotic approximation (16) describes the attracting solution of (1) away from a = 0, but does
not describe tipping. As a(t) approaches zero, specifically for a(t) ∼ O(µ2/3), the first two terms are both O(µ1/3)
so that the expansion (16) is not valid. In order to determine the influence of the oscillations on the location of the
tipping point compared to (4), a local analysis for a(t) ∼ O(µ2/3) is needed.
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For the local analysis, we introduce a(t) = µ2/3α(s), the fast time variable T = µ−λt and a new slow time
variable s = µ1/3t and substitute into (1). The system (1) becomes

µ1/3+λxs + xT = µλ+2/3α− µλx2 + µλAsin(T ), (17)

αs = −1,

and we focus on the local equation (17) to determine the location of the tipping point. Separate analyses for different
values of λ suggest that it is useful to substitute x = −µλAcos(T ) + µ1/3y(T, s) in (17), yielding the asymptotic
result for 1

3 ≤ λ < 1. Then we get

µλ+1/3ys + yT = µλ[µ1/3α− µ2λ−1/3A
2

2
− µ2λ−1/3A

2

2
cos(2T ) + 2µλAycos(T )− µ1/3y2], (18)

and substitute the expansion

y ∼ y0(T, s) + µλ+1/3y1(T, s) + · · · (19)

into (18), yielding y0 = y0(s), and

O(µλ+1/3) : y1T = −y0s + α− µ2λ−2/3 · A
2

2
− µ2λ−2/3 · A

2

2
cos(2T ) + µλ−1/3 · 2Aycos(T )− y20 . (20)

We apply the solvability condition (9) to (20), yielding

y0s = α− y20 − µ2λ−2/3A
2

2
, ⇒ y0 = −Ai′(α− µ2λ−2/3 · A2

2 )

Ai(α− µ2λ−2/3 · A2

2 )
. (21)

The local approximation of the attracting solution for a = O(µ2/3) is given by

x ∼ µλ · [−Acos(Ωt)] + µ1/3 ·
[

−Ai′[(a− µ2λ A2

2 )/µ2/3]

Ai[(a− µ2λ A2

2 )/µ2/3]

]

+ · · · . (22)

For 1
6 < λ < 1

3 , we substitute the expansion (15) into (17) and get the same approximation as (22) in the end.
For λ ≤ 1

6 , the frequency is treated as O(1) and is not considered here.
Comparing (22) with (3), and recalling the relationship Ω = µ−λ, we find that the position of the tipping point

is determined by a that satisfies Ai[(a − A2

2Ω2 )/µ
2/3] = 0. Then the tipping point with high frequency forcing and

slowly drifting bifurcation parameter is given by

ahf ∼ ad + ap = µ2/3K +
A2

2Ω2
, (23)

for K given in (4) and ap giving the same shift due to the periodic forcing as observed for the bifurcation point in
(13) for µ = 0. Recall that in this section we consider the case A = o(Ω), with larger values of A discussed below.

Figure 2 shows the effect of the high-frequency oscillation in (1) on the location of the tipping point. For higher
frequency the location is almost the same as the case with no oscillation but for lower frequency (smaller values of
λ) there is earlier tipping. We also see that a slower oscillatory forcing in (1) results in a larger amplitude oscillation
around the slowly varying equilibrium solution found without oscillatory forcing (2), consistent with the expression
for the outer approximation (16).

In [15, 16], it was shown that early tipping can be triggered also by white noise, in the system obtained by
replacing the periodic forcing in (1) with an additive white noise, specifically, dx = (a− x2) dt + ǫdW (t) for W (t)
a standard Brownian motion. Early tipping is shown to occur with non-negligible probability for noise amplitude
ǫ = O(µ1/2) or larger. For the shifted tipping points shown in Figure 2 (RIGHT) resulting from noisy and periodic
forcings, the amplitude of the oscillatory forcing (A = O(1)) is an order of magnitude larger than the noise coefficient
(ǫ = o(1)) that generates a comparable advance of tipping. The probability of early escape, corresponding to x
crossing the unstable branch, is in the range .25 < P (x < −√

a) < .43 for a varying between a = .05 and a = .025
for the parameters shown here. An asymptotic approach for the corresponding time-dependent probability density
function is given in [17].

In contrast, for high frequency periodic forcing, it is the ratio of amplitude to frequency that plays a significant
role in shifting the tipping point location, rather than the magnitude of the amplitude alone. The asymptotic

6



−0.1 0 0.1 0.2 0.3 0.4
−2

−1.5

−1

−0.5

0

0.5

1

a

x

−0.1 0 0.1 0.2 0.3 0.4
−2

−1.5

−1

−0.5

0

0.5

1

a

x

Figure 2: Tipping is shown for µ = .005. LEFT: The asymptotic approximations of the attracting solution for
A = 1 and λ = .8, (16) (including higher order corrections up to O(µ3λ)) and (22) (blue dashed line) are consistent
with the trajectory generated numerically (green dash-dotted line). The position of the tipping point is compared
with the case of A = 0 (black heavy dots). RIGHT: Blue dashed and green dash-dotted as on the LEFT with A = 1
and λ = .2, compared with the numerical simulation for the stochastic process obtained by replacing the periodic
forcing by an additive white noise (red solid line). The noise coefficient is ǫ = 0.2 for the realization shown.

approximation for the tipping point location ahf given in (23) is compared with numerical simulations in Figure 3
for different drifting rates µ and varying exponent λ for Ω = µ−λ. There we see the competition between the two
components in ahf . For A = 1 and smaller values of µ, that is slower drifting rates, the location of the tipping
point is dominated by ad corresponding to A = 0 (4). In those cases only for smaller values of λ, that is lower
frequencies, is there a noticeable influence of the periodic term, as seen in Figure 3(RIGHT). The advance of ahf
due to the periodic forcing as captured by ap clearly increases with A. For example, the case A = 5 is shown in
Figure 3(LEFT), where there are larger advances associated with ap for decreasing λ as compared with negligible
advances for A = 1 and smaller λ. As noted above, for smaller values of λ (near λ ≈ 1/3 or below), the frequency Ω
of the oscillatory forcing is not necessarily large, depending on the value of µ. Then the expansion (15) is no longer
a reasonable asymptotic approximation, and instead the behavior has some of the features discussed in Section 4 for
low frequency forcing. As seen in Figure 3, the asymptotic approximation is valid for a larger range of λ for smaller
values of µ. The approximation ahf and (22) break down for A ∼ O(Ω), since the coefficient µ2λA2 = A2/Ω2 that
appears in (20)-(22) and in the argument of Ai is treated as o(1) to obtain ahf . We consider results for larger values
of A separately in the next section.

3.3 High Frequency Oscillation with Large Amplitude (A ≫ 1)

In Section 3.1 and 3.2, the asymptotic approximations (16) and (22) are not valid if A = O(Ω) or larger. However,
for some larger values A and frequency Ω, we can rescale (1) to obtain a similar system forced by an oscillation
with amplitude of unity. In certain cases we can apply the approximations from either Section 3.2 or Section 4.1 to
the rescaled system.

Substituting x =
√
Az and t = S/

√
A into (1), we get

dz

dS
= h− z2 + sin(ωS),

dh

dS
= −M,

v(0) = v0 =
x0√
A
, h(0) = h0 =

a0
A
, (24)

where ω = Ω/
√
A, h = a

A , and M = A−3/2µ are the scaled frequency, bifurcation parameter, and drifting rate,
respectively. In order to consider the case A ≫ 1, we assume A = ΩP with P ≥ 1. Then the relationship between
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Figure 3: The position of the tipping point for different frequencies Ω = µ−λ, shown for three drifting rates µ. At
λ = 1 the values of µ shown decrease from left to right in both panels: µ = 0.05 in red; µ = 0.01 in blue; µ = 0.001
in black. The asymptotic approximation (23) is shown by the solid line. The dash-dotted line shows the location
of the tipping point obtained from numerical simulations, defined as the value of a for x = −10. LEFT: A = 5;
the dotted vertical lines show the position of the tipping point ad for A = 0; RIGHT: A = 1; the black dotted line
shows the approximation of the bifurcation point ap = A2/(2Ω2) for µ = 0.

ω and M is given by ω = M ζ , with ζ a function of λ and P

ζ =
P − 2

3P + 2/λ
. (25)

For 1 ≤ P < 4
3 , the high frequency approximation (22) can be applied to (24) if ζ < − 1

6 , which indicates that
λ in Ω = µ−λ satisfies λ > 2

12−9P ≥ 2
3 . For larger values of A (P ≥ 4

3 ), the oscillatory forcing and the drifting
bifurcation parameter both dominate the dynamics to leading order, so that the asymptotic approximation (16)
dominated by the slowly drifting parameter a(t) is no longer valid.

For P > 2 and λ > 0, ζ is positive which indicates that even though (1) has a high-frequency oscillatory forcing,
in the normalized system (24) the relationship between ω and M corresponds to a low-frequency case, discussed in
the next section. We note that ζ is a monotone increasing function with respect to P with a horizontal asymptote
at ζ = 1

3 .

4 Low Frequency Oscillation Ω ≪ 1

For the case of a low-frequency oscillation (Ω ≪ 1), we introduce a new parameter ν > 0 by writing Ω = µν ,
capturing the relationship between the frequency and the drifting rate. In the following we consider two different
cases: ν ≥ 1 so that Ω = O(µ) or smaller, or Ω = µν with 0 < ν < 1. Unlike the high frequency case, for low
frequency oscillations we can not use the method of multiple scales, since the key time scales of drifting and the
frequency are both slow. Then the asymptotic approach relies on understanding the local behavior of the trajectory
that is driven by the slow oscillations.

4.1 Ω = O(µ) or smaller

Here it is convenient to write Ω = c · µ for c a positive constant and to write the system in terms of τ = µt,
expressing x as a function of a(τ) = a0 − τ in (1), to get

− µ
dx

da
= f(a)− x2 = a− x2 +Asin(c · (a0 − a)). (26)
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Substituting x ∼ x0 + µx1 + µ2x2 + · · · into (26), we find the first two terms of the approximate solution as a
function of a(τ)

x ∼ ±
√

f(a) + µ · f
′(a)

4f(a)
+ · · ·

∼ ±
√

a+Asin(c · (a0 − a)) + µ · 1− c · Acos(c · (a0 − a))

4(a+Asin(c · (a0 − a)))
+ · · · , (27)

where the positive sign corresponds to the solution that is attracting. Note that the oscillatory term appears in the
leading order contribution in (27), in contrast to the leading order approximation in the case of the high frequency
oscillations (16) where there is no oscillatory term. Similar to (2), the terms shown in (27) are both O(µ1/3) for
f(a) ∼ O(µ2/3) and the expansion is no longer valid. Then we expect a tipping point near a = ar, where f(a) > 0
for a > ar and f(ar) = 0. A local analysis near a = ar is used to determine the location of the tipping point. In
our analysis and simulations we take a0 > ar for f(ar) = 0 with |a0 − ar| = O(1), ensuring that the system (1)
attracts to the outer solution (27) prior to any tipping.
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Figure 4: Parameter values are µ = Ω = 0.01(c = 1), a0 = 20 for all graphs. LEFT: Numerical simulation of (1).
The Roman numerals correspond to cases with different values of A: Case (I), A = 8.9647; Case (II), A = 8.9797;
Case (III), A = 2.5268; Case (IV), A = 2.5418; Case (V), A = 5. With the exception of Case (V), A is near the
critical value Ac at which there is an abrupt change of the tipping position. Heavy black dots: A = 0. The solid
black square (red circle) corresponds to parameter values (a,A) = (am, Am), in Cases (I) and (II) ((III) and (IV)),
with Am taking values slightly less than the value of A for Cases (I)-(IV). The dashed rectangle indicates the region
shown on a larger scale in Figure 5(LEFT). The blue triangle marks the value of ar where f(ar) = 0 for A = 5.
RIGHT: The location of the tipping point as a function of A in (1) obtained by numerical simulations, with tipping
defined as the value of a where x = −10 as in the previous cases. Different markers indicate the value of A and
corresponding tipping point value, for the trajectories shown in the LEFT figure. Solid (black) square: (I); Open
(blue) square: (II); Solid (red) circle: (III); Open (red) circle: (IV); Solid (blue) triangle: (V).

Figure 4 shows numerical simulations of (1) for different values of A and fixed a0, illustrating important charac-
teristics of tipping that are the basis for our analysis. The heavy black dots correspond to A = 0 (no modulations).
For larger values of A, the trajectory x = x(a) exhibits larger oscillations and exhibits tipping before a reaches or
crosses the static bifurcation value at a = 0. As could be expected, the value of a where the tipping occurs increases
with A for a > 0. For amplitudes A where the trajectory crosses x = 0 for a(t) > 0, tipping can occur well before
the static bifurcation point is reached. Abrupt shifts in tipping point location are observed for critical amplitudes
denoted Ac that are slightly greater than Am, where the pair (a,A) = (am, Am) satisfies f(am) = f ′(am) = 0 as
discussed below (31). For example, the Cases (I) and (II) shown in Figure 4(LEFT) have the values of A = 8.9647
and A = 8.9797, respectively, with both values slightly greater than Am ≈ 8.9485 for a0 = 20. However, the tipping
for Case (I) occurs at a ≈ 3.80, (solid black square in Figure 4(RIGHT)), while the tipping for Case (II) occurs
at a ≈ 8.82 (open blue square in Figure 4(RIGHT)). Here the value of am is indicated by the solid black square
in Figure 4(LEFT), which is near the tipping point for Case (II) but not for Case (I). This figure illustrates how
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amplitudes A > Ac cause an early tipping near a value of a where x < 0, while for the same initial condition and
A < Ac, the periodic forcing is not sufficient to drive tipping at the same value of a as for A > Ac. Rather, the
oscillations continue for another period with tipping likely to take place near the next crossing of x = 0. Figure
4(RIGHT) shows the location of the tipping points for all trajectories represented in Figure 4(LEFT), and indicates
the critical values Ac where there are abrupt changes in the tipping point as a function of A. Note that the tipping
points for A < Ac and A > Ac may both correspond to early tipping relative to the static bifurcation a = 0 and
to the unforced delayed bifurcation a = ad in (4), as is true for Cases (I) and (II). For smaller values of Ac, such
as the value near Cases (III) and (IV), amplitudes A > Ac drive early tipping at a > 0 (Case (IV)), while A < Ac

drives tipping at a < 0, delayed relative to a = 0 and a = ad (Case (III)). As we study separately below, the values
Ac are near Am, and are related to the local behavior of the trajectory near am. Figure 5(LEFT) zooms in on the
trajectories (I) and (II) near a = 8.9 and illustrates the obvious change of concavity near am, which proves to be
an essential part in estimating Ac.

Before we investigate the solution near (am, Am) where f(am) = f ′(am) = 0 (and near Ac), we first consider the
case where tipping occurs close to a = ar where f(ar) = 0 and f ′(ar) = O(1), as in case (V) in Figure 4(LEFT).
Near a = ar, specifically f(a) = O(µ2/3), we substitute a− ar = µ2/3B and x = µ1/3X into (26), yielding

O(µ2/3) : −XB = f ′(ar)B −X2 = [1− cAcos(c · (a0 − ar))]B −X2, (28)

which has the solution for f ′(ar) 6= 0,

X = −C1/3Ai
′(C1/3B)

Ai(C1/3B)
, ⇒ x = −(µC)1/3

Ai′((C/µ2)1/3(a− ar))

Ai((C/µ2)1/3(a− ar))
, C = f ′(ar). (29)

Similar to the analysis for (3) and (22), the location of the tipping point is determined by the singularity of (29)
where Ai((C/µ2)1/3(a− ar)) = 0, which is

alf = ar + ad/(f
′(ar))

1/3 for f(ar) = 0 and f(a) > 0 for a > ar, (30)

where ad is given in (4). We differentiate f(ar) = 0 with respect to A, to obtain dar/dA = (CA)−1ar, which
indicates that the location of the tipping point increases (decreases) with increasing A for ar negative (positive), as
shown in the Figures 4(RIGHT) and 7(RIGHT).

Noting that (29) is obtained from (28) for f ′(ar) 6= 0, we propose a separate analysis for (a,A) close to (am, Am),
which satisfy the conditions,

f(am) = am +Amsin(c · (a0 − am)) = 0, (31)

f ′(am) = 1− cAmcos(c · (a0 − am)) = 0, ⇒ c2a2m + 1 = c2A2
m. (32)

The behavior of f(a) near am for A = Am is shown in Figure 5(LEFT). Figure 5(RIGHT) shows Am as a function
of am for different values of a0 as in (31) and (32). From these conditions, we see that for each a0 there is a family
of initial values a0 +

2kπ
c for k an integer that corresponds to the same pair (am, Am). Equations (31) and (32)

indicate that Am > 1/c and 0 < am < Am. We take A > 0 in (1), noting that similar results can be found for
A < 0.

A comparison of Cases (I) and (II) in Figure 4(LEFT) with Figure 5(LEFT) suggests that the critical amplitude
Ac, for which there is a jump in the location of the tipping point, is near Am, with Ac > Am. Furthermore, the
trajectories shown in Figure 5(LEFT) have different concavities near a = am for A above and below Ac. Specifically,
for amplitudes A > Ac for which an early tipping occurs, the trajectory is concave down near its crossing of x = 0.
In contrast, if A < Ac, the trajectory is concave up near its crossing of x = 0 and no tipping occurs there, yielding
oscillations for another period with tipping likely to take place near the next crossing of x = 0. Therefore, to find
Ac and the corresponding tipping point, we consider the concavity of x in (26) with respect to a near am. Using
(26), we write x′′(a) in terms of the local variables

a− am = µη, x = µξ, and A = Am + µA1 , (33)

to focus on the neighbourhood of a = am and on amplitude values near Am. Substituting the local variables (33)
in (31) and (32), and expanding sin(cµη) and 1 − cos(cµη) for µ ≪ 1, we obtain the leading order expression for
the local concavity of ξ(η),

d2ξ

dη2
= µ

(

A1

Am
− c2amη +

2A1am
Am

ξ

)

+O(µ2). (34)

10



8.7 8.8 8.9 9 9.1 9.2
−1

−0.5

0

0.5

1

a

 

 

(I)
(II)

0 2 4 6 8 10
1

2

3

4

5

6

7

8

9

10

a

A

(I)&(II)

(III)&(IV)

Figure 5: For all graphs, µ = Ω = 0.01 (c = 1). LEFT: Figure 4(LEFT) zoomed-in near am for f ′(am) = 0 (black
square), with f(a) for a0 = 20 and A = Am = 8.9485 given by the red dashed curve. Numerical simulations of Case
(I) (solid black line, A = 8.9647) and Case (II) (dash-dotted blue line, A = 8.9797) are also shown. RIGHT: Am as
a function of am (solid red line), with a0 varying along this line as in (31) and (32). The black square (red circle)
marks the value of am and Am for Cases (I) and (II) (Cases (III) and (IV)), with a0 = 20 as in Figure 4.

From (34) we find that the leading order expression of ξ = x/µ that separates trajectories of different concavities
is given by

ξc =
c2Am

2A1
η − 1

2am
. (35)

Then for ξ > ξc (ξ < ξc), near a = am the trajectory is concave up (down). To determine the critical value A1 (and
thus Ac) for which the trajectories change concavity we compare (35) to the trajectory itself in terms of the local
variables η, ξ, and A1. The local expression for the trajectory ξ is found by substituting (33) into (26), and using
the expansion ξ ∼ ξ0 + µξ1 + µ2ξ2 + · · · ,

ξ ∼ A1am
Am

η + c0 + µ

[

−(
1

2
c2am − A2

1a
2
m

A2
m

)
η3

3
+

A1

Am
(1 + 2c0am)

η2

2
+ c20η + c1

]

+ · · · , (36)

where c0 and c1 are undetermined constants. It is the comparison of the slope of the concavity threshold (35),
c2Am/(2A1), to that of the trajectory (36), A1am/Am, that yields the result for A1. If A1am/Am < c2Am/(2A1)
for a− am = O(µ) and x = O(µ), then trajectories that enter the concave up region stay there, as shown in Figure
6(LEFT), and tipping does not occur near η = 0 (a = am). Alternatively, if A1am/Am > c2Am/(2A1), then locally
the trajectory has a slope greater than that of the concavity threshold and trajectories that are near or below (35)
for a near am cross into or continue in the concave down region, resulting in tipping as shown in Figure 6(RIGHT).
Then the critical value of A1 for the change in concavity satisfies

A2
1 =

Ωc2A2
m

2µ
√

c2A2
m − 1

, c =
Ω

µ
⇒ Ac ∼ Am + µA1. (37)

where we have used (32) to eliminate am and (33) to get Ac.
To arrive at (37), we assumed that for A < Ac, the trajectory (36) is above the concavity threshold (35) in the

local region (33). To verify this assumption, we compare the ξ-intercept of the concavity threshold (35), − 1
2am

, to
that of the trajectory, which to leading order is c0. Then c0 is determined by matching the local expansion (36)
with the outer expansion (27), as shown in Appendix C,

c0 = − 1

2am
+ C1 + C2.

The ξ-intercept of the trajectory, relative to −1/(2am) is obtained from the sign of C1 + C2. As discussed in

Appendix C, for A1am

Am

< c2Am

2A1

(A1am

Am

> c2Am

2A1

) we find that C1 + C2 > 0 (C1 + C2 < 0), which is consistent with
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Figure 6: View of Cases (I) and (II) as in Figure 4(LEFT), zoomed in on the scale |a−am| = µ1/3, with |a−am| = µ
indicated by red dashed lines. The black square is the value of am where f(am) = f ′(am) = 0. LEFT: The trajectory
of Case (I) (solid black line) is compared with the concavity threshold (35) (black dashed line with markers). RIGHT:
The trajectory of Case (II) (blue dash-dotted line) is compared with the concavity threshold (35) (blue dashed with
markers).

our assumptions in the derivation of (37). Figure 6 illustrates the local behaviour by comparing the trajectory and
the concavity threshold near a = am.

The panels in Figure 7 illustrate the dependence of these results on the ratio c = Ω/µ, and compare the tipping
point locations obtained by asymptotic approximations (30) and (37) and by numerical simulations. The variation
of Am and Ac with the parameter c is observed by comparing the values of Am shown in Figure 7(LEFT) and
Figure 5 (RIGHT), and noting the values of Ac where there is a jump in the location of the tipping point in Figure
7(RIGHT). There we see that these jumps occur near A = 9 and near A = 2 for the cases with c = 1 (blue and
green lines), in contrast to the cases with c = .2 where 6 < Ac < 7 (red and black lines). Figure 7 also shows good
agreement between results for the location of the tipping point as a function of A obtained from simulations and
from the asymptotic approximation for Ω ≪ 1.

4.2 Ω = µν (0 < ν < 1)

For c ≫ 1, so that the low frequency is large compared with the drifting rate, µ ≪ Ω ≪ 1, the approximation (37)
is not valid since it is based on the assumption that c = O(1). Nevertheless, simulation results shown in Figure
8(LEFT) for Ω relatively small illustrate phenomena similar to that shown in Figure 7(RIGHT). As in the previous
case of Ω = O(µ), for a given a0 there are values Ac at which there are abrupt shifts in the location of the tipping
point as a function of the amplitude. These shifts are related to changes of concavity in the trajectory near a local
minimum of f(a) at a = amin, so that we can again use the concavity to identify Ac. As above, an early tipping
occurs near a value of a where x < 0 for A > Ac, while for the same initial condition and A < Ac, oscillations
continue for another period with tipping taking place on a future crossing of x = 0. There are also noticeable
differences for Ω = µν , since the frequency is larger than in the previous section. For example, the consecutive
crossings of x < 0 are closer together for larger frequencies, so that the shifts between tipping point location at
A = Ac decrease with ν and the values of Ac are closer together. Furthermore, f(amin) < 0 may be O(1) for amin

near the tipping point, in contrast to f(am) = 0 in Section 4.1 as shown in Figure 5. As a result, we modify our
approach for calculating Ac.

To approximate Ac for Ω = µν , we first consider the outer approximation to (26) given by (27) with c = µν−1.
As in Section 4.1 this approximation is valid only for f(a) > 0, since as f(a) approaches 0, the terms shown in (27)
are both of the same order for µ ≪ 1. To estimate Ac in this case, we must consider multiple local minima amin of
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Figure 7: LEFT: Values of Am (red solid line) from (31) and (32) as a function of am for c = 0.2. The black
square marks the value of am and Am near parameter values where there is an abrupt change in the tipping point
location, shown for the cases with c = .2 in RIGHT. RIGHT: The position of the tipping point as a function of
amplitude A, comparing the asymptotic approximation (30) with jumps at values (37) (solid lines) with numerical
simulation, defining the tipping point as the value of a when x = −10 (dash-dotted lines with markers). Different
colours indicate different combinations of frequency Ω and drifting rate µ. Blue: Ω = 0.01, µ = 0.01, and a0 = 20;
Red: Ω = 0.01, µ = 0.05, and a0 = 32; Green: Ω = 0.1, µ = 0.1, and a0 = 20; Black: Ω = 0.1 and µ = 0.5, and
a0 = 32.

f(a) for a given a0, satisfying

f(amin) = amin +Asin(µν−1(a0 − amin)) < 0, (38)

f ′(amin) = 1− µν−1Acos(µν−1(a0 − amin)) = 0, ⇒ cos(µν−1(a0 − amin)) = µ1−ν 1

A
. (39)

Since we are considering larger values of the frequency Ω, the values of amin are relatively close together and close
to values where f(a) = 0. Then we can not use a local analysis near values of a where f(a) = 0, as was done near
ar in (28), but instead restrict our analysis near amin for f ′(amin) = 0.

Substituting a = amin + µη and x = µξ into x′′(a) using (26), (38), and (39), we get the local expressions for
the trajectory and its concavity. Keeping the terms that dominate these expressions for µ ≪ 1 yields

µ
dξ

dη
= −f(amin), (40)

µ
d2ξ

dη2
= µ2ν(f(amin)− amin)η − 2µf(amin)ξ. (41)

As in Section 4.1, we look for the critical value of A = Ac that corresponds to the value where the local slope of the
trajectory is equal to that of the concavity threshold. The latter is obtained from setting ξ′′(η) = 0 in (41) yielding

ξc =
µ2ν(f(amin)− amin)η

2µf(amin)
. (42)

Equating the coefficient of η from the righthand side of (42) with ξ′(η) in (40) gives the relation

− 2f2(amin) = µ2ν(f(amin)− amin). (43)

Then, using (38)-(39) and (43), we can eliminate f(amin) and obtain a system of equations for the pair (amin, Ac),

amin =

√

A2
c −

µ2

Ω2
− Ω√

2

[

A2
c −

µ2

Ω2

]1/4

, (44)

amin = a0 +
µ

Ω

[

cos−1

(

µ

AcΩ

)

− 2kπ

]

, (45)
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where k is a positive integer. Note that for fixed a0 the system of equations (44)-(45) is valid for µ = o(Ω). It
has more than one solution, that is, more than one pair (amin, Ac) at which is there is a change in concavity and
thus a jump in the location of the tipping point as a function of A. Then for small µ or sufficiently large Ac,
cos−1(µ/(AcΩ)) ∼ π/2 in (45), so that the jumps in the value of amin are dominated by 2kπµ/Ω for integers k,
related to the multi-valued function cos−1(·).

Figure 8(LEFT) compares the position of the tipping points obtained from numerical simulation with the asymp-
totic approximation for the critical values amin and Ac given by (44)-(45). Figure 8 illustrates this approximation
for µ = .1, both for Ω = µν for ν ≈ .3, and for Ω = O(1). While the latter case does not appear to be covered by
the asymptotic analysis, we recall that in Section 3.3, we showed that the case A > Ω2 with Ω = µ−λ for λ > 0
can be studied as a low frequency case by rescaling (1) into the normalized system (24). This rescaled system, with
frequency ω < 1 and slow drift parameter M ≪ 1, can be analyzed using expressions analogous to (44)-(45). For
µ
Ω ≪ 1, we see that (44)-(45) provide a good approximation for the location of the tipping point and the values of
A for which there is a jump in location, even though we do not have an analytical approximation for the solution x
for Ω = O(1) and µ ≪ 1. For larger values of Ω with µ fixed, there are more values of Ac where this jump occurs,
and the corresponding values of a = amin are closer together. The increasing number and reduced distance between
these jumps indicates that as Ω increases further, the relationship between the amplitude A and the location of the
tipping point is a continuous function, as shown in Section 3.2 for large frequency.
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Figure 8: The drifting parameter is µ = .1 for all graphs. LEFT:Numerical simulations of the position of the tipping
point (dash-dotted lines), defined as the value of a when x = −10, compared with markers indicating (amin, Ac)
from (44) and (45), the critical values of the amplitude at which there is an abrupt change in the location of the
tipping point. Red dash-dotted line and solid squares are for the case Ω = 0.5 and a0 = 20. Black dash-dotted lines
and solid circles are for the case Ω = 1.2 and a0 = 20. RIGHT: Numerical simulation of (1) with A near Ac in the
location of the tipping points in (LEFT): A = 8.7 (red solid) and A = 8.9 (red dash-dotted), both with Ω = 0.5;
A = 7.1 (Black solid) and A = 7.3 (Blue dash-dotted), both with Ω = 1.2. The black square and red circle mark
the related amin for Ω = .5, 1.2, respectively, satisfying (44) and (45).

The analysis of large amplitude oscillatory forcing in Section 3.3 suggests a rescaling of the system, which allows
the asymptotic approximations to be extended to some cases where the frequency is not particularly large or small
relative to the drifting rate of the bifurcation parameter. In Figure 9 we compare results for low, high, and O(1)
frequencies Ω, illustrating how the location of the tipping point varies with the amplitude and frequency of the
periodic forcing.

5 Example 1: Morris-Lecar Model

We consider the Morris-Lecar(ML) model [31, 33] with a slowly increasing input current and an additive periodic
external input. The ML model has been used widely as a two-dimensional model, relatively straightforward to
analyze, that captures certain dynamical behaviour observed for different types of neurons with a variety of states.
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Figure 9: Position of the tipping point as a function of A in (1) obtained by numerical simulation, defined as the
value of a where x = −10 ( dash-dotted line with solid circles) compared with the asymptotic approximation (solid
line) for Ω = 0.1(red); Ω = 5(blue); and Ω = 10(magenta) with µ = 0.1 and a0 = 20. The black dash-dotted
lines give the location of the tipping point determined numerically for Ω = 1.2, which are compared with the black
circles indicating the value of A where there is jump in the location of the tipping point based on the asymptotic
approximation (44) and (45).

It has the general form

γ
dv

dt̂
= −gCam̂∞(v)(v − vCa)− gK(v − vK)w − gL(v − vL) + Ibias + Iext, (46)

dw

dt̂
= κ̂(v)(ŵ∞(v)− w),

dIbias

dt̂
= µ̂,

m̂∞(v) =
1

2

(

1 + tanh

(

v − v1
v2

))

, ŵ∞(v) =
1

2

(

1 + tanh(

(

v − v3
v4

))

, κ̂(v) = φcosh

(

v − v3
2v4

)

,

where v represents the membrane voltage potential and w is the probability of opening of K+ channels (0 ≤ w ≤ 1).
This simplied model of excitability depends on three ionic currents for calcium, potassium, and leakage, described
by the terms with the relevant conductances, gCa, gK , and gL. The periodic external input is Iext, Ibias represents
the bias or base current in the neuron, and we refer the reader to [32] for additional details. Here we take the
commonly used fixed constants as given in [33]: vK = −84mV, vL = −60mV, vCa = 120mV, c = 20µF/cm2,
v1 = −1.2mV and v2 = 18mV, gK = 8mS/cm2, gL = 2mS/cm2, gCa = 4.4mS/cm2, v3 = 12mV, v4 = 17.4mV,
and φ = 1

15ms−1. The dynamical behavior of (46) with µ̂ = 0 has been well studied for Iext = 0, with the current
Ibias = constant often playing the role of the bifurcation parameter. For that case there is a SNIC (saddle node on
an invariant circle) bifurcation [34] at Ibias = Ic ≈ 44.09µA/cm2, and corresponding voltage v = vc ≈ −27.14mV,
so that for Ibias < Ic, there exists a stable equilibrium and unstable equilibria. For Ibias > Ic, the system exhibits
oscillations whose frequency increases from zero with Ibias − Ic, and there is a Hopf bifurcation for Ibias above
60µA/cm2, which we do not consider here. The dynamics of a ML-type neuron with periodic external input and
constant Ibias has been studied in [35]-[36].

We focus on transitions from the stable steady state to oscillations for a current that is slowly increasing with
rate µ̂ ≪ 1, modeled here as slowly varying Ibias for simplicity but alternatively it could be an input current, and
a periodic forcing Iext = Â sin(Ω̂t). Sample trajectories superimposed on the static bifurcation structure are shown
in Figure 10. To determine the tipping points, that is, the value of Ibias for the transition, we transform (46) to
a form similar to the canonical model (1), rescaling time t̂ = γt and normalizing the system about the bifurcation
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point (vc, Ic),

dx

dt
= h(x)− gK(x+D)w + b(t) +Asin(Ωt)

= b(t)− gCam∞(x)(x + 1− vCa

vc
)− gL(x+ 1− vL

vc
) +

Ic
vc

− gK(x+ 1− vK
vc

)w +Asin(Ωt), (47)

dw

dt
= κ(x)(w∞(x) − w), κ(x) = γκ̂(vc(x+ 1)), w∞(x) = ŵ∞(vc(x+ 1))

db

dt
= −µ = − γ

|vc|
µ̂

x =
v − vc
vc

, b =
Ibias − Ic

vc
, Ω = γΩ̂c, vcA = Â, m∞(x) = m̂∞(vc(x+ 1)) .

For µ = 0 and A = 0, the bifurcation point (bc, xc) is at the origin for the transformed system (47). Figure 10 shows
the bifurcation diagram for (46) and (47), with trajectories for A = 0 and A 6= 0 obtained from the corresponding
systems with µ 6= 0. We note here that for the transformed system, the bifurcation parameter b and dependent
variable x take O(1) values. For the system in this form, it is then straightforward to identify different scales related
to slow drift, high and low frequency, or large amplitude. Such an identification is important in choosing the correct
approach to approximate the tipping point.
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Figure 10: LEFT: The bifurcation diagrams of (46) indicating the stable (red solid) and unstable (red dashed)
branches. The trajectories for Â = 0 (green dash-dotted line) and Â 6= 0 (blue dashed line) are superimposed on
these curves , with the corresponding tipping points indicated by solid circles. Note that tipping occurs for a smaller
value of Ibias for the case Â 6= 0. RIGHT: Same as LEFT, but for the transformed system (47).

Before considering the case with A 6= 0, we give an analytical expression for the tipping point without oscillatory
forcing A = 0, which is compared below with the tipping point for A 6= 0. It is useful to find the tipping point for
the generic system of the form

dx

dt
= Da+ k0 + k1x+ k2x

2 ,
da

dt
= −µ . (48)

Applying the scaling of [9] described in Section 2, completing the square in (48) and using a straightforward
transformation again yields an Airy equation, from which we obtain the singularity corresponding to the tipping
point for (48),

ag = (D|k2|)−1/3ad −
as
D

for as = k0 +
k21

4|k2|
, (49)

where ad is the tipping point in (4) for the symmetric case and as gives the shift for a general quadratic polynomial
in (48), in contrast to the symmetric case.
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For A = 0 in (47) we obtain an approximation to the tipping point using a local expansion about x = 0. Noting
that 0 < κ(0) = O(1) we expect w to relax to w∞, so that the local approximation for (47) is

dx

dt
≈ b+ h0

0 + h0
1x+ h0

2x
2 − gK(x+D)[w∞(0) + w′

∞(0)x+ w′′
∞(0)x2/2] (50)

db

dt
= −µ, h0

j = j!h(j)(x)|x=0 .

Then the approximate tipping point for A = 0 is given by (49) with D = 1 and

k0 = h0
0 − gKDw∞(0), k1 = h0

1 − gK(w∞(0) +Dw′
∞(0)), k2 = h0

2 − gK

(

w′
∞(0) +Dw′′

∞(0)

2

)

. (51)

Note that k0 = k1 = 0 in (51) following from the quadratic form for the saddle node bifurcation at b = 0 and x = 0,
so that resulting tipping point for (50) is bml = |k2|−1/3ad.

5.1 High Frequency Oscillation Ω ≫ 1

We use the approach of Section 3.2 to study the case µ ≪ 1 and Ω ≫ 1 in (47), again writing Ω = µ−λ. We restrict
our attention to the case where A = O(1).

We introduce the fast time scale T = µλt and the slow time scale τ = µt, and substitute the multiple scale
approximations for x and w

x ∼ x0(T, τ) + µλx1(T, τ) + · · · , (52)

w ∼ w0(T, τ) + µλw1(T, τ) + · · · , (53)

into (47), yielding the sequence of equations

O(1) : x0T = w0T = 0,⇒ x0 = x0(τ), w0 = w0(τ), (54)

O(µλ) : x1T = b+ h(x0)− gk(x0 +D)w0 +Asin(T ),

w1T = κ(x0)(w∞(x0)− w0) . (55)

We apply a solvability condition similar to (9), namely that the inner product of the right-hand side of (55) with
the homogeneous solutions (x and w constant with respect to T ) vanishes. This yields

lim
L→∞

1

L

∫ L

0

[b+ h(x0)− gK(x0 +D)w0 +A sin(T )] dT = 0 (56)

lim
L→∞

1

L

∫ L

0

κ(x0)(w∞(x0)− w0) dT = 0 .

Then the asymptotic approximation of x for b(τ) = O(1) is

x ∼ x0 + µλ[−Acos(T )] + · · · , where − b = h(x0)− gK(x0 +D)w∞(x0) (57)

w ∼ w∞(x0) + · · · ,

where x0 in (57) is the stable equilibrium of (47), shown as the solid curve in Figure 10 (RIGHT). The asymptotic
approximation describes the attracting solution of (47) away from b = 0, but does not give the tipping point.

To determine the location of the tipping point, we use a local approximation for x ≪ 1 similar to that used in
Section 3.2,

x = X (T ) + z(T, s), X (T ) = −Ω−1Acos(T ) (58)

w = W0(T, s) + Ω−1W1(T, s)

z = z0(T, s) + Ω−1z1(T, s), s = µ1/3t , (59)

that is, the solution is given by oscillations on the T scale plus a correction z. We could introduce additional scalings
of z = O(µ1/3) and b = O(µ2/3) as in (3.2), but as it does not affect the result, we use z and b for simplicity. We
also introduce quadratic polynomials given by Taylor expansions of h(x), κ(x) and w∞(x) about x = 0, facilitating
explicit expressions for the tipping point. Then substituting (58)-(59) into (47), we find that W0T and z0T vanish,
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so that W0 = W0(s), z0 = z0(s). Approximations for W0 and z0 are obtained at the next order, analogous to (20)
as shown in Appendix D. We apply the solvability condition as in (56), to the equations for W1 and z1 yielding for
W0

W0 ∼ w∞(0) +W00 +W01z0 +W02z
2
0 . (60)

with the coefficients W00, W01, and W02 given in (116). Then the equation for z0 written in terms of t is,

z0t = b+ h0
0 + h0

1z0 + h0
2z

2
0 + h0

2

A2

2Ω2
− gK(z0 +D)W0, (61)

Applying (48)-(49) yields the singularity for (61)

bhf = |hhf
2 |−1/3ad − bs for bs = hhf

0 +
(hhf

1 )2

4|hhf
2 | where (62)

hhf
0 = −gkDW00 + h0

2

A2

2Ω2
, hhf

1 = −gK(W00 +D(W01 − w′
∞(0))) .

hhf
2 = h0

2 − gK(W01 +DW02) ,

where we have used the fact that k0 and k1 in (51) vanish. Note that for Ω ≫ 1, W01 − w′
∞(0) and W00 are

proportional to Ω−2, as are hhf
0 and hhf

1 . Then we recover (51) as Ω−2 → 0.
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Figure 11: The value Ibias corresponding to tipping in (46) vs. λ for Ω = µ−λ. The asymptotic results obtained
from (62) (solid lines) are compared with numerical simulations (dash-dotted lines), obtained using the condition
for tipping as v = |vc| in (46). LEFT: Results are shown for amplitude A = 2 (Â = −54.275) and two drifting
rates µ = .001 (µ̂ = 0.0014) (red) and µ = .02 (µ̂ = 0.0271) (blue) with asymptotes for large Ω approximated by
(51) (vertical dotted lines) as Ibias = 44.58 and Ibias = 47.65, respectively. RIGHT: Results are shown for µ = .003
(µ̂ = .0041) and amplitude values A = 2 (red) and A = 8 (Â = 217.10) (blue), with earlier tipping for larger ratios
A/Ω.

In Figure 11 we compare the asymptotic approximation for the tipping point for Ibias obtained from (62) as a
function of the exponent λ for Ω = µ−λ with numerical simulations for different drifting rates µ and amplitudes
A. For larger values of the ratio A/Ω we see an increased advance of the tipping point. For larger λ corresponding
to higher frequencies Ω, the delay effect caused by slowly varying drifting rate µ̂ dominates the location of the
tipping point, regardless of the amplitude of the oscillatory forcing. For smaller λ, larger amplitude Â triggers
earlier tipping.

We note the importance of deriving these results within the framework of the transformed system (47) for x.
Figure 11 shows good agreement of the asymptotic and computational results for Ω = µλ over the range λ > .3, as
predicted by the asymptotic results for the canonical model. Considering the variables of the original ML system
(46), we see that Ω̂ is smaller than Ω by a factor of γ = 20, while µ̂ ≈ 1.36µ. Applying the asymptotic analysis
in the original variables could suggest that good approximations are available over a smaller range of parameter
values, and could lead to the use of an expansion that is not appropriate for the dynamics.
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5.2 Low Frequency Oscillation Ω ≪ 1

As in Section 4, we write Ω = Cµ, rescale time as τ = µt and write x and w as functions of b(τ) = b0 − τ . Then
(47) becomes

−µ
dx

db
= b+ h(x)− gK(x+D)w +Asin(C(b0 − b)) (63)

−µ
dw

db
= κ(x)(w∞(x)− w) . (64)

Substituting the asymptotic expansion (53), we find the leading order approximation of w(x) is w0 = w∞(x0) for
x0 ∼ O(1) and for x0

b+ h(x0)− gK(x0 +D)w∞(x0) +Asin(C(b0 − b)) ≡ Φ(x0, b) = 0 . (65)

As in Section 4, we expect the tipping to occur in the region where the outer approximation is not valid, for a pair
(br, xr). A Taylor expansion of Φ about xr evaluated at br, keeping up to quadratic terms, yields

x0 − xr = − 1

2Φr
2

[

Φr
1 ±

√

(Φr
1)

2 − 4Φr
2 · F(br)

]

Φr
j = j!

∂jΦ

∂xj
(xr, br), F(br) = Φr

0 , (66)

where the positive sign corresponds to the solution that is attracting. It follows that the approximation for x0 is no
longer valid for b < br where 4F(br) = (Φr

1)
2/Φr

2 and 2(x0 − xr) = −Φr
1/Φ

r
2. As x0 → xr, Φ

r
1 → 0, from which we

conclude that xr = xc = 0, the value of x at the saddle node bifurcation for the static case. As a result we expect
that tipping occurs near b = br and x = 0. Note that F(b) then has the same functional form as f(a) in (26).

As in Section 4 we use a local analysis in terms of b− br = µ2/3B and x = µ1/3χ applied to (63), yielding

− µ2/3χB = F ′(br)µ
2/3B + k2(µ

1/3χ)2 + o(µ2/3). (67)

where F ′(br) = 1− CA cos(C(b0 − br)) and k2 is given in (51). Then using the result (49) yields the tipping point

blf = br +
ad

(F ′(br)|k2|)1/3
. (68)

The result for blf relies on F ′(br) = O(1), and as in Section 4, if F ′(b) vanishes the approximation (67) is not valid.
Near a value b = bm where F(bm) = F ′(bm) = 0 we again expect to find a jump in the location of the tipping
point as a function of amplitude for a critical value A = Ac. Following the analysis of Section 4 we provide a local
analysis for (b, A) close to (bm, Am), which satisfy the conditions

F(bm) = bm +Asin(C(b0 − bm)) = 0, (69)

F ′(bm) = 1− CAmcos(C(b0 − bm)) = 0, ⇒ 1 + C2b2m = C2A2
m . (70)

To find Ac > Am for which there is a jump in the location of the tipping point, we consider the concavity of x in
(63) with respect to b near bm. Substituting local variables

b− bm = µη, x = µξ, and A = Am + µA1, (71)

into (63) and (64), we find the leading contributions to x′(b) and x′′(b) in terms of the local variables,

d2ξ

dη2
= µ

A1

CAm
− µ(C2ηbm)− µk2ξ

2A1bm
Am

+O(µ2) (72)

dξ

dη
=

bmA1

Am
+O(µ), (73)

for k2 from (51). From (72) we see that the line corresponding to the concavity threshold, across which the trajectory
of x changes its concavity, is given by

ξML
c = −C2Am

2k2A1
η +

1

2Ck2bm
. (74)

We compare the slope of (74) to the slope of x from (73), as in (35)-(37). Where these two slopes are equal, we find
the change in concavity of the trajectory that corresponds to tipping. Setting the slope of (74) equal to (73), and
solving for A1 yields
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Figure 12: Results are shown for µ = .04, Ω = 0.2. LEFT: The location of the tipping points obtained by numerical
simulations of (46) (Red dashed line with dots) as a function of amplitude Â, compared with the asymptotic
approximation given by (68) (Red solid), with tipping defined as v = |vc|. RIGHT: Numerical simulations for
different amplitudes Â, −Â ≈ 13.02 (black solid) and −Â ≈ 15.20 (blue dashed). The related tipping points are
shown as the black solid square and blue open square in LEFT.

A1 =
CAm

√

2|k2|bm
⇒ Ac = Am +

ΩAm
√

2|k2|bm
(75)

Figure 12(LEFT) compares the asymptotic approximation of the location of the tipping points given by (68)
and (75) to the results from numerical simulations. We show the tipping point as a function of the amplitude Â,
with the jump in this curve occuring at the amplitude threshold Ac given by (75). Figure 12(RIGHT) illustrates the
character of the early transition near A = Ac for (46) with early tipping occuring for A > Ac but not for A < Ac.
For the value of Ibias where early tipping occurs, there is not an attracting oscillatory solution nearby, so following
the tipping event, the system does not remain in the oscillatory state. This behavior is in contrast to the system
(1), for which the tipping is irreversible. For some combinations of b0 and A, the tipping point for (47) associated
with Ac is closer to the SNIC bifurcation, in which case after the tipping for A > Ac the system remains in the
oscillatory state.

6 Energy balance model for sea ice

We apply the analysis to an energy balance model developed by Eisenman and Wettlaufer [11], as mentioned in the
Introduction. The model describes sea ice dynamics in terms the change of the energy per unit area, stored either
as latent heat in sea ice or as sensible heat in the ocean mixed layer,

E ≡
{

−Lihi E < 0
cmlHmlTml E ≥ 0,

(76)

where Li is the latent heat of fusion for sea ice, hi is the thickness of sea ice, cml is the heat capacity of the ocean
mixed layer, Hml is the depth of the mixed layer, and Tml is the temperature difference from the freezing point 0◦C.
The reduced system, derived from the full heat conduction equations for sea ice thermodynamics of [28], expresses
the energy dynamics in terms of sensible and latent heat fluxes, outgoing longwave and incoming shortwave radiative
surface fluxes. We focus on the partially linearized version model of [11] that neglects ice export which has the form

dE

dt
= [1− α(E)]FS(t)− F0(t) + ∆F0 − FT (t)T (t, E) + FB. (77)

Here FS(t) describes the shortwave radiation flux which is seasonally varying, with [1 − α(E)]FS(t) describing
surface shortwave radiation related to albedo feedback,

α(E) =
αml + αi

2
+

αml − αi

2
tanh

(

E

Lihα

)

, (78)

20



where αml and αi are constants for albedo feedback for the mixed layer and surface ice, respectively. The factor
hα is an ice thickness range for smooth transition from αi to αml. The temperature dependence of the surface
flux is obtained via a linearization of the Stefan-Boltzmann equation, resulting in the outgoing longwave radiation
contributions F0(t) + FT (t)T (t, E), with the seasonal variation in F0(t) and FT (t) determined from combined
modeling and observational data (see SI Appendix of [11] for details). The partial linearization given in [11] follows
from taking the surface temperature T (t, E) as

T (t, E) =
E

cmlHml
. (79)

The term FB describes the heat flux into the bottom of the sea ice or the ocean mixed layer. The additional
contribution ∆F0 captures a change in the surface heat flux, representing warming in the model for ∆F0 > 0.

In [11] the nonlinear threshold behavior of the energy was studied through the bifurcation structure of (77)
with the seasonally varying terms F0(t), FS(t) and FT (t). Attracting periodic states for fixed ∆F0 were determined
by simulating the equation, allowing the system to reach the attracting state, and recording the minimum and
maximum value of E for the particular value of ∆F0. For the parameters in [11], there are two branches of
attracting states for E > 0 and E < 0 in terms of ∆F0, the bifurcation parameter describing the change to the
surface heat flux. These states are bistable for a range of ∆F0, with each branch losing stability to the other via
a saddle node bifurcation. Figure 13 shows the branch corresponding to the stable steady state of the averaged
version of (77), that is, with the seasonally varying terms F0(t), FS(t) and FT (t) replaced by their averages, and
for E ≥ 0 and ∆F0 a positive constant. We denote the saddle node bifurcation value on this branch as (∆F0c, Ec),
and also show the unstable branch for that system. As would be expected from the analysis of previous sections,
the saddle node bifurcation for the averaged system differs considerably from the tipping point when there is large
amplitude periodic forcing. The parameters values are as in [11]: Li = 9.4 Wm−3yr, cmlHml = 9.4Wm−2yrK−1,
αi = .68, αml = .2, FB = 2Wm−2, and hα = .5m. The seasonally varying quantities take values in the ranges
130 Wm−2 > F0(t) > 54 Wm−2, 3.3 Wm−2K−1 > FT (t) > 2.5 Wm−2K−1, and 310 Wm−2 > FS(t) > 0 Wm−2.

In considering the case where the surface heat flux varies slowly over time with a rate µ̃ we use the asymptotic
approaches described in previous sections to study tipping from the attracting branch E ≥ 0, noting that by
symmetry a similar approach applies for the other branch E < 0. We contrast the location of the tipping point
for the averaged model with the tipping location in the case where the oscillatory functions F0(t), FS(t) and FT (t)
are not replaced with their averages. Since we obtain analytical expressions for the tipping point, we can easily
explore the parametric dependence on the location of the tipping point, which has implications for the bifurcation
structure as a function of the parameters. We note that the computational approach used in [11] used to explore
bifurcations corresponds to the limit µ̃ → 0.

The fluctuations in F0(t), FS(t) and FT (t) are given as a series of monthly measurements [11] (SI Appendix),
which we interpolate and approximate using a (finite) Fourier series approximation. We assume that the fluctuations
are the same year to year. To allow easy identification of the oscillatory forcing terms, we write (77) in a form
analogous to that of (1) and shift the bifurcation point for the averaged system from (∆F0c, Ec) to the origin as shown
in Figure 13. We rescale the system appropriately, so that the resulting dependent variable x and corresponding
slowly varying parameter b are O(1) quantities. Substituting

x =
E − Ec

Ec
, b =

∆F0 −∆F0c

Ec
(80)

into (77), and taking ∆F0 to vary slowly in time with rate µ̃ yields

dx

dt
= g1(t) + g2(t)tanh(g3(x+ 1)) + g4(t)x+ b, (81)

db

dt
= −µ = −µ̃/Ec.

g1(t) = E−1
c

[

(1− αml + αi

2
)FS(t)− F0(t) + FB

]

+
∆F0c

Ec
+ g4(t),

g2(t) = −αml − αi

2Ec
FS(t), g3 =

1

Lihα
Ec, g4(t) = − FT (t)

cmlHml
.

In contrast to (1), which has only additive periodic forcing, (81) has both multiplicative oscillatory forcing terms
with coefficients g2(t) and g4(t) and an additive oscillatory term g1(t). So we consider approximations for the terms
involving g2 and g4 that replace the multiplicative oscillations with reasonable additive oscillations. The oscillations
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in g1 have an amplitude of ≈ 20, g2(t) has an amplitude of ≈ 5, while g4(t) has oscillations with relatively small
amplitude of ≈ 0.5. We anticipate that the fluctuations of g4(t), as compared with those of g1(t) and g2(t), have a
negligible effect on tipping, generally occurring for x = O(1) or smaller. So we neglect the oscillations in the term
g4(t)x by replacing g4(t) with its average. Furthermore the results from the previous sections suggest that large
oscillations in g1 drive tipping for O(1) values of the bifurcation parameter b and thus for O(1) values of x, for which
tanh(g3(x+ 1)) ≈ 1. Then, it is reasonable to approximate g2(t)tanh(g3(x+ 1)) ≈ G2tanh(g3(x+ 1)) + g2(t)−G2,
so that (81) is approximated by

dx

dt
= b+H(x) + q(T ), (82)

db

dt
= −µ.

H(x) = G1 +G2tanh(g3(x+ 1)) +G4x, q(T ) = g1(t)−G1 + g2(t)−G2 , (83)

where Gj is the average value of gj(t) over one period for j = 1, 2, 4 and q(T ) is an oscillatory function with mean
zero and period of t = 1. With the oscillatory contributions represented as Fourier series, the time scale of q(T )
is T = Ωt with Ω = 6.28. The computed trajectories shown in Figure 13 illustrate the validity of (82) as an
approximation for (81).
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Figure 13: Time series in both panels are shown for µ = .01. LEFT: Time series for E in (81) with oscillatory
forcing term gj (red dotted line) and without, that is, where the oscillatory terms gj are replaced by their averagesGj

(black dash-dotted line). The critical value (∆F0c, Ec) is marked with *. The solid (dashed) blue curve corresponds
to stable (unstable) branch of dE/dt = 0 in (81) for the averaged model. RIGHT: Time series for x given in (82)
with oscillatory forcing term gj (red dotted line) and without, that is, where the oscillatory terms gj (black dash-
dotted line), are replaced by their averages Gj . The solid (dashed) blue curve corresponds to the stable (unstable)
branch of b = −H(x) in (82). When rescaled using the transformation (80), the oscillations for the x approximation
are slightly smaller than those for the full E equation, although the difference is negligible on this scale.

We note here that for the transformed system, as in Section 5, the bifurcation parameter b and dependent
variable x take O(1) values. Then we identify different scales related to slow drift, high and low frequency, or large
amplitude in this setting, which again is important in choosing the appropriate asymptotic approach.

An analytical expression for the tipping point in the case q(T ) = 0 is found as described in (48)-(49), based on
a Taylor series of H(x) in (82) about x = 0. Then

bd = |H2|−1/3ad − bp for bp = H0 +
H2

1

4|H2|
, Hj = j!H(j)(0)

is the tipping point for (82) for q(T ) = 0, and is compared below with the tipping point for q(T ) 6= 0. We note
that H0 and H1 are small, but not identically zero as are the analogous terms in Section 5, since we are using an
approximate system (82) rather than the full model from which the saddle node bifurcation point (∆F0c, Ec) was
determined.
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Next, we consider whether (82) corresponds to high frequency forcing as in Section 3.2, or low frequency forcing
as in Section 4. For µ ≪ 1 and Ω = 6.28, we would expect this system to be in the high frequency case. However,
since the amplitude of the oscillations is large, Section 3.3 indicates that log(A)/ log(Ω) must be considered to
determine if oscillations with amplitude A correspond to high or low frequency forcing in a rescaled system. We
find that 4/3 < log(max(q(T )))/ log(Ω) < 2 for (82) falls in between the asymptotic ranges identified in Section 3.3
for the high and low frequency cases. Nevertheless, we adapt the concepts from the previous sections to approximate
the shift in the tipping point driven by the oscillations in (82).

We begin with an outer approximation for x based on the approach from Section 3.2 and Appendix B. Substi-
tuting a multiple scale approximation, x(µt, T ) = x0(µt, T ) + Ω−1x1(µt, T ) + . . . for T = Ωt into (82) we get

x0T = 0,⇒ x0 = x0(t) x1T = b+H(x0) + q(T ) . (84)

The solvability condition (9) for x1 yields b+H(x0) = 0 so that the leading order contributions to x are

x ∼ H−1
+ (−b) + Ω−1Q(T ) , Q′(T ) = q(T ), (85)

where H−1
+ (−b) > 0 corresponds to the stable branch for x > 0 and Q(T ) has zero average. The leading order

approximation for the outer solution (85) is composed of oscillations Ω−1Q(T ) about the branch of the averaged
system b = −H(x).

Where the outer approximation is no longer valid, we construct a local expansion. To find an appropriate local
approximation, we appeal to the results shown for the canonical model in Section 3.2, noting that we must adapt
that approach since the amplitude of the oscillatory forcing is large. If the amplitude was O(1), we would write the
inner solution in the multiple scale form x = Ω−1Q(T ) + Y (t, T ) analogous to the local expansion in Section 3.2.
This form is an approximation composed of oscillations near x = 0 with Y a small correction to be determined.
However, since the oscillations are large for this application, we expect that the outer approximation breaks down
away from x = 0. In fact, if we examine the outer approximation (85), we see that it reaches values of x that are on
the unstable lower branch shown in Figure 13. We can approximate the value of x where this occurs by identifying
a value b∗ and corresponding x∗ = H−1

+ (−b∗) on the stable branch of b = −H(x) where

H−1
+ (−b∗) + Ω−1 min(Q(T )) = H−1

− (−b∗) , (86)

where H−1
− (−b∗) is on the unstable branch shown in Figure 13. Then we adapt the approach from Section 3.2

writing the solution in the multiple scale form that has oscillations about x∗ with Y a correction,

x = x∗ +Ω−1Q(T ) + Y (T, t). (87)

We could also rescale b, Y and the time scale t with a power of µ. However, we obtain the same result without
this rescaling, so for simplicity we do not introduce such rescaled variables here. Substituting the multiple scale
expression (87) into (82) yields

ΩYT = −Yt + b +H(x∗ +Ω−1Q+ Y ) (88)

∼ −Yt + b +H(x∗ +Ω−1Q) +H ′(x∗ +Ω−1Q)Y +
H ′′(x∗ +Ω−1Q)

2
Y 2 . (89)

In contrast to the approximation used in (114) for the Morris-Lecar model or in (48), we have not replaced H(x)
with a polynomial in x before substituting (87). The reason that we avoid this step is that the forcing q(T ) is
relatively large in this case, so we must consider H(x) over a larger range of x values. Over this range, it is not
possible to approximate H(x) accurately with a Taylor series about a single value of x. Rather we have substituted
(87) directly into H(x) and then expanded about Y = 0, assuming that Y is a small correction. Then the solvability
condition (9) for (89) yields the equation for Y

Yt = b+

(

lim
L→∞

1

L

∫ L

0

H(x∗ +Ω−1Q(T ))dT

)

+

(

lim
L→∞

1

L

∫ L

0

H ′(x∗ +Ω−1Q(T ))dT

)

Y

+

(

lim
L→∞

1

L

∫ L

0

H ′′(x∗ +Ω−1Q(T ))

2
dT

)

Y 2

= b+H0 +H1Y +H2Y
2 . (90)
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From (86) we get x∗ ≈ 2.2. Then we obtain the tipping point from the singularity for (90), using the results from
(48) and

btip = |H2|−1/3ad − bQ for bQ = H0 +
H2

1

4|H2|
. (91)

In Figure 14 we compared this approximation with the numerical results in terms of the original variables E and
∆F0. As would be expected for a system forced by oscillations with a large amplitude to frequency ratio, the
advance of the tipping point is dominated by the oscillations. As µ̃ → 0, the tipping point approaches the end of
the branch of attracting oscillatory solutions computed in [11].

µ̃
0 0.01 0.02 0.03 0.04 0.05

∆
 F

0

2

4

6

8

10

12

14

16

18

20

Figure 14: Comparison of the tipping points ∆F0 obtained from the asymptotic approximation (91) (black dash-
dotted lines), compared with the numerically obtained values from the full model for E (81) (blue o’s) and from the
approximate model for x (82) (red *’s). The lower values correspond to the tipping point for the averaged system
with gj(t) replaced with Gj , while the upper curve corresponds to the case where the oscillations are not replaced
with their averages.

The fact that we are able to obtain an analytical expression for the tipping point allows us to explore the
impact of parameters values on the bifurcation structure of the model and the location of transitions between
states. Specifically, we can explore the existence or prominence of hysteresis between different states as a function
of the parameters of a periodically forced system. Within the context of a large scale atmosphere-ocean global
climate model studied in [29], the question was considered whether or not parameter variation yields hysteresis in
the transitions between states analogous to E > 0 and E < 0 in (77). There it was seen that the hysteresis obtained
for time-varying parameters, predicted by lower dimensional models where there is bistability for different states, is
less prominent and in certain contexts it is not observed in the large scale computations. An analogous question of
how the bifurcation structure could change with parameters was explored computationally in [30] for a simplified
version of (77). For example, recomputing the bifurcation diagram for different parameter values, [30] shows a loss
of bistability with increased contributions to longwave radiation from FT (t), and thus a loss of the hysteresis loop
observed for a varying bifurcation parameter. In the context of tipping, the loss of hysteresis corresponds to shifts
in the tipping points so that regions of bistability are no longer observed. The value of the analytical expression
for the tipping point (91) is in determining shifts in the tipping location as a function of a parameter, rather than
having to recompute the entire bifurcation structure through repeated simulation of the full model over a potentially
large range of parameter values.

In Figure 15 we demonstrate how this loss of hysteresis is obtained directly from the analytical expression (91) for
the tipping point. The UPPER RIGHT panel shows that increasing the amplitude of FT (t) causes earlier tipping.
For tipping points increased to ∆F0 ≈ 31, there is a loss of hysteresis, since tipping occurs for approximately
the same value of ∆F0 for which there is a transition from the lower solution branch for E (not shown) to the
upper branch in Figure 13. The approximation (91), based on (86), indicates this behavior for the amplitude of
FT increased above a factor of about 2.7, as also observed in [30]. For this increase in the oscillations there is no
overlap in b for the upper and lower attracting branches for the solution x, and no intermediate unstable branch.
Then determining x∗ from (86) is no longer valid, signaling the loss of bistability and of hysteresis. For the same
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reason, the numerical approximation asymptotes to the value of ∆F0 ≈ 31, as shown in Figure 15(UPPER RIGHT).
From the normalized model (82) we can also identify other parameters cmlHml and the mean of FT that can drive a
considerable shift in the tipping point. The LEFT panels of Figure 15 show the effect of varying these parameters,
which is not as large as for the increased amplitude of FT , as also observed in [30].

The variation of the tipping point with hα is also shown. For this model, approximating the tipping location
using (86)-(91) is based on the existence of an upper solution branch. Then Figure 15(LOWER LEFT) shows the
approximation for values hα where x∗ in (86) can be determined. The upper branch used in (86) no longer exists
for hα sufficiently small, as also seen in [30].
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Figure 15: Analytical approximation (blue circles) and numerical approximation (red *’s) for the value ∆F0 cor-
responding to tipping as a function of different parameters: the ratio of E to T (t, E) in (79) (UPPER LEFT), a
multiplicative factor for the amplitude of the oscillations FT (UPPER RIGHT), a shift in the mean of FT (LOWER
LEFT), and the ice thickness parameter describing transitions in the albedo (LOWER RIGHT). In the UPPER
RIGHT figure, the approximation is not valid for tipping points with values ∆F0 > 31. This corresponds to larger
amplitudes of FT , for which there is no overlap in the range of ∆F0 for upper and lower attracting branches of
E, indicating no hysteresis for varying ∆F0. Then determining x∗ from (86) is no longer valid for the asymptotic
approximation. In that case the numerical approximation asymptotes to ∆F0 ≈ 31.

7 Summary and Future Work

In this paper we have analyzed the factors that determine the location of a tipping point in the canonical model for
a saddle node bifurcation with bifurcation parameter a that varies at a slow rate µ ≪ 1 and forced by a periodic
oscillation with amplitude A and frequency Ω. We see that the main contributions that determine the tipping point
location are different for low and high frequency. In order to get analytical expressions to identify the key factors
in the location of the tipping point, we apply the methods of multiple scales and matched asymptotic expansions
to obtain analytical expressions for the combined effect of Ω, A, and µ. The cases of low and high frequency in
the oscillatory forcing naturally require the consideration of different relationships between the time scales of the
oscillation and the slow drifting rate. The size of the amplitude also plays an important role.

For a high-frequency forcing, there are two competing contributions to the location of the tipping point relative
to the static bifurcation point at a = 0. The first contribution is a delay due to the slow drifting rate µ of the
bifurcation parameter a, well-known in a variety of studies without periodic forcing [7, 9]. The second contribution
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is an advance proportional to the square of the ratio of the amplitude to frequency for the oscillation, observed also
in the case where the bifurcation parameter is constant (µ = 0). These contributions reflect that the trajectory in
this case is approximated by the linear combination of the slowly varying equilibrium solution found for A = 0 in
[9] and an additive contribution that takes the form of the oscillatory forcing with a scale factor. Near the tipping
point, the trajectory can be expressed in terms of an oscillatory part plus a correction that satisfies an Airy function
on the slow time scale, with the oscillations averaged on this time scale shifting the singularity that corresponds
to the tipping point. The resulting expressions for these contributions then give an expression for the location of
the tipping point that varies continuously with the parameters. Whether the combined effect results in an advance
or delay compared to a = 0 depends on the magnitude of µ2/3 relative to A2/Ω2. In particular, we see noticeable
advances of the tipping point for combinations of larger amplitudes with frequencies that are not very large.

Advances in the tipping point due to periodic forcing are even more apparent for lower frequencies. For Ω ≪
1, the trajectory is dominated by a nonlinear combination of the slowly drifting bifurcation parameter and the
oscillatory forcing, since they give contributions that are of the same order of magnitude. Then the location of
the tipping point depends not only on the amplitude, frequency, and drifting rate, but also on the phase of the
oscillation. Tipping occurs near values of a where the trajectory is near x ∼ 0, where a local analysis reveals that
the change of concavity for x ∼ 0 provides an analytical expression for the tipping point. This expression captures
the discontinuous dependence of the tipping location on parameters such as the amplitude. These discontinuities
follow directly from the fact that tipping occurs only for values of a where the trajectory is near zero: a slight
change in parameters can change the approach to zero of the trajectory, postponing tipping to a later point at
which the trajectory crosses zero. This shift in the tipping point is on the order of one period of the low frequency
oscillation.

The development of this suite of approaches provides a foundation for capturing the behavior of the tipping point
in terms of the key parameters. Within the context of the applications in Sections 5 and 6, we have demonstrated
how the approximations developed for the canonical model can be used directly in other models. The influence
of the oscillations, and thus the choice of the appropriate approximation, depends on certain scaling relationships
between drifting rate, amplitude, and frequency. These are identified within the context of the canonical model
where the dependent variable and bifurcation parameters take O(1) values and the saddle node bifurcation at the
origin. Thus an important step is normalization of the model to this standard form, from which the parameter
relationships can be extracted. Within the transformed model one can already identify parameter ranges where
advanced tipping is likely to occur, by relating the results of the canonical model to the rescaled parameters.

The results for both the canonical model and the applications illustrate how the concepts developed within the
asymptotic approaches can be extended to wider ranges of parameters. For example, the results of Section 4.1 for
low frequency, where the frequency is of the same order of magnitude as the drifting rate, are extended in Section
4.2 for larger values of frequency that are O(1), by using the values where the regular asymptotic expansion no
longer exists as a basis for a local analysis of the change of concavity. Another example of the extension of the
method is in the application of Section 6, where the ratio of amplitude to frequency for the oscillation is outside
of the asymptotic range identified for large amplitude oscillations in Section 3.3. Nevertheless, as for the canonical
model, we apply a regular or outer expansion, and from conditions where the outer expansion loses its validity we
identify the region for a local multiple scale analysis. The solvability condition for the local approximation again
provides an averaged equation with quadratic nonlinearity, whose singularity provides the approximation of the
location of the tipping point.

We have also compared the advance of the tipping point for high frequency forcing with the shift due to additive
white noise forcing, where a significant advance of the tipping point occurs if the magnitude of the noisy forcing
scales as the square root of the drifting rate. In order to obtain a comparable shift with high frequency forcing
alone, a much larger amplitude is required. In contrast, for low frequency forcing, it is possible to obtain a larger
advance than in the case of high frequency forcing. Since white noise forcing includes both high and low frequencies,
the conditions for advancing the tipping point as indicated in the analysis of low frequency forcing are captured in
the noisy forcing.

There are a number of remaining questions about the influence of oscillatory and noisy forcing on a system
with a slowly drifting bifurcation. Here and in [14, 16] the case of additive forcing has been considered, but in
general the oscillatory and noisy forcing can be multiplicative or parametric, as can be seen explicitly in the model
considered in [11] without averaging over seasonal periodicity. In addition, the combination of noisy and oscillatory
forcing should be of interest, as they appear together in applications. For example, for low frequency oscillations,
we see that the location of the tipping point depends on the phase, and we would expect that the noise causes phase
shifts. The question then remains when and if stochastic phase shifts, in combination with periodic forcing, play a
significant role in the tipping location. A related area is the phenomenon of rate induced tipping, where exceeding
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a critical drifting rate can result in early tipping [6]. The effect of noisy or oscillatory forcing on these types of
transitions has not been analyzed.

The shift of the tipping point observed for different types of oscillations indicates that we must consider their
effect on transitions via a saddle node bifurcation. For example, a common underlying structure for a hysteresis loop
consists of two branches for stable states with a bistability region and loss of stability via saddle node bifurcations.
If oscillations are included that advance the tipping points, the size of the hysteresis loop can be reduced, or the
hysteresis can be removed completely.

More generally in a slow-fast system where the slow variable plays the role of a bifurcation parameter for the
rest of the system, any oscillatory forcing can change the time to transition when a saddle node bifurcation is
embedded in the system’s structure. Complex phenomena such as bursting dynamics or mixed-mode oscillations
typically appear in slow-fast systems and involve combinations of transitions via different types of bifurcation with
a slow variable viewed as a bifurcation parameter. For phenomena of this type in which a saddle node bifurcation
is present, the results in this paper can quantify the influence of oscillations on the length of the intervals where
steady states are attracting. In addition to the saddle node bifurcation considered here, there are other types of
bifurcations that are potentially sensitive to combinations of slowly drifting parameters and oscillatory and noisy
forcings. This sensitivity has been studied in other contexts, including different types of bifurcations [16, 18, 37],
although not necessarily from the point of view of considering competitive or combined effects of both oscillations
and noise on transitions or bifurcations.

References

[1] Lenton, T. M., H. Held, E. Kriegler, J. W. Hall, W. Lucht, S. Rahmstorf, and H. J. Schellnhuber (2008), Tipping
elements in the earth’s climate system, Proc. Nat. Acad. Sci. USA, 105(6) 1786-1793.

[2] Sutera A. (1981), On stochastic perturbation and long-term climate behaviour. Quarterly Journal of the Royal

Meteorological Society, 107(451):137-151.

[3] Guttal V. and C. Jayaprakash (2008), Changing skewness: an early warning signal of regime shifts in ecosystems.
Ecol Lett. 2008 May, 11(5):450-60. doi: 10.1111/j.1461-0248.2008.01160.x.Epub 2008 Feb 12.

[4] Meisel C, and C. Kuehn (2012), Scaling effects and spatio-temporal multilevel dynamics in epileptic seizures.
PLos ONE 7(2):e30371. doi:10.1371/journal.pone.0030371

[5] Dai, L., D. Vorselen, K. S. Korolev and J. Gore (2012), Generic indicators for loss of resilience before a tipping

point leading to population collapse, Science 336, 1175, doi:10.1126/science.1219805.

[6] Ashwin P., S. Wieczorek, R. Vitolo and P. Cox (2012), Tipping points in open systems: bifurcation, noise-

induced and rate-dependent Examples in the Climate System, Phil. Trans. R. Soc. A 370, 1166-1184, doi:
10.1098/rsta.2011.0306.

[7] Mandel P and Erneux T (1987)The slow passage through a steady bifurcatoin: delay and memory effects, J.
Stat. Phys., 48 1059-1070.

[8] Baer S.M., Erneux T. and Rinzel J. (1989) The slow passage through a Hopf bifurcation: Delay, memory effects,

and resonance, SIAM J. Applied Math., 49, 55-71.

[9] Haberman R. (1979), Slowly varying jump and transition phenomena associated with algebraic bifurcation, SIAM
J. Appl. Math., 37(1), 69-106.

[10] Fraedrich K. (1978), Structural and stochastic analysis of a zero-dimensional climate system, Quart. J. R. Met.
Soc., 104, pp.461-474.

[11] Eisenman I., and J. S. Wettlaufer (2009), Nonlinear threshold behavior during the loss of Arctic sea ice, Proc.
Natl. Acad. Sci. U. S. A., 106(1), 28-32, doi:10.1073/pnas. 0806887106.

[12] Abbot, D.S., Silber M., and Pierrehumbert R.T. (2011), Bifurcations leading to summer Arctic sea ice loss, J.
Geophysical Res., Vol. 116, D19120, doi:10.1029/2011JD015653.

[13] Merryfield, W. J., M. M. Holland, A. H. Monahan (2008), Multiple Equilibria and Abrupt Transition in Arctic

Summer Sea Ice extent, Arctic Sea Ice Decline: Observations, projections, mechanisms, and implications. Bitz,
C. M., Deweaver, E. T., Tremblay, L. B., Eds. American Geophysical Union, 151-174.

27



[14] Sieber J. and J. M. Thompson (2012), Nonlinear softening as a predictive precursor to climate tipping. Philo-
sophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 370, issue
1962, pp. 1205-1227.

[15] Thompson J. M. T. and J. Sieber (2011), Climate tipping as a noisy bifurcation: a predictive technique, IMA
Journal of Applied Mathematics 76, 27-46

[16] Berglund N. and Barbara Gentz, in C. Laing and G. J. Lord (Edts), (2010) Stochastic Methods in Neuroscience,
Oxford University press. pp. 65-93.

[17] Zhu, J. and R. Kuske, Multiple scale WKB-type approximations for probability densities in stochastic delayed

saddle node bifurcations, preprint.

[18] Kuske R. (1999), Probability densities for noisy delay bifurcations, Journal of Statistical Physics, Vol. 96, Issue
3-4, pp 797-816.

[19] Dakos, V., M. Scheffer, E. H. van Nes, V. Brovkin, V. Petoukhov, and H. Held (2008), Slowling down as an

early warning signal for abrupt climate change, Proc. Nat. Acad. Sci. USA, 105(38), 14308-14312.

[20] Scheffer M, Carpenter S. R., Lenton T.M., Bascopmpte J., Brock W., Dakos V., van de Koppel J., van de
Leemput I. A., Levin S. A., van Nes E. H., Pascual M., Vandermeer J. (2012) Anticipating critical transitions,
Science, 338, 344-348, DOI: 10.1126/science.1225244.

[21] K.K. Tung and J. Zhou (2013), Using data to attribute episodes of warming and cooling in instrumental records,
Proc. Nat. Acad. Sci. USA, 110(6) 2058-2063.

[22] C.M. Bender and S.A. Orszag, (1978) Advanced Mathematical Methods for Scientists and Engineers, section
11.3, McGraw-Hill, New York (1978).

[23] J. Kevorkian and J.D. Cole, (1981) Perturbation Methods in Applied Mathematics, Appl. Math. Sciences
34, Springer, New York; (1996) Multiple Scale and Singular Perturbation Methods, Appl. Math. Sciences 114,
Springer, New York.

[24] Strogatz S. H. (2000), Nonlinear Dynamics and Chaos, (1995), Addison-Wesley, Reading, MA.

[25] T. Erneux and J.-P. Laplante, (1989), Jump transition due to a time-dependent bifurcation parameter in the

bistable ioadate-arsenous acid reaction, J. Chem. Phys. 90, 6129-6134.

[26] P. Jung, G. Gray, and R. Roy, (1990), Scaling law for dynamical hysteresis, Phys. Rev. Lett. 65, 1873-1876.

[27] A. Hohl, H.J.C. van der Linden, R. Roy, G. Goldstein, F. Broner, and S.H. Strogatz, (1995), Scaling laws

for dynamical hysteresis in a multidimensional laser system, Phys. Rev. Lett. 74, 2220-2223. nd Chaos: With
Applications to Physics, Biology, Chemistry, and Engineering. Cambridge, MA: Perseus.

[28] Maykut G.A. and N. Untersteiner (1971).Some results from a time-dependent thermodynamic model of sea ice,
J. Geophys. Res. 76, 1550-1575.

[29] Armour, K.C., I. Eisenman, E. Blanchard-Wrigglesworth, K.E. McCusker, and C.M. Bitz (2011), The re-

versibility of sea ice loss in a state-of-the-art cliamte model, Geophysical Research Letters 38, L16705.

[30] Eisenman I. (2012), Factors controlling the bifurcation structure of sea ice retreat, Journal of Geophysical
Research, VOL. 117, D01111, doi:10.1029/2011JD016164.

[31] Morris C. and H. Lecar (1981),Voltage oscillations in the barnacle giant muscle. Biophys J. 35, 193-213.

[32] http://www.scholarpedia.org/article/Morris-Lecar model.

[33] Yu N., Y. Li and R. Kuske (2013), A computational study of spike time reliability in two types of threshold
dynamics, J. Math. Neuroscience, 3, doi:10.1186/2190-8567-3-11.

[34] http://en.wikipedia.org/wiki/Morris-Lecar model.

[35] Lee S., Study on the onset bifurcations of a Morris-Lecar neuron under a periodic current, J. Korean Physical
Society, 50:346-350, 2007.

28



[36] Lee S., Bifurcation analysis of a mode-locking structure in a strongly forced Morris-Lecar neuron, J. Korean
Physical Society, 52:11-16, 2008.

[37] P. Borowksi and R. Kuske (2010), Characterizing noisy mixed mode oscillations in neuronal models, Chaos,
20, 043117.

Appendices

A The Higher Order Analysis for µ = 0 and Ω ≫ 1

We continue the asymptotic analysis in Section 3.1 after (11) for O(Ω−2) and O(Ω−3), yielding

O(Ω−2) : x2T + x1t = −2x0x1,⇒ x2T = R2(T, t) = −v1t − 2x0v1 + 2Ax0cos(T ) (92)

O(Ω−3) : x3T + x2t = −x2
1 − 2x0x2,⇒ x3T = R3(T, t) = −x2t − x2

1 − 2x0x2, (93)

By applying the solvability condition (9) to (92) and (93) and solving the resulting equations, we have

O(Ω−2) : v1t = −2x0v1, (94)

x2T = 2Ax0cos(T ), ⇒ x2 = 2
√
aAsin(T ) + v2(t), (95)

O(Ω−3) : v2t = −A2

2
− 2

√
av2, (96)

The attracting solutions of (94) and (96) are their stable equilibria, which are v1 = 0 and v2 = − A2

4
√
a
. After

substituting these equilibria and (11) and (95) into (6), we get (12) in Section 3.1.
In order to find the local behaviour of (1) with µ = 0, we substitute a = Ω−2b into (5) and get

xT +Ω−1xt = Ω−3b− Ω−1x2 +Ω−1Asin(T ). (97)

The contributions at each order are

O(Ω0) : x0T = 0, ⇒ x0 = x0(t), (98)

O(Ω−1) : x1T + x0t = −x2
0 +Asin(T ), ⇒ x1T = −x0t − x2

0 +Asin(T ), (99)

O(Ω−2) : x2T + x1t = 0, ⇒ x2T = −x1t, (100)

O(Ω−3) : x3T + x2t = b− x2
1, ⇒ x3T = −x2t + b− x2

1. (101)

Substituting (98) into (99), applying the solvability condition (9), and solving the resulting equations, we have

x0t = −x2
0, ⇒ x0 = 0, (102)

x1T = Asin(T ), ⇒ x1 = −Acos(T ) + v1(t). (103)

Substituting (103) into (100) and applying the solvability condition (9), we have

v1t = 0, ⇒ v1 = d, ⇒ x2T = 0, ⇒ x2 = x2(t), (104)

where d is constant and needs to be determined. Substituting (103) and (104) into (101) and applying the solvability
condition (9), we have

x2t = b− A2

2
− d2, ⇒ d2 = b − A2

2
, (105)

which provides the equilibrium solution of x2. If b − A2

2 < 0, x2t is always negative and there is no attracting
solution.

By substituting (102), (103), (104) and (105) into (6), we have the leading order approximation (13) in Section
3.1.
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B The asymptotic approximation of the solution for 0 < µ ≪ 1 and

Ω ≫ 1 in the outer region

We substitute (15) into (14), yielding

O(1) : x0T = 0, ⇒ x0 = x0(τ),

O(µλ) : x1T = a− x2
0 +Asin(T ). (106)

Applying the solvability condition (9) of (106) and solving the resulting equations yields

x2
0 = a, ⇒ x0 =

√
a,

x1T = Asin(T ), ⇒ x1 = −Acos(T ) + v1(τ).

The higher order contributions of (14) depend on the value of λ. The two cases are:

For 0 < λ ≤ 1, O(µ2λ) : µ1−λx0τ + x2T = −2x0x1. (107)

For λ > 1, O(µ1+λ) : x0τ + x2T = µλ−1 · (−2x0x1). (108)

In either case, we substitute x0 =
√
a in (107) or (108) and apply the solvability condition (9), to get

x0τ = µλ−1(−2x0v1) ⇒ v1 = µ1−λ · 1

4a
.

Then the asymptotic approximation of the attracting solution is the result (16) of Section 3.2.

C The local approximation for Ω ≪ 1, near am

Writing (26) in terms of the local variables η, ξ, and Am by (33), we have

− µξη = am[1− cos(cµη)] + µη − 1

c
sin(cµη)− µ

A1am
Am

cos(cµη)− µ
A1

cAm
sin(cµη)− µ2ξ2. (109)

Substituting the expansion ξ ∼ ξ0 + µξ1 + µ2ξ2 + · · · , into (109), yields

O(µ) : −ξ0η = −A1am
Am

, ⇒ ξ0 =
A1am
Am

η + c0, (110)

O(µ2) : −ξ1η =
1

2
amc2η2 − A1

Am
η − ξ20 ,

⇒ ξ1 = −(
1

2
c2am − A2

1a
2
m

A2
m

)
η3

3
+

A1

Am
(1 + 2c0am)

η2

2
+ c20η + c1, (111)

which provides the local approximation (36). We find c0 by writing (36) in terms of x and an intermediate scaled
variable a− am = Kµq, for q < 1 and K an O(1) positive constant, to get

x =
A1am
Am

· Kµq + µc0 − (
1

2
c2am − A2

1a
2
m

A2
m

)
K3µ3q−1

3
+

A1

2Am
(1 + 2c0am)K2µ2q + µ1+qc2K + µ2c1 + · · · , (112)

and match (112) with the Taylor expansion of the outer approximation (27) around am written in terms of K

x = µq ·
√

c2am
2

K + µ1−q · 1

2K (1 − A1am

Amc
√
2am

) +O(µ2q , µ2−3q). (113)

We take 1
3 < q < 1

2 so that the outer approximation (113) is valid. By matching the lower order terms in (112) and
(113), we find c0 in the form of c0 = − 1

2am

+ C1 + C2. This form is convenient for comparing with the ξ-intercept
−1/(2am) of the concavity threshold (35), reducing this comparison to determining the sign of C1 + C2, given by

C1 = µ−q Am

KamA1
(

√

c2am
2

− A1am
Am

) + µ1−3q Am

2K3amA1
(1 − A1am

Amc
√
2am

),

C2 = µq−1 Am

3amA1
(
1

2
c2am − A2

1a
2
m

A2
m

).
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We find c0 for A > Am only, since Ac > Am by the definition of Am and am. If A1am

Am

< c2Am

2A1

and A > Am, both

C1 and C2 are positive and c0 > − 1
2am

. Then the local trajectory (36) is in the concave up region as assumed for

Ac > A > Am and a ≤ am (η ≤ 0). If A1am

Am

> c2Am

2A1

, both C1 and C2 are negative. In that case the local trajectory
(36) is in the concave down region for a ≤ am (η ≤ 0), resulting in tipping near a = am.

D The local approximation for w in the ML model with Ω ≫ 1

The equations for the corrections z1 and W1 are

z1T ∼ −µ1/3z0s +
[

b+ (h0
0 + h0

1(X + z0) + h0
2(X + z0)

2)− gK(X + z0 +D)W0

]

, (114)

W1T = −µ1/3W0s+
(

κ(0) + κ′(0)(X + z0) +
κ′′(0)

2
(X + z0)

2

)(

w∞(0) + w′
∞(0)(X + z0) +

w′′
∞(0)

2
(X + z0)

2 −W0

)

, (115)

where we have kept linear and quadratic terms in X and z0, analogous to (20). We apply the solvability condition
as in (56), yielding for W0

W0 =
limL→∞L−1

∫ L

0
(κ(0) + κ′(0)(X + z0) + κ′′(0)(X + z0)

2/2)(w∞(0) + w′
∞(0)(X + z0) + w′′

∞(0)(X + z0)
2/2) dT

limL→∞ L−1
∫ L

0 (κ(0) + κ′(0)(X + z0) + κ′′(0)(X + z0)2/2) dT

≈ w∞(0) +W00 +W01z0 +W02z
2
0 (116)

W00 =
w′

∞(0)κ′(0) + w′′
∞(0)κ(0)/2

W0d

A2

2Ω2
+O(A4/Ω4)

W01 =
w′

∞(0)κ(0)

W0d
− κ′(0)W00

W0d
+O(A2/Ω2)

W02 = W00

(

2Ω2

A2
− κ′′(0)

2W0d
+

2κ′(0)2

W 2
0d

)

− w′
∞(0)κ′(0)κ(0)

W 2
0d

+O(A2/Ω2)

W0d = κ(0) +
A2κ′′(0)

4Ω2

where we have used a Taylor series about z0 to obtain a second order polynomial in z0 as an approximation for W0.
Substituting (116) in the equation for z0 written in terms of the original time scale yields (61). We note that the
main contributions in the equation for z0, used to determine the shift in the tipping point, are the terms involving
h0
j and gkw∞(0). The additional terms with coefficients involving the derivatives of w∞ and A2/Ω2 give small

corrections, since these coefficients are small relative to gK and the terms with h0
j .
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