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RELATIONS BETWEEN TRANSFER MATRICES AND NUMERICAL
STABILITY ANALYSIS TO AVOID THE ΩD PROBLEM ˚

R. PÉREZ-ÁLVAREZ : , R. PERNAS-SALOMÓN ; , AND V. R. VELASCO §

Abstract. The transfer matrix method is usually employed to study problems described by
N equations of matrix Sturm-Liouville (MSL) kind. In some cases a numerical degradation (the
so called Ωd problem) appears thus impairing the performance of the method. We present here a
procedure that can overcome this problem in the case of multilayer systems having piecewise constant
coefficients. This is performed by studying the relations between the associated transfer matrix (T )
and other transfer matrix variants. In this way it was possible to obtain the matrices which can
overcome the Ωd problem in the general case and then in problems which are particular cases of
the general one. In this framework different strategies are put forward to solve different boundary
condition problems by means of these numerically stable matrices. Numerical and analytic examples
are presented to show that these stable variants are more adequate than other matrix methods to
overcome the Ωd problem. Due to the ubiquity of the MSL system, these results can be applied to
the study of many elementary excitations in multilayer structures.

Key words. Transfer matrix, matrix Sturm-Liouville problem, numerical stability, quadratic
eigenvalues, Ωd problem
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1. Introduction. The study of elementary excitations in multilayer systems
(heterostructures) continues to be a very active field of research due to the multiple
applications of these systems for the design of devices with composite materials. In re-
cent years magneto-electro-elastic materials [1] and piezoelectric multilayer structures
[2, 3], among other systems, have been the object of many studies. The associated
transfer matrix method [4] T is one of the theoretical techniques most employed in
the study of these systems. From the formal point of view this method is very ade-
quate for the study of problems related with multilayer systems. It reflects in a very
simple way the linearity of the problem, based on the fact that any solution can be
expressed as a linear combination of a chosen basis of the corresponding functional
space [4]. On the other hand, for several practical applications to different problems,
the method is hampered by numerical instabilities, the most common one being called
the Ωd problem [4]. The name associated to this numerical instability derives from
the elastic waves studies where this instability is present at high frequencies Ω and/or
big thicknesses pdq of the layers.

A description of this problem was given in [5] when studying wave propagation in
layered elastic media at high frequencies. In this work the origin of the problem was
assigned to the large frequency-thickness (fd) products. It was found that the modal
calculations presented numerical difficulties and a matrix formulation, the δ-matrix
method, was proposed to deal with them. Another approach closely related with the
scattering matrix method is the reflectivity matrix method [6]. Nevertheless the high
frequency-thickness product instability has been a persistent feature in the study of
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wave propagation in layered media as it can be seen in a later review [7]. The name
Ωd problem was coined in [4]. There it was noticed that the expressions producing
this instability are of the form Ωd where Ω stands for a function of the frequency or
the equivalent magnitude for other elementary excitations.

Different techniques have been developed to deal with this problem. Some of
them, as the global transfer matrix [4, 3], involve matrices with dimensions increasing
with the number of layers forming the system. It is then clear that for systems
including many layers the method will require big amounts of computer memory and
time.

Other approaches employ transfer matrices with dimensions independent of the
number of layers. Among them we can find the Stiffness matrix method [8, 9, 10, 11]
pEq, the Scattering matrix method [11, 12, 13] pSq and the method of the hybrid
compliance-stiffness (or simply hybrid matrix) [11, 14, 15] pHq. These methods have
been mainly used in studies of elastic waves propagation in anisotropic systems and
acoustic waves in piezoelectric systems.

All these studies have been performed in a separate way. There is no clear picture
of the usefulness and limitations of the different approaches. Our aim is to give an
unified view of the problem and present the most adequate transfer matrix variant
to solve different problems. To this end we shall consider a general system of N

differential equations of the matrix Sturm-Liouville (MSL) kind [4]. In this general
framework the study of the expressions relating each different matrix with T will
allow to understand how the different matrices elude the T numerical instabilities.
To extend the use of these transfer matrix variants H, E and S to a wider range of
physical problems involving multilayer systems we shall study the numerical stability
of each matrix variant. In addition we shall present different strategies to be used in
the case of common boundary value problems as superlattices or finite sandwiches in
terms of H, E or S.

We must stress that our procedure can overcome this problem in the case of mul-
tilayer systems having piecewise constant coefficients. This is an important problem
and covers many cases of practical interest.

Among the big amount of work done on this problem using other methods we
can mention those based on the sextic formalism for the linear elasticity [16]. In this
scheme the matricant matrix was introduced together with the impedance matrix
and the two point impedance matrix [17]. This approach allows to deal with systems
having inhomogeneous coefficients. Stable methods to compute the matricant and the
impedance matrix with special integration schemes [18] and an alternative method
based on the resolvent of a propagator have been presented recently [19, 20]. In
these works the chain rule for the resolvent, together with a differential equation of
Riccati kind for the obtention of the resolvent in continuous inhomogeneous media
are presented. The resolvent is well adapted to get the spectrum and fields in these
systems.

The general character of our approach allows the extension of the transfer matrix
variants use to problems whose systems of equations are particular cases of the MSL.
We shall illustrate, for example, the hybrid matrix numerical stability by numerical
studies of the shear horizontal surface waves in piezoelectric multilayer systems.

In Section 2 we present the master equation of the matrix Sturm-Liouville system
of equations. In Section 2.1 we introduce the quadratic eigenvalues problem leading to
the linearly independent solutions of the system together with their eigenvalues for a
homogeneous medium. We define in Section 2.2 the associated transfer matrix T and
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introduce the form employed in the analysis of the numerical stability of the variants
H, E and S. Section 2.3 introduces the Ωd problem together with the analysis of the
T characteristics that can be the source of this numerical instability. Afterwards, the
numerical stability of the hybrid matrix, Section 3.1, and the stiffness matrix, Section
3.2, are studied through their respective relations with T in an homogeneous domain.
The analysis for the scattering matrix is presented in (Section 4.1). The composition
rules for the different matrices considered here are analyzed in Section 4.2. Section 5
presents the strategies to solve several boundary problems in terms of H, E or S. A
numerical example demonstrating the numerical stability of the hybrid matrix is also
presented together with an analytic study of the well known Kronig-Penney model.
Conclusions are presented in Section 6.

2. Matrix Sturm-Liouville system of equations (MLS). A matrix Sturm-
Liouville problem emerges naturally in a wide range of physical and technological
problems (see, for example Refs. [4, 21, 22], and citations therein). In this wide
range of problems there are many belonging to the elasticity theory (see for example
[23]), electromagnetism [24] and several other areas of classical physics. Some of these
problems can be quite complicated as the magneto-electro-elastic waves [25]. A matrix
Sturm-Liouville problem appears also in Quantum Mechanics and Solid State Physics.
Particularly the Envelope Function Approximation (EFA) [26, 27] generates a massive
class of systems of equations that follow the Sturm-Liouville equation in matrix form.
Initially many of these systems of equations are three-dimensional, but in layered
systems, as outlined in Figure 1, the normal modes can be chosen as exponential of
i~κ ¨ ~ρ multiplied by some function of the variable z, the coordinate perpendicular to
the interfaces. We denote by ~ρ “ x~ex ` y~ey the position vector in the plane of the
interfaces and by ~κ “ κx~ex ` κy~ey the corresponding wavevector. In this way the
equations of motion take the Sturm-Liouville form, namely:

d

dz

„

Bpzq ¨
dFpzq

dz
` P pzq ¨ Fpzq



` Y pzq ¨
dFpzq

dz
` W pzq ¨ Fpzq “ 0 .(2.1)

This defines the matrix differential operator Lpzq.The unknown Fpzq is the field
under study: electronic wavefunctions, or envelope functions, if we deal with elec-
tronic states, vibration amplitude for elastic waves, or components of the electric field
in some electrodynamic situations. In the case of the Full Phenomenological Model
(FPM) for polar optical modes in heterostructures [21] the unknown field has several
components: three mechanical amplitudes and a component which is interpreted as
a coupled electrostatic potential [21]. The coefficients Bpzq, P pzq, Y pzq, and W pzq
are square matrices of order N , being N the number of coupled second order differ-
ential equations forming the system (2.1). These coefficients characterize the physical
properties of the materials forming the multilayer system: dielectric constants, elastic
coefficients, etc. As the multilayer structures studied here involve different materials
these coefficients will be different for the different materials. The dot ¨ means standard
matrix product.

As the linear differential form is defined from (2.1)

Apzq “ Bpzq ¨
dFpzq

dz
` P pzq ¨ Fpzq,(2.2)

then the first integration from z ´ ǫ to z ` ǫ shows that Apzq is continuous for every z

along the multilayer structure. The continuity of Fpzq and Apzq along the structure
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allows to obtain the composition rule for the transfer matrices defined from these
magnitudes.

2.1. LI solutions. Quadratic Eigenvalues Problem. In the case of an ho-
mogeneous medium the differential equations system (2.1) takes the following form

B ¨ F2pzq ` pP ` Y q ¨ F1pzq ` W ¨ Fpzq “ 0 .(2.3)

In this simple case the linearly independent (LI) solutions of the differential equations
system (2.1) can be expressed by means of exponentials [28, 29]

Fpzq “ F0 e
ik z .(2.4)

The eigenvalues k are obtained from the zeros of the secular matrix determinant:

Θpkq “ ´k2B ` ikpP ` Y q ` W .(2.5)

Now we are dealing with a quadratic eigenvalues problem (QEP) [22]. If matrix
B is regular pDetrBs ‰ 0q we have a set of eigenvalues K “ tkj , j “ 1, 2, ¨ ¨ ¨ , 2Nu
and the corresponding eigenfunctions Fjpzq “ Fj0 exprikjzs. The amplitudes Fj0

multiplied by a constant are obtained from the homogeneous linear equations system:

Θpkjq ¨ Fj0 “ 0 .(2.6)

The multiplicative constant is usually obtained by a normalization condition.
In the following, we shall always assume B: “ B, W : “ W and Y “ ´P :,

in order to ensure formal hermiticity of the operator Lpzq, see Ref. [4]. In this case
the eigenvalues of the QEP satisfy the general property of being real or appearing in
pairs: kj and its complex conjugate k˚

j .

2.2. Associated Transfer Matrix for the MSL equations system. We
shall define the associated transfer matrix T pα : z, z0q, which transfers the amplitudes
F and the linear differential form A in a domain α, as in [4]:

Fpα : zq
Apα : zq

“ T pα : z, z0q ¨
Fpα : z0q
Apα : z0q

.(2.7)

From now on we shall suppress the zonal argument α. Following the algebraic
and analytic methods to calculate the matrix T pz, z0q, given in [4], we shall have:

T pz, z0q “ Qpzq ¨ Qpz0q´1,(2.8)

where the auxiliary matrix Qpzq is formed by a basis of eigenfunctions Fjpzq and of

the linear differential forms Ajpzq “ Bpzq ¨
dFjpzq

dz
` P pzq ¨ Fjpzq:

Qpzq “

ˇ

ˇ

ˇ

ˇ

F1pzq F2pzq . . . F2N pzq
A1pzq A2pzq . . . A2N pzq

ˇ

ˇ

ˇ

ˇ

.(2.9)
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For an homogeneous domain α, with constant B, P and W , we can choose the
eigenfunctions Fjpzq “ Fj0 eik z, and after some manipulations on (2.9), we can
separate the factors Fj0 from the exponentials eik z in the form:

Qpzq “

„

F0N F02N

A0N A02N



¨

„

ΠkN
pz ´ z0q 0
0 Πk2N

pz ´ z0q



¨

„

ΠkN
pz0q 0
0 Πk2N

pz0q



.

The submatrices ΠkN
pdq and Πk2N

pdq are diagonal an the jth element is the
exponential eikj d. F0N , A0N , F02N and A02N are square matrices of order N whose
elements are obtained in terms of the constant Fj0 and the corresponding Aj0. In
our notation the subindex tNu denotes that j “ 1, 2, ¨ ¨ ¨ , N and the subindex t2Nu
means that j “ N ` 1, N ` 2, ¨ ¨ ¨ , 2N .

By substituting Qpzq in (2.8) and considering d=z ´ z0 we have:

T pdq “

„

F0N F02N

A0N A02N



¨

„

ΠkN
pdq 0

0 Πk2N
pdq



¨

„

F0N F02N

A0N A02N

´1

.(2.10)

The matrix T pdq appearing in (2.10) can be interpreted as the associated transfer

matrix (ATM) relating the vector rFpzq ApzqsT in the boundaries of an homogeneous
domain with thickness d.

As the linear form Apzq is continuous along the interface separating two adjacent
domains, the ATM has the chain property. Then for an ensemble of µ layers sketched
in Figure 1, the system ATM is obtained from the following matrix product:

T pzr, zℓq “ T pzr ´ zµ´1q . . .T pz2 ´ z1q ¨ T pz1 ´ zℓq,(2.11)

where zℓ, z1, z2, . . . , zr are coordinates of the interfaces matching the different domains
of the multilayer structure.

We shall start now the study of the T characteristics which can be the source of
the Ωd problem in the numerical calculations. With this knowledge we shall study
later the numerical stability of the H, E and S matrices, by means of their relations
with T .

2.3. Ωd problem. From (2.10) we can obtain expressions for the analysis of
the numerical instability of the T matrix elements for any N . For real eigenvalues
(allowed regions) we have:

T ls “
2N
ÿ

j“1

Alsj rcospkj dq ` i sinpkj dqs ,(2.12)

whereas for complex eigenvalues (forbidden regions) we shall have combinations of
decreasing and increasing exponentials:

T ls “
N
ÿ

j“1

Clsj τj e
|ℑpkjq| d

´

1 ˘ Dlsje
´2|ℑpkjq| d

¯

.(2.13)

The coefficients Alsj , Clsj and Dlsj are expressed in terms of the elements of F0N ,
A02N , F02N and A02N . In (2.13) we have separated the kj eigenvalue real ℜpkjq and
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✲
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zℓ

...

1

z1

...
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z2

...

3

z3

...

¨ ¨ ¨

¨ ¨ ¨ zm´1

...

m

zm

...

m ` 1

zm`1

...

¨ ¨ ¨
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zµ´3

...

µ ´ 2

zµ´2

...

µ ´ 1

zµ´1

...

µ

zr

...

R

Fig. 1. General scheme of the system under study. The system consists of µ layers sandwiched
by two semi-infinite external domains: L (left) and R (right). According to our convention, the
layer m is bounded between interfaces pm ´ 1q and m with coordinates zm´1 and zm respectively.

imaginary ℑpkjq parts. The real part is included in the τj “ eiℜpkjqd factor having a
bounded value.

For real eigenvalues the T elements are represented by means of trigonometric
functions which are bounded by ˘1. In this case the Ωd problem does not appear
when the product pkj dq increases. On the other hand, for complex eigenvalues the
mixing of terms with increasing and decreasing exponential values present in (2.13)
may give rise to this numerical instability.

For increasing kj d leading toDlsje
´2|ℑpkjq| d « u (unit roundoff ) the

`

1 ˘ Dlsje
´2|ℑpkjq| d

˘

operation is rounded to 1.0 by the computer. Thus the result p1.0q will have a round-
off error. The number u (unit roundoff ) is the machine precision, that is, the value
to be added to 1.0 to produce a result different from 1.0. This number can be cal-
culated as u “ 1

2
β1´t [30], where β is the base of the floating point number system

and t its precision (can be understood as the number of digits used to give a value).
The roundoff error is defined as the difference between the calculated approximation
of a number and its exact mathematical value. When the roundoff result is 1.0 the
absolute value of this error Eabs is bounded Eabs ď u [30]. In the double precision
decimal system (β “ 10, t “ 16) we have u “ 5 ˆ 10´16.

If we assume that the calculation of a term Clsj τj e
|ℑpkjq| d

`

1 ˘ Dlsje
´2|ℑpkjq| d

˘

of (2.13) is performed with roundoff, then the result will be affected by a roundoff
error with absolute value Er given by:

Er ď Clsj τj e
|ℑpkjq| d u.(2.14)

Depending on the numerical problem under study the right-hand side in (2.14) can
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have a high value and also a big Er error. The roundoff error can be accumulated when
the final result to be obtained (e.g., eigenvalues or parameters of a given problem) is
preceded by a sequence of calculations prone to roundoff errors. In these cases the
error can dominate the calculations thus giving a very inaccurate final result. When
this happens we are in the presence of the numerical instability called Ωd problem.

In practice it is quite easy to deal with problems in which the T determinant is
constant and equal to one. This can be used as a test of the numerical accuracy in the
real calculations. When the numerical instability is present the DetrT s takes values
quite different from the exact one, being in some cases several orders of magnitude
bigger or smaller than 1.0.

The expression (2.13) shows also clearly that the T ls elements increase indefi-
nitely when exponential argument |ℑpkjq| d Ñ 8. In this case the T matrix overflows
and cannot be calculated numerically. Thus it is clear that in the T numerical appli-
cations we can find two kinds of numerical instability: the Ωd problem and the matrix
overflow.

3. Hybrid matrix and Stiffness matrix of the MSL system. We can define
new matrices in the domain α, where T was defined, by changing the arrangement
of the Fpzq, Apzq, Fpz0q and Apz0q vectors in (2.7). Some examples are the Hybrid
Compliance-Stiffness matrix pHq and the Stiffness matrix pEq:

Fpα : z0q
Apα : zq

“ Hpα : z; z0q ¨
Apα : z0q
Fpα : zq

.(3.1)

Apα : z0q
Apα : zq

“ Epα : z; z0q ¨
Fpα : z0q
Fpα : zq

.(3.2)

The Hybrid Compliance-Stiffnes matrix was employed in Ref. [14] as a stable
variant to study the propagation of an acoustic wave in an anisotropic multilayer
system. The acoustic wave equations of motion are a particular case of the system
(2.1) including the displacement vector as Fpzq and the force vector normal to the
interfaces as A(z).

Following this procedure we can define up to 24 interrelated matrices related
among them. In fact we obtain 12 different matrices and their respective inverses.
Among them we find T´1, H´1 and E´1. The matrix E´1is known as Compliance
matrix, see Refs. [14, 8]. By taking as reference the expressions defining T , H , E,
T´1, H´1 and E´1 is possible to obtain from them other three different matrices
which will exhibit a similar numerical behaviour. A first matrix is obtained by per-
muting among them the positions of the vectors in the right-hand side of the matrix
taken as reference (e.g., the Apα : z0q and Fpα : zq vectors in the right-hand side of
(3.1). The second matrix is obtained by means of the former operation applied to the
vectors in the left-hand side of the matrix taken as reference. The third one is the re-
sult of both permutations. The Appendix A shows, by means of the relations between
the matrices, that the matrices defined in this way will have a similar behaviour from
the numerical point of view.

We obtain T p´dq by inversion of (2.10). Thus T´1 will have the same numerical
behaviour than T . When inverting the expressions for Hpdq and Epdq the result is
the permutation of the F0N submatrix with the A0N one and of the F02N submatrix
with the A02N one. Thus H´1 and E´1 will have also a numerical behaviour similar
to those of their counterparts.
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3.1. Analysis of the numerical instability of the Hybrid matrix of the
MSL system. The following relations can be obtained from Eqs. (2.7) and (3.1):

H “

„

´rT 11s´1 ¨ T 12 rT 11s´1

T 22 ´ T 21 ¨ rT 11s´1 ¨ T 12 T 21 ¨ rT 11s´1



,(3.3)

On the other hand, equations (2.7) and (2.8) exhibit an important property.
Equation (2.8) leads to a unique ATM independently of the chosen LI solutions base.
As a consequence the hybrid matrix obtained from the relations (3.3) will be in-
dependent also from the solutions base chosen to build up T . Then, for simplic-
ity, we consider that the ATM expression (2.10) was built from a base of solutions
Fjpzq “ Fj0 e

ikjz, in such a way that ΠkN
pdq contains the eigenvalues with posi-

tive imaginary part ℑpk1, k2, . . . kN q ą 0 and Πk2N
pdq the eigenvalues with negative

imaginary part ℑpkN`1, kN`2, . . . k2N q ă 0. In this way the submatrices ΠkN
pdq and

Πk2N
p´dq reduce to the order N nil matrix p0N q when the thickness d Ñ 8 whereas

the elements of ΠkN
p´dq and Πk2N

pdq tend to infinity.
Appendix B contains the expressions for the N order partitions: T 11, T 12, T 21

and T 22 obtained from (2.10).With the help of (3.3) we have:

H11 “
“

A02N ¨ F´1

02N
´ γ21 ¨ ΠkN

p´dq ¨ F´1

0N
¨ F02N ¨ Πk2N

pdq ¨ γ´1

12

‰´1
`

“

A0N ¨ F´1

0N
´ γ22 ¨ Πk2N

p´dq ¨ F´1

02N
¨ F0N ¨ ΠkN

pdq ¨ γ´1

11

‰´1
(3.4)

H12 “ γ12 ¨ Πk2N
p´dq ¨ F´1

02N

¨
“

IN ´ F0N ¨ ΠkN
pdq ¨ A´1

0N
¨ A02N ¨ Πk2N

p´dq ¨ F´1

02N

‰´1
(3.5)

H21 “ rA0N ´ H22 ¨ F0N s ¨ ΠkN
pdq ¨ γ´1

21
`

rA02N ´ H22 ¨ F02N s ¨ Πk2N
pdq ¨ γ´1

22
(3.6)

H22 “
“

F0N ¨ A´1

0N
´ F02N ¨ Πk2N

pdq ¨ A´1

02N
¨ A0N ¨ ΠkN

p´dq ¨ A´1

0N

‰´1
`

“

F02N ¨ A´1

02N
´ F0N ¨ ΠkN

pdq ¨ A´1

0N
¨ A02N ¨ Πk2N

p´dq ¨ A´1

02N

‰´1
.(3.7)

The coefficients γ11, γ12, γ21 and γ22 are obtained in terms of F0N , F02N , A0N

and A02N as indicated in Appendix B.
When d increases indefinitely the expressions (3.4-3.6) are reduced to:

H11|dÑ8 “ F0N ¨ A´1

0N
¨ rIN ´ 0N s

´1
“ F0N ¨ A´1

0N
(3.8)

H12|dÑ8 “ 0N ¨ rIN ´ 0N s
´1

“ 0N(3.9)

H21|dÑ8 “
”

A02N ´ A02N ¨ F´1

02N
¨ rIN ´ 0N s

´1
¨ F0N

ı

¨ 0N

`
”

A02N ´ A02N rIN ´ 0N s
´1

ı

¨ Πk2N
pdq|dÑ8 ¨ γ´1

22
“ 0N(3.10)

H22|dÑ8 “ A02N ¨ F´1

02N
¨ rIN ´ 0N s

´1
“ A02N ¨ F´1

02N
.(3.11)



TRANSFER MATRIX NUMERICAL STABILITY AND THE Ωd PROBLEM 9

We denote by rIN ´ 0N s the N order identity matrix obtained with roundoff,
whose elements are characterized by a roundoff error with absolute value Er ď u

(unit roundoff ). Thus, the H matrix elements will be characterized by an error whose
absolute value is of order of u. These results show that the MLS matrix H converges
to finite values, without significant precision loss, when d increases indefinitely.

On the other hand when d Ñ 0 we obtain immediately from (2.10) that T ” I2N

and by substituting its partitions of order N in (3.3) we obtain:

H |dÑ0 “

„

0N IN

IN 0N



,(3.12)

thus H also converges in a numerically stable way when d Ñ 0.

3.2. Numerical stability of the Stiffness matrix of the MSL system.
From the expressions (2.7) and (3.2) we derive the following relations:

E “

„

´rT 12s´1 ¨ T 11 rT 12s´1

T 21 ´ T 22 ¨ rT 12s´1 ¨ T 11 T 22 ¨ rT 12s´1



.(3.13)

The Stifness matrix obtained from equation (3.13) will be, as the H matrix,
independent of the base of the LI solutions chosen to build T . Because of this we
consider also the ATM coming from the expression (2.10), which was obtained from
a base of solutions Fjpzq “ Fj0 e

ikjz, where ΠkN
pdq contains the eigenvalues with

positive imaginary part: ℑpk1, k2, . . . kN q ą 0 and Πk2N
pdq contains the eigenvalues

with negative imaginary part: ℑpkN`1, kN`2, . . . k2N q ă 0.
Following the same procedure employed for H we substitute in (3.13) the expres-

sion of the partitions T 11, T 12, T 21 and T 22 given in the Appendix B and calculate
the limit of the partitions of E when d Ñ 8, to obtain:

E11|dÑ8 “ A0N ¨ F´1

0N
¨ rIN ´ 0N s

´1
“ A0N ¨ F´1

0N
(3.14)

E12|dÑ8 “ 0N ¨ rIN ´ 0N s
´1

“ 0N(3.15)

E21|dÑ8 “
”

A0N ´ A02N ¨ F´1

02N
¨ rIN ´ 0N s

´1
¨ F0N

ı

¨ 0N

`
”

A02N ´ A02N rIN ´ 0N s
´1

ı

¨ Πk2N
pdq|dÑ8 ¨ γ´1

12
“ 0N(3.16)

E22|dÑ8 “ A02N ¨ F´1

02N
¨ rIN ´ 0N s

´1
“ A02N ¨ F´1

02N
.(3.17)

These results show that the E matrix also converges to finite values without a
significant precision loss when d grows indefinitely. On the other hand, when d Ñ 0,
we know that T ” I2N , which means that T 12 “ T 21 “ 0N and then the E matrix is
not numerically computable (overflow) as is directly obtained from the relations (3.13).
Let us now assume that d is very small but not enough to provoke the overflow state.
From (3.13) we can express the partition E21 in the following form:

E21 “ ´
`

IN ´ T 21 ¨ T ´1

11 ¨ T 12 ¨ T´1

22

˘

¨ T 22 ¨ T´1

12 ¨ T 11,(3.18)

then for a sufficiently small d this partition will be the object of the roundoff in the
first place, giving:
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E21|dÑ0 “ ´ rIN ´ 0N s ¨ T´1

12 .(3.19)

Unlike the limits given in (3.14)-(3.16) the term rIN ´ 0N s subjected to the round-
off, multiplies now a term T´1

12 whose value can be big enough to affect the Stiffness
matrix due to the roundoff error and then gives rise to the Ωd problem.

4. Scattering Matrix and Coefficients Transfer Matrix for the MSL
system. In the case of the Scattering Matrix pSq its relation with T is not a direct
one (because there are other matrices involved) as in the relations studied previously.
A possible way to relate S with T is by using the Coefficients Transfer Matrix pKq.
We need to use the direct relation S-K and the indirect one K-T . Being known a
base of solutions Fjpα, zq in a domain α the general solution Fpα, zq of the differential
system (2.1) can be written as:

Fpα, zq “
2N
ÿ

j

ajpαqFjpα, zq .(4.1)

Let be a`{´ pαq the N -vector formed by the coefficients ajpαq of the amplitudes
travelling to the right/left. Then we shall denote as KpR,Lq the Coefficients Transfer
Matrix transferring the ensemble of coefficients a`{´ from domain L to domain R:

a`pRq
a´pRq

“ KpR,Lq ¨
a`pLq
a´pLq

.(4.2)

The term Scattering Matrix is widely used in the literature and can be defined in
different ways. Here we shall use the definition and notation SpR;Lq employed in [4]:

a´pLq
a`pRq

“ SpR;Lq ¨
a`pLq
a´pRq

.(4.3)

From these definitions we obtain a direct relation between S and K:

S “

„

´rK22s´1 ¨ K21 rK22s´1

K11 ´ K12 ¨ rK22s´1 ¨ K21 K12 ¨ rK22s´1



.(4.4)

By taking into account that between the domains R and L there is an intermediate
region M (can be a single or a multiple layer) described by a T matrix, it is possible
to obtain [4]:

KpR,Lq “ rQpR : zrqs´1 ¨ T pzr, zℓq ¨ QpL : zℓq ,(4.5)

where zr{ℓ are the coordinates of the interfaces matching the intermediate region M
with the external domains R (to the right)/L (to the left). The matrix Qpzq for an
arbitrary domain is given in (2.9). Expression (4.5) shows clearly that the matrix K

and consequently S depends on the base of LI solutions chosen to build the matrix
Q. It is a common practice to choose a reduced base in zr{ℓ, that is a base tending
to unity in zr{ℓ.
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4.1. Analysis of the numerical stability of the Scattering Matrix (SM).
In the first place we substitute in (4.5) the expressions (B.2) giving the T partitions
when d Ñ 8. Now we substitute in (4.4) the expressions obtained for the partitions
of K and obtain:

S11|dÑ8 “ ´
“

γ´1

12
¨ pIN ` 0N q ¨ Qpzℓq12 ` γ´1

22
¨ pIN ` 0N q ¨ Qpzℓq22

‰´1

¨
“

γ´1

12
¨ pIN ` 0N q ¨ Qpzℓq11 ` γ´1

22
¨ pIN ` 0N q ¨ Qpzℓq21

‰

;(4.6)

S12|dÑ8 “
“

γ´1

12
¨ pIN ` 0N q ¨ Qpzℓq12 ` γ´1

22
¨ pIN ` 0N q ¨ Qpzℓq22

‰´1

¨Πk2N
p´dq|dÑ8 ¨

“

pQpzrq´1q21 ¨ F02N ` pQpzrq´1q22 ¨ A02N

‰´1

“ 0N ;(4.7)

S21|dÑ8 “
“

pQpzrq´1q11 ¨ F02N ` pQpzrq´1q12 ¨ A02N

‰

¨ Πk2N
pdq|dÑ8

¨
“

γ´1

12
¨ pIN ` 0N q ¨ Qpzℓq11 ` γ´1

22
¨ pIN ` 0N q ¨ Qpzℓq21

‰

´Identical “ 0N ;(4.8)

S22|dÑ8 “
“

pQpzrq´1q11 ¨ F02N ` pQpzrq´1q12 ¨ A02N

‰

¨
“

pQpzrq´1q21 ¨ F02N ` pQpzrq´1q22 ¨ A02N

‰´1
.(4.9)

We have used the notation Qpzrq instead of QpR : zrq and Qpzℓq instead of
QpL : zℓq to simplify the expressions. The term rIN ` 0N s is an identity matrix of
order N obtained by roundoff whose elements have a roundoff error with absolute
value Er ď u (unit roundoff ). Because of this the matrix elements of S will have an
error with absolute value of the order of u. These results show that the S matrix of
a MSL system converges also to finite values without significant precision loss when
d increases indefinitely.

On the other hand, if the intermediate region M thickness is nil (no M region,
zℓ “ zr “ zs) we obtain from (4.5) that KpR,Lq “ rQpR : zsqs´1 ¨ QpL : zsq and we
can obtain S without trouble. This means that the S matrix of the MSL can avoid
the Ωd problem and converge in a stable numerical way when d Ñ 0.

4.2. Composition rules. The hybrid matrix Hpmq relating the field and the
linear form in the positions zm´1 and zr of the sketch shown in Figure 1 can be
described as the hybrid matrix of the structure formed by the layers m, m ` 1,. . . ,µ:

Fpm : zm´1q
Apµ : zrq

“ Hpmq ¨
Apm : zm´1q
Fpµ : zrq

.(4.10)

We use here the supraindex m among parentheses to denote the hybrid matrix
of the structure being considered in a similar way to that employed in Ref. [14].

The partitions of the matrix given in (4.10) can be expressed in terms of the Hpm`1q

matrix partitions corresponding to the structure including the layers from m ` 1 to
µ and of the matrix Hm given by (3.1) relating the field and the linear form in the
layer m borders z0 “ zm´1 and z “ zm. We must take into account the continuity
of the field and the associated linear form in zm, F{Apm ` 1 : zmq “ F{Apm : zmq.
Then we obtain the following composition rule:
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H
pmq
11

“ Hm
11 ` Hm

12 ¨ H
pm`1q
11

¨
”

IN ´ Hm
22 ¨ H

pm`1q
11

ı´1

¨ Hm
21

H
pmq
12

“ Hm
12 ¨

„

IN ` H
pm`1q
11

¨
”

IN ´ Hm
22 ¨ H

pm`1q
11

ı´1

¨ Hm
22



¨ H
pm`1q
12

;

H
pmq
21

“ H
pm`1q
21

¨
”

I ´ Hm
22 ¨ H

pm`1q
11

ı´1

¨ Hm
21;

H
pmq
22

“ H
pm`1q
22

` H
pm`1q
21

¨
”

IN ´ Hm
22 ¨ H

pm`1q
11

ı´1

¨ Hm
22 ¨ H

pm`1q
12

.(4.11)

In the same way the Stiffness matrix relating the field and the linear form in the
positions zm´1 and zr can be described as the Stiffness matrix of the structure formed
by the layers m, m ` 1, . . . , µ:

Apm : zm´1q
Apµ : zrq

“ Epmq ¨
Fpm : zm´1q
Fpµ : zrq

,(4.12)

and its composition rule in terms of Epm`1q and Em is given by:

E
pmq
11

“ Em
11 ` Em

12 ¨
”

E
pm`1q
11

´ Em
22

ı´1

¨ Em
21;

E
pmq
12

“ ´Em
12 ¨

”

E
pm`1q
11

´ Em
22

ı´1

¨ E
pm`1q
12

;

E
pmq
21

“ E
pm`1q
21

¨
”

E
pm`1q
11

´ Em
22

ı´1

¨ Em
21;

E
pmq
22

“ E
pm`1q
22

´ E
pm`1q
21

¨
”

E
pm`1q
11

´ Em
22

ı´1

¨ E
pm`1q
12

(4.13)

Analogously, the composition rule for the Scattering matrix SpR;mq, can be
expressed in terms of the matrices SpR;m ` 1q and Spm ` 1;mq, each one defined
in agreement with (4.3) for the interfaces placed between the domains m and R,
between m ` 1 and R and between m and m ` 1, respectively. This composition rule
can be expressed by means of the product denoted by

Ç

, in the form:

SpR;mq “ SpR;m ` 1q
ç

Spm ` 1;mq .(4.14)

Given three matrices Z, Y andX of order 2N subdivided in their NˆN partitions
the product

Ç

expressing Z “ Y
Ç

X is defined in [4] by means of the composition
rule:

Z11 “ X11 ` X12 ¨ Y11 ¨ rIN ´ X22 ¨ Y11s´1 ¨ X21;

Z12 “ X12 ¨ Y12 ` X12 ¨ Y11 ¨ rIN ´ X22 ¨ Y11s´1 ¨ X22 ¨ Y12;

Z21 “ Y21 ¨ rIN ´ X22 ¨ Y11s
´1

¨ X21;

Z22 “ Y22 ` Y21 ¨ rIN ´ X22 ¨ Y11s
´1

¨ X22 ¨ Y12.(4.15)

We must note that the composition rules (4.11) and (4.15) include the inverses
”

IN ´ Hm
22 ¨ H

pm`1q
11

ı´1

and rIN ´ S22pm ` 1;mq ¨ S11pR;m ` 1qs
´1

respectively, which
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are regular even when the thickness of the layer or of the multilayer goes to infinity or

to zero. The composition rule (4.13) includes the term
”

E
pm`1q
11

´ Em
22

ı´1

, which is

regular when the thickness of the layer or of the multilayer goes to infinity. For very
small thicknesses this composition rule will lead to the accumulation of the roundoff
errors.

5. General formulation of some typical boundary problems. Numerical
examples. The boundary problems can be formulated in terms of the T , hybrid, scat-
tering or stiffness matrices. We consider a system formed by three domains L´M´R.
The internal domain M can be formed by one or several homogeneous layers in whose
case the matrix of the structure M must be obtained through composition rules (see
Section 4.2). In the external domains L and R we can have different media and even
the vacuum. Depending on the problem under study we shall employ different bound-
ary conditions at the interface L|M with coordinate zℓ and at M|R with coordinate zr.
We denote by Fpℓ{rq, Apℓ{rq the field and the associated linear form at the coordinate
zℓ{zr. In all the cases here considered we avoid to use submatrices which can exhibit
numerical instabilities when d Ñ 8, as it happens for H´1

12 or E´1

12 .

5.1. Escape problem. We shall study the escape problem in a system formed
by three media L ´ M ´ R having full matching conditions (FMC) at the interface
L|M with coordinate zℓ and at the interface M|R with coordinate zr. In the scape
problem we shall have only outgoing waves in M. Applying the continuity conditions
at the interface we can write:

Fpℓq´

Aprq` “ Hpr, ℓq ¨
Apℓq´

Fprq` .(5.1)

The superindex ˘ denote the vectors related with the wave travelling in R{L
towards the right/left. From the two matrix equations coming from (5.1) we can
write:

0 “

ˆ

´IN H11pr, ℓq H12pr, ℓq 0N

0N H21pr, ℓq H22pr, ℓq ´IN

˙

¨

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Fpℓq´

Apℓq´

Fprq`

Aprq`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.(5.2)

We can express the vectors appearing in the right-hand side of (5.2) in the form:

ˇ

ˇ

ˇ

ˇ

Fpℓq´

Apℓq´

ˇ

ˇ

ˇ

ˇ

“

„

F1pℓq´ . . . FN pℓq´

A1pℓq´ . . . AN pℓq´



¨

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a1pLq´

...
aN pLq´

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ LIpℓq´ ¨ apLq´ ,(5.3)

ˇ

ˇ

ˇ

ˇ

Fprq`

Aprq`

ˇ

ˇ

ˇ

ˇ

“

„

F1prq` . . . FN prq`

A1prq` . . . AN prq`



¨

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a1pRq`

...
aN pRq`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ LIprq` ¨ apRq` ,(5.4)

where Fjpℓq´ are LI solutions belonging to the L domain, evaluated at zℓ and Fjprq`

are LI solutions belonging to the R domain, evaluated at zr. The N -vector apRq` is
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formed by the coefficients ajpRq` from those waves travelling to the right at R and
apLq´ by the coefficients ajpLq´ from those waves travelling to the left at L.

Then by using (5.3) and (5.4) we transform (5.2) into the secular system:

0 “

ˆ

Ms11 Ms12
Ms21 Ms22

˙

¨

ˇ

ˇ

ˇ

ˇ

apLq´

apRq`

ˇ

ˇ

ˇ

ˇ

;(5.5)

Ms11 “
“

´IN H11pr, ℓq
‰

¨ LIpℓq´,(5.6)

Ms12 “
“

H12pr, ℓq 0N

‰

¨ LIprq`,(5.7)

Ms21 “
“

0N H21pr, ℓq
‰

¨ LIpℓq´,(5.8)

Ms22 “
“

H22pr, ℓq ´IN

‰

¨ LIprq` .(5.9)

The problem eigenvalues are obtained from the secular equation DetrMss “ 0.

In terms of the Stiffness matrix we have:

Ms11 “
“

E11pr, ℓq ´IN

‰

¨ LIpℓq´,(5.10)

Ms12 “
“

E12pr, ℓq 0N

‰

¨ LIprq`,(5.11)

Ms21 “
“

E21pr, ℓq 0N

‰

¨ LIpℓq´,(5.12)

Ms22 “
“

E22pr, ℓq ´IN

‰

¨ LIprq` .(5.13)

As a numerical example we use the secular equation in terms of the hybrid matrix
Hpr, ℓq to obtain the velocities of shear horizontal (SH) acoustic waves in µ piezoelec-
tric multilayers systems. These curves were obtained in Ref. [3] by using the singular
value decomposition (SVD) method together with a variant of the Global Matrix
Method (GMM) as an alternative technique to avoid the numerical instabilities found
by the authors.

The piezoelectric systems studied there, are formed by two different materials, A
(PZT4) and B (PZT5A), and have different layer configurations: n “ 3 (ABA), n “ 5
(ABABA), n “ 7 (ABABABA) and n “ 9 (ABABABABA). All these systems have
the L ´ M ´ R structure, with L “ R “ A. The external domains are semi-infinite
and to obtain confined modes it was assumed that there are no ingoing waves in the
inner region M, whereas the outgoing waves are evanescent. It is then clear that
this problem can be studied as a particular case of the scape problem considered in
this section. In order to get evanescent waves the eigenvalues kj appearing in the
exponential terms of these waves were assumed to be pure imaginary.

Except for n “ 3, the hybrid matrix Hpr, ℓq in the inner region M was obtained
by means of the composition rule (4.11). To solve this problem it was necessary
to transform the original system of two equations of motion [3] in a matrix Sturm-
Liouville system (2.1) with N=2. In this problem Fpzq has two components, the
transverse displacement u and the electric potential φ. The z axis is oriented in the
direction normal to the multilayer interfaces in such a way that it coincides with the
y axis in the scheme of Figure 1 in Ref. [3]. The x axis coincides in both cases.

The quadratic eigenvalues problem solution (QEP, Section 2.1) for one layer is:
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k1 “ ´iκx “ ´i
ω

vs
(5.14)

k2 “ ´k1(5.15)

k3 “ ´

g

f

f

e

´κ2
x ` ω2

ρ

pc44 `
e215
ǫ11

q

“ ´iω

d

1

v2s
´

1

v2
(5.16)

k4 “ ´k3 ,(5.17)

where vs is the velocity of the surface wave we are studying, whereas v “

d

pc44 `
e215
ǫ11

q{ρ

is the SH wave velocity. The material parameters of the layer needed for this study
are the mass density ρ, the elastic constant c44, the piezoelectric constant e15 and the
dielectric constant ǫ11. The eigenfunctions can be chosen in the form:

Fjpzq “ Fj0 eikjpz´z0q “

ˆ

0
1

˙

eikjpz´z0q, j “ 1, 2(5.18)

and:

Fjpzq “ Fj0 eikjpz´z0q “

ˆ

1
e15{ǫ11

˙

eikjpz´z0q j “ 3, 4.(5.19)

k3 and k4 must be pure imaginary to obtain evanescent outgoing waves. As these
waves travel in material A (PZT4) layers the expression (5.16) shows that this happens
for vs ă vA. It is also possible to obtain confined modes when there are layers in the
domain M with k3 and k4 real. This is only possible in material B (PZT5A) layers
when vB ă vs.

The hybrid matrix of an independent layer was obtained by a method analogous
to that employed in [4] to get the expression (2.8). For the H matrix we have:

Hpz, z0q “ UFApz, z0q ¨
“

UAF pz, z0q
‰´1

.(5.20)

UFApz, z0q “

„

F1pz0q F2pz0q . . . F2N pz0q
A1pzq A2pzq . . . A2N pzq



;(5.21)

UAF pz, z0q “

„

A1pz0q A2pz0q . . . A2N pz0q
F1pzq F2pzq . . . F2N pzq



.(5.22)

The secular matrix Ms was obtained from the expressions (5.6-5.9) and then we
obtained the values of the surface wave velocities zeroing the secular determinant at
different frequency values. Table 1 shows the values obtained in our calculation, those
obtained in [3] together with the corresponding frequencies. The values in [3] were
obtained by using the (SVD) method and a Global Matrix of order 4pNL´1qˆ4pNL´
1q, NL being the number of layers in the structure. Thus for NL “ 3 the matrix would
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No. of ω MG and SVD Hs

layers (MHz) vs (m/s) vs (m/s)
3 123.1 2324 2324.08

357.1 2286 2285.94
5 123.1 2313.6/ 2340.5 2313.9/ 2340.8

279.1 2292.6/ 2294.5 2292.5/ 2294.7
318.1 2343.1/ 2350.7 2344.1/ 2351
396.1 2330.3/ 2333.6 2330.3/ 2333.8

9 20 2339 2339.4
80 2314/ 2335 2314/ 2335.2

Table 1

Comparison between the surface wave velocity values for different frequency values obtained by
two different theoretical methods: (GM) Global Matrix Method and (SVD) Singular Value Decom-
position method. (Hs) Hybrid compliance-stiffness Matrix Method.

Fig. 2. Surface wave velocity values for different frequency values of the n “ 3 and n “ 9 systems

be p8 ˆ 8q, whereas for NL “ 9 the matrix would be p32 ˆ 32q. The hybrid matrix
employed in our calculations is of order p4 ˆ 4q. The good agreement of both sets
of velocity values shows the capability of the hybrid matrix method to avoid the Ωd
problem with lower computational and formal requirements when compared with the
Global Matrix method.

Figure 2 shows the values of the surface wave velocity for the corresponding
frequency values for the three and nine layer systems coming from our calculations.
We can observe two bands, the first of the even modes and the first of the odd modes,
together with the convergence of the modes of the system N=9 towards those of the
system N=3 when the frequency is increased. This behaviour is present in the curves
given in [3].
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5.2. Periodic systems. Let us consider a periodic system along the z direction
with arbitrary period d. This could be a periodic bulk crystal or a superlattice. The
matrices Hpz ` d, zq, Epz ` d, zq transfer along a given period. The Bloch-Floquet
conditions are satisfied for both Fpzq andApzq, in such a way that Fpz`dq “ Fpzq¨eiqd

and Apz ` dq “ Apzq ¨ eiqd.
We can write this in terms of the hybrid matrix as:

Fpzq
Apz ` dq

“ Hpz ` d, zq ¨
Apzq

Fpz ` dq
.(5.23)

The Bloch-Floquet conditions for Fpzq and Apzq in (5.23) lead to:

Apzq “ H´1

11 ¨
“

I ´ H12e
iqd

‰

¨ Fpzq(5.24)

Apzq “
“

I ´ H21e
´iqd

‰

¨ H22 ¨ Fpzq; .(5.25)

We write H instead of Hpz ` d, zq to simplify. The secular system is obtained
from expressions equations (5.24) and (5.25):

 “

I ´ H21e
´iqd

‰

¨ H22 ´ H´1

11 ¨
“

I ´ H12e
iqd

‰(

¨ Fpzq “ 0N .(5.26)

It will have nontrivial solutions if:

Det
 “

I ´ H21e
´iqd

‰

¨ H22 ´ H´1

11 ¨
“

I ´ H12e
iqd

‰(

“ 0.(5.27)

This equation gives a dispersion relation in terms of the H matrix elements for
any N .

Following the same procedure with Epz ` d, zq we obtain the following secular
system:

 “

E11 ` E12e
iqd

‰

´
“

E21e
´iqd ` E22

‰(

¨ Fpzq “ 0N ,(5.28)

and the dispersion relation:

Det
 “

E11 ` E12e
iqd

‰

´
“

E21e
´iqd ` E22

‰(

“ 0(5.29)

We assume that in our periodic system the inner domain M (containing one or
several homogeneous layers) coincides with the period d. Now we shall pose the
problem in terms of the Scattering matrix SpR; Lq.

For the external domains L and R we have:

FpL : zℓq
ApL : zℓq

“ QpL : zℓq ¨
a`pLq
a´pLq

.(5.30)

FpR : zrq
ApR : zrq

“ QpR : zrq ¨
a`pRq
a´pRq

.(5.31)
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From now on we shall employQL instead ofQpL : zℓq andQR instead ofQpR : zrq
to simplify the notation. Usually a reduced base in zℓ is employed to obtain QL and
a reduced base in zr is used to obtain QR. From these matrices we can obtain the
matrix KpR,Lq by means of (4.5) and then from (4.4) we can obtain SpR; Lq.

From the Bloch-Floquet condition we obtain:

FpR : zrq
ApR : zrq

“
FpL : zℓq
ApL : zℓq

e
iqd(5.32)

Combining (5.30), (5.31) and (5.32) with the expression (4.3) defining the Scat-
tering matrix we can write the following expressions:

a`pLq “
“

QR11 ¨ S21 ´ QL11 eiqd ´ QL12 ¨ S11 eiqd
‰´1

¨
“

QL12 ¨ S12 eiqd ´ QR11 ¨ S22 ´ QR12

‰

¨ a´pRq.(5.33)

a`pLq “
“

QR21 ¨ S21 ´ QL21 eiqd ´ QL22 ¨ S11 eiqd
‰´1

¨
“

QL22 ¨ S12 eiqd ´ QR21 ¨ S22 ´ QR22

‰

¨ a´pRq.(5.34)

Subtracting these equations we arrive to the secular system:

0N “ Ms ¨ a´pRq,

and from it we obtain the secular determinant:

Det
!

“

QR11 ¨ S21 ´ QL11 eiqd ´ QL12 ¨ S11 eiqd
‰´1

¨
“

QL12 ¨ S12 eiqd ´ QR11 ¨ S22 ´ QR12

‰

´
“

QR21 ¨ S21 ´ QL21 eiqd ´ QL22 ¨ S11 eiqd
‰´1

¨
“

QL22 ¨ S12 eiqd ´ QR21 ¨ S22 ´ QR22

‰(

“ 0 .(5.35)

We note that the equations (5.27), (5.29) and (5.35) are given in terms of matrix
blocks that can overcome the numerical instability known as Ωd problem. This is not
the case for the secular equation in terms of T pz ` d, zq:

DetrT pz ` d, zq ´ I eiqds “ 0 ,(5.36)

We shall consider now as an example the motion of electrons in a periodic one-
dimensional potential such as that of a superlattice formed by barriers of B material
with effective massmB, thickness b and height V0 and wells of Amaterial with effective
mass mA and thickness a. In this case the equations (5.27), (5.29), (5.35) and (5.36)
are given by:
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2 cospqdqH12 “ 1 ´ H11H22 ` H2

12(5.37)

2 cospqdqE12 “ E22 ´ E11(5.38)

2 cospqdqS12 “
k

B
m

A

k
A
m

B

pS21S12 ´ S11S22q ` 1(5.39)

cospqdq “
1

2
pT 11 ` T 22q,(5.40)

where

kA “

c

2mA

~2
E(5.41)

(5.42)

kB “

c

2mB

~2
pE ´ V0q.(5.43)

We used the sin kpz´zℓ{zrq and cos kpz´zℓ{zrq base in the L{R domain to obtain
(5.39). When we use the matrix elements of T for this problem in the period d “ a`b

in (5.40) we arrive to the well known Kronig-Penney equation [31]. The expressions
(5.37)-(5.39) are variations of this equation if we notice that the matrices H , E and
S can be calculated from their relations with T .

Expressions (5.37)-(5.39) are variations of (5.40) to calculate the system energy
levels for any barrier width b. When the barrier thickness b Ñ 8 (limit of isolated
symmetric rectangular wells) the secular equation in terms of T diverges. On the
other hand its variations lead directly to the well known transcendental equations
giving the energy levels for even and odd states of a symmetric rectangular well of
width a and depth V0.

After some algebra it can be shown that equation (5.37) coincides with the equa-
tion (32) in [32] for the Kronig-Penney equation. In the same way it coincides with the
equation (20) of Ref. [33]. Refs. [32, 33] give results for the Kronig-Penney equation
to avoid the Ωd problem.

6. Conclusions. In the general framework of N equation systems of the Sturm-
Liouville matrix kind with piecewise constant coefficients we have shown that there are
transfer matrix variants with dimensions independent of the number of layers in the
structure which can avoid the numerical instabilities present in the ATM. The hybrid
compliance-stiffness matrix and the scattering matrix can avoid the so called Ωd
problem, being numerically stable independently of how big or small be the thicknesses
in the multilayer structure. The Stiffness matrix and its inverse the compliance matrix
are numerically stable for big thicknesses of the layers or of the multilayer structure.
On the other hand, in the case of very small layer thicknesses these two matrices can
exhibit the Ωd problem due to the roundoff errors accumulation.For zero thicknesses
both matrices exhibit a numerical singularity (overflow).

Given the big variety of boundary problems which can be studied with these
numerically stable variants of the ATM and the generality and ubiquity of the matrix
Sturm-Liouville system, the results obtained here can be applied to the study of
various elementary excitations in multilayer systems.

The relations between the different matrices studied here has proven to be an
useful instrument in the study of the numerical stability of transfer matrices. With
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this technique it was possible to show analytically the capability of some of these
variants of the transfer matrix to avoid the numerical degradation leading to the Ωd
problem.

In recent years some methods able to deal with systems having inhomogeneous
coefficients have been developed. We present in Appendix C the link of the N equation
systems of the Sturm-Liouville matrix kind to the corresponding differential forms of
those problems.

Appendix A. Example of a matrix subset with a similar behaviour from
the numerical point of view.

Let us denote by X , Y , Z and R four matrices in whose definition enter the
vectors Fpzq, Fpz0q, Apzq and Apz0q, as for example:

Apz0q
Fpzq

“ X ¨
Fpz0q
Apzq

Fpzq
Apz0q

“ Y ¨
Fpz0q
Apzq

Apz0q
Fpzq

“ Z ¨
Apzq
Fpz0q

Fpzq
Apz0q

“ R ¨
Apzq
Fpz0q

(A.1)

If we take as the reference matrix any one of them it can be shown that one of
the remaining matrices is obtained by permutations among them of the vectors in the
right-hand side of the reference matrix. A second one is obtained by following this
method among the vectors in the left-hand side of the reference matrix. Finally the
third one is obtained with both permutations. The relations between these matrices
can be resumed as:

pXq11 “ pY q21 “ pRq22 “ pZq12(A.2)

pXq12 “ pY q22 “ pRq21 “ pZq11(A.3)

pXq21 “ pY q11 “ pRq12 “ pZq22(A.4)

pXq22 “ pY q12 “ pRq11 “ pZq21(A.5)

These relations show that the matrices X, Y , Z and R will have a similar
behaviour from the numerical point of view.

Appendix B. Matrix T partitions of order N .
Starting with the expression:

T pdq “

„

F0N F02N

A0N A02N



¨

„

ΠkN
pdq 0

0 Πk2N
pdq



¨

„

F0N F02N

A0N A02N

´1

,(B.1)

we have:

T 11 “ F0N ¨ ΠkN
pdq ¨ γ´1

11
` F02N ¨ Πk2N

pdqγ´1

12
.

T 12 “ F0N ¨ ΠkN
pdq ¨ γ´1

21
` F02N ¨ Πk2N

pdqγ´1

22
.

T 21 “ A0N ¨ ΠkN
pdq ¨ γ´1

11
` A02N ¨ Πk2N

pdqγ´1

12
.

T 22 “ A0N ¨ ΠkN
pdq ¨ γ´1

21
` A02N ¨ Πk2N

pdqγ´1

22
.(B.2)
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γ11 “ rF0N ´ F02N ¨ A´1

02N
¨ A0N s.

γ12 “ rF02N ´ F0N ¨ A´1

0N
¨ A02N s.

γ21 “ rA0N ´ A02N ¨ F´1

02N
¨ F0N s.

γ22 “ rA02N ´ A0N ¨ F´1

0N
¨ F02N s.(B.3)

Appendix C. Sturm-Liouville matrix form for inhomogeneous media.
The matrix Sturm-Liouville equation

(C.1)
d

dz

„

Bpzq ¨
dF pzq

dz
` P pzq ¨ F pzq



`Y pzq¨
dF pzq

dz
`W pzq¨F pzq “ Lpzq¨F pzq “ 0Nˆ1 ,

can be written as:

(C.2)

d

dz

ˇ

ˇ

ˇ

ˇ

F pzq
Apzq

ˇ

ˇ

ˇ

ˇ

“

ˆ

´Bpzq´1P pzq Bpzq´1

Y pzq ¨ Bpzq´1 ¨ P pzq ´ W pzq ´Y pzq ¨ Bpzq´1

˙

¨

ˇ

ˇ

ˇ

ˇ

F pzq
Apzq

ˇ

ˇ

ˇ

ˇ

.

Here Apzq “ Bpzq ¨
dF pzq

dz
` P pzq ¨ F pzq is the SLM operator matrix differential

form.
The equation (C.2) is the link with the first order differential equations systems

given in eq.(2.10) of [16], eq.(3.3) of [17], eq.(2) and (A.6) of [18], eq.(3) of [19] and
eq.(8) of [20].

These equations cover different inhomogeneous systems.

C.1. Radially inhomogeneous cylindrically anisotropic systems. This is
the case considered in [16]. In this work the mass density and the elements of the
stiffness tensor depend only on the radial coordinate r. It is then possible to write:

(C.3) u “ CU pnqprqeipnθ`κz´ωtq,

to obtain:

d

dr

„

rQ̂
dpCU q

dr
` pRk ` iκzrP̂q



`
´

kRT ` iκzrP̂
T
¯ dpCU q

dr

`
1

r

”

kT̂k ` iκzrpkŜ ` ŜTkq ` piκzrq2pM̂ ´ Iρω2{κ2

zq
ı

pCU q “ 0.(C.4)

Here C is a normalization constant. Equation (C.4) is of kind (C.1) for a cylin-
drical elastic material radially inhomogeneous. Here r plays the role of z in the planar
systems. With the properties imposed on k, Q̂, P̂, R, Ŝ, T̂ and M̂ in [16] we have
Y “ ´P :, B “ B: and W “ W :.

In this case the linear differential form in (C.4) is A “ rtr (where trq is the stress

radial component and from eq.(2.7) from [16] we obtain Aprq “ CrΥpnqprq. We see

also that F prq ” CU pnqprq. By identifying the B, P , Y and W matrices in (C.4)
and substitution in (C.2) we arrive to eq.(2.10) of [16], eq.(3.3) of [17] and eq.(A.6)
of [18]:
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d

dr
ηprqpnq “

i

r
Gprqηprqpnq;(C.5)

ηprqpnq “ C

ˆ

U pnqprq

irΥpnqprq

˙

;(C.6)

i

r
Gprq “

ˆ

´Bprq´1P prq Bprq´1

Y prq ¨ Bprq´1 ¨ P prq ´ W prq ´Y prq ¨ Bprq´1

˙

.(C.7)

C.2. Shear-horizontal elastic waves in phononic crystals formed by in-
homogenoeus anisotropic materials. Cartesian coordinates. This is studied
in [20] where the displacement u depends on x1 and x2, but after expanding x1 in
plane waves they obtain the following ordinary differential equation in x2

´ pBBB1 ` iκ1qpµpBBB1 ` iκ1quq ` B2pµB2uq “ ´ρω2u.(C.8)

We can then identify F px2q “ upx2q andApx2q “ µB2u, P “ 0, Y “ 0, B “ µ´1

and W “ ρω2 ´pBBB1 ` iκ1qµpBBB1 ` iκ1q. After substitution of these expressions in (C.2)
W acts on the displacement upx2q and we obtain eq.(8) of [20] which is essentially
the same than eq.(3) of [19].

We have seen that in all these cases involving inhomogeneous elastic anisotropic
media we can put the matrix Sturm-Liouville in the (C.2) form. Then it would be
possible to apply the stable integration methods of [16, 17, 18] for cylindrical geometry
and those of [19, 20] for layered systems.
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