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Abstract

Given a matrix M (not necessarily nonnegative) and a factorization rank r, semi-nonnegative
matrix factorization (semi-NMF) looks for a matrix U with r columns and a nonnegative matrix
V with r rows such that UV is the best possible approximation of M according to some metric.
In this paper, we study the properties of semi-NMF from which we develop exact and heuristic
algorithms. Our contribution is threefold. First, we prove that the error of a semi-NMF of rank
r has to be smaller than the best unconstrained approximation of rank r − 1. This leads us to a
new initialization procedure based on the singular value decomposition (SVD) with a guarantee on
the quality of the approximation. Second, we propose an exact algorithm (that is, an algorithm
that finds an optimal solution), also based on the SVD, for a certain class of matrices (including
nonnegative irreducible matrices) from which we derive an initialization for matrices not belonging
to that class. Numerical experiments illustrate that this second approach performs extremely
well, and allows us to compute optimal semi-NMF decompositions in many situations. Finally,
we analyze the computational complexity of semi-NMF proving its NP-hardness, already in the
rank-one case (that is, for r = 1), and we show that semi-NMF is sometimes ill-posed (that is, an
optimal solution does not exist).

Keywords. semi-nonnegative matrix factorization, semi-nonnegative rank, initialization, algo-
rithms.

1 Introduction

Semi-nonnegative matrix factorization (semi-NMF) can be defined as follows: Given a matrix M ∈
R
m×n and a factorization rank r, solve

min
U∈Rm×r ,V ∈Rr×n

||M − UV ||2F such that V ≥ 0, (1)

where ||.||F is the Frobenius norm and V ≥ 0 means that V is component-wise nonnegative. Note that
any other suitable metric could be used but we focus in this paper on this particular objective function.
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Semi-NMF has been used in the context of data analysis and clustering [9]. In fact, letting each column
of the input matrix represent an element of a data set (there are n elements in dimension m), the
semi-NMF decomposition can be equivalently written as

M(:, j) ≈

r
∑

k=1

U(:, k)V (k, j) for all j,

so that each column of M is a conic combination of the columns of U since V ≥ 0. Each column
of U can then be interpreted as a cluster centroid while the columns of V are the weights needed to
reconstruct approximately each column of M using the columns of U and hence can be interpreted
as cluster membership indicators; see the discussion in [9]. Semi-NMF has been used successfully for
example for motion segmentation with missing data [21], image super-resolution [4] or hyperspectral
unmixing [27].

Let us define the semi-nonnegative rank of matrix M , denoted ranks(M), as the smallest r such
that there exists U ∈ R

m×r and V ∈ R
r×n with M = UV and V ≥ 0. Let us also define exact semi-

NMF, a problem closely related to semi-NMF, as follows: Given a matrix M ∈ R
m×n, compute its

semi-nonnegative rank rs = ranks(M) and a corresponding factorization U ∈ R
m×rs and V ∈ R

rs×n

such that M = UV and V ≥ 0. We also denote rank(M) the usual rank of a matrix M , and rank+(M)
its nonnegative rank which is the smallest k such that there exists U ∈ R

m×k
+ and V ∈ R

k×n
+ with

M = UV ; see, e.g., [12] and the references therein. By definition, we have

rank(M) ≤ ranks(M) ≤ rank+(M).

The paper is organized as follows.

• In Section 2, we prove that the error of a semi-NMF of rank r has to be smaller than the best un-
constrained approximation1 of rank r−1 (Theorem 1), which implies ranks(M) ≤ rank(M) + 1.
This leads us to a new initialization procedure for semi-NMF based on the singular value de-
composition (SVD) with a guarantee on the quality of the approximation (Algorithm 2).

• In Section 3, we prove that solving exact semi-NMF can be done in polynomial time (Theorem 3).
In particular, we show that ranks(M) = rank(M) if and only if a positive vector belongs to the
row space of M (after having removed its zero columns), otherwise ranks(M) = rank(M) + 1
(Theorem 2). We propose an algorithm that solves semi-NMF (1) for a certain class of matrices
(which includes nonnegative matrices M for which MTM is irreducible) and requires one SVD
computation (Algorithm 3). We also generalize this algorithm for matrices not belonging to
that class, and, in Section 5, we show that it performs extremely well, often leading to optimal
solutions of semi-NMF (1).

• In Section 4, we prove that semi-NMF is NP-hard already for r = 1 (Theorem 5). In light of
the results above, this shows that computing (approximate) semi-NMF is much more difficult
than computing exact semi-NMF (unless P = NP ). Moreover, we also show that semi-NMF is
sometimes ill-posed (that is, an optimal solution does not exist).

1 In the remainder of the paper, unless stated otherwise, we will refer to the best rank-r approximation X of M as
an optimal solution of minX,rank(X)≤r ||M − X||2F . Note that the best rank-r unconstrained approximation of a given
matrix is not necessarily unique. In fact, it is if and only if the rth and (r + 1)th singular values are distinct; see, e.g.,
[14]. However, we will use in this paper this abuse of language as the non-uniqueness issue does not play a role in our
developments.
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Remark 1. While finishing up this paper, we noticed the very recent paper [7] (available online 17
October 2014). It treats the exact semi-NMF problem, and studies Theorems 1 and 2 of this paper2.

Our contribution goes further than proving Theorems 1 and 2, and is rather oriented towards
algorithmic aspects: we propose (i) a polynomial-time algorithm for exact semi-NMF, and (ii) a very
efficient way to initialize semi-NMF algorithms which is provably optimal for a subclass of matrices;
see Algorithm 3. Moreover, we prove NP-hardness and ill-posedness of semi-NMF; see Section 4.

2 Semi-NMF based on Unconstrained Low-Rank Approximations

Given any rank-r factorization (A,B) of a matrix M = AB, an exact rank-2r semi-NMF can be
constructed since

M = AB = A(B+ −B−) = [A, −A]

[

B+

B−

]

,

where B+ = max(B, 0) ≥ 0 and B− = max(−B, 0) ≥ 0 so that B = B+ −B−. This implies

ranks(M) ≤ 2 rank(M). (2)

2.1 Tight Upper Bound based on the Usual Rank

A much better bound than (2) based on the usual rank can be derived. In fact, we now show that
any factorization of rank k can be transformed into a semi-NMF of rank k + 1.

Theorem 1 (see also [7], Lem. 1). Let A ∈ R
m×k and B ∈ R

k×n. Then, there exists U ∈ R
m×(k+1)

and V ∈ R
(k+1)×n such that V ≥ 0 and UV = AB.

Proof. Let us define ā = −
∑

iA(:, i) = −Ae where e is the vector of all ones of appropriate dimensions.
Let also

U = [A ā] and V (:, j) =

(

B(:, j)
0

)

+max

(

0,max
i

(−Bij)

)

e ∈ R
k+1
+ ,

for all 1 ≤ j ≤ n. We have for all j that

UV (:, j) = [A ā]

[(

B(:, j)
0

)

+max

(

0,max
i

(−Bij)

)

e

]

= AB(:, j) + max

(

0,max
i

(−Bij)

)

[A ā]e = AB(:, j),

since [A ā]e = 0 by construction.

Theorem 1 can be geometrically interpreted as follows: any set of data points in a r-dimensional
space can be enclosed in the convex hull of r + 1 vertices. For example, any set of points in a two-
dimensional affine subspace is enclosed in a triangle (the triangle just needs to be big enough to contain
all data points); see [7, Section 4] for more details.

Corollary 1. For any matrix M , we have

rank(M) ≤ ranks(M) ≤ rank(M) + 1.

2Note however that the case of matrices with zero columns is not properly treated in [7]; see Theorem 2.
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Proof. This follows from Theorem 1.

This implies that either ranks(M) = rank(M) or ranks(M) = rank(M) + 1. Observe that

• The above bound is tight. For example, the matrix

M =

(

1 0 −1
0 1 −1

)

satisfies ranks(M) = rank(M) + 1 = 3 (because the cone spanned by the columns of M , namely
R
2, cannot be represented as a cone spanned by two vectors).

• When n is large (n≫ rank(M) = r), in general, ranks(M) = r+ 1. In fact, it is not likely for a
set of n points in a r-dimensional space to be spanned by a cone with r rays when n≫ r. This
would require these vectors to be contained in the same half space (see Section 3 for a complete
characterization). For example, if we generate these vectors uniformly at random on the unit
disk, the probability for these vectors to be in the same half space goes to zero extremely fast
as n grows.

• The function ranks(.) is not invariant under transposition, that is, ranks(M) is not necessarily
equal to ranks(M

T ), although they cannot differ by more than one (see Corollary 1). For
example, the matrix

M =





−1 0 −1
0 −1 −1
1 1 2



 =





−1 0
0 −1
1 1





(

1 0 1
0 1 1

)

satisfies ranks(M) = 2 6= ranks(M
T ) = 3.

2.2 Algorithm for Semi-NMF

A simple yet effective algorithm for semi-NMF is a block coordinate descent method that alternatively
optimizes over U for V fixed and over V for U fixed:

• The problem in U is an unconstrained least squares and can be solved with dedicated solvers.

• The problem in V is a nonnegative least squares problem. To solve this problem, we propose to
use a block coordinate descent method on the rows of V since the optimal solution for a given
row (all other rows being fixed) has a closed-form solution; see, e.g., [11] and the references
therein.

Algorithm 1 implements this strategy and is guaranteed to converge to a stationary point of (1)
because each block of variables is optimized exactly and achieves a unique global minimizer3 [2, 3]
(Prop. 2.7.1). (Note that a value of maxiter between 100 and 500 usually gives good results, although
this depends on the initialization and the dimensions m, n and r; see Section 5 for some numerical
experiments.)

Remark 2 (Original Semi-NMF Algorithm). In the original paper introducing semi-NMF [9], the
proposed algorithm is the following:

3Given that U and V remain full rank.
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Algorithm 1 Coordinate Descent for Semi-NMF

Input: A matrix M ∈ R
m×n, an initialization V ∈ R

r×n
+ , a maximum number of iterations maxiter.

Output: A rank-r semi-NMF (U, V ) of M ≈ UV with V ≥ 0.

1: for i = 1 : maxiter do
2: U ← argminX∈Rm×r ||M −XV ||2F (= M/V in Matlab)
3: % Coordinate descent on the rows of V
4: for i = 1 : r do

5:

V (i, :)T ← argminx∈Rn
+
||M − U(:,I)V (I, :)− U(:, i)xT ||2F

= max

(

0,
(M − U(:,I)V (I, :))T U(:, i)

||U(:, i)||22

)

,I = {1, . . . , r}\{i}.

6: end for

7: end for

• the matrices U and V are initialized using k-means: the columns of U are taken as the cluster
centroids of the columns of M , while V is the binary indicator matrix to which the constant 0.2
is added (for the multiplicative updates to be able to modify all entries of V ; see below).

• V is updated using the following multiplicative updates: for all k, j,

Vkj ← Vkj

√

max(0, (UTM)kj) + max(0,−(UTUV )kj)

max(0,−(UTM)kj) + max(0, (UTUV )kj)
.

These updates are guaranteed to decrease the objective function.

• U is updated as in Algorithm 1, using the optimal solution for V fixed.

Hence this algorithm is rather similar to Algorithm 1, where V would be initialized with k-means and
would be updated with the multiplicative updates. However, compared to Algorithm 1, the algorithm
from [9] suffers from the following drawbacks:

• It is not guaranteed to converge to a stationary point (nonincreasningness is not a sufficient
condition).

• It has a locking phenomenon: once an entry of matrix V is set to zero, it cannot be modified
(because of the multiplicative nature).

• It sometimes runs into numerical problems, because the denominator in the update rules is equal
to zero.

• Although it has almost exactly the same computational cost as Algorithm 1 (the update of V
requires the matrix products UTM and UTUV in both cases), it converges significantly slower.
The same observation was made by several works comparing coordinate descent approaches to
multiplicative updates for optimizing U and V in NMF [8, 19, 17, 20, 11].
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Moreover, in this paper, our goal is not to compare strategies to update matrices U and V but rather to
compare initialization strategies. For these reasons, we do not use the algorithm from [9] in this paper,
but we will compare their initialization based on k-means to our proposed approaches; see Section 5.

2.3 SVD-based Initialization

We can use the construction of Theorem 1 to initialize semi-NMF algorithms such as Algorithm 1; see
Algorithm 2. Given a rank-r approximation (A,B) of M ≈ AB computed via the truncated SVD, we
flip the sign of the rows of B (and the columns of A accordingly) so that the minimum on each row of
B is maximized. (Note that other sign permutations exist; see, e.g., [6].) The motivation behind this
choice is to reduce the effect of the correction done at step 5 of Algorithm 2. We have the following
result:

Corollary 2. Let M ∈ R
m×n, and let Mr−1 be its best rank-(r− 1) approximation with respect to the

norm ||.||, then
min

U∈Rm×r ,V ∈Rr×n
+

||M − UV || ≤ ||M −Mr−1||. (3)

The solution provided by Algorithm 1 initialized with Algorithm 2 satisfies this bound for the Frobenius
norm.

Proof. This follows directly from Theorem 1, and the fact that Algorithm 1 generates a sequence of
iterates monotonically decreasing the objective function.

Algorithm 2 SVD-based Initialization for Semi-NMF (see Theorem 1)

Input: A matrix M ∈ R
m×n and a factorization rank r.

Output: A rank-r semi-NMF (U, V ) of M ≈ UV with V ≥ 0 achieving the same error than the best
rank-(r − 1) approximation of M .

1: [A,S,BT ] = svds(M, r − 1) ; % See the Matlab function svds

2: A = AS;
3: For each 1 ≤ i ≤ r − 1: multiply B(i, :) and A(:, i) by −1 if minj B(i, j) ≤ minj(−B(i, j)) ;
4: U = [A −Ae];

5: V (:, j) =

(

B(:, j)
0

)

+max (0,maxi(−Bij)) e 1 ≤ j ≤ n.

In Section 5, we will compare Algorithm 2 with several other initialization strategies. It turns out
that, although it is an appealing solution from a theoretical point of view (as it guarantees a solution
with error equal to the error of the best rank-(r − 1) approximation of M), it performs relatively
poorly, in most cases worse than random initializations.

3 Exact Algorithm for Semi-NMF

In the previous section, we showed that for any matrix M , ranks(M) equals rank(M) or rank(M)+1.
In this section, we first completely characterize these two cases, and derive an algorithm to solve the
exact semi-NMF problem.
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Theorem 2 (4). Let M ∈ R
m×n. The following statements are equivalent

(i) rank(M) = ranks(M).

(ii) There exists a non-zero vector z ∈ R
m such that M(:, j)T z > 0 for all j such that M(:, j) 6= 0.

In other terms, all non-zero columns of M belong to the interior of a half space Pz = {x ∈
R
m | xT z ≥ 0} for some z 6= 0, or, equivalently, there exists a positive vector in the rows space

of M after its zero columns have been removed.

(iii) Given any factorization (A,B) ∈ R
m×r × R

r×n of M = AB with r = rank(M), all non-zero
columns of B belong to the interior of a half space Py for some y 6= 0.

Proof. We assume without loss of generality (w.l.o.g.) that M does not contain a zero column (oth-
erwise discard it, which does not influence the conditions above).

The equivalence (ii) ⇐⇒ (iii) follows from simple linear algebra. Since the columns of the matrix
M belong to the interior of Pz, we have MT z > 0. Without loss of generality, we can take z = Aw
for some w. In fact, let us denote A⊥ the orthogonal complement of A so that, for any z, there exists
w and w⊥ with z = Aw +A⊥w⊥ for which we have

0 < MT z = BTAT
(

Aw +A⊥w⊥
)

= BTAT (Aw) = MT (Aw).

Hence, replacing z with Aw does not modify MT z > 0. Moreover, the derivation above shows that the
columns of B belong to the half space Py with y = ATAw = AT z which proves (ii) ⇒ (iii). Proving
the direction (iii) ⇒ (ii) is similar: the left inverse A† ∈ R

r×m of A exists since rank(A) must be

equal to r (A†A = Ir) and taking z = A†T y, we have

0 < BT y = BT
(

A†A
)T

y = BTATA†T y = MT z.

Let us show (iii) ⇒ (i). We have y ∈ R
r such that x = BT y > 0. Note that the rows of B are

different from zero since B ∈ R
r×n and rank(B) = r. Hence we can flip the sign of the rows of B

along with the corresponding entries of y (keeping BT y unchanged) so that the maximum entry on
each row of B is positive, that is, maxj B(i, j) > 0 for all i (see for example step 2 of Algorithm 3).

Let
V (i, :) = B(i, :) + αix

T = B(i, :) + αiy
TB = (ei + αiy)

TB,

where αi = max
(

0,maxj
−B(i,j)

xj

)

for all 1 ≤ i ≤ r so that V (i, :) ≥ 0, and ei is the ith column of the

identity matrix. In other terms,

V = B + αxT = B + αyTB =
(

I + αyT
)

B ≥ 0.

We can take U = A(I + αyT )−1 so that M = AB = UV with V ≥ 0. Using Sherman-Morrison
formula, we have that

(

I + αyT
)−1

= I −
αyT

1 + yTα
,

4This result is very similar to [7, Th.3]. However, the case of matrices with zero columns is not treated properly in
[7, Th.3]. For example, according to [7, Th.3], rank(0) 6= ranks(0) which is incorrect. In fact, the authors claim that:
‘As a consequence, B contains a zero column which contradicts the fact that rank(B) = r’. This is not true: if n > r

(which is usually the case since r = rank(M) ≤ n), B can contain zero columns while rank(B) = r.
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hence U can be computed given that yTα 6= −1. It remains to show that yTα 6= −1. We have

yTα =

r
∑

i=1

yiαi =

r
∑

i=1

yimax

(

0,max
j

−B(i, j)

xj

)

>

r
∑

i=1

yi





1

n

n
∑

j=1

−B(i, j)

xj





=
−1

n

n
∑

j=1

( ∑r
i=1B(i, j)yi

∑r
k=1B(k, j)yk

)

= −1.

The strict inequality follows from the fact that maxj B(i, j) > 0 for all i.
Let us show (i) ⇒ (ii). Let r = rank(M) = ranks(M), and M = UV with U ∈ R

m×r and
V ∈ R

r×n
+ where rank(U) = rank(V ) = r. Since no column of M is equal to zero, no column of V is

hence V T e > 0. Since U is full rank, its left inverse U † ∈ R
r×m exists (U †U = Ir). This implies that

MT
(

U †T e
)

= V TUTU †T e = V T (U †U)T e = V T e > 0.

In the remainder of the paper, we say that a matrix M is semi-nonnegative if and only if rank(M) =
ranks(M) if and only if the non-zero columns of M are contained in the interior of a half space.

Remark 3. Note that if rank(M) = n, then M ∈ R
m×n necessarily contains a positive vector in its

row space (since it spans R
n) hence ranks(M) = rank(M) = n. We also have ranks(M) ≤ n using

the trivial decomposition M = MIn where In is the n-by-n identity matrix; see also [7, Lemma 1].

Theorem 3. Given a matrix M , solving exact semi-NMF can be done in polynomial time (both in
the Turing machine model and the real model of computation).

Proof. By Theorem 2, it suffices to check whether a positive vector belongs to the row space of M
(after having discarded the zero columns). For example, one can check whether the following linear
system of inequalities has a solution:

M(:, j)T z ≥ 1 for all j such that M(:, j) 6= 0. (4)

If the system is feasible (which can be checked in polynomial time, both in the Turing machine model
and the real model of computation [5]), ranks(M) = rank(M), otherwise ranks(M) = rank(M) + 1.
The rank of a matrix and a corresponding low-rank factorization can be computed in polynomial time
as well, e.g., using row-echelon form [10]. The factorization can be transformated into an exact semi-
NMF using the construction of Theorem 1 in the case ranks(M) = rank(M) + 1 and of Theorem 2 in
the case ranks(M) = rank(M).

In practice, it is better to compute a factorization of M using the singular value decomposition,
which is implemented in our algorithms (Algorithms 2 and 3).

We have just showed how to compute an exact NMF. The same result can actually be used to
compute approximate semi-NMF, given that the columns of the best rank-r approximation of M are
contained in the same half space.
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Corollary 3. Let M ∈ R
m×n. If the rank-r truncated SVD of M is semi-nonnegative, then semi-

NMF (1) can be solved in polynomial time in m, n and O(log(1/ǫ)) where ǫ is the precision of the
truncated SVD decomposition. Algorithm 3 is such a polynomial-time algorithm.

Proof. This follows from Theorem 2 and the fact that the rank-r truncated SVD provides an optimal
rank-r approximation and can be computed up to any precision ǫ in time polynomial in m, n and
O(log(1/ǫ)); see, e.g., [23, 25] and the references therein.

If no positive vector belongs to the row space of the second factor B of a rank-r factorization AB,
then, by Theorem 2, there does not exist a rank-r semi-NMF U and V ≥ 0 such that AB = UV and
the linear system (4) is not feasible. In that case, we propose to use the following heuristic: solve

min
y∈Rr ,ǫ∈R+

ǫ such that (B(:, j) + ǫ e)T y ≥ 1 for all j such that B(:, j) + ǫ e 6= 0. (5)

Although Problem (5) is not convex, a solution can be obtained using a bisection method on the vari-
able ǫ. In fact, the optimal solution ǫ∗ will belong to the interval [0, ǫ+] where ǫ+ = maxi,k max(−Bik, 0)
since B + ǫ+ ≥ 0 hence the problem is feasible (e.g., y = e). Note that the bisection method first
checks whether ǫ = 0 is feasible in which case it terminates in one step and returns an optimal semi-
NMF. In our implementation, we used a relative precision of 10−3, that is, we stop the algorithm as
soon as ǫf − ǫi ≤ 10−3ǫ+, where ǫf is the smallest feasible ǫ found so far (initialized at ǫ+), and ǫi is
the largest infeasible ǫ found so far (initialized at 0) so that our bisection procedure has to solve at
most ten linear systems (since 0.001 > 2−10). The reason we choose a relatively low precision is that
high precision is not necessary because, when the optimal ǫ∗ 6= 0, the algorithm will be used as an
initialization procedure for Algorithm 1 that will refine the semi-NMF solution locally.

Algorithm 3 implements this strategy and will be used in Section 5 to initialize Algorithm 1 and
will be shown to perform extremely well.

Algorithm 3 Heuristic for Semi-NMF (see Theorem 2 and Corollary 3)

Input: A matrix M ∈ R
m×n, a factorization rank r.

Output: A rank-r semi-NMF (U, V ) of M ≈ UV with V ≥ 0.

1: [A,S,BT ] = svds(M, r) ; % See the Matlab function svds

2: For each 1 ≤ i ≤ r: multiply B(i, :) by −1 if minj B(i, j) ≤ minj(−B(i, j)) ;
3: Let (y∗, ǫ∗) be the optimal solution of the following the optimization problem

min
y∈Rr ,ǫ∈R+

ǫ such that (B(:, j) + ǫ e)T y ≥ 1 for all j such that B(:, j) + ǫ e 6= 0.

% If ǫ∗ = 0 (⇐⇒ B is semi-nonnegative), then the heuristic is optimal.
4: x = (B + ǫ∗ 1r×n)

T y∗ ≥ 1 ; % 1r×n is the r-by-n matrix of all ones.

5: αi = max
(

0,maxj
−B(i,j)
x(j)

)

for all 1 ≤ i ≤ r ;

6: V = B + αxT ;
7: U ← argminX∈Rm×r ||M −XV ||2F (= M/V in Matlab).

Remark 4. It is interesting to note that the value of ǫ∗ tells us how far B is from being semi-
nonnegative (hence AB; see Theorem 2). In fact, by construction, the matrix Bǫ∗ = B+ǫ∗1r×n is semi-
nonnegative. The idea behind Algorithm 3 is to replace B with its semi-nonnegative approximation
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Bǫ∗. If B is close to being semi-nonnegative, ǫ∗ will be small and Algorithm 3 will perform well; see
Section 5 for the numerical experiments. Note that other strategies for finding a semi-nonnegative
matrix close to B are possible and it would be interesting to compare them with Algorithm 3: this is a
direction for further research.

3.1 Nonnegative Matrices

Theorem 2 implies that

Corollary 4. Let M ∈ R
m×n
+ , then ranks(M) = rank(M).

Proof. In fact, any nonnegative vector different from zero belongs to the interior of the half space
Pe = {x ∈ R

m|
∑m

i=1 xi ≥ 0}.

We have seen that if the best rank-r approximation of a matrix contains a positive vector in its row
space, then an optimal semi-NMF of the corresponding matrix can be computed; see Corollary 3. This
will be in general the case for nonnegative matrices. In fact, the Perron-Frobenius theorem guarantees
that this will be the case when MTM is a irreducible nonnegative matrix (since its first eigenvector
can be chosen positive). Recall that a matrix A is irreducible if the graph induced by A is strongly
connected (every vertex is reachable from every other vertex).

Corollary 5. Let M ∈ R
m×n
+ . If MTM is irreducible, then semi-NMF (1) can be solved via the

truncated SVD for any rank r.

Corollaries 3 and 5 suggest that in almost all cases semi-NMF of nonnegative matrices can be
computed using a simple transformation of an unconstrained approximation (such as the truncated
SVD). This observation challenges the meaning of semi-NMF of nonnegative matrices: does semi-NMF
of nonnegative matrices really make sense? In fact, most nonnegative matrices encountered in practice
are irreducible, and, even if they are not, it is likely for Corollary 3 to hold since the columns of the
best rank-r approximation of a nonnegative matrix are likely to be close to the nonnegative orthant
hence belong to a half space (in particular Pe). (Note that, by the Perron-Frobenius theorem, for
M ∈ R

m×n
+ and r = 1, there always exists a nonnegative best rank-1 approximation.) In these cases,

semi-NMF can be solved by a simple transformation of the SVD and it is not clear what semi-NMF
brings to the table.

Note that several authors have proposed semi-NMF algorithms and applied them to nonnegative
matrices, e.g., multiplicative updates where proposed in [9, 24]. Our results shows that, from a
theoretical point of view, this does not really make sense (since local optimization techniques such as
the multiplicative updates usually converge relatively slowly and are not guaranteed to converge to
an optimal solution). However, it is interesting to check whether the solutions obtained with these
heuristics (always) generate optimal solutions under the above conditions. We will see in Section 5
that Algorithm 1 does not always converge to an optimal solution for (semi-)nonnegative matrices for
all initializations (in particular, when r is large).

A direction for further research that would make sense for semi-NMF of nonnegative matrices is
to add structure to the factors U and/or V . For example, imposing V to be sparse would enhance
the clustering property of semi-NMF. (Note that the construction of Theorem 2 usually generates a
matrix V with a single zero per row.) In fact, if V is required to have a single non-zero entry per
column equal to one, semi-NMF reduces to k-means [9].
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Remark 5. The results of this section also apply to nonpositive matrices since M is nonpositive if
and only if −M is nonnegative. Hence if we have a semi-NMF of −M = UV , we have a semi-NMF
for M = (−U)V .

3.2 Semi-Nonnegative Matrices

If one performs a semi-NMF of a semi-nonnegative matrix M with factorization rank r = rank(M) =
ranks(M), then, by Theorem 2, the solution computed by Algorithm 3 will be optimal. However, if
r < rank(M), it is not guaranteed to be the case. In this section, we provide a sufficient condition
for Algorithm 3 to be optimal for semi-nonnegative matrices M when r < ranks(M); see Theorem 4.
Intuitively, the idea is the following: the columns of the best rank-r approximation X of M should
be relatively close to the columns of M hence it is likely that they also belong to a half space. In
that case, by Corollary 3, Algorithm 3 is optimal. Note that if the best rank-k approximation of M
contains a positive vector in its row space, then the best rank-r approximation of M for all r ≥ k does
as well since optimal low-rank approximations can be computed one rank-one factor at a time; see,
e.g., [14].

Theorem 4. Let M be a semi-nonnegative matrix so that there exist z with M(:, j)T z > 0 for all j
such that M(:, j) 6= 0 and ||z||2 = 1. Let X be an approximation of M such that

||M(:, j) −X(:, j)||2 < M(:, j)T z for all j such that M(:, j) 6= 0,

and X(:, j) = 0 whenever M(:, j) = 0 (which is optimal and does not influence the rank of X). Then
X is semi-nonnegative, that is, there exists a rank-r semi-NMF (U, V ) such that X = UV .

Proof. Let us denote the residual of the approximation E = M −X. For all j such that M(:, j) 6= 0
we have

X(:, j)T z = (M(:, j) − E(:, j))T z = M(:, j)T z − E(:, j)T z ≥M(:, j)T z − ||E(:, j)||2 > 0,

while M(:, j) = 0 implies X(:, j) = 0, hence the result follows from Theorem 2.

Note that we have for all j that ‖M(:, j) −X(:, j)‖2 ≤ σk+1 for X being the best rank-k approx-
imation of M , where σk+1 is the (k + 1)th singular value of M . Hence the smaller σk+1 is, the more
likely it is for X to be semi-nonnegative. This also means that the larger k is, the more likely it is for
Algorithm 3 to perform well (in particular, to return an optimal semi-NMF). This will be illustrated
in Section 5 with some numerical experiments.

4 Computational Complexity and Ill-posedness of Semi-NMF

Despite the positive results described in the previous sections, the semi-NMF problem in the general
case (that is, when the input matrix is not close to being semi-nonnegative) seems more difficult. The
rank-one semi-NMF problem is the following: given M ∈ R

m×n, solve

min
u∈Rm,v∈Rn

||M − uvT ||2F such that v ≥ 0. (6)

Theorem 5. Rank-one semi-NMF (6) is NP-hard.

11



Proof. Assume w.l.o.g. that ||v||2 = 1. Then the optimal solution for u is given by u∗ = Mv. Therefore,
at optimality,

||M − uv||2F = ||M ||2F − 2uTMv + ||uvT ||2F

= ||M ||2F − 2vTMTMv + ||Mv||22||v||
2
2

= ||M ||2F − 2||Mv||22 + ||Mv||22

= ||M ||2F − ||Mv||22 = ||M ||2F − vT (MTM)v,

hence (6) is equivalent to

max
v∈Rn

vT (MTM)v such that v ≥ 0 and ||v||2 = 1. (7)

Since M is arbitrary, MTM can represent any semidefinite positive matrix hence rank-one semi-NMF
is equivalent to maximizing a convex quadratic over the unit ball in the nonnegative orthant. As
explained by Noah D. Stein on Mathoverflow.net5, the problem (7) is equivalent to

max
v∈Rn

vTBv such that v ≥ 0 and ||v||2 = 1, (8)

whereB is any symmetric matrix (not necessarily semidefinite positive). In fact, if B is not semidefinite
positive, one can consider the problem with B−λmin(B)In � 0, where A � 0 indicates that the matrix
A is positive semidefinite. In fact, it only changes the objective function by a constant value since, for
||v||2 = 1,

vT (B − λmin(B)In) v = vTBv − λmin(B).

Let us use the following result: Checking copositivity of a symmetric matrix C, that is, checking
whether the optimal value of

min
v≥0,||v||2=1

vTCv

is nonnegative, is co-NP-complete [22] (a decision problem is co-NP-complete if it is a member of
co-NP–its complement is in NP–, and any problem in co-NP can be reduced to it in polynomial time;
see [1] for more details). Since this problem can be solved using (8) with B = −C, this implies that
rank-one semi-NMF (6) is NP-hard.

In comparison to NMF, this is a bit surprising: In fact, rank-one NMF can be solved in polynomial
time (this follows from the Perron-Frobenius and Eckart-Young theorems) although it is NP-hard in
general [26]. The reason behind this difference is that semi-NMF allows both negative and positive
elements in the input matrix (clearly, rank-one semi-NMF of nonnegative matrices can also be solved
in polynomial time; see Section 3.1). In fact, rank-one NMF is also NP-hard if the input matrix is
allowed to have both positive and negative signs [13, Cor.1], that is, given a matrix M ∈ R

m×n, the
problem

min
u∈Rm,v∈Rn

||M − uvT ||2F such that u ≥ 0 and v ≥ 0.

is NP-hard.

5See http://mathoverflow.net/questions/48843/non-negative-quadratic-maximization
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Let us now show that semi-NMF is not always a well-posed problem (this question was raised
by Mohamed Hanafi in a personal communication), that is, that an optimal solution of (1) does not
always exist. Here is a simple example:

M =

(

1 −1 0
0 0 1

)

.

The columns of M belong to the same two-dimensional half space {x ∈ R
2 | x2 ≥ 0}. However, the

first two columns are on the boundary of that half space. Therefore, they are not contained in its
interior hence ranks(M) = 3 (Theorem 2). However, the infimum of (1) for r = 2 is equal to zero,
taking

U =

(

1 −1
δ δ

)

and V =

(

1 −1 (2δ)−1

0 0 (2δ)−1

)

, with UV =

(

1 −1 0
δ δ 1

)

and making δ tend to zero.
Note that it is not likely for semi-NMF problems to be ill-posed, this only happens when the best

cone approximating the columns of M does not exist as it should be a half space.

5 Numerical Experiments

In this section, we compare four strategies to initialize Algorithm 1 (which only requires the matrix
V as an input):

1. Random initialization (RD): each entry of V is generated following the uniform distribution
in the interval [0, 1], that is, V = rand(r,n) in Matlab notations (which we will reuse in the
following).

2. K-means (KM): V is taken as the binary cluster indicator matrix generated by k-means (Vkj = 1
if and only if the jth column of M belongs to the kth cluster) to which is added the constant6

0.2. This is the initialization from [9], although we do not use their algorithm to update U and
V because Algorithm 1 is numerically more stable and has much better convergence properties;
see Remark 2.

3. Algorithm 2 (A2): we use Algorithm 2 to initialize V . This initialization guarantees the error
to be same as the error of the best rank-(r − 1) approximation.

4. Algorithm 3 (A3): we use Algorithm 3 to initialize V . This initialization generates an optimal
solution for matrices whose best rank-r approximation contains a positive vector in its row space
(which will be the case for example when M is nonnegative and MTM irreducible).

In the following two subsections, we generate several synthetic data sets where the dimensions of the
input matrix M are m = 100 and n = 200, and the factorization rank is r = 20 and r = 80. For each
generated synthetic matrix, we run Algorithm 1 with the four different initializations and consider the
error obtained after 10 and 100 iterations. We use the notation RD/10 (resp. RD/100) to refer to the
algorithm that performs 10 (resp. 100) iterations of Algorithm 1 using RD as an initialization. We use

6A priori, because we use Algorithm 1 and not the multiplicative updates of [9], we do not have to add a constant to
V . However, we observed that it allows Algorithm 1 to converge faster, and to better stationary points. In fact, taking V

as the binary cluster indicator matrix seems to induce some kind of locking phenomenon as Algorithm 1 has difficulties
to get away from this initial point.
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the same notation for the three other initializations KM, A1 and A2, namely KM/10 and KM/100,
A2/10 and A2/100, and A3/10 and A3/100. We also test the different initialization strategies on real
data in Section 5.3.

In order to compare meaningfully the error of solutions obtained for different input matrices, we
use the following measure: given a semi-NMF (U, V ) of M ,

quality(U, V ) = 100

(

||M − UV ||F
||M −X||F

− 1

)

≥ 0, (9)

where X is the best rank-r unconstrained approximation of M . It tell us how far away, in percent,
the semi-NMF UV is from the best unconstrained solution X. Note that quality(U, V ) = 0 if and
only if UV matches the error of the best rank-r approximation of M if and only if the best rank-r
approximation of M is semi-nonnegative.

The Matlab code is available at https://sites.google.com/site/nicolasgillis/. All tests are
preformed using Matlab on a laptop Intel CORE i5-3210M CPU @2.5GHz 2.5GHz 6Go RAM. We use
the function linprog of Matlab to solve the linear systems within the bisection method implemented
for Problem (5) (we have also implemented a version using CVX [16, 15] for users’ convenience –note
that the solution of (5) in y is non-unique and hence the solutions generated by different solvers are
usually different).

5.1 Nonnegative and Semi-Nonnegative Matrices

In order to confirm our theoretical findings from Section 3, namely that A3 computes optimal so-
lutions for nonnegative matrices (given that MTM is irreducible; see Corollary 5), and for many
semi-nonnegative matrices (under a certain condition; see Theorem 4), we generate matrices as fol-
lows:

1. Nonnegative matrices. We generate each entry of M with the uniform distribution in the interval
[0,1], that is, we use M = rand(m,n). Note that, with probability one, M > 0 hence MMT is
irreducible.

2. Semi-nonnegative matrices of rank higher than r. We generate matrices for which k = rank(M) =
ranks(M) = r + 10: we take M = UV where each entry of U is generated with the normal
distribution (mean 0, variance 1) and each entry of V with the uniform distribution in the
interval [0, 1], that is, we use M = randn(m,k)*rand(k,n).

For each value of r (20, 80), we generate 500 such matrices and Figure 1 displays the box plots of the
measure defined in Equation (9) (we perform a single initialization for each generated matrix). These
results confirm that A3 performs perfectly for these types of matrices. Note that (i) A2 performs
relatively poorly and lead to solutions worse than RD/100 and KM/100, and (ii) RD/100 (resp.
KM/100) do not always generate solutions close to optimality, in particular for semi-nonnegative
matrices when r = 80 for which the average quality is 5.5% (resp. 1.9%).

5.2 Semi-Nonnegative Matrices plus Noise

In this subsection, we generate semi-nonnegative matrices with rank(M) = ranks(M) = r to which we
add Gaussian noise. First we compute M = UV where each entry of U is generated with the normal
distribution (mean 0, variance 1) and each entry of V with the uniform distribution in the interval

14

https://sites.google.com/site/nicolasgillis/


rd/10 rd/100 KM/10 KM/100 A2/10 A2/100 A3/10 A3/100

0

0.2

0.4

0.6

0.8

1

1.2

Nonnegative matrices, r = 20

rd/10 rd/100 KM/10 KM/100 A2/10 A2/100 A3/10 A3/100

0

1

2

3

4

5

6

7

8

Nonnegative matrices, r = 80

rd/10 rd/100 KM/10 KM/100 A2/10 A2/100 A3/10 A3/100

0

1

2

3

4

5

6

7

8

9
Semi−nonnegative matrices, r = 20, k = 30

rd/10 rd/100 KM/10 KM/100 A2/10 A2/100 A3/10 A3/100
0

20

40

60

80

100

120

140

160

Semi−nonnegative matrices, r = 80, k = 90

Figure 1: Box plots of the error defined in Eq. (9) for nonnegative and semi-nonnegative matrices.

[0, 1], that is, we use M = randn(m,r)*rand(r,n), similarly as in the previous subsection. Then we
compute the average of the absolute values of the entries of M : xM = 1

mn

∑

i,j |M(i, j)| and add
Gaussian noise proportional to xM : we generate N = δ xM randn(m,n) where δ is the noise level and
then update M ←M +N . For δ = +∞, each entry of M is generated using the normal distribution,
that is, M = randn(m,n). Figure 2 display the box plots of the measure defined in Eq. (9) for different
values of δ. As in the previous subsection, for each experiment, we generate 500 matrices and report
the quality obtained for a single initialization for each algorithm. We observe that:

• A2 performs quite poorly: it is always dominated by RD/100 and KM/100. Hence, although A2
is appealing from a theoretical point of view, it does not seem to have much practical use.

• KM performs in average slightly better than RD, hence k-means initialization seems beneficial
in some cases (this will not be the case for some real data sets tested in Section 5.3).

• Even for a relatively large noise level (in particular, δ = 5), A3 performs perfectly (all semi-NMF
have quality (9) smaller than 10−2) because the best rank-r approximation of M is close to being
semi-nonnegative. The reason why A3 works perfectly even for very large noise levels can be
explained with the way the matrix V was generated: using the uniform distribution for each
entry. This makes the columns of matrix UV be far from the boundary of a well-chosen half
space, that is, there exists z such that (UV )T z/||z||2 ≫ 0. In particular, taking z = (U †)T e, the
expected value of (UV )T z = V T e is equal to r

2e.
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Figure 2: Box plots of the error from Eq. (9): semi-nonnegative matrices with noise (δ = 5, 10,+∞).

• When the noise level increases and the rank is not sufficiently large (the first example is for δ = 10
and r = 20), the condition of Theorem 4 is not (always) met and some solutions generated by
A3 do not match the error of the best rank-r approximation.

• When only noise is present and the matrix is Gaussian (δ = +∞), the condition of Theorem 4
is never met and A3 fails most of the time to extract a semi-NMF whose error is close to the
error of the best rank-r approximation. This is not surprising as these matrices are not likely to
have semi-nonnegative best rank-r approximations.

However, when r is large (r = 80), A3 outperforms RD, KM and A2; see Figure 2 (bottom right)
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and Figure 3 (right). We believe the reason is that, although the best rank-r approximations
are not semi-nonnegative, they have a vector in their row space close enough to the nonnegative
orthant hence A3 provides a good initial approximation.

On the contrary, when r small (r = 20), A3 performs worse than RD/100 and KM/100 although
the gap between both approaches is not significant as shown in Figure 2 (bottom left); see also
Figure 3. (Note that, with r = 10, A3 performs even worse compared to RD/100 and KM/100;
see also Section 5.3 for an example of this situation on real data.)

Note that we have observed this behavior for other values of m,n and r. As explained above,
the reason is that it becomes more likely as r increases for the row space of the best rank-
r approximation of M to contain a vector close to the nonnegative orthant hence for A3 to
perform well. (At least, the row space cannot get further away from the nonnegative orthant as
it is expanded as r increases.) This will be conformed on real data in Section 5.3.

• It seems that A3 generates matrices close to stationary points of (1) as the difference between
the boxplots of A3/10 and A3/100 is small on all these examples. This is another advantage
of A3: in all the experiments we have performed, it always allowed Algorithm 1 to converge
extremely quickly (essentially within 10 iterations); see Figure 3 displaying the average value
of the quality (9) for each iteration on the 500 Gaussian matrices. This observation will be
confirmed on real data in Section 5.3.
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Figure 3: Average value of the quality (9) for each iteration of Algorithm 1 on the 500 Gaussian
matrices (δ = +∞) for r = 20 (left) and r = 80 (right) with the different initialization strategies.

Finally, the two main recommendations that we can give based on these experiments are the
following:

1. A3 works in general very well, being optimal for matrices whose best rank-r approximation is
semi-nonnegative. Hence we would always recommend to try it on your favorite matrices.

2. RD and KM sometimes work better than A3 (after sufficiently many iterations of a semi-NMF
algorithm), in particular when the factorization rank r is small and the best rank-r approximation
of the input matrix is far from being semi-nonnegative (in fact, if the best rank-r approximation
would be semi-nonnegative, A3 would perform perfectly). They should be tried on matrices for
which A3 was not able to compute a semi-NMF whose error is close to the error of the best
rank-r approximation.
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Remark 6. In these experiments, we intentionally took n ≥ m because an m-by-n matrix is less likely
to be semi-nonnegative when n ≥ m. In particular, an m-by-n Gaussian matrix with n ≤ m is semi-
nonnegative with probability one since rank(M) = ranks(M) = n with probability one (although this
does not imply that its best rank-r approximation is; see Theorem 4). For example, running exactly
the same experiment with m = 200, n = 100, r = 20 and δ = 10, 86% of the solutions generated by A3
match the best rank-r approximation up to 0.01% (while only 0.4% do for m = 100, n = 200, r = 20;
see Figure 2).

5.3 Real Data

In this section, we compare the different approaches on three data sets:

• CBCL face data set7: it is arguably the most popular data set for NMF as it was used in the
foundational paper of Lee and Seung [18] with r = 49. It consists in 2429 facial images, 19-by-19
pixels each. The corresponding matrix M therefore has size 361 by 2429 and is nonnegative.
This will illustrate the optimality of A3 on nonnegative data.

• Inonosphere and Waveform UCI data sets: these are the two data sets that contain both positive
and negative entries used in [9]. Inonosphere corresponds to a 34-by-351 matrix with values in
the interval [-1,1], Waveform to a 22-by-5000 matrix with values in the interval [-4.2,9.06] and
we use r = 3, 5, 10 for both data sets; see https://archive.ics.uci.edu/ml/datasets.html

for all the details.

Our goal is to illustrate, on real data, the observations made on synthetic data sets. Again we
compare the four semi-NMF initializations (RD, KM, A2 and A3) combined with Algorithm 1 in terms
of the quality measure defined in Equation (9). For RD and KM, we use ten initializations (k-means
generates in most cases different solutions for different runs) and report both the average quality and
the best quality obtained by the different runs. Table 1 reports the error after 10 and 100 iterations
of the four approaches (as before).

Figure 5 shows the evolution of the quality for the CBCL data set, Figure 5 for the Ionosphere
data set, and Figure 6 for the Waveform data set.

Interestingly, these results confirm the observations on synthetic data sets:

• For the CBCL data set (a nonnegative matrix), A3 identifies an optimal solution while the other
approaches are not able to (although performing more iterations of Algorithm 1 would improve
their solutions; see Figure 4).

• For the Ionosphere data set, when r is small (r = 3), A3 is not able to identify a good initial
point and perform the worse (as for Gaussian matrices with r = 20; see Figure 3). When r is
large (r = 10), A3 is again the only approach that leads to an optimal solution matching the
error of the best rank-r approximation. For r = 5, it does not perform best, but allows to obtain
a rather good initial point (A3/10 performs best).

• For the Wave data set, A3 is always able to identify an optimal solution, because its best rank-r
approximation is semi-nonnegative (recall that if it is semi-nonnegative for some r, it is for all
r′ ≥ r; see Section 3.2).

7http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html
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Table 1: Numerical results on real-world data sets: quality (9) of the different initialization approaches
for semi-NMF.

CBCL Ion 3 Ion 5 Ion 10 Wave 3 Wave 5 Wave 10

RD/10 - average 17.59 0.59 1.90 3.12 0.19 2.43 3.44
RD/10 - best 16.73 0.47 1.49 2.63 0.15 1.96 2.90

KM/10 - average 27.44 0.54 2.11 4.22 0.23 5.40 14.87
KM/10 - best 26.13 0.41 1.99 2.68 0.23 5.24 13.88

A2/10 1.18 0.63 3.04 3.65 0.56 2.09 3.50
A3/10 0 0.67 0.38 0 0 0 0

RD/100 - average 1.59 0.16 0.44 0.37 0.01 0.03 0.07
RD/100 - best 1.34 0.15 0.29 0.33 0.01 0.01 0.03

KM/100 - average 6.00 0.16 0.98 0.44 0.01 0.09 0.13
KM/100 - best 5.61 0.15 0.31 0.39 0.01 0.05 0.06

A2/100 1.18 0.16 0.99 1.57 0.02 0.14 0.25
A3/100 0 0.67 0.38 0 0 0 0
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Figure 4: Quality (9) for each iteration of Algorithm 1 with the different initialization strategies on
the CBCL data set (r = 49).

• A3 allows Algorithm 1 to converge very quickly, in all cases in less than 10 iterations.

It is interesting to note that, for these experiments, RD performs better than KM although the
difference is not significant (except for the CBCL face data set).

6 Conclusion

In this paper, we have addressed theoretical questions related to semi-NMF that led us to the design
of exact and heuristic algorithms. Our contribution is three-fold. We showed that

• The approximation error of semi-NMF of rank r has to be smaller than the approximation error
of its unconstrained counterpart of rank r−1. This result allowed us to design a new initialization
procedure for semi-NMF that guarantees the error to be equal to the error of the best rank-(r−1)
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Figure 5: Quality (9) for each iteration of Algorithm 1 with the different initialization strategies for
the Ionosphere data set: r = 3 (top), r = 5 (bottom left) and r = 10 (bottom right).

approximation; see Theorem 1 Algorithm 2. However, it seems that this initialization procedure
does not work very well in practice.

• Exact semi-NMF can be solved in polynomial time (Theorem 3), and semi-NMF of a matrix
M can be solved in polynomial time up to any given precision with Algorithm 3 given that the
best rank-r approximation of M is semi-nonnegative. Algorithm 3 can also handle cases when
the aforementioned condition is not met, and we illustrated its effectiveness on several synthetic
data sets.

• Semi-NMF is NP-hard in general, already in the rank-one case (Theorem 5). Moreover, we
showed that some semi-NMF instances are ill-posed (that is, an optimal solution does not exist).

Further research on semi-NMF includes the design of other initialization strategies (in particular
in the case r is small and the best rank-r approximation of M is far from being semi-nonnegative;
see also Remark 4), and the analysis of constrained variants of semi-NMF such as sparse semi-NMF
where V is required to be sparse. In fact, sparse semi-NMF would in general make more sense as
it has better clustering properties; see the discussions in Section 3.1 and in [9] for more details. In
particular, it would be interesting to see how Algorithm 3 performs as an initialization strategy in
that case.
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Figure 6: Quality (9) for each iteration of Algorithm 1 with the different initialization strategies for
the Waveform data set: r = 3 (top), r = 5 (bottom left) and r = 10 (bottom right).
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