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Abstract

This paper concerns state constrained optimal control problems, in which the
dynamic constraint takes the form of a differential inclusion. If the differential
inclusion does not depend on time, then the Hamiltonian, evaluated along the
optimal state trajectory and the co-state trajectory, is independent of time. If
the differential inclusion is Lipschitz continuous, then the Hamitonian, evalu-
ated along the optimal state trajectory and the co-state trajectory, is Lipschitz
continuous. These two well-known results are examples of the following prin-
ciple: the Hamiltonian, evaluated along the optimal state trajectory and the
co-state trajectory, inherits the regularity properties of the differential inclu-
sion, regarding its time dependence. We show that this principle also applies
to another kind of regularity: if the differential inclusion has bounded variation
with respect to time, then the Hamiltonian, evaluated along the optimal state
trajectory and the co-state trajectory, has bounded variation. Two applications
of these newly found properties are demonstrated. One is to derive improved
conditions which guarantee the nondegeneracy of necessary conditions of op-
timalty, in the form of a Hamiltonian inclusion. The other application is to
derive new, less restrictive, conditions under which minimizers in the calculus
of variations have bounded slope. The analysis is based on a new, local, concept
of differential inclusions that have bounded variation with respect to the time
variable, in which conditions are imposed on the multifunction involved, only
in a neighborhood of a given state trajectory.
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1 Introduction

Consider the optimal control problem

(P )























Minimize g(x(S), x(T )) +
∫ T

S
L(t, x(t), ẋ(t))dt

over absolutely continuous functions x(.) : [S, T ] → R
n s.t.

ẋ(t) ∈ F (t, x(t)) a.e.,
x(t) ∈ A for all t ∈ [S, T ]
(x(S), x(T )) ∈ C ,

the data for which comprises an interval [S, T ] (T > S), functions g : Rn ×R
n → R,

L : [S, T ]×R
n×R

n → R, closed sets A ⊂ R
n and C ⊂ R

n×R
n and a multifunction

F (., .) : [S, T ] × R
n
❀ R

n. Notice the presence of the pathwise state constraint,
x(t) ∈ A. The state constraint set A is assumed to have the inequality functional
representation:

A = {x |h(x) ≤ 0}
for some function h(.) : Rn → R. By allowing h(.) to be a nonsmooth function, we
capture within this formulation a wide range of possible state constraints descrip-
tions. An arbitrary closed state constraint set A is covered by this formulation, since
we can always take h(x) = dA(x), where dA(.) denotes the distance function form the
set A (defined below). But it is convenient to derive necessary conditions directly in
terms of h(.), because practical constraints frequently come in functional inequality
form, and it is desirable in such cases to develop analytical tools for analysing the
optimal control problem expressed directly in terms of the functions arising from
the problem formulation.

A state trajectory x(.) is an absolutely continuous function that satisfies ẋ(t) ∈
F (t, x(t)), a.e. The state trajectory x(.) is said to be feasible if (x(S), x(T )) ∈ C
and x(t) ∈ A for all t ∈ [S, T ].

We say that the state trajectory x̄(.) is a minimizer if it achieves the minimum of
g(x(S), x(T )) over all feasible state trajectories x(.). It is called a L∞-local minimizer
if, for some δ > 0,

g(x(S), x(T )) ≥ g(x̄(S), x̄(T ))

for all feasible state trajectories x(.) such that

||x(.) − x̄(.)||L∞ ≤ δ . (1.1)

For simplicity in this introduction, though not in the analysis to follow, we assume
that L(., ., .) ≡ 0 (no integral cost term).

A variety of sets of necessary conditions of optimality are known, under hypotheses
which impose Lipschtiz continuity conditions on the data, regarding its x-dependence,
but which require the data to be merely measurable with respect to the t vari-
able. Typically, these assert the existence of a co-state arc q(.) satisfying conditions
generalizing the Euler-Lagrange equation or Hamilton’s system of equations, the
Weierstrass condition and the transversality condition. Relevant references include
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[4],[12],[13],[15] (no state constraints), and [14] ,[20] (when state constraints are
present). We refer also to the monographs [5], [18] for expository treatments of this
material.

If we additionally hypothesize regularity of F (t, x) with respect to the t variable, then
it is possible to extract additional information about optimal trajectories, expressed
in terms of the Hamiltonian function:

H(t, x, q) = sup{q · v | v ∈ F (t, x)} .

Write H[.] : [S, T ] → R
n for the Hamiltonian evaluated along x̄(.) and p(.):

H[t] = H(t, x̄(t), p(t)) t ∈ [S, T ] .

A property of this nature is [5], [18] :

(I): ‘t → F (., x) is constant (for each x)’ =⇒ ‘H[.] is constant’

This condition, which has as precursor the 2nd Erdmann condition in the Calculus
of Variations, is referred to as the ‘constancy of the Hamiltonian’ condition for au-
tonomous problems.

Now suppose that F (., x) is Lipschitz continuous. Then the optimal control problem
can be reformulated as an autonomous problem in which time is interpreted as an
additional state variable. Property (I), applied to the reformulated problem, trans-
lates into the following information concerning the original problem:

(II): ‘ t → F (., x) is Lipschitz continuous (for each x)’ =⇒ ‘H[.] is Lipschitz con-
tinuous’

The latter property is unremarkable, when the state constraint is absent (i.e. A =
R
n) since, in this case, q(.) is Lischitz continuous, and the Lipschitz continuity of

t → H[.] can be deduced directly from the Lipschitz continuity of F (., x). But
the Lipschitz continuity of H[.] is perhaps an unexpected property, when the state
constraint is present, since, in this setting, the costate arc q(.) can be discontinuous.

This brings us to the central question addressed in this paper. Can properties (I)
and (II) can be interpreted as part of a general principle (Q)?

(Q): ‘H[.] inherits the regularity of F (., x)’.

The main contribution of this paper is to extend this principle to a larger regularity
class. Specifically

(i): We show that if F (., x), has bounded variation, then H[.] also has bounded
variation.

(ii): We relate the cummulative variation function of the H[.] to that of the data.
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(iii): We make two applications of these regularity properties of the Hamiltonian,
first, to derive new, less restrictive conditions under which necessary conditions
of optimality, in the form of Clarke’s Hamiltonian inclusion, are nondegenerate
and, second, establish boundedness of the derivatives of optimal state trajec-
tories, under hypotheses that are less restrictive than those earlier imposed.

As a first step we need to make clear the meaning of the statement ‘t → F (t, x) has
bounded variation’. An obvious approach would be to require

sup{ sup
x∈X0

N−1
∑

i=0

dH(F (ti+1, x), F (ti, x))} < ∞ ,

where the outer supremum is taken over all partitions {t0 = S, t1, . . . , tN = T} of
[S, T ]. (In this relation, dH(., .) denotes the Hausdorff distance between sets, and
X0 is some suitably large ball in R

n containing the values of all state trajectories of
interest.)

The concept of a multifunction C(.) : [S, T ] ❀ R
n of a scalar variable having bounded

variation has previously been encountered in connection with Moreau’s ‘sweeping
processes’ [16]. A sweeping process is a solution to the differential inclusion

−dx/dt ∈ NC(t)(x(t)),

in which C(.) is a given multifunction of a scalar variable, taking values, closed,
convex sets. Here NC(x) denotes the normal cone from convex analysis. Existence
of solutions, in a weak sense, has been established under the hypothesis that C(.)
has finite retraction, which is the bounded variation property of this paper (for mul-
tifunctions which do not depend on x), when the one-sided distance function (or
‘retraction’) is used to define variation, in place of the Hausdorff distance function.

There is additional novelty in this paper, regarding our methodology for deriving
regularity properties of the Hamiltonian, which involves applying necessary condi-
tions for multi-stage optimal control problems for differential inclusions, similar to
those first derived by Clarke and Vinter [10], [11]. This is the first instance, to
our knowledge, where multi-stage necessary conditions have been used to derive
regularity properties of H[.]. As earlier mentioned, the demonstration that H[.] is
Lipschitz continuous when the data is Lipschitz continuous with respect to t is a
straightforward extension of the constancy property of H[.] for autonomous prob-
lems. Demonstrating that H[.] has bounded variation, and obtaining estimates on
the cummulative variation function as is required in some applications, is a much
more challenging task. The key idea is to approximate the original optimal control
problem with ‘bounded variation’ data, by a multistage autonomous problem (apart
from a small perturbation term contributing Lipschitz time dependence). Neces-
sary conditions are derived for the approximating problem, which take account of
its autonomous nature, and the desired regularity properties of the Hamiltonian are
obtained by passage to the limit. The precise formulation of the approximating
problem, and also the convergence analysis, make use of techniques first used by
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Arutyunov et al [1], [2], for the derivation of refined necessary conditions of op-
timality which provide information about minimizers in some circumstances when
standard necessary conditions are degenerate.

Notation: For vectors x ∈ R
n, |x| denotes the Euclidean length. B denotes the

closed unit ball in R
n. Given a multifunction Γ(.) : Rn

❀ R
k, the graph of Γ(.),

written Gr {Γ(.)}, is the set {(x, v) ∈ R
n × R

k | v ∈ Γ(x)}. Given a set A ⊂ R
n and

a point x ∈ R
n, we denote by dA(x) the Euclidean distance of a point x ∈ R

n from
A:

dA(x) := inf{|x− y| | y ∈ A} .

Given an interval I, we write χI(t) for the indicator function of I, which takes values
1 and 0 when t ∈ I and t /∈ I, respectively.

A function r : [S, T ] → R of bounded variation on the interval [S, T ] has a left limit,
written r(t−), at every point t ∈ (S, T ] and a right limit, written r(t+), at every
point t ∈ [S, T ). We say r(.) is normalized if it is right continuous on (S, T ).

We denote by NBV +[S, T ] the space of increasing, real-valued, normalized functions
µ(.) on [S, T ] of bounded variation, vanishing at the point S. The total variation
of a function µ(.) ∈ NBV +[S, T ] is written ||µ||TV. As is well known, each point
µ(.) ∈ NBV +[S, T ] defines a Borel measure on [S, T ]. This associated measure is
also denoted µ.

We shall use several constructs of nonsmooth analysis. Given a closed set D ⊂ R
k

and a point x̄ ∈ D. The limiting normal cone ND(x̄) of D at x̄ is defined to be

ND(x̄) :=
{

p | ∃ xi
D−→ x̄, pi −→ p s.t. lim sup

x
D→xi

pi · (x− xi)

|x− xi|
≤ 0 for all i ∈ N

}

.

Here, the notation y′
D→ y is employed to indicate that all elements in the convergent

sequence {y′} lie in D.

Take a lower semicontinuous function f : Rk → R∪{+∞} and a point x̄ ∈ dom f :=
{x ∈ R

k | f(x) < +∞} The limiting subdifferential of f at x̄ (termed the subdiffer-
ential in [17], [18]) is denoted ∂f(x̄):

∂f(x̄) :=
{

ξ | ∃ ξi → ξ and xi
dom f−→ x̄ such that

lim sup
x→xi

ξi · (x− xi)− ϕ(x) + ϕ(xi)

|x− xi|
≤ 0 for all i ∈ N

}

.

For further information, we refer to the monographs [8], [17] and [18].

2 Multifunctions of Bounded Variation

Take a bounded interval [S, T ], a compact set A ⊂ R
k, a multifunction F (., ., .) :

[S, T ]×R
n×A ❀ R

n and a continuous function x̄(.) : [S, T ] → R
n. Generic elements
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in the domain of F (., ., .) are denoted by (t, x, a).

In this section we define a concept that makes precise the statement ‘F (t, x, a) has
bounded variation with respect to the t variable, along x̄(.), uniformly with respect to
a ∈ A’. If F (t, x, a) is independent of (x, a) and single valued, i.e. F (t, x, a) = {f(t)}
for some function f(.) : [S, T ] → R

n, this concept reduces to the standard notion
‘f(.) has bounded variation’.

For any t ∈ [S, T ], δ > 0 and partition T = {t0 = S, t1, . . . , tN−1, tN = t} of [S, t],
define Iδ(T ) ∈ R

+ ∪ {+∞} to be

Iδ(T ) :=

N−1
∑

i=0

sup {dH(F (ti+1, x, a), F (ti, x, a)) | x ∈ x̄([ti, ti+1]) + δB, a ∈ A} .

Here, x̄([ti, ti+1]) denotes the set {x̄(t) | t ∈ [ti, ti+1]}.

Take any ǫ > 0. Let ηδǫ (.) : [S, T ] → R
+ ∪ {+∞} be the function defined as follows:

ηδǫ (S) = 0 and, for t ∈ (S, T ],

ηδǫ (t) = sup
{

Iδ(T ) | T is a partition of [S, t] s.t. diam{T } ≤ ǫ
}

.

in which
diam{T } := sup{ti+1 − ti | i = 0, . . . , N − 1} .

Now define the functions ηδ(.), η(.) : [S, T ] → R
+ ∪ {+∞} to be

ηδ(t) := lim
ǫ↓0

ηδǫ (t) for t ∈ [S, T ] (2.1)

η(t) := lim
δ↓0

ηδ(t) for t ∈ [S, T ] . (2.2)

Definition. Take a set A ⊂ R
k, a multifunction F (., ., .) : [S, T ] × R

n × A ❀ R
n

and a function x̄(.) : [S, T ] → R
n. We say that t → F (t, ., .) has bounded variation

along x̄(.) over A, if the function η(.) given by (2.2) satisfies

η(T ) < +∞ .

If t → F (t, ., .) has bounded variation along x̄(.) uniformly over A, we refer to
the function η(.) as the cummulative variation function of t → F (t, ., .) along x̄(.),
uniformly over A. We also refer to ηδǫ (.) and ηδ(.) as the δ-perturbed cummulative
variation function and (δ, ǫ)-perturbed cummulative variation function respectively.

If F (t, x, a) does not depend on a, we omit mention of the qualifier ‘uniformly over
A’. A function t → L(t, ., .) is said to have bounded variation along x̄(.) uniformly
over A, if the associated multifunction t → {L(t, ., .)} has this property.

It is clear that, for any t ∈ [S, T ], δ > 0, δ′ > 0, ǫ > 0, ǫ′ > 0,

δ′ ≤ δ and ǫ′ ≤ ǫ =⇒ 0 ≤ ηδ
′

ǫ′ (t) ≤ ηδǫ (t) .
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(This relation is valid even when ηδǫ (t) = +∞, according to the rule +∞ ≤ +∞.)
It follows that, for fixed δ > 0 and t ∈ [S, T ], the functions ǫ → ηδǫ (t) and δ′ → ηδ

′

(t)
are monotone increasing and bounded below on (0,∞). The limits appearing in the
definitions of ηδ(.) and η(.) (see (2.1) and (2.2)) are therefore well-defined.

Assume that t → F (t, ., .) has bounded variation along x̄(.), uniformly over A. Then
there exist δ̄ > 0 and ǭ > 0 for which ηδ̄ǭ (T ) < +∞. We list further elementary
properites of the accumulative variation functions: for any δ ∈ (0, δ̄] and ǫ ∈ (0, ǭ],

(a): t → ηδǫ (t), t → ηδ(t) and t → η(t) are increasing, finite valued functions, and

(b): given any [s, t] ⊂ [S, T ] such that t− s ≤ ǫ,

dH(F (t, y, a), F (s, y, a)) ≤ ηδǫ (t)− ηδǫ (s),

for all y ∈ x̄(t′) + δB, t′ ∈ [s, t] and a ∈ A.

As is well known, an R
n-valued function of bounded variation on a finite interval

may be discontinuous, but it has everywhere left and right limits and it has at most
a countable number points of discontinuity. Any multifunction having bounded
variation uniformly along a given continuous trajectory has similar properties, as
described in the following proposition, a proof for whcih appears in the Appendix.

Proposition 2.1. Take a compact set A ⊂ R
k, a continuous function x̄(.) : [S, T ] →

R
n and a multifunction F (., ., .) : [S, T ]×R

n×A → R
n which has bounded variation

along x̄(.) uniformly over A, and take some δ̄ > 0 such that ηδ̄(T ) < +∞. Assume
that

(C1) F (., ., .) takes values closed, non-empty sets, F (., x, a) is measurable for each
(x, a) ∈ R

n ×A and there exists c > 0 such that

F (t, x, a) ⊂ cB for all x ∈ x̄(t) + δ̄B, t ∈ [S, T ], a ∈ A. (2.3)

(C2) There exists a modulus of continuity γ(.) : R+ → R
+ such that

F (t, x, a) ⊂ F (t, x′, a′) + γ(|x− x′|+ |a− a′|)B (2.4)

for all x, x′ ∈ x̄(t) + δ̄B, t ∈ [S, T ] and a, a′ ∈ A.

Take δ ∈ (0, δ̄). Then,

(a): For any s̄ ∈ [S, T ) and t̄ ∈ (S, T ] , the one-sided limits

F (s̄+, x, a) := lim
s↓s̄

F (s, x, a)

and
F (t̄−, y, a) := lim

t↑t̄
F (t, y, a)

exist for every x ∈ x̄(s̄) + δB, y ∈ x̄(t̄) + δB and a ∈ A.
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(b): For any s̄ ∈ [S, T ) and t̄ ∈ (S, T ]

lim
s↓s̄

sup
x∈x̄(s̄)+δB,

a∈A

dH(F (s̄+, x, a), F (s, x, a)) = 0

and
lim
t↑t̄

sup
x∈x̄(t̄)+δB,

a∈A

dH(F (t̄−, x, a), F (t, x, a)) = 0

(c): There exists a countable set A such that, for every t ∈ (S, T )\A and x ∈
x̄(t) + δ̄B,

lim
t′→t

sup
x∈x̄(t)+δ̄B

a∈A

dH(F (t′, x, a), F (t, x, a)) = 0 .

The next proposition, a proof for which appears in the Appendix, relates the cum-
mulative variation function of the multifunction F (., x, a) to that of the derived
multifunction F̃ (., x, a), obtained by replacing the end-point values by their left and
right limits.

Proposition 2.2. Take a compact set A ⊂ R
k, a continuous function x̄(.) : [S, T ] →

R
n and a multifunction F (., ., .) : [S, T ]×R

n×A → R
n which has bounded variation

along x̄(.) uniformly over A. Denote by η(.) its cummulative variation function.
Assume that hypotheses (C1) and (C2) of Prop. 2.1 are satisfied for some δ̄ > 0
such that ηδ̄(T ) < +∞. Take δ ∈ (0, δ̄) and let F̃ (., ., .) : [S, T ]×R

n ×A → R
n be a

multifunction such that, for (t, x, a) ∈ [S, T ]× R
n ×A,

F̃ (t, x, a) =







F (S+, x, a) if t = S and |x− x̄(S)| ≤ δ
F (T−, x, a) if t = T and |x− x̄(T )| ≤ δ
F (t, x, a) otherwise .

(2.5)

(Note that limit sets F (S+, x, a) and F (T−, x, a)) exist, by the preceding proposi-
tion.) Then F̃ (., ., .) has bounded variation along x̄(.) and the cummulative variation
function η̃(.) is left continuous at S and right continuous at T respectively, i.e.

η̃(S) = lim
s↓S

η̃(s) and η̃(T ) = lim
t↑T

η̃(t) .

The cummulative variation function of F (., ., .) and F̃ (., ., .) are related as follows:

η̃(t)− η̃(s) = η(t)− η(s) for [s, t] ⊂ (S, T ),

Furthermore,

lim
s↓S

η(s)− lim
s↓S

η̃(s) = sup
a∈A

dH(F (S, x̄(S), a), F (S+, x̄(S), a))

and
lim
t↑T

η(t) − lim
t↑T

η̃(t) = sup
a∈A

dH(F (T, x̄(T ), a), F (T−, x̄(T ), a)) .
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The following proposition, a proof for which appears in the Appendix, provides infor-
mation about how the cummulative variation function of a multifunction F (., x, a)
is affected when the parameter space for a changes.

Proposition 2.3. Take compact sets A1 ⊂ A ⊂ R
k, a continuous function x̄(.) and

a multifunction F (., ., .) : [S, T ]×R
n×R

k
❀ R

n. Assume that t → F (t, ., .) along x̄(.)
uniformly over A. Write ηA(.) and ηA1

(.) for the cummulative variation functions
of t → F (t, .) with respect to the sets A and A1 respectively. (Since t → F (t, ., .)
has bounded variation with respect to A, it automatically has bounded variation with
respect to the small set A1.). Then, for any [s, t] ⊂ [S, T ],

ηA1
(t)− ηA1

(s) ≤ ηA(t)− ηA(s) . (2.6)

3 Main Results

We refer to the following hypotheses on the data for problem (P ) of the introduction,
in which x̄(.) is the L∞-local minimizer of interest and δ̄ > 0 is some constant:

(H1): F (., .) takes values closed, non-empty sets. For each x ∈ R
n, F (., x) is a L

measurable multifunction and L(., x, .) is a L×Bn measurable function, where L and
Bn denote the Lebegue subsets of [S, T ] and the Borel subsets of Rn respectively.
g(., .) is Lipschitz continuous on (x̄(S), x̄(T )) + δ̄ (B× B).

(H2): L(., ., .) is bounded on bounded sets and there exist k > 0 and c > 0 such that

F (t, x) ⊂ F (t, x′) + k(|x− x′|)B and F (t, x) ∈ cB

|L(t, x, v) − L(t, x′, v)| ≤ k|x− x′|

for all x, x′ ∈ x̄(t) + δ̄B, v ∈ F (t, x), a.e. t ∈ [S, T ].

(H3): There exists a constant kh such that

|h(x) − h(x′)| ≤ kh|x− x′|

for all x, x′ ∈ x̄([S, T ]) + δ̄B .

(H4): {(e, v) ∈ R
n × R | e ∈ F (t, x), v ≥ L(t, x, e)} is a convex set

for each x ∈ R
n .

Define the Hamiltonian function Hλ(., ., .) : [0, 1] × R
n × R

n → R

Hλ(t, x, p) := max
v∈F (t,x)

[p · v − λL(t, x, v)] (3.1)
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and write
C̃ := C ∩

(

{x′ |h(x′) ≤ 0} × {x′ |h(x′) ≤ 0}
)

.

Theorem 3.1. Let x̄(.) be an L∞-local minimizer for (P ). Assume that hypotheses
(H1)-(H4) are satisfied. Assume also that

(BV):

t → F (t, .) has bounded variation along x̄(.)

and

t → L(t, ., .) has bounded variation along x̄(.) uniformly over cB,

where c is the constant of hypothesis (H2). Write η∗F (.) and η∗L(.) for the normalized
cummulative variation functions of F (., .) and L(., ., .) respectively, along x̄(.).

Then there exist an absolutely continuous function p(.) : [S, T ] → Rn, a function
µ(.) ∈ NBV +[S, T ], a µ-integrable function γ(.) and λ ≥ 0 such that

(i): (p(.), λ, µ(.)) 6= (0, 0, 0),

(ii): (−ṗ(t), ˙̄x(t)) ∈ ∂̃x,pHλ(t, x̄(t), q(t)) a.e.,

(iii): q(t) · ˙̄x(t)− λL(t, x̄(t), ˙̄x(t)) =

max {q(t) · v − λL(t, x̄(t), v) | v ∈ F (t, x̄(t))} a.e.,

(iv): (q(S),−q(T )) ∈ λ∂g(x̄(S), x̄(T )) +NC̃(x̄(S), x̄(T )),

(v): γ(t) ∈ co ∂>
x h(x̄(t)) µ-a.e. t ∈ [S, T ] .

where

q(t) =

{

p(t) +
∫

[S,t) γ(s)µ(ds) if t ∈ [S, T )

p(T ) +
∫

[S,T ] γ(s)µ(ds) if t = T .

Furthermore, the Hamiltonian evaluated along (x̄(.), q(.)) has the following proper-
ties: there exists a normalized function of bounded variation r(.) : [S, T ] → R which
is right and left continuous at S and T respectively, i.e.

r(S) = lim
s↓S

r(s) , r(T ) = lim
t↑T

r(t) ,

such that

(vi): |r(t)− r(s)| ≤ ||q(.)||L∞ × (η∗F (t)− η∗F (s)) + λ× (η∗L(t)− η∗L(s))

for all [s, t] ⊂ (S, T ) ,

(vii): Hλ(t, x̄(t), q(t)) = r(t) a.e. and

(viii): r(S) = lims↓S Hλ(s, x̄(S), p(S)) , r(T ) = limt↑T Hλ(t, x̄(T ), q(T )) .
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In the theorem statement, the ‘hybrid’ partial subdifferentials ∂>
x h(x) and ∂̃x,pH(s, x, p)

are defined to be:

∂>
x h(x) := {ξ | ∃ xi → x, ξi → ξ, s.t. ξi = ∇xh(xi) and h(xi) > 0 for each i}

and
∂̃x,pH(t, x, p) := lim sup

s→t
co ∂x,pH(s, x, p) . (3.2)

Comments

(a): The standard Hamiltonian inclusion (−ṗ(t), ˙̄x(t)) ∈ co ∂x,pHλ(t, x̄(t), q(t)) in-
volving the Clarke subdifferential ∂x,pH implies the Weierstrass condition (iii).
When the Hamiltonian inclusion takes the weaker form (ii) involving the hybrid
subdifferential ∂̃x,pH, the Weierstrass condition (iii) does not automatically
follow and is included in the theorem statement as a separate condition.

(b): Suppose p(t)+
∫

[S,t]∇h(x̄(s)))ds has bounded variation along x̄(.). Then, under

hypotheses (H1)-(H4), it is easy to show directly that, for any p(.), x̄(.) ∈ W 1,1

and measure µ(.), the function

H(t) := t → max{(p(t) +
∫

[S,t]
∇h(x̄(s)))ds) · v |v ∈ F (t, x̄(t)) }

also has bounded variation. Notice that, in this simple direct demonstra-
tion, the cummulative variation of both p(t) +

∫

[S,t]∇h(x̄(s)))ds and of p(t) +
∫

[S,t]∇h(x̄(s)))ds both contribute to the cummulative variation function of

h(t). So the assertion, merely, that the Hamiltonian is of bounded variation is
a trivial addition to known necessary conditions. However the theorem con-
tributes the extra information (vi), when may be paraphrased as the assertion:
when (p(.), µ) are multipliers associated with a L∞ minimizer x̄(.), then the
cummulative variation function of h(.) is absolutely continuous with respect
to the cummulative variation functions of t → F (t, .) and t → L(t, ., .). This
tells, perhaps surprisingly, that only the cummulative varation of t → F (t, .)
and t → L(t, ., .), and not that of p(t) +

∫

[S,t]∇h(x̄(s)))ds, contribute to the
cummulative variation of the Hamiltonian. This is a highly nontrivial addition
to the standard necessary conditions, even when there are no state constraints.
We investigate implications in the following two sections.

4 Application 1: Minimizer Regularity

Take a function L : [S, T ] × R
n × R

n → R and points x0, x1 ∈ R
n. Consider the

optimization problem:

(Q)







Minimize
∫ T

S
L(t, x(t), ẋ(t))dt

over absolutely continuous functions x(.) : [S, T ] → R
n s.t.

x(S) = x0 and, x(T ) = x1 .
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In this section we write H(t, x, p) in place of Hλ(t, x, p) when λ = 1, thus

H(t, x, p) := sup{p · v − L(t, x, v) | v ∈ R
n} .

It is well-known that (Q) has a minimizer x̄(.) under the following hypotheses:

(HE): (i): L(., ., .) is L × Bn×n measurable, where L and Br denote the Lebesgue
subsets of [S, T ] and the Borel subsets of Rr respectively, and L(t, ., .) is
lower semicontinuous for each t ∈ [S, T ].

(ii): L(t, x, .) is convex for each (t, x) ∈ R
n.

(iii): There exists a convex function θ(.) : R+ → R
+ and a number α such that

lim
r↑∞

θ(r)/r = +∞,

and

L(t, x, v) ≥ θ(|v|)− α|x| for all (t, x, v) ∈ [S, T ]× R
n × R

n .

If (HE) is supplemented by the mild regularity hypothesis on L(t, ., .):

(HR): Given any D > 0 there exists kD > 0 such that

L(t, x, v) − L(t, x′, v′) ≤ kD(|(x, v) − (x′, v′)|)
for all (x, v), (x′, v′) ∈ DB, t ∈ [S, T ]

which permit us to calculate subdifferentials of L(t, ., .) in some sense, then we might
expect that the minimizer x̄(.) satisfies standard first order conditions of optimality.
This however is not the case. There are counter-examples ([3],[9]) of problems with
smooth data, satisfying (HE) and (HR), whose minimizers fail to satisfy the Euler
Lagrange equation.

There has been longstanding interest in the question of what additional hypotheses,
besides, (HE) and (HR), are required to ensure minimizers satisfy classical necessary
conditions (or their modern nonsmooth analogues). In much of this literature, addi-
tional hypotheses are imposed to ensure that minimizers are Lipschitz continuous,
since the Hamiltonan inclusion (for example) is automatically satisfied by Lipschitz
continuous minimizers under (HE) and (HR). One such additional hypothesis (see
[]), guaranteeing that minimizers are Lipschitz continuous and therefore satisfy nec-
essary conditions of interest is

(HA): L(., ., .) is locally Lipschitz continuous (in all variables), L(., ., .) continuously
differentiable on a neighborhood of (t, x̄(t), ˙̄x(t)) for each (t, x, v) ∈ (S, T ) ×
R
n × R

n, and
t → ∇tL(t, x̄(t), ˙̄x(t)) is integrable.

(For simplicity, we do not state the more complicated form this condition takes,
when L(., ., .) is no longer continuously differentiable.) Hypothesis (HA), or to be
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precise the version of it which does not require continuous differentiability, is auto-
matically satisfied when L(t, x, v) does not depend on t.

The theory of previous sections will permit us to replace the hypothesis (HA) by a
weaker hypothesis requiring that t → L(t, ., .) is merely of bounded variation is some
uniform sense. This new hypothesis covers different cases and it allows L(t, ., .) to
have a countable number of fractional singularities, or even discontinuities. Specifi-
cally, we shall assume:

(BV): There exists ǫ > 0 and δ > 0 and K > 0 such that, for all partitions T =
{t0 = S, t1, . . . , tN−1, tN = T} of [S, T ] with diam {T } ≤ ǫ, we have

N−1
∑

i=0

sup {|L(ti+1, x, v) − L(ti, x, v)| | x ∈ x̄([ti, ti+1]) + δB, v ∈ R
n} ≤ K .

(In the language of previous sections, (BV) is the requirement that t → L(t, ., .) has
bounded variation along x̄(.) uniformly over the set A, where now A is the unbounded
set Rn.)

Proposition 4.1. Let x̄(.) be an L∞-local minimizer for (Q). Assume that hypothe-
ses (HE) and (BV ) are satisfied. Then x̄(.) is Lipschitz continuous and there exists
a Lipschitz continuous function p(.) : [S, T ] → R

n such that

(−ṗ(t), ˙̄x(t)) ∈ ∂̃x,pH(t, x̄(t), p(t)) a.e. (4.1)

(where the subdifferential ∂̃x,pH(., ., .) is as in (3.2)).

Proof. Fix any k′ > || ˙̄x(.)||L∞([t̄,t′];Rn). Then, under the hypothesis (BV), the
function t → L(t, ., .) has bounded variation along x̄ uniformly over the compact
set k′B. Write the cummulative variation function t → η(t; k′). It is clear from the
hypothesis that

η(t; k′) ≤ K for all t ∈ [S, T ] and k′ ≥ 0 .

This inequality, in which K is the constant of hypothesis (BV), continues to be sat-
isfied if η(t; k′) is replaced by its normalized version η∗(t; k′), obtained by replacing
values of the function at interior points by their right limits.

We deduce from Tonelli regularity theory (see, e.g., [18, Chapter XX]) that there
exists a point t̄ ∈ (S, T ) such that ˙̄x(.) is essentially bounded on a neighborhood of
t̄. We shall show that ˙̄x(.) is essentially bounded on [t̄, T ]. An analogous argument
‘in reverse time’ will tell us that ˙̄x(.) is essentially bounded also [t̄, T ]. It will follow
that x̄(.) is Lipschitz continuous on all of [S, T ].

The proof is based on the fact:

If there exists k̄ such that, for any [t̄, t′] ⊂ [t̄, T ], t′ > t̄, on which ˙̄x(.) is essentially
bounded, there exists p(.) ∈ W 1,1([t̄, T ];Rn) such that

(−ṗ(t), ˙̄x(t)) ∈ ∂̃x,pH(t, x̄(t), p(t)) a.e. (4.2)

|p(t)| ≤ k̄ for all t ∈ [t̄, T ] .
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Then ˙̄x(.) is essentially bounded on [t̄, T ].

(This is a slight modification of [18, Lemma 11.4.1], in which the right side of (4.2)
is expressed in terms of the hybrid subdifferential ∂̃H; this makes no essential dif-
ference to the proof.)

Take any [t̄, t′] ⊂ [t̄, T ], t′ > t̄, on which ˙̄x(.) is essentially bounded. Now apply
Thm. 3.1 to x̄(.) restricted to [t̄, t′], regarded as minimizer for the problem

Minimize

{

∫ t′

t̄

L(s, x(s), ẋ(s))ds |x(t̄) = x̄(t̄), x(t′) = x̄(t′) and |ẋ(.)| ≤ k′

}

.

We deduce the existence of p(.) ∈ W 1,1 and a normalized function of bounded
variation (on the interval [t̄, t′]) such that

(−ṗ(t), ˙̄x(t)) ∈ ∂̃x,pH(t, x̄(t), q(t)) a.e. (4.3)

r(t) = max
v∈k′B

{p(t) · v − L(t, x̄(t), v)}, a.e. (4.4)

p(t) · ˙̄x(t)− L(t, x̄(t), ˙̄x(t)) ≥ p(t) · v − L(t, x̄(t), v) for all v ∈ k′B (4.5)

r(t)− r(s) ≤ η∗(t; k′)− η∗(s; k′) for all [s, t] ⊂ [t̄, t′] . (4.6)

Notice the necessary conditions are stated in ‘normal form’, i.e. with cost multiplier
λ set to 1. This is permissible since, for fixed endpoint problems with a dynamic
constraint ẋ ∈ k′B and minimizing arcs x̄(.) with velocities interior to k′B, the nec-
essary conditions above can only be satisfied by multipliers (p(.), λ) for which λ > 0.
We may then arrange λ = 1 by scaling p(.) and λ appropriately.

Since ˙̄x(t) interior to k′B a.e., and L(t, x̄(t), .) is convex, (4.5) implies the ‘global’
optimality property

p(t) · ˙̄x(t)− L(t, x(t), ˙̄x(t)) ≥ p(t) · v − L(t, x(t), v) for all v ∈ R
n, a.e. (4.7)

Since, additionally, L(t, x̄(t), .) is locally Lipschitz continuous, we have

p(t) ∈ ∂vL(t, x̄(t), v = ˙̄x(t)) a.e.

It follows then from hypothesis (HR) that, for some t1 ∈ (t̄, t′),

|p(t)| ≤ k1 a.e. t ∈ [t̄, t1] (4.8)

for some k1 > 0 that does not depend on t′. We can deduce from (4.4) and (4.8)
that

|r(s)| ≤ k2 a.e. t ∈ [t̄, t1] , (4.9)

for some k2 > 0 that does not depend on t′. Now write

k3 := max
t∈[S,T ]

max
v∈B

L(t, x̄(t), v) ,
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By considering the choice v = p(t)/|p(t)| if p(t) 6= 0 or v = 0 otherwise in (4.7), we
deduce that

|p(t)| ≤ k3 + r(t) a.e.

Now choose any s ∈ [t̄, t1] such that (4.9) is valid. Then for any t ∈ [t1, t
′] we have,

by (4.6),

p(t) ≤ k3+r(t) = k3+r(s)+r(t)−r(s) ≤ k2+k3+η∗(t; k′)−η∗(s, k′) ≤ k2+k3+K,

where K is the constant in hypothesis (BV). Combining this relation with (4.8) and
noting that p(.) is continuous, we conclude that the values of p(.) are uniformly
bounded on all of [t̄, t′], and the bound does not depend on t′. But, as we have
earlier observed, the existence of such a bound implies ˙̄x(.) is essentially bounded
on [t̄, t′].

We have shown that x̄(.) is Lipschitz continuous. To complete the proof we have
merely to recall that, under (HE) and (HR), Lipschitz continuous minimizers satisfy
the asserted necessary conditions.

5 Application 2: Non-Degeneracy of the State Con-

strained Hamiltonian Inclusion.

Consider the optimal control problem

(P1)























Minimize g(x(T ))
over absolutely continuous functions x(.) : [S, T ] → R

n s.t.
ẋ(t) ∈ F (t, x(t)) a.e.,
h(x(t)) ≤ 0 for all t ∈ [S, T ]
x(S) = x0, ,

in which x0 is a given R
n vector. To simplify the subsequent analysis, we assume:

(H3)′: h(.) is a continuously differentiable function satisfying ∇h(x0) 6= 0.

(P1) will be recognized as a special case of (P ) in which C = {x0} × R
n (‘fixed

initial state’). Let x̄(.) be an L∞-local minimizer for (P1). The state constrained
Hamiltonian inclusion condition tells us: under unrestrictive hypotheses (details
of which do not concern us here), there exist p(.) ∈ W 1,1 ([S, T ];Rn), a function
µ(.) ∈ NBV +[S, T ] and λ ≥ 0 such that

(i) (p(.), λ, µ(.)) 6= (0, 0, 0),

(ii) (−ṗ(t), ˙̄x(t)) ∈ ∂̃x,pH(t, x̄(t), q(t)) a.e. ,

(iii) −q(1) ∈ λ∂g(x̄(T ))

and

(iv) supp {dµ} ⊂ {t |h(t, x̄(t)) = 0}
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where

q(t) =

{

p(t) +
∫

[S,t)∇h(x(s))µ(ds) if t ∈ [S, T )

p(t) +
∫

[S,T ]∇h(x(s))µ(ds) if t = T .

These conditions are deficient when

h(x0) = 0 ‘initial state in the boundary’ . (5.1)

Indeed it is easy to show that, in this case, any feasible F -trajectory x̄(.) satisfies
conditions (i)-(iii) above, when we choose multipliers:

p(.) ≡ −∇h(x̄(S)), µ(t) = δ(t) and λ = 0 , (5.2)

and so the standard set of conditions (i)-(iii) convey no useful information about
minimizers whatsoever.

As the proof of the following proposition shows, the additional information about
the Hamiltonian in Thm. 3.1, coupled with an inward pointing condition at the left
endpoint, provides an extra condition:

λ+

∫

(S,T ]
dµ(s) 6= 0

This condition excludes the ‘trivial’ set of multiplers (5.2), in which λ = 0 and µ(.)
comprises merely an atom at {S}, and therefore strengthens the standard set of
conditions (i)-(iii). Write

H(t, x, p) = sup{p · v | v ∈ F (t, x)} .

Corollary 5.1. Let x̄(.) be an L∞-local minimizer for (P1). Assume that hypotheses
(H1), (H2) (for L(., ., .) ≡ 0 ) and (H3 ′) are satisfied. Assume also that

(BV): t → F (t, .) has bounded variation along x̄(.)

and

(I): There exists v ∈ lim inf
s↓S

F (s, x0) such that

∇h(x0) · v < 0 .

Then there exist p(.) ∈ W 1,1 ([S, T ];Rn), a function µ(.) ∈ NBV +[S, T ] and λ ≥ 0
such that

(i) λ+
∫

(S,T ] µ(ds)) 6= 0,

(ii) (−ṗ(t), ˙̄x(t)) ∈ ∂̃x,pH(t, x̄(t), q(t)) a.e. ,

(iii) (q(S),−q(T )) ∈ λ∂g(x̄(S), x̄(T )) +NC̃(x̄(S), x̄(T )),

where

q(t) =

{

p(t) +
∫

[S,t)∇h(x(s))µ(ds) if t ∈ [S, T )

p(t) +
∫

[S,T ]∇h(x(s))µ(ds) if t = T .
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Proof. From Thm. 3.1 we know that there exist p(.) ∈ W 1,1 ([S, T ];Rn), a
function µ(.) ∈ NBV +[S, T ] and λ ≥ 0 such that (ii) and (iii) are satisfied, and
||p(.)||L∞ + λ+

∫

[S,T ] dµ(s) 6= 0.

We must check also condition (i). Suppose this condition is not satisfied. Let q̃(.)
be the modification to q(.), in which q(S) is replaced by its left limit q(S+). Then
q̃(.) is an absolutely continuous funtion satisfying

(− ˙̃q(t), ˙̄x(t)) ∈ ∂x,pH(t, x̄(t), q̃(t)) a.e.

and q̃(T ) = 0. It can be deduced, with the help of Gronwall’s inequality, that
q̃(.) ≡ 0. So q(t) = q̃(t) = 0 for t ∈ (S, T ]. Then

H(t, x̄(t), q(t)) = 0 for all t ∈ (S, T ] .

Now let us examine the implications of the ‘extra’ information about x̄(.) supplied by
Thm. 3.1: there exists a normalized function of bounded variation r(.) : [S, T ] → R,
continuous at its endpoints, such that

r(t) = H(t, x̄(t), q(t)) = 0 a.e t ∈ (S, T ] and r(S) = H(S+, x̄(S), p(S)) .

From the first condition and the continuity of r(.) at S, we conclude that r(S) = 0.
This implies that

sup
v∈F (S+,x0)

p(S) · v = 0 . (5.3)

But p(S) = q̃(S+) − ∇h(x0)µ{{S}} = 0 − ∇h(x0)µ{{S}}. There are now two
possibilities. It µ(.) ≡ 0 then p(.) = q̃(.) ≡ 0. This contradicts the non-triviality
condition ||p(.)||L∞ + λ +

∫

[S,T ] dµ(s)) 6= 0. On the other hand, if µ{{S}} 6= γ > 0
then

H(S+, x0, p(S)) = sup
v∈F (S+,x0)

p(S) · v = − inf
v∈F (S+,x0)

γ∇h(x0) · v > 0 ,

by hypothesis (I). This contradicts (5.3). This concludes the proof.

. Comments.

(a): The idea of using regularity of the Hamiltonian to justify the exclusion of
trivial multipliers in state constraint optimal control is due to Arutyunov and
Aseev. They assume that the data is Lipschitz continuous with respect to
time. The corollary improves on this earlier work, by excluding the trivial
multiplier set when the data is merely of bounded variation with respect to
time.

(b): The corollary excludes just one type of non-degeneracy. The condition (i) still
permits λ = 0, a case in which the necessary condtions make no reference to
the cost function and merely convey information about the constraints. The
hypotheses can be strengthened to ensure also normality, i.e. we can choose
λ 6= 0, in cases not covered in the earlier ‘non-degeneracy’ literature.
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6 Preliminary Analysis: Discrete Approximations

A key step in the proof the H[.] has bounded variation when F (., x) has bounded
variation will be to derive necessary conditions for a perturbation of problem (P ),
resulting from the discrete approximation of the multifunction F (., x) (and the ad-
dition of penalty terms to the cost). The perturbed problem (P )′ has the form of a
multistage optimal control problem, with end-times taken to be the grid points of a
partition of [S, T ]:

(P ′)















Minimize g(x(S), x(T )) +
∑N−1

i=0

∫ ti+1

ti
Li(x(t), ẋ(t))dt+

∫ T

S
e(t, x(t))dt

over absolutely continuous functions x(.) : [S, T ] → R
n s.t.

ẋ(t) ∈ Fi(x(t)) a.e. t ∈ [ti, ti+1), i = 0, . . . , N − 1
(x(S), x(T )) ∈ C ,

for which the data is as follows: a partition {t0 = S, t1, . . . , tN−1, tN = T} of [S, T ],
multifunctions and functions Fi(.) : R

n
❀ R

n and Li : R
n×R

n → R, i = 0, . . . , N−1,
functions e(., .) : [S, T ]×R

n → R and g(., .) : Rn×R
n → R, and a set C ⊂ R

n×R
n.

The special structure of the cost integrand reflects the requirements of the analysis
to follow.

Problem (P )′ will be recognised as a special case of the problem (P ) of the intro-
duction, when the following identifications are made for F (., .) and L(., ., .):

F (t, x) =
∑N−1

i=0 Fi(x)χ[ti,ti+1)(t) a.e. ,

L(t, x, v) =
∑N−1

i=0 Li(x, v)χ[ti,ti+1)(t) + e(t, x) .

Define the i’th stage hamiltonian H i
λ(., ., .) (parameterized by the cost multiplier λ)

to be
H i

λ(t, x, p) := max
v∈F (t,x)

{p · v − λL(t, x, v)}

for (x, p) ∈ R
n × R

n and t ∈ [ti, ti+1), i = 0, . . . , N − 1.

Proposition 6.1. Let x̄(.) be an L∞-local minimizer for (P ′). Assume, for some
δ̄ > 0,

(HM1): Fi(.) takes values closed, non-empty sets, i = 0, . . . , N − 1 and L(., .) is
continuous. g(., .) is Lipschitz continuous on (x̄(S), x̄(T )) + δ̄ (B× B).

(HM2): There exist k > 0 and c > 0, such that, for each i ∈ {0, . . . , N −1}, Li(., .)
is bounded on bounded sets, and

Fi(x) ⊂ Fi(x
′) + k(|x− x′|)B and Fi(x) ∈ cB

|Li(x, v) − Li(x
′, v)| ≤ k|x− x′|
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for all x, x′ ∈ x̄(t) + δ̄B, v ∈ F (t, x), a.e. t ∈ [S, T ].

(HM3): e(., .) is Lipschitz continuous on bounded subsets

Then there exist p(.) ∈ W 1,1 ([S, T ];Rn) and λ ≥ 0 such that

(i) (p(.), λ) 6= (0, 0),

(ii) (−ṗ(t), ˙̄x(t)) ∈ co ∂x,pH
i
λ(x̄(t), p(t)) − λco ∂̃xe(t, x̄(t))× {0}

a.e. t ∈ [ti, ti+1], i = 0, . . . , N − 1, where ∂̃xe(t, x) := lim sup
s→t

co ∂xe(s, x) ,

(iii) (p(S),−p(T )) ∈ λ∂g(x̄(S), x̄(T )) +NC(x̄(S), x̄(T )),

Furthermore, there exists a piecewise Lipschitz continuous function r(.) : [S, T ] → R,
with discontinuities confined to the set {t1, . . . , tN−1} satisfying

(iv) ṙ(t) ∈ λco ∂te(t, x̄(t)) a.e.

(v) r(t) = H i
λ(t, x̄(t), p(t)) a.e. t ∈ [ti−1, ti], i = 1, . . . , N .

Proof. The proof is based on a well-known idea for deriving conditions onH[.], when
the data is Lipschitz continuous in time. It is to observe that the given L∞-local
minimizer x̄(.) remains an L∞-local minimizer after the domain of the optimization
problem is enlarged to include the effects of an arbitrary change of independent
variable, and then to apply standard necessary conditions to the modified optimiza-
tion problem. We thereby obtain, not just the usual necessary conditions for the
L∞-local minimizer, but the desired additional information about H[.]. For problem
(P )′, the data is not Lipschitz continuous in t. But it is piecewise continuous, and
we can use the idea to establish piecewise Lipschitz continuity of H[.]. Take an L∞

minimizer x̄(.) for (P ′′) which is minimizint with respect to feasible F -trajectories
that satisfy:

||x(.) − x̄(.)||L∞ ≤ ǭ

for some ǭ > 0. Consider the function:

{(z̄i(.), τ̄i(.), x̄i(.))}N−1
i=0 : [S, T ] → (R× R×R

n)N (6.1)

in which, for i = 0, . . . , N − 1,

(z̄i(s), τ̄i(s), x̄i(s)) =











(

∫ s

ti
L(s, x̄(s′), ˙̄x(s′))ds′, s, x̄(s)

)

for s ∈ [ti, ti+1]

(0, ti, x̄(ti)) for s ∈ [S, ti)

(
∫ ti+1

ti
L(s′, x̄(s′), ˙̄x(s′))ds′, ti+1, x̄(ti+1)) for s ∈ (ti, T ] .

We claim that, for ǫ′ > 0 sufficiently small, (6.1) is an L∞-local minimizer for (P ′′):
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(P ′′)











































































Minimize g(x0(S), xN−1(T )) +
∑N−1

i=0 zi(T )
over absolutely continuous functions

{(zi(.), τi(.), xi(.))}N−1
i=0 : [S, T ] → (R× R× R

n)N ,
satisfying, for a.e. t ∈ [ti, ti+1] and i = 0, . . . , (N − 1) ,
(żi(s), τ̇i(s), ẋi(s) ∈






{(1 + w)Li(xi(s), v), (1 + w), (1 + w)v |
w ∈ [1− ǫ′, 1 + ǫ′], v ∈ Fi(s, xi(s))} if s ∈ [ti, ti+1]

(0, 0, 0) if s ∈ [S, T ]\[ti, ti+1]
(x0(S), xN−1(T )) ∈ C,
(zi(S), τi(S), τi(T )) = (0, ti, ti+1) for i = 0, . . . , N − 1
xi(T ) = xi+1(S) for i = 0, . . . , N − 2 .

To see this, fix α > 0 and ǫ′ ∈ (0, 1), and take any F -trajectory for (P ′′),

{(zi(.), τi(.), xi(.))}N−1
i=0 ,

satisfying
||{(zi(.), τi(.), xi(.))} − {z̄i(s), τ̄i(s), x̄i(s))}||L∞ ≤ α .

Then, in view of the dynamic constraint in (P ′′), there exist measurable functions
w(.) : [S, T ] → [1− ǫ′, 1 + ǫ′], and v(.) : [S, T ] → R

n such that






{(1 + w)L(s, xi(s), v), (1 + w), (1 + w)v |
w ∈ [1− ǫ′, 1 + ǫ′], v ∈ F (s, xi(s))} if s ∈ [ti, ti+1]

(0, 0, 0) if s ∈ [S, T ]\[ti, ti+1]

for a.e. s ∈ [ti, ti+1] and i = 0, . . . , (N−1). Now consider the function φ(.) : [S, T ] →
R

φ(s) = S +

∫

[S,s]
{
N−1
∑

i=0

(1 + w(s′))χ[ti,ti+1](s
′)}ds′ .

In view of the constraints imposed in problem (P ′′), φ(.) is a Lipschitz continuous,
strictly increasing function with a Lipschitz continuous inverse, such that φ(ti) = ti
for i = 0, . . . , N . Furthermore

y(s) =
N−1
∑

i=0

xi(s)χ[ti,ti+1)(s)

is an absolutely continuous function. It is a straightforward ‘change of independent
variable’ exercise to show that x(.) : [S, T ] → R

n defined by

x(t) := y(φ−1(t))

is a feasible F -trajectory for (P ′) and has the same cost as {(zi(.), τi(.), xi(.))}N−1
i=0

has for (P ′′). Also, (6.1) has the same cost for (P ′′). by choosing ǫ and α suffi-
ciently small, we can arrange that, whatever the choice of {(zi(.), τi(.), xi(.))}, we
have ||x(.) − x̄(.)||L∞ ≤ ǭ. The claim is confirmed. The assertions of proposition
now follow from an application of known necessary conditions to (P ′′) [18, ThmXX].

We shall also require certain convergence properties, as the mesh size tends to zero,
of interpolants of suitably bounded points on a grid, summarized in the lemma:
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Lemma 6.2. Take a compact set A ⊂ R
k, a continuous function x̄(.) : [S, T ] → R

n

and a multifunction F (., ., .) : [S, T ] × R
n × A → R

n which has bounded variation
along x̄(.) uniformly over A. Denote by η(.) its cummulative variation function,
and by ηδǫ (.) the related (δ, ǫ)-perturbed functions. Assume that hypotheses (C1) and
(C2) of Prop. 2.1 are satisfied. Take a sequence of families of numbers {dij}Ni−1

j=1

and a sequence of numbers {mi
0}. For each i, let Ti = {ti0, ti1, . . . , , tiNi−1, t

i
Ni

= T}
be a partition of [S, T ] and define the piecewise constant interpolation function

mi(t) = mi
0 +

Ni−2
∑

j=1

dijχ[tij ,t
i
j+1

)(t) + diNi−1χ[ti
Ni−1

,ti
N
](t) .

Assume that

(A1): diam{Ti} → 0 as i → ∞ .

(A2): {mi
0} is a bounded sequence.

(A3): There exist an integer valued function (ǫ, δ) → I(ǫ, δ) such that, for any ǫ > 0
and δ > 0,

|dij | ≤ ηδǫ (t
i
j)− ηδǫ (t

i
j−1) for all j ∈ {1, . . . , Ni}, and i ≥ I(ǫ, δ) .

Then there exist a normalized function of bounded variation m(.) : [S, T ] → R
n and

a countable set A ⊂ (S, T ), such that, along some subsequence,

mi(t) → m(t) for all t ∈ [S, T ]\A

and
|m(t)−m(s)| ≤ η∗(t)− η∗(s) for all [s, t] ⊂ [S, T ] ,

in which η∗(.) is the normalized cummulative variation

η∗(t) :=

{

η(t) if t = S or T
η(t+) if t ∈ (S, T )

where η(t+) := lims↓t η(s) .

A proof of the lemma appears in the Appendix.

7 Proof of Theorem 3.1

Consider first the case L(., ., .) ≡ 0. Here, the Hamiltonian Hλ(., ., .), defined by
(3.1), no longer depends on λ and we write it simply H(., ., .).

By reducing the size of δ̄ > 0 in hypotheses (H1) − (H3) we can arrange that
ηδ̄F (T ) < ∞. We may choose ǭ > 0 such that ηδ̄F,ǭ(T ) < ∞. Since x̄(.) is an L∞-

local minimizer, we may arrange (again by reducing the size of δ̄ > 0 if required)
that x̄(.) minimizes g(x(S), x(T )) over all feasible F -trajectories for (P ) satisfying
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||x(.) − x̄(.)||L∞ ≤ δ̄.

We impose the following temporary hypothesis:

(C): t → F (t, .) is right and left continuous at S and T respectively, in the following
sense: for some δ ∈ (0, δ̄),

lim
s↓S

sup
x∈x̄(S)+δB

dH(F (S, x), F (s, x)) = 0 , lim
t↑T

sup
x∈x̄(T )+δB

dH(F (T, x), F (t, x)) = 0 .

Take a sequence of positive integers Ni ↑ ∞. Define ǫi = |T − S|/Ni. For each i, let
{ti0 = S, ti1 . . . , t

i
Ni−1, t

i
Ni

= T} be the uniform partition of [S, T ] into Ni subintervals.
Define

Fi(t, x) :=

Ni−1
∑

j=0

F (tij, x)χ[tij ,t
i
j+1

)(t) + F (tiNi−1, x)χ[ti
Ni−1

,ti
Ni

](t) .

In view of (H2),

∫ T

S

dFi(t,x̄(t))( ˙̄x(t))dt ≤ T − S

Ni
×





Ni−1
∑

j=0

ηδ̄F,ǭ(t
i
j+1)− ηδ̄F,ǭ(t

i
j)





=
T − S

Ni

×
(

ηδ̄F,ǭ(T )− ηδ̄F,ǭ(S)
)

,

→ 0 as i → ∞ .

It follows from Filippov’s Existence Theorem [] that there exists an absolutely con-
tinuous function zi(.) such that żi(t) ∈ Fi(t, zi(t)), a.e., and zi(S) = x̄(S), and a
sequence αi ↓ 0 such that

||zi(.) − x̄(.)||L∞ ≤ αi

for all i sufficiently large. For each i we have h(zi(t)) ≤ khαi, where kh is the
constant of (H3) and (zi(S), zi(T )) ∈ C̃ +

√
2× αiB. Notice that

C̃ +
√
2× αiB ⊂ {(x0, x1) |h(x0) ∨ h(x1) ≤ 2× khαi} .

Take a sequence βi ↓ 0 such that βi > 2khαi for each i . Then

C̃ +
√
2× αiB ⊂ {(x0, x1) |h(x0) ∨ h(x1) < βi} .

Now take any sequence of numbersKi ↑ ∞ and, for each i, consider the optimization
problem

(Pi)























Minimize g(x(S), x(T )) +
∫ T

S

(

|x(t)− x̄(t)|2 +Ki (h(x(t)) − βi)
+) dt

such that
ẋ(t) ∈ Fi(t, x(t)) a.e.,

(x(S), x(T )) ∈ C̃ +
√
2× αiB ,

|x(t)− x̄(t)| ≤ δ̄/2 for all t ∈ [S, T ] .
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For each i, (Pi) has a minimizer xi(.), since the data for this problem satisfy the
standard conditions for existence of minimizers. (The assumed convexity of the
velocity sets F (t, x) is crucial here.) Notice that the αi’s have been chosen to ensure
existence of feasible F -trajectories for this problem. Since the xi(.)’s are uniformly
bounded and the ẋi(.)’s are uniformly integrably bounded we know that, along some
subsequence (we do not relabel),

||xi(.)− x′(.)||L∞ → 0 , (7.1)

for some absolutely continuous function x′(.) satisfying ||x′(.) − x̄(.)||L∞ ≤ δ̄/2.
Appealing once again to Filippov’s Existence Theorem we can show that, for each i
sufficiently large, there exists an F -trajectory yi(.) such that ||xi(.)− yi(.)||L∞ → 0.
It follows from (7.1) that

||yi(.)− x′(.)||L∞ → 0 .

But then, by standard closure properties of solutions of convex valued differential
inclusions, x′(.) is an F -trajectory. Notice that, since (xi(S), xi(T )) ∈ C̃+

√
2×αiB

for each i,
(x′(S), x′(T )) ∈ C̃ . (7.2)

Observe next that the zi(.)’s satisfy the conditions

(zi(S), zi(T )) ∈ C̃+
√
2×αiB, max

t∈[S,T ]
(h(zi(t))− βi) < 0 and ||zi(.)− x̄(.)||L∞ ≤ δ̄/2 ,

for i sufficiently large. It follows that zi(.) is feasible for (Pi) and cannot have cost
less than that of xi(.). But then

g(xi(S), xi(T )) +

∫ T

S

|xi(t)− x̄(t)|2dt+Ki

∫ T

S

(h(xi(t))− βi)
+ dt

≤ g(zi(S), zi(T )) +

∫ T

S

|zi(t)− x̄(t)|2dt+ 0 .

Since ||zi(.) − x̄(.)||L∞ → 0 and ||xi(.)− x′(.)||L∞ → 0, we have

g(x′(S), x′(T )) +

∫ T

S

|x′(t)− x̄(t)|2dt+ lim sup
i→∞

Ki

∫ T

S

(h(xi(t))− βi)
+ dt

≤ g(x̄(S), x̄(T )) . (7.3)

It follows from Ki ↑ ∞ that
∫ T

S
(h(xi(t))− βi)

+ dt → 0 .

We deduce from the continuity of t → h(x(t)) that

h(x′(t)) ≤ 0 for all t ∈ [S, T ] .

But then, by (7.2), x′(.) is a feasible F -trajectory for the original problem (P ), which
satisfies ||x′(.)− x̄(.)||l∞ ≤ δ̄/2. In consequence then of the local optimality of x̄(.),

g(x′(S), x′(T )) ≥ g(x̄(S), x̄(T )) .
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We deduce from this relation and (7.3) that x′(.) = x̄(.) Then, by (7.1),

||xi(.)− x̄(.)||L∞ → 0 . (7.4)

and

Ki

∫ T

S

(h(xi(t))− βi)
+ dt → 0 .

It follows from Egorov’s Theorem that, after subtracting a subsequence,

Ki (h(xi(t))− βi)
+ → 0 a.e. (7.5)

In view of (7.4), xi(.) is a L∞-local minimizer for a modified version of (Pi), result-
ing from removal of the constraint ‘||x(.) − x̄(.)||L∞ ≤ δ̄/2’). The hypotheses are
satisfied for the application of the ‘multistage’ necessary conditions Prop. 6.1 of the
preceding section. Write q for the costate variable and λ for the cost multiplier. The
Hamiltonian for (Pi) is

Hi(t, x, q) − λ|x− x̄(t)|2 − λKi (h(x)− βi)
+ ,

in which
Hi(t, x, q) = max{q · e | e ∈ Fi(t, x)} .

The necessary conditions assert the existence, for each i, of qi(.) ∈ W 1,1([S, T ];Rn)
and a piecewise absolutely continuous function ri(.) : [S, T ] → R, with possible
jumps at ti1, . . . , t

i
Ni−1 and right continuous on (S, T ), such that

(−q̇i(t), ẋi(t)) ∈ co ∂x,pHi(t, xi(t), qi(t)) (7.6)

−2λi(xi(t)− x̄(t))− 2γi(t)Kiνi(t) a.e.,

in which γi(.) : [S, T ] → R
n and νi(.) : [S, T ] → [0, 1] are measurable functions such

that
γi(t) ∈ co ∂>

x h(xi(t)) (7.7)

for almost all t ∈ {s ∈ [S, T ] : νi(s) > 0}. To derive these relations, we have used
the subdifferential calculus rule

∂[h(x)− β, 0]+ ⊂
{

{ν∂h(x) | ν ∈ [0, 1]} for h(x)− β ≥ 0
{0} otherwise .

Also:
ṙi(t) = 2λi(xi(t)− x̄(t)) · ˙̄x(t) a.e. (7.8)

and

− ri(t)+Hi(t, xi(t), qi(t))− λi|xi(t)− x̄(t)|2 − λiKi[h(xi(t))−βi]
+ = 0 a.e. (7.9)

Furthermore
qi(t) · ẋi(t) = max

e∈Fi(t,xi(t))
qi(t) · e , a.e. (7.10)

and

(qi(S),−qi(T )) ∈ λi∂g(xi(S), xi(T )) +NC̃+
√
2αiB

(xi(S), xi(T )) (7.11)
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Now define
µi(dt) := λiKiνi(t)dt

and

pi(t) := qi(t)−
∫

[S,t)
γi(s)µi(ds)

it follows from the last two relations that (qi(.), λi) 6= (0, 0). We can arrange then,
by scaling the multipliers, that

||pi(.)||L∞ + λi + ||µi(.)||TV = 1 . (7.12)

We note from (7.8) that ri(.) has the representation

ri(t) = r̃i(t)−
∫ t

S

(2λi(xi(s)− x̄(s)) · ˙̄x(s)) ds , (7.13)

where r̃i(.) is the piecewise constant function with distributional derivative expressed
in terms of the jumps

∆i
j = ri(t

i+
j )− ri(t

i−
j ) j = 1, . . . , N − 1

as

˙̃ri(t) =

N−1
∑

j=1

∆i
j δ(t− tij) . (7.14)

Here, δ(.) is the Dirac delta function. We see from (7.9) that the jumps in r̃i(.) are

∆i
j = Hi(t

i+, xi(t
i
j), qi(t

i
j))−Hi(t

i−, xi(t
i
j), qi(t

i
j)) ,

which, in view of (H3), can be estimated by

|∆i
j | ≤ ||qi(.)||TV ×

[

ηδiF,ǫi(t
i
j)− ηδiF,ǫi(t

i
j−1)

]

. (7.15)

Since λiKi[h(xi(.)) − βi] → 0 in L1 and t → Hi(t, xi(t), qi(t)) − λi|xi(t) − x̄(t)|2,
i = 1, 2, . . ., is a uniformly bounded sequence of functions, we can conclude from
(7.8) that {ri(.)} is bounded with respect to the L1 norm. Note however that, by
(7.14) and (7.15), r̃i(.) has total variation bounded by ||qi(.)||L∞×[ηδiF,ǫi(T )−ηδiF,ǫi(S)]
A simple contradiction argument based on (7.13) permits us to conclude that ri(S)(=
r̃i(S)) is a bounded sequence.

We now apply Lemma 6.2, when we identify mi(.) with r̃i(.), d
i
j with r(ti+j )− r(ti−j )

and ηδF,ǫ(.) with K ′ηδF,ǫ(.), in which K ′ is any number such that

K ′ > lim sup
i→∞

||qi(.)||L∞ .

The lemma tells us that there exists a normalized function of bounded variation
r(.) : [S, T ] → R and a countable subset A ⊂ (S, T ) such that

r̃i(t) → r(t) for all t ∈ [S, T ]\A ,
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and
|r(t)− r(s)| ≤ K ′ × (η∗F (t)− η∗F (s)) (7.16)

for all [s, t] ⊂ [S, T ].

We deduce from (7.9), the facts that h(xi(S)) < βi and h(xi(T )) < βi, and the
interim ‘continuity’ hypothesis (C) that, for some ρi ↓ 0,

ri(S) = H(S, xi(S), pi(S)) + λi|xi(S)− x̄(S)|2

ri(T ) ∈ H(T, xi(T ), qi(T )) + λi|xi(T )− x̄(T )|2 + ρi × ||qi||L∞B . (7.17)

(We have used here the fact that Fi(S, .) = F (S, .), but Fi(T, .) = F (t, .) for some
t ∈ [S, T ] such that T − s ≤ ǫi = (T − S)/N i for each i, since Fi(., .) is constructed
from F (., .) by constant extrapolation from the left.) The pi(.)’s are uniformly
bounded and have a common Lipschitz constant. The functions γi(.) and qi(.) are
uniformly bounded and also uniformly bounded in total variation, and the λi are
uniformly bounded. It follows that, for a subsequence,

pi(.) → p(.) uniformly, ṗi(.) → ṗ(.) weakly in L1 µi(.) → µ(.) weakly*

γidµi → γdµ weakly* and qi(.) → q(.) weakly* ,

for some Lipschitz continuous function p(.), λ ≥ 0 , some function of bounded vari-
ation q(.), some measure µ(.). and some Borel measurable function γ(.). Define

q(t) := p(t) +

∫

[S,t)
γ(s)µ(ds)

A straightforward extension of the convergence analysis in [18] permits us pass to
the limit in the relations (7.6), (7.7), (7.11) and (7.12) and thereby deduce

(−ṗ(t), ˙̄x(t)) ∈ ∂̃x,pH(t, x̄(t), q(t)) a.e., (7.18)

λ+ ||p(.)||L∞ + ||µ(.)||TV = 1 , (7.19)

(p(S),−q(T )) ∈ λ∂g(x̄(S), x̄(T )) +NC̃(x̄(S), x̄(T )) , (7.20)

m(t) ∈ co ∂>
x h(t, x̄(t)) µ-a.e. t ∈ [S, T ] , (7.21)

r(S) = H(S, x̄(S), p(S)) and r(T ) = H(T, x̄(T ), q(T )) . (7.22)

(Note that, for any t ∈ [S, T ], Hi(t, ., .) and (H(t, ., .) may fail to coincide. Nonethe-
less, for any index value i and t ∈ [S, T ], Hi(t, ., .) = H(s, ., .) for some s such that
|t− s| ≤ δi. So the partial subdifferential employed to capture limiting behavior for
a particular time t, must take account of partial subgradients of H(., ., .) at neigh-
bouring times s. This is why the ‘hybrid’ partial subdifferential ∂̃x,pH appears in
(7.18) in place of the customary co ∂x,pH. To derive the relation (7.18) we make
use of the fact: at all points t in a subset of [S, T ] of full measure and some ǫ′ > 0,
t → F (t, x) is continuous, uniformly over x ∈ x̄(t) + ǫ′B. See Prop. 2.1.)

We deduce from (7.9), with the help of (7.5) that

r(t) = H(t, x̄(t), q(t)) a.e.
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Reviewing the preceding relations (7.16) and (7.24) - (??) and, we see that the proof
of the theorem in the ‘L(., ., .) ≡ 0’ case is almost complete. But there are some
minor matters that require attention, relating to the function r(t). First, in the
proof K is taken to be any number K ′ > K where

K = lim sup
i→∞

||qi(.)||L∞ (= ||q(.)||L∞)

To justify replacing K ′ by K in relation (7.16) we take a sequence Kj ↓ K. For each
j, we obtain the above relations with multipliers indexed by j. The desired neces-
sary conditions, involving K, are obtained by extracting subsequences and passage
to the limit in these relations.

The other matters concern the imposition of the temporary hypothesis (C) and also
the fact that the theorem statement additionally asserts the continuity of r(.) at the
endpoints of the interval [S, T ]. Suppose condition (C) is not valid. Then, since
t → F (t, .) is assumed to have bounded variation along x̄(.), (C) is satisfied when
the Hamiltonian inclusion ẋ(t) ∈ F (t, x(t)) is replaced by ẋ(t) ∈ F̃ (t, x(t)), given by
(2.5). Notice that F (., .) is obtained by changing t → F (t, .) only on a null-set, and so
this procedure does not affect F -trajectories. x̄(.) remains an L∞-local minimizer.
The only respect in which this changes the preceding relations is to replace η∗(.)
in (7.16) by the normalized cummulative variation function η̃∗(.) of t → F̃ (t, .) in
relation (7.16). We may deduce from Prop. 2.2, however, that

r(t)− r(s) ≤ η̃∗(t)− η̃∗(s) = η∗(t)− η∗(s)

for [s, t] ⊂ (S, T ). But we also know from Prop. 2.2 that η̃∗(.) is continuous at the
two endpoints of the interval [S, T ]. So

lim
t↓S

|r(t)− r(S)| ≤ lim
t↓S

η̃∗F (t)− η∗F (S
+) = 0

and
lim
t↑T

|r(T )− r(t)| ≤ η̃∗F (T
−)− lim

t↑T
η∗F (t) = 0 .

We have shown that r(.) has the desired continuity properties. This completes the
proof of the special case of the theorem.

Now suppose that L(., ., .) is non-zero. Then the assertions of the theorem may be
deduced from those of the special case treated above by the well known state aug-
mentation technique, based on the fact that (x̄(.), z̄(.)) is an L∞-local minimizer for
the optimal control problem, with state dimension n+ 1,

(PA)























Minimize g(x(S), x(T )) + z(T )
over absolutely continuous functions (x(.), z(.)) : [S, T ] → R

n+1 s.t.

(ẋ(t), ż(t)) ∈ F̃ (t, x(t)) a.e.,
h(x(t)) ≤ 0 for all t ∈ [S, T ]
(x(S), x(T )) ∈ C and z(S) = 0 .
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Here F̃ (., .) : Rn → R
n+1 is the multifunction:

F̃ (t, x) :=
{

(e, β) ∈ R
n+1 | e ∈ F (t, x) and L(t, x, e) ≤ β ≤ c′

}

.

in which c′ is any number satisfying c′ > c, where c is as in (H2). We repro-
duce the preceding analysis in the proof of the theorem, now with reference to
(x̄(.), z̄(.)), interpreted as an L∞-local minimizer for (PA). This is permitted be-
cause all the relevant hypotheses are satisfied and since (PA) has no integral cost
term. The approximating ‘higher dimensional’ costate arcs (pi(.), p

0
i (.)) and associ-

ated arcs (qi(.), q
0
i (.)), which have an extra component, take the form (pi(.), p

0(.)) =
(pi(.),−λi) and (qi(.),−λi).

However we refine the analysis in one minor respect: this is to replace the estimate
(7.15) by the more refined relation,

|∆i
j | ≤ ||qi(.)||TV ×

[

ηδiF,ǫi(t
i
j)− ηδ

i

F,ǫi
(tij−1)

]

+ λi ×
[

ηδiL,ǫi(t
i
j)− ηδ

i

L,ǫi
(tij−1)

]

.

in which the contributions to the estimates of the variation of the Hamiltonian on
[tij , t

i
j−1]), from the two components of (qi(.), (q

0
i (.) = λi)), are now separated out.

Here, ηδiF,ǫi and ηδiL,ǫi are the perturbed cummulative variation functions of F (., .) and
L(., ., .) respectively.

We thereby arrive at a set of conditions from which may be deduced all the assertions
of the theorem, when the integral cost term is present, with reference to the L∞-local
minimizer x̄(.) for (P ).

Appendix

Proof of Proposition 2.1: (a): We prove the first assertion. Proof of the second
assertion is analogous. Take any ǫ > 0 such that ηδ̄ǫ (T ) < +∞. Fix δ ∈ (0, δ̄). Take
any x ∈ x̄(s̄) + δB, a ∈ A and

v ∈ lim sup
s↓s̄

F (s, x, a) .

By definition of the ‘lim sup’, there exists si ↓ s̄ and vi → v such that

vi ∈ F (si, x, a) for all i and vi → v as i → ∞ .

The assertion (a) will follow if we can show that, also,

v ∈ lim inf
s↓s̄

F (s, x, a) , (7.23)

i.e. the ‘lim sup’ and ‘lim inf’ coincide, in which case the limit exists. To show
(7.23) we take an arbitrary sequence tj ↓ s̄. By eliminating elements in the sequence
{(si, vi)}, we can arrange that, for every j, s̄ ≤ sj < tj, tj − s̄ ≤ ǫ and x ∈ x̄(t) +
δ̄B for all t ∈ [s̄, tj ], j = 1, 2, . . ., for all a ∈ A. But then, since tj − sj ≤ ǫ and by
an earlier listed ‘elementary’ property of the (δ, ǫ)-perturbed cummulative variation
function,

dH(F (tj , x, a), F (sj , x, a)) ≤ ηδ̄ǫ (tj)− ηδ̄ǫ (sj) .
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This means that, for each j, there exists wj ∈ F (tj , x, a) and

|vj − wj | ≤ ηδ̄ǫ (tj)− ηδ̄ǫ (sj) .

We know however that, since ηδ̄ǫ (.) is a finite valued, monotone function, it has a
right limit ηδ̄ǫ (s̄

+) at s̄. Hence

lim
j→∞

|vj − wj | ≤ lim
j→∞

(

ηδ̄ǫ (tj)− ηδ̄ǫ (sj)
)

≤ ηδ̄ǫ (s̄
+)− ηδ̄ǫ (s̄

+) = 0 .

It follows that vj − wj → 0. But then v = limj vj = limj wj . Since tj ↓ s̄ was an
arbitrary sequence, we conclude (7.23). We have confirmed (a).

(b) These assertions follow from (a), together with the compactness of the set A and
of the δ balls about x̄(s̄) and x̄(t̄), and with the assumed continuity properties of
(x, a) → F (t, x, a).

(c) Let A be the empty or countable subset of (S, T ) comprising points at which
the finite-valued monotone function ηδ̄ǭ (.) is discontinuous. Fix a point t ∈ (S, T )\A,
a ∈ A and x ∈ x̄(t) + δB. Take any ρ > 0. Since ηδ̄ǫ (.) is continuous at t, we may
choose γ > 0 such that

ηδ̄ǫ (t+ γ)− ηδ̄ǫ (t− γ) ≤ ρ .

So, for any t′ ∈ [S, T ] such that |t′ − t| ≤ ρ ∧ ǭ,

sup{dH(F (t′, x, a), F (t, x, a)) |x ∈ x̄(t) + δ̄B, a ∈ A} ≤ ηδ̄(t′ ∨ t)− ηδ̄(t′ ∧ t)

≤ ηδ̄(t+ γ)− ηδ̄(t− γ) ≤ ρ .

The continuity properties of F (., x, a) at t have been confirmed.

Proof of Prop. 2.2: Let F̂ (., .) : [S, T ]×R
n ×A → R

n be a multifunction such that,
for (t, x, a) ∈ [S, T ]×R

n ×A,

F̂ (t, x, a) =

{

F (S+, x, a) if t = S, x ∈ x̄(S) + δB and a ∈ A
F (t, x, a) otherwise .

(Note that F̂ (t, x, a) is a modified version of F (t, x, a) that differs only at the left
endpoint t = S.) Write η̂δǫ (.) to denote the (δ, ǫ)-perturbed cummulative variation
function of t → F̂ (t, ., .) along x̄(.), for a ∈ A.

Fix t ∈ (S, T ). Take δ ∈ (0, δ̄) and ǫ > 0 such that ηδǫ (T ) < +∞. Let T = {t0 =
S, . . . , tN = t} be an arbitrary partition of [S, T ]. Take an arbitrary sequence sj ↓ S.
For j sufficiently large,

ηδǫ (t) ≥ sup {dH(F (sj , x, a), F (S, x, a)) | x ∈ x̄([S, sj ]) + δB, a ∈ A}
+sup {dH(F (sj , x, a), F (t1, x, a)) | x ∈ x̄([sj, t1]) + δB, a ∈ A}

+
N−1
∑

i=1

sup {dH(F (ti+1, x, a), F (ti, x, a)) | x ∈ x̄([ti, ti+1]) + δB, a ∈ A} .
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In view of Prop. 2.1, we may pass to the limit as j → ∞ in this relation to obtain:

ηδǫ (t) ≥ sup
{

dH(F (S+, x, a), F (S, x, a)) | x ∈ x̄(S) + δB, a ∈ A
}

+sup
{

dH(F (S+, x, a), F (t1, x, a)) | x ∈ x̄([S, t1]) + δB, a ∈ A
}

+

N−1
∑

i=1

sup {dH(F (ti+1, x, a), F (ti, x, a)) | x ∈ x̄([ti, ti+1]) + δB, a ∈ A} .

Since the partition T was an arbitrary partition such that diam{T } ≤ ǫ it follows
that

ηδǫ (t) ≥ sup
{

dH(F (S+, x, a), F (S, x, a)) | x ∈ x̄(S) + δB, a ∈ A
}

+ η̂δǫ (t) . (7.24)

Take again an arbitrary partition T = {t0 = S, . . . , tN = t} of [S, t]. Let δ̄, δ and ǫ
be as before. We have

η̂δǫ (t) ≥ sup
{

dH(F (S+, x, a), F (t1, x, a)) | x ∈ x̄([S, t1]) + δB, a ∈ A
}

+
N−1
∑

i=1

sup {dH(F (ti+1, x, a), F (ti, x, a)) | x ∈ x̄([ti, ti+1]) + δB, a ∈ A} .(7.25)

But by the triangle inequality we have, for each x ∈ {x̄(t) + δB | t ∈ [S, t1]} and
a ∈ A,

dH(F (S+, x, a), F (t1, x, a)) ≥ dH(F (S, x, a), F (t1, x, a))−dH (F (S+, x, a), F (S, x, a)) .

Furthermore,

max dH(F (S+, x, a), F (t1, x, a)) ≥
max dH(F (S, x, a), F (t1, x, a)) −max{dH(F (S+, x, a), F (S, x, a)) ,

where, in each term, the max is taken over (x, a) ∈ {x̄(t) + δB | t ∈ [S, t1]} × A.
Noting that T was an arbitrary partition such that diam{T } ≤ ǫ, we deduce from
(7.25) that

η̂δǫ (t) ≥ ηδǫ (t)−max{dH(F (S+, x, a), F (S, x, a)) | (x, a) ∈ {x̄(t) + δB | t ∈ [S, t1]} ×A} .

This relation combines with (7.24) to yield

0 ≤ ηδǫ (t)− η̂δǫ (t)−max{dH(F (S+, x, a), F (S, x, a)) |x ∈ x̄(S) + δB, a ∈ A} ≤ ∆(ǫ, δ) ,

in which

∆(ǫ, δ) := max{dH(F (S+, x, a), F (S, x, a)) |x ∈ {x̄(t) + δB | t ∈ [S, (S + ǫ) ∧ T ]}, a ∈ A}
− max{dH(F (S+, x, a), F (S, x, a)) |x ∈ x̄(S) + δB, a ∈ A} .

Since, as is easily shown, F (S+, ., .) has modulus of continuity θ(.) on {x̄(S)+δB}×A,
where θ(.) is as in hypothesis (C2) and x̄(.) is continuous,

lim
ǫ′↓0

∆(ǫ′, δ) = 0 .
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We deduce that

ηδ(t) = η̂δ(t) + max{dH(F (S+, x, a), F (S, x, a)) |x ∈ x̄(S) + δB, a ∈ A} .

In the limit as δ ↓ 0 we obtain

η(t) = η̂(t) + sup
a∈A

dH(F (S+, x̄(S), a), F (S, x̄(S), a)) . (7.26)

Since η̂(t) and η̃(t) coincide for t < T , we have shown that

η(t) = η̃(t) + sup
a∈A

dH(F (S+, x̄(S), a), F (S, x̄(S), a)) for t ∈ [S, T ) . (7.27)

A similar analysis to that above yields

η̂(T ) = η̃(T ) + sup
a∈A

dH(F (T−, x̄(T ), a), F (T, x̄(T ), a)) . (7.28)

Combining (7.26) (in the case t = T ) and (7.28) yields

η(T ) = η̃(T ) + sup
a∈A

dH(F (S+, x̄(S), a), F (S, x̄(S), a))

+sup
a∈A

dH(F (T−, x̄(T ), a), F (T, x̄(T ), a)) . (7.29)

It follows from (7.27) that

η̃(t)− η̃(s) = η(t)− η(s) , for all [s, t] ⊂ (S, T ) . (7.30)

The remaining assertions of the proposition will follow from (7.27) and (7.29), if we
can verify the two assertions: η̃(.) is right continuous at S and left continuous at T .
We proof the first assertion. The proof of the second is similar.

Suppose the first assertion is not true. Then there exists α > 0 such that η̃(t) −
(η̃(S) = 0) ≥ α for all t ∈ [S, T ]. Choose any δ ∈ (0, δ̄) and ǫ > 0 such that
η̃δǫ (t) < ∞. Then

η̃δǫ (t) ≥ α for all t ∈ [S, T ] .

Notice that the choice of ǫ does not depend on the choice of α. We can then impose
that

∆(ǫ, δ) < α/8.

By Prop 2.1, we can find s̄ > 0 such that

max
x∈x̄(S)+δB,

a∈A

dH(F (s̄, x, a), F (S+, x, a)) ≤ α/4 .

By the properties of the supremum, we can choose a partition {s0, ..., sN} of [S, s̄],
of diameter at most ǫ, such that

η̃δǫ (s̄) ≤ max
x∈x̄([S,s1])+δB

a∈A

dH(F (s1, x, a), F (S+, x, a)) + α/4 + Σ2

= ∆(ǫ, δ) + max
x∈x̄(S)+δB,

a∈A

dH(F (s̄, x, a), F (S+, x, a)) + α/4 + Σ2 (7.31)

≤ α/8 + α/4 + Σ2 + α/4 = Σ2 + 5α/8 , (7.32)
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where

Σ2 :=

N−1
∑

i=1

max
x∈x̄([si,si+1])+δB,

a∈A

dH(F (si+1, x, a), F (si, x, a)) .

But we can also choose a partition {t0, . . . , tM} of [S, s1] (which will have diameter
not greater than ǫ) such that

α ≤ η̃δǫ (s1) ≤ Σ1 + α/4 ,

where

Σ1 :=
N−1
∑

i=0

max
x∈x̄([ti,ti+1])+δB

a∈A

dH(F (ti+1, x, a), F (ti, x, a)) .

It follows that
Σ1 ≥ 3α/4 .

But since the concatenation of {t0 . . . , tM} and {s1 . . . , sN} is a partition of [S, s̄],
of diameter no greater than ǫ, we know from the preceding inequality that

η̃δǫ (s̄) ≥ Σ1 +Σ2 ≥ Σ2 + 3α/4 .

But this contradicts (7.32). The assertion has been confirmed.

Proof of Lemma 6.2: Notice that

mi(S) = mi
0 and ||mi(.)||TV ≤ η(T )− η(S) for all i . (7.33)

These relations follow from the definition of the mi(.)’s and (H3).

Take sequences δm ↓ 0 and ǫn ↓ 0. For each (m,n) let Bm,n be the (possibly empty,)
countable set comprising points of discontinuity of the monotone function ηδmǫn (.).
Fix (m,n).

For each i, define the function m̃(.) : [S, T ] → R
n, which can be interpreted as an

interpolant of the values of m(.) at grid points, as follows:

m̃i(t) := mi(t
i
k) +

(

mi(t
i
k+1)−mi(t

i
k)
)

× ηδmǫn (t)− ηδmǫn (tik)

ηδmǫn ((tik+1))− ηδmǫn (tik)
(7.34)

if t ∈ [tik, t
i
k+1), for some k = 0, . . . , Ni − 1. Set m̃i(T ) := mi(T ).

(The rightside of (7.34) is interpreted as mi(t
i
k) if η

δm
ǫn (tij+1)− ηδmǫn (tij) = 0.)

Claim:

m̃i(S) = mi(S) and m̃i(T ) = mi(T ) for all i (7.35)

m̃i(t)−mi(t) → 0 for all t ∈ [S, T ]\Bm,n (7.36)

|m̃i(t)− m̃i(s)| ≤ ηδmǫn (t)− ηδmǫn (s) (7.37)

for all [s, t] ⊂ [S, T ] and i ≥ I(δm, ǫn) .
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We verify the claim. (7.35) follows from the fact that mi(.) and m̃i(.) coincide at
mesh points, which include S and T . Consider next (7.36). Take any t ∈ (S, T )\B.
Then

|m̃i(t)−mi(t)| = |m̃i(t)− m̃i(t
i
ji
)| ≤ ηδmǫn (tiji+1)− ηδmǫn (tiji) ,

for each i, where ji is the unique index value satisfying t ∈ [tiji , t
i
ji+1), by (H3). But,

by (H1), tiji → t and tiji+1 → t. So (7.36) follows from the fact that t is a continuity
point of η(.).

Consider finally assertion (7.37). Take any [s, t] ⊂ [S, T ]. Then either

Case 1: [s, t] ⊂ [tij , t
i
j+1]] for some j ∈ {0, . . . , Ni − 1}

Case 2: s ∈ [tij−1, t
i
j ] and s ∈ [tik, t

i
k+1] for some j, k such that j ≤ k.

We consider only Case 2. (Verifying Case 1 is similar, but simpler.) We have

m̃i(t)− m̃i(s) = m̃i(t
i
j)− m̃i(s) +

k−1
∑

l=j

(

m(til+1)−m(til)
)

+ m̃(t)−m(tik) (7.38)

(We have used here the fact that m̃i(.) and m(.) coincide at points tij, j = 1, . . . , Ni.)
But from the definition of m̃i(.), and in view of (H3),

|m̃(tij)− m̃(s)| = (ηδmǫn (tij)− ηδmǫn (s))×
m(tij)−m(tij−1)

ηδmǫn (tij)− ηδmǫn (tij−1)
≤ ηδmǫn (tij)− η(s) .

|m̃(t)− m̃(tik)| = (ηδmǫn (t)− ηδmǫn (tik))×
m(tik+1)−m(tik)

ηδmǫn (tik+1)− ηδmǫn (tik)
≤ ηδmǫn (t)− ηδmǫn (tik) .

It follows from (7.37) and (H3) that

|m̃i(t)− m̃i(s)| ≤ ηδmǫn (tij)− ηδmǫn (s) +

k−1
∑

l=j

ηδmǫn (til+1)− ηδmǫn (til) + η(t)− η(tik)

= ηδmǫn (t) + 0 + . . . + 0− ηδmǫn (s) = ηδmǫn (t)− ηδmǫn (s) .

We have confirmed (7.37) (in the Case 2) and thereby verified the claim.

In view of (H1), we can deduce from (7.35) and (7.37) that the total variation of
elements in the sequence {m̃i(.)} are uniformly bounded and that their initial values
are uniformly bounded. It follows that there exists a normalized function of bounded
variation m(.) : [S, T ] → R

n and a countable set Ã ⊂ (S, T ) such that, for some
subsequence,

m̃i(t) → m(t) for all t ∈ [S, T ]\Ã . (7.39)

But then, by (7.36),

mi(t) → m(t) for all t ∈ [S, T ]\
(

Ã ∪ Bm,n

)

,
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Up to this point the index values m,n have been fixed. We now let them vary.
Define the countable set

A := Ã ∪m,n Bm,n .

Passing to the limit as i → ∞ in (7.37) we deduce that, for every [S, T ]\A, we have

|m(t)−m(s)| ≤ ηδmǫn (t)− ηδmǫn (s)

for all [s, t] ⊂ [S, T ] such that s, t /∈ (S, T )\A. Fixing m and passing to the limit as
n → ∞ yields

|m(t)−m(s)| ≤ ηδm(t)− ηδm(s) .

Then, passing to the limit as m → ∞ in this relation, we obtain

|m(t)−m(s)| ≤ η(t)− η(s) .

This inequality is valid, we recall, for all [s, t] ∈ [S, T ] such that s, t ∈ [S, T ]\A. It
implies however

|m(t)−m(s)| ≤ η∗(t)− η∗(s) .

for all subintervals [s, t] ⊂ [S, T ], since the regularized cummulative variation η∗(.)
coincides with η(.) on the complement of a countable subset of [S, T ] that incluldes
{S} ∪ {T} and since m(.) and η∗(.) are right continuous on (S, T ).

Proof of Lemma 2.3: Write ηδǫ,A(.) for the (δ, ǫ) perturbed cummulative variation

with respect to A, etc. TTake δ̄ > 0 and ǭ > 0 such that ηδǫ,A(.) < ∞ for every

δ ∈ (0, δ̄), ǫ ∈ (0, ǭ]. Take also any [s, t] ⊂ [S, T ]. We shall show that

ηδA1
(t)− ηδA1

(s) ≤ ηδA(t)− ηδA(s) . (7.40)

Since this relation is valid for all δ > 0 sufficiently small, we can deduce (2.6) by
passing to the limit as δ ↓ 0.

If s = S then (7.40) is obvisions, since ηδA1
(S) = ηδA(S) = 0 and since ηδA1

(t) ≤ ηδA(t).
The latter inequality is true because the left side involves taking the supremum over
a small set, as compared with the right side. So we may assume that s > S.

Define ηδǫ,A([s, t]) to be the (δ, ǫ) perturbed cummulative variation with respect to
A, when the underlying time interval is changed from [S, T ] to the smaller set [s, T ].
It is clear that

ηδǫ,A1
(t) ≤ ηδǫ,A(t) . (7.41)

because the left side involves taking the supremum over a small set, in relation to
the right side.

By consideration of arbitrary partitions of [S, s] of diameter not greater than ǫ, as
well as their extensions to form partitions of the larger interval [S, t], we deduce that

ηδǫ,A(t)− ηδǫ,A(s) ≥ ηδǫ,A([s, t]) .
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Passing to the limit as δ ↓ 0 yields

ηδA(t)− ηδA(s) ≥ ηδA([s, t]) . (7.42)

On the other hand, consideration of arbitrary partitions of [S, t] of diameter not
greater than ǫ, as their refinements to include the intermediate point s, we deduce
that there exists continuity modulus γ(.) such that

ηδǫ,A(t)− lim
t′↑s

ηδǫ,A(t
′) ≤ ηδǫ,A([s, t]) + γ(ǫ) .

Noting that limt′↑s ηδǫ,A(t
′) ≤ ηδǫ,A(s) and passing to the limit as δ ↓ 0 yields

ηδA(t)− ηδA(s) ≤ ηδA([s, t]) . (7.43)

(7.40) now follow from (7.41), (7.42) and (7.43).
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