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Abstract. Mesh adaptation on surfaces demands particular care due to the important role
played by the surface fitting. We propose an adaptive procedure based on a new error analysis
which combines a rigorous anisotropic estimator for the L'-norm of the interpolation error with an
anisotropic heuristic control of the geometric error. We resort to a metric-based adaptive algorithm
which employs local operations to modify the initial mesh according to the information provided
by the error analysis. An extensive numerical validation corroborates the robustness of the error
analysis as well as of the adaptive procedure.
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1. Introduction and motivations. Mesh adaptation on surfaces is a topic of
great interest in the scientific panorama due to its potential strong impact with a
view to practical applications (see, e.g., [31, 33] among the most recent papers) and,
more generally, to the approximation of partial differential equations on manifolds.
Despite the relevance of this research field, there are still few works dealing with a
surface mesh adaptation driven by a rigorous error analysis, and they are essentially
confined to an isotropic context [3, 12, 13, 25, 30].

In this paper we focus on implicitly defined surfaces I' C R? and we derive an
anisotropic a priori error estimator to control the error associated with the approxima-
tion of a generic function f € H(I') via a piecewise linear quasi-interpolant operator.
The triangular surface grid used to define the interpolant is also employed to approx-
imate surface I'. This choice leads us to include in the error analysis a contribution
due to the geometric approximation in addition to the interpolation error. In this re-
spect, we are consistent with the decomposition of the error provided in [12] in terms
of a contribution related to the finite element approximation of f, a term associated
with the geometric approximation of I' and a contribution due to data approximation.
In particular, since we deal with an interpolation error analysis, we neglect the data
error while identifying the discretization with the interpolation error.

The interest for an anisotropic setting is justified by the several applicative fields
of interest in scientific computing (e.g., in biomedicine, geology, or aerodynamics),
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where phenomena may exhibit large variations along a certain direction with less
significant changes along the other ones. In such cases, a standard isotropic adaptive
algorithm may generate a very large number of elements to ensure a certain accuracy
or, vice versa, may provide limited accuracy for a fixed number of elements. This is
a well-established issue in the standard planar case (see, e.g., [7, 8, 29, 36]) and it is
expected to work analogously on surfaces, where the directionalities of the domain
may be taken into account as well, via proper sizing, shaping, and orientation of the
mesh elements.

The idea pursued in this work is to properly merge the interpolation analysis
developed in [12] with the anisotropic setting proposed in [17] for a two-dimensional
(2D) planar setting, and then successfully extended to a 3D volumetric framework
in [15]. In particular, the derivation of an anisotropic counterpart of the Poincaré
inequality represents the crucial result with a view to all anisotropic control of the
interpolation error. Concerning the anisotropic bound for the geometric error, we
move essentially from heuristic considerations.

The information provided by the global (interpolation plus geometric) error es-
timator is successively converted into a practical procedure to adapt the mesh via
a metric-based approach, with the aim of reducing the number of mesh elements to
guarantee a certain accuracy on the solution while equidistributing the error. To com-
bine the interpolation with the geometric information, we propose three strategies.
We use standard local mesh operations to change the initial (isotropic) mesh into the
final adapted mesh matching the directional features of the function and of the sur-
face. The employment of local operations is a novelty in the context of the anisotropic
approach employed, e.g., in [17, 29], where a metric-based remeshing of the initial grid
is essentially performed. Finally, we remark that the proposed approach due to the
implicit representation of the surface relieves us from specific requirements on the
surfaces of interest as, for instance, in [3, 30].

The paper is organized as follows. In section 2 we settle the reference geometric
setting and we introduce the basic ideas of the anisotropic framework. Section 3
represents the theoretical core of the paper providing the anisotropic estimator for
the interpolation error and for the geometric error. In section 4 we tackle the crucial
issue of merging the interpolation analysis with the geometric information. Section 5
provides an exhaustive numerical investigation, first by setting the adaptive procedure
and then by validating it on both a closed and an open surface. The last section draws
some conclusions starting from the numerical assessment.

2. The geometric setting. Let us consider a connected C?-compact and ori-
entable 2D surface I' embedded in R3. In particular, we adopt an implicit repre-
sentation for I, i.e., we assume that I' coincides with the zero level set of a signed
distance function d : Uy C R® — R, such that d(x) = dist(x,T") for any x € Uy,
and with Uy an open subset of R?. In particular, if I is a closed surface, we assume
d < 0 inside the volume enclosed by I', whereas d > 0 outside, while if I' is an open
surface, we assume OI' to be piecewise curvilinear in a sense that will be specified
below.

Now, following [12], we assume that there exists a shell of width J > 0 around I’
given by Us = {x € R3 : |dist(x)| < §} C Up (see Figure 1, left). In particular, the
thickness 0 of the shell is sufficiently small to guarantee the global uniqueness of the
decomposition

(2.1) x =a(x)+dx)n(x) Vxe€Us

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/25/15 to 131.175.161.12. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

A2760 F. DASSI, S. PEROTTO, AND L. FORMAGGIA

F1G. 1. Schematic representation of the shell Us and of the extended function f¥ (left); geo-
metric interpretation of map Fr and of the main anisotropic quantities (right).

with a : Us — T" the orthogonal projection operator onto I' and n(x) = Vd(x) the
outward unit normal to I' at x. More details about the choice of § can be found, e.g.,
n [12]. The projection a is instrumental in extending the definition of a function f
assigned on I' to the whole shell Us, thanks to the following relation:

(2.2) fE(x) = fla(x)) Vx € Us.

Essentially, the extended function f¥ can be identified with the extension along wires
of the function f (see Figure 1, left). Via f¥, we define the tangential gradient Vr f
on I' of the function f: ' — R as

(2.3) Vrf=Vf¥—(n-VfFn

with V the standard gradient operator in R3. Thanks to (2.2), the tangential gradient
Vrf depends only on the values of f on I' despite (2.3) involving the whole shell Us.

Now, in view of practical computations, we replace surface I' with a polyhedral
surface 'y, C Uy consisting of a set T, = {T'} of triangular faces T' of diameter hr,
such that I'y, = Uper, T. We denote by V the set of the vertices of I'j, and we demand
YV C I'. Let nj be the piecewise constant unit outer normal to I',. We assume
n-ny > 0 everywhere on I'y. Moreover, since I', C Uy, we employ the orthogonal
projection defined in (2.1) to relate I';, with I as well, by demanding a : Ty, = T to
be bijective. The Jacobian associated with such a bijection is denoted by uy, i.e., we
have that

(2.4) pn(x)dly (x) = dl(a(x))  Vx € Ty.

Finally, if I is an open surface, we require OI' = a(91'y,). This implies assuming 9I'
piecewise linear, so that we are relieved from the error due to the approximation of
or.

Analogously, any function f is replaced by a discrete counterpart f5. For this
purpose, we introduce the space X;, of the continuous functions which are affine on
each face T of T'j, [13] and we approximate f with a function f, € X}, to be properly
defined. We denote by ¢,, € X the standard basis function associated with the
vertex z; € V, such that ¢,,(z;) = d;;, for any z;,z; € V, with J;; the Kronecker
symbol.

2.1. Source of the anisotropic information. To uniquely define the size,
according to an isotropic approach, together with the shape and the orientation of each
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face T of the mesh, we extend the approach proposed in [17] for a 2D planar setting
to a nonplanar framework. We choose as a source for the anisotropic information
the invertible affine map Fr from a reference planar triangle 7' C R? to the general
(nondegenerate) triangle T € T, embedded in R?® (see Figure 1, right). The map
Fr:T — T is defined by

(2.5) x = (x1, w2, 333)/ =Fr(X)=MrX+breT

with X = (T1,72)" € T, My € R®*2 and by € R3. As reference element 7 we
select the triangle with vertices (0,0), (1,0), (0,1). For this choice, we have [Mr];; =
fo Lo brl; = ’UJ, for i = 1,2,3, j = 1,2, and where v¥ = (v§ o5 %), for
k=12, 3 denotes the kth vertex of T

The anisotropic information of each triangle T is derived from the singular value
decomposition (SVD) of Mr given by My = UrXgVy, where Ur € R3*3 and
Vr € R?*? are unitary matrices, while X = diag(s1,r, s2,7) € R3*? is a rectan-
gular diagonal matrix with nonnegative real entries representing the singular values
of My [23]. The columns of the matrices Ur = [r1,7,r2 1, 1n3] and Vi collect the
left- and right-singular vectors of My, respectively. The SVD of Mp allows us to
completely characterize the triangle T' € T;,. The singular values of M7y measure the
lengths of the semi-axes of the ellipse circumscribing 7" and lying on the plane iden-
tified by 7', while the singular vectors r; r and ry 7 provide the directions of these
semi-axes (see Figure 1, right). Without loss of generality, henceforth we assume
s1,7 > S2,7. Moreover, we introduce the aspect ratio o = s1,17/s2 7, which quantifies
the deformation of 7. The aspect ratio is always greater than or equal to one, with
or =1 when T coincides with an equilateral triangular face.

In view of a mesh adaptation procedure, we define a suitable interpolation op-
erator, by adopting a standard notation for both the Lebesgue and Sobolev spaces
of functions defined on surfaces as well as for the associated norms (see, e.g., [13]).
Following [12], given a function f : I' — R such that f € L*(T), we first introduce the
averaged nodal values
1
E
(26) fz fwz Pz dw,
where w, is the patch of the faces in I'j, sharing vertex z, f¥ is the extension of the
function f to Uy according to (2.2), and ¢, is the basis function associated with vertex
z, with support w,. Thus, the interpolant we are interested in is given by

(2.7) InfP(x) = fFea(x) VfeLY(D).

zcV

/ gosz dw, Vz eV,

Actually, I} is a quasi-interpolant operator, similar to the Clément or Scott—Zhang
interpolants [9, 35] (see also, e.g., [3, 16, 17]). Moreover, since functions {¢z}zcy
constitute a partition of unity, the L*(I',)-norm of the interpolation error is identically
equal to zero, i.e.,

B =1 fP)dry, = — fE) ¢z dw, = 0,
NGRS W il

where supp(y,) = ws. In what follows, we identify the approximation f, € X, for
the generic function f defined on T" with the interpolant in (2.7). In particular, an
anisotropic control for the L!(T')-norm of the error f — I, f¥ will drive the mesh
adaptive procedure.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/25/15 to 131.175.161.12. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

A2762 F. DASSI, S. PEROTTO, AND L. FORMAGGIA

3. Anisotropic error estimates. In this section we provide the theoretical tool
at the basis of the proposed adaptive procedure. We exploit the standard decomposi-
tion of the error into a contribution related to the finite element approximation and
a contribution associated with the geometric approximation of the surface I' via I'y,
[12]. Since we deal with an interpolation error analysis, we neglect the error associated
with the data approximation, and we identify the discretization with the interpolation
erTor.

3.1. The interpolation error. To derive an anisotropic bound for the interpo-
lation error f — I f¥ associated with the operator (2.7), we preliminarily prove the
following result, which generalizes Lemma 2.2 in [12] to an anisotropic context.

LEMMA 3.1 (anisotropic Poincaré inequality). Let f € HY(T'). Then, for each
node z €V, there exists a constant C such that

2
/
B1) U Sl <[ (X eriaCr(fPrr)]

TeEwy, =1

with f¥ : Us — R the extension of f to Us according to (2.2) and fF defined as in
(2.6), and where G is the symmetric positive semidefinite matriz given by

/ (91)2 dT / g1g2dT / g1g3dTl

T T T

(3.2) Gr(f¥) = / g192dT / (92)2 dT / g2g93dT" |,
T T T

/glgsdT /9293dT /(gs)QdT
T T T

where g; = (thfE)i , fori=1,23, is the ith component of the tangential gradient
Vpth = VfE — (ny, - VfE)nh with respect to the standard Cartesian coordinate
system in R3.

Proof. The first part of this proof follows the proof of Lemma 2.2 in [12]. Thanks
to definition (2.6) and the Cauchy—Schwarz inequality, we first get

||‘»OZ||L2 Wa
(3.3) nﬂmfmwmwwmmﬁwmm

with || the measure of a generic set @ C R for d = 1,2, 3. Now, by exploiting the
map Fr in (2.5), for each T' € w,, we consider the piecewise affine map F, : &, — wy,
where &y is the union of the inverse image Fy.'(T) of all the triangles T' constituting
wy. Analogously, we denote by % the inverse image of a generic function u € H(I'},)
via Pr. The L?(w,)- and L!(w,)-norms in (3.3) can be computed coming back to the
reference framework as

B4) Mol = 2 [ ()= 3

TEwy, TEwy,

T oA - (3,)" dT
L[ (@) = o LGS
T J7 T

3

where [|Ba| 1 (7 = 1/6, |@all j2(7) = 1/V12, and IT| = 1/2. By substituting (3.4) in
(3.3), we get | fZ]|L2(w,) < v/3/2|fF||2(w,)- In a similar way, for a constant K € R
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and thanks to definition (2.6) and to the Cauchy—Schwarz inequality, we have

E_ i _ 121 ¢E _ o |Wz|1/2 d
Hfz HL2(wz) = |WZ| |fz | ‘ p (Pz Wg,
<)OZ Wz, Wz

el 2| s S
_ Wzl 7m - K ey < 4/2 K.
< oo M7 = Bz leallzon <35 157 = Koo

The triangle inequality immediately yields

3
(3.5) 12 = fP L2, < (1+\/;)||fE_K||L2(wZ)-

Now, the idea is to properly select K and to exploit the spectral decomposition for
MT to obtain an anisotropic bound for the right-hand side in (3.5). We choose
= |71 j; %) dT, where 7 is a function defined on 7T such that n(X) = f¥(Fr(X))

for any X € T. Thub, thanks to the standard Poincaré inequality, we have

T a7
TEETR S :T: <o Y |T|/ a7

TEwy, TEw,

with V the gradient operator associated with the coordinate system (Z1,72) in the
reference setting and where C' does include the constant value in (3.5) and the Poincaré
constant as well. We remark that V= M/ Vr, f€. This yields, coming back to T,
that

1FE = 1P|, <C Y / MV, f5| dT.
TEwW,

To introduce the anisotropic information, we resort to the SVD of My = UrXr Vi to
have

6O W=l <C X [ [(Tn s UrSrsh U (91, 17)] ar.

TEwy,

where matrix Vi does not provide any contribution since V;.Vp = I. Now, the product
UrXrX;Ur in (3.6) can be easily expressed in terms of the anisotropic lengths s; 7

and directions r; p as UpSpXLUL = Z 51 rTi7 @ ri7, ® denoting the standard

outer product between vectors. This leads to rewriting (3.6) as

17 - By <€ Y [t [ (@r ) vir 0 (9, g7 ar .

TEw, 1i=1
Straightforward algebraic manipulations show that
(Ve f5) rir @ vir (Vr, f5) =157 Vr, /2 © Vi, fErir = vi pGr(fF)rir

with G defined as in (3.2). This completes the proof. O
Remark 3.1. The quantity C' in (3.1) does not depend on any geometric feature
nor on the regularity of f. Moreover, the introduction of the shell Us containing the
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surface of interest allows us to manage the tangential gradient as a standard three-
dimensional entity. This device justifies that the matrix (3.2) has a rank at most
equal to two.

As expected, the anisotropic estimate (3.1) provides as a particular case the cor-
responding isotropic inequality (2.2.29) in [12] by exhibiting a more complex structure
with respect to the isotropic result. The diameter h, of the patch characterizing the
isotropic estimate is replaced by the anisotropic lengths s; 7 with ¢ = 1,2. Likewise,
the first order derivatives involved in the L?(w,)-norm of Vr, f¥ in the isotropic case
are now projected along the anisotropic directions r; 7, with ¢ = 1,2, via the prod-
ucts r; Gr(f¥)rir. The intrinsic potentiality of estimate (3.1) is more evident by
rewriting it in terms of the aspect ratio o as

1 1/2
BT 171 2o < C | 3 71 (ormhaGr(f it —xh g Gr(fF)rar) |

TEwy,

where we have exploited the relation |T'| = |f|317T327T by including the area |T'| into
C. Thus, |T| provides the information associated with the size of T, the shape of
T is identified by the aspect ratio op, whereas the orientation of 7" is fixed by the
directions ry 7 and ro 7.
The next result represents the main theoretical statement of this paper.
PROPOSITION 3.2. Let f € HY(T') and let f¥ : Us — R be the extension of f to
Us according to (2.2). Then, there exists a constant C such that

(38) If = InfPllaqy < C Y |TM agvr(or, vy, £7),
TETh

where ar =Y, |Qatin|| 12 (w,), with pp defined as in (2.4) and @, the basis function
associated with vertexr z, while

1 1/2
vr(or,r1,T, fE) = (UTrll,TGT(fE)rl,T + Er/Q,TGT(fE)rZT)

with Gr the matriz in (3.2).
Proof. By employing the Jacobian py, in (2.4), definition (2.7), and the partition
of unity property characterizing the set {¢z}zcy, we get

1F = I f P sy = / 1F(x) — InfP(x)| dT = / |FE(%) — I fP()] | ()] dT
r I'n
=/F |2 (0 = 1) a0 lin Gl dln < 37 [ [£E60) = £ a()an (x)] dec,

E1% zey v Wz

where the localization of the integral on I';, to w, is due to the support of ¢,. Via the
Cauchy—Schwarz inequality and thanks to estimate (3.7), we derive

1 = InfBllrey < DO NFP = £20 L2 o l9zinll 22 (o)

zcV
1 1/2
< C ; [ ( / E L E )}
< O eatnllizw) | D ITI(orrh 2Gr(f)rr + o o rGr(f7)re,r
zcV TEw,
A reordering of the terms leads to the final result. O

Remark 3.2. The choice of the L'(T')-norm to estimate the interpolation error
is not so recurrent in the literature (see, e.g., [5, 1]). Indeed, the L?(I')- and the
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H(T')-norms are usually employed, both in an isotropic and in an anisotropic context
(see, e.g., [37, 2, 17, 21, 13]). Nevertheless, as is evident from the proof of estimate
(3.8), the L!(I')-norm allows us to exploit the anisotropic Poincaré inequality in a
straightforward way to bound the interpolation error. Moreover, the choice of the
LY(T')-norm will be instrumental with a view to an a posteriori error analysis, as
in [12].

3.2. The geometric error. We are now interested in controlling the error due
to the fitting of the surface I' via I'j,. The estimate we propose is heuristic. In more
detail, to quantify the mismatch between I' and I';,, we resort to the signed distance
function d whose zero level set coincides with I'. The employment of the orthogonal
projection a(-) in (2.1) to relate I' and T'j, via a bijection suggests we identify the
geometric error with the quantity ||d — Iyd||11(ry, after assuming sufficient regularity
on d. In some sense, we are supposing that the discrete surface I';, coincides with
the zero level set of the function Ipd. Such an identification immediately leads us
to provide an anisotropic estimate for the geometric error, simply by particularizing
Proposition 3.2 to the distance function.

PROPOSITION 3.3. Letd : Uy — R be the signed distance function associated with
the implicit representation of I' and let d € H*(Uy). Then, there exists a constant C
such that

(3.9) ld = Ind|l 2y < € Y 1TV 2arvr(or, rir, d)
TeTh

with ar and vp(or,r17,d) defined according to Proposition 3.2.

By comparing estimates (3.8) and (3.9), we remark that function d does not re-
quire any extension via operator a(-), since it is defined directly on the whole shell Us.
Moreover, the regularity demanded on d is guaranteed for smooth surfaces as the ones
in section 5.2. The choice of the distance function may clearly affect the distribution
of the geometric error. We choose d as the Euclidean distance, in accordance with the
definition of implicit surface. Other examples of geometric error control are available
in the literature (see, e.g., [12, 19]).

Moving from Propositions 3.2 and 3.3, we define the a priori anisotropic error

estimators
=Y mr,  ne= Y nar
TETh TeTh
where nir = |T|1/2OéTl/T(O'T,I‘17T,fE), neT = |T|1/2(1TVT(O'T,I‘1’T,CZ), to control

the interpolation and the geometric error, respectively. The two estimators share the
same structure and both depend on the anisotropic geometric quantities. In section
5.2, we will numerically investigate the convergence rate of n; and ¢, separately.

4. Merging the interpolation with the geometric error. The goal of this
section is twofold. First, we focus on a method to commute, separately, estimators
nr and 7n¢ into an operative procedure to anisotropically adapt the mesh 7. Succes-
sively, we consider different techniques to merge the information provided by the two
estimators. Actually, the global estimator n;e = n; + ng will be employed only to
estimate the global error. To generate the adapted mesh, we resort to a more intrinsic
way via the concept of metric [20, 27].

4.1. From the estimator to the metric. A metric associated with the surface
I' C R? is a symmetric positive semidefinite tensor Mr : I' — R3*3 identified, for each
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point x € T', by two strictly positive scalar functions p; = p1(x) and ps = pa(x) and
by three vector functions u; = u;(x) € R? of unitary norm, such that u;(x) - u;(x) =
8, for any x € T and for i,j = 1,2,3. Thus, Mr(x) = U'(x)R™?(x)U(x), with
U(x) = [ui(x) uz(x) usz(x)] and R~%(x) = diag (1/p}(x),1/p3(x),0). Since the
diagonal matrix has rank at most equal to two, we identify uz with the outward unit
normal n to ' at x, coherently with the fact that metric Mp(x) is defined on the
plane tangent to I at x. The definition of M may be particularized to a polyhedral
surface I'y, C R?, thus identifying the metric Mr, . In this context, it is standard to
approximate Mr, via a piecewise constant fuction on I'j,.

Dealing with a mesh adaptation procedure, mesh I';, becomes the unknown. In
particular, evaluating the estimators 7y, 7¢ on a background mesh, 7,2, we predict a
metric M, piecewise constant on 7,2, to generate a new adapted mesh, ThA, which
follows the directionalities of the function f and of the surface I' with a desired
accuracy. We define M such that M}T = U{FR;QUT, where, for any T € T2,
Ur = [u’LT u; O}I € R¥3 and Ry = diag (piT,pz’T,O) € R3*3. Then, starting
from the predicted metric M, we employ a metric-based adaptive procedure to build
the mesh 7,. We have exploited the arbitrariness on u; o by identifying it with the
vector identically equal to zero.

We aim at minimizing the number of elements to be employed for guaranteeing a
given solution accuracy TOL by properly selecting the size, the shape, and the orien-
tation of each element. In addition, we invoke a standard equidistribution criterion.
We refer to the generic anisotropic error estimator

(4.1) n= Z nr with nr = |[T*?@r vr(or, 11,7, 9),
TETh

where Uy (or,r1,7,9) = (UTI'/LTET(Q)I‘LT + éré’TéT(g)I‘ng)l/z, with g a generic
H'(T')-function and ar = ar/|T|"/? and Gr = Gr/|T| the dimensionless counterpart
of ar and of G, respectively. Estimator 7 coincides with n7 (g = f¥) or ng (g = d) or
with a combination of them. Since both @7 and Tt are dimensionless, the information
related to the area of T in (4.1) is essentially lumped in the factor |T'|3/2 (at least
asymptotically). According to a predictive approach, we compute the quantities @r,
|T| = |f|317T327T, G7(g) on the background grid, while o7 and ry 7 become the actual
unknowns. By extending the approach proposed, e.g., in [29], to a surface setting,
we are led to solve, for each element T € 7713, the local constrained minimization
problem:

(4.2)
find o7, 1] 1 s.t. Ur(oq, r] 1, ) is minimized, with o > 1, vj 7 v = di5,1,j = 1,2.

This problem guarantees the minimization of the cardinality of the adapted mesh ’ThA
and does not demand any extra computational burden since it is explicitly solvable.
Successively, by combining (4.2) with the equidistribution of the error, we derive the
optimal metric via the elemental matrices M |T = U, R;°Ur with

!/

(43) MT = [uT,T u;,T 0} RT = dlag (pT,Ta p;,Tv 0)7

where uj = Wor, U = Wi,

! 1/2 TOL 1/3
(4.4) pT T = <—1/2 ('u;’T> 0 — ) )
' 2 M3 1 #TBar |T3/?
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My ‘ e Mg

Mg

R T~

~—.

Fia. 2. Examples of metric intersection My N Mg.

(4.5) . < 1 (N27T>1/2 TOL >1/3
. psp==—7 — :
2, T 21/2 :U“iT #EB ar |T|3/2
with (ps,7, wir), for i = 1,2, the eigenvalue-cigenvector pairs of the matrix Gr(g),

with p1, 7 > por. Finally, metric M is employed to generate the adapted mesh 7,
via the procedure detailed in section 5.1.

4.2. Combination of metrics. We consider the issue of simultaneously dealing
with the metrics M and M associated with estimator n; and 7¢, respectively. Both
these metrics are computed starting from the same background grid 7,7, i.e., for each
element T € 7;13 , we have two predictions for the optimal size, shape, and orientation.
The role played by M; and Mg is different: M is instrumental to controlling the
error related to the function f, while M is meant to limit the error due to the
approximation of I" via I',. The idea is to combine M; and Mg to merge both
benefits. For this purpose, we investigate three techniques, so that the metric Mg
driving the adaptation coincides with the following:

(a) The metric intersection M%7, = M N Mg, based on the simultaneous re-
duction of the metrics M; and Mg (we refer to Chapter 10 in [20] for the
technical details). This approach represents the most straightforward way to
merge the discretization with the geometric error control. Nevertheless, in
some circumstances, the results are overly conservative since the intersection
of two anisotropic metrics does not necessarily yield an anisotropic metric
(see Figure 2, left, for an example).

(b) The mazimum metric MYE*, such that MPE*| . is the metric associated with
the maximum local estimator between n; r and g, for any T' € 7713 .

(¢) A convex combination of the two metrics M and M. In particular, we start
from the convex combination yny 7+ (1 —v)ne,r of the local estimators, with
v € [0,1]. Then, following Proposition 5.4 in [29], we advantageously exploit
the common structure shared by 777 and 7,7 to combine the two metrics
into the single estimator 0/, = \T)32@r v (or, 1,7, f¥,d), where

_ 1 _ 1/2
Pior i f7.d) = (ore) 2GR vy x4 —r 2GR (77, d)rsr)
with G2(fF,d) = v* Gr(fF) + (1 — 4)> Gr(d). By mimicking the procedure
employed to convert estimator (4.1) into the optimal metric in (4.3), we get

the metric M7, automatically blending the interpolation with the geometric
information.
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c C b b
a a d
a b a
d d

Fi1c. 3. Instances of an unswappable edge (ab) for a planar (left) and a nonplanar (right) mesh.

Approach (c) allows us to skip the computation of the distinct optimal metrics M
and Mg. A single optimal metric is derived after defining the new error estimator
Ne= > n?G,T'
TeTE
5. Numerical assessment. After setting the adaptive procedure to commute
M ¢ into practical operations yielding the adapted mesh 77;4, we assess the robustness
of the proposed adaptive tool with two test cases.

5.1. The adaptive procedure. The adapted mesh is generated via a metric-
based procedure. This represents a standard approach in an anisotropic framework
(see, e.g., [19, 10, 5, 27]). The goal is to obtain an optimal mesh 7;{4 such that each
element T € 77;4 coincides with a unitary equilateral triangle with respect to the
metric Mg, i.e, |e|me = VEMige = 1, for any e € T and for any T € TA.
Since this target is not exactly reachable in a general case, we devise an optimization
procedure to minimize the distance of the adapted grid to the optimal one, in a sense
that is described in the following. We resort to the following multichoice criterion:
for any edge e of the skeleton £p of the background grid,

(i) if |lel|am,e = 1, the edge e already has the optimal length with respect to the

predicted metric and can be directly identified with an edge of the adapted
mesh T,%;
(ii) if |le]lam,e > 1, the edge e is too long according to the predicted metric;
(i) if ||e]|pm,e < 1, the edge e is too short according to the predicted metric.
In both the cases (ii) and (iii), the edge e has to be properly modified before being
included in 7;;4. For this purpose, we employ an iterative procedure based on local
operations. The meshes playing the role of background and adapted grid are updated
during the iterative process. To compute the length |le||rq,, starting from the ele-
mental metric M IG‘T’ we first assign a metric M%. to each node z of the current
mesh by computing the mean of the metrics associated with the triangles of the patch
w,. Then, let a and b be the endpoints of the edge e and let M2, and MP, be
the corresponding metrics. We compute [le[lav,q = max ([le]se,, lef pe, ). where

lellmz,, = /€ Mige, for z = a,b.

5.1.1. Local operations. We use four different operations.

A. Edge swapping. Edge swapping turns out to be among the most efficient and
effective local operations to anisotropically modify a generic triangular mesh [18, 6].
It is not always possible to apply edge swapping even in a planar framework. With
reference to Figure 3, we can swap the edge ab if the following conditions are verified:

(R1) The edge cd does exist in the mesh (the meaning of this condition is clarified
in the next section).

(R2) There does not exist an obtuse angle adjacent to the edge ab. Figure 3,
left, furnishes an example of an unswappable edge. The new edge cd leads
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to occupying a portion of the domain not included before in Azpe U Apaq-
Moreover, the conformity of the mesh is compromised.
The edge swapping becomes a more complex operation when dealing with a triangu-
lar surface mesh, due to the intrinsic curvature of the surface. This is particularly
troublesome where the mesh exhibits ridges. As exemplified in Figure 3, right, edge
swapping may lead to an incorrect approximation of the surface by violating the
corresponding curvature. To overcome this issue, we check an additional condition:
(R3) The angle 6 between the normals to the faces Aape and Apaq is smaller
than a minimum threshold 6,,;, (in the numerical validation below, we set
Orin, = 15°).
After verifying the geometric and topological consistency of the edge swapping,
we fix the following criterion in view of the mesh adaptation: we swap the edge ab if

(5.1) lledllatse = 1| < | labllage — 1)

We settle a new edge swapping routine starting from the well-known Lawson
flip algorithm for the construction of a 2D planar Delaunay triangulation [28]. In
particular, we modify the original algorithm to deal with surface meshes and to include
the metric-based check (5.1). The algorithm may be applied to all the edges of the
grid or just to a subset of elements. For the sake of simplicity, we assume that, at the
beginning, S contains only the edge ab. Then, the algorithm reads as follows.

Edge swapping algorithm.
EdgeSwap(S, S1)

1: while (S is nonempty) do
2:  count = 0;

3:  while (S is nonempty) do

4: pop ab from S;

5: if (cd does meet conditions (R1) and (5.1)) then
6: if (ab does meet conditions (R2) and (R3)) then
7: flip ab into cd;

8: for (xy € {ac,cb,bd,da}) do

9: push xy into S;

10: end for

11: count = count + 1;

12: else

13: push ab into Si;

14: end if

15: end if

16:  end while

17: if (S; is nonempty and count > 0) then
18: swap S and Si;

19:  end if

20: end while

In the inner loop (lines 3-16), according to the Lawson procedure, the check for
the swapping propagates from the edges contained in S and recognized as swappable
to the corresponding neighboring edges. The three topological criteria (R1)—(R3)
and the metric check (5.1) have to be satisfied to consider an edge as swappable. In
particular, if the edge ab does not meet criteria (R2) and (R3) even though the edge
cd satisfies conditions (R1) and (5.1), the edge ab is automatically moved to stack 5.
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Once an edge has been swapped, it will never be regenerated. Nevertheless, before
closing the procedure, the external loop (lines 17-19) performs an additional check on
the edges previously discarded since identifying a nonvalid topological configuration
even though leading to an improvement in terms of metric.

B. Edge splitting. This operation plays an crucial role in view of local refine-
ments [34]. The idea is to increase the mesh resolution where the solution exhibits
strong variations, by locally reducing the size of the mesh and by stretching the el-
ements according to the directional features of the solution. The edges to be split,
i.e., with a length predicted by Ma greater than one, are halved by inserting a new
vertex at the corresponding midpoint. Extra care has to be taken since we are deal-
ing with a polyhedral surface. As depicted in Figure 4, middle, the addition of the
new vertex v does not necessarily lead to an improvement in fitting I" via I';,. As a
consequence, after the addition of the new vertex, we project v on the surface I' by
resorting to the algorithm proposed in [24]. This simple device necessarily yields an
effective improvement in the approximation of I' as shown in Figure 4, right.

C. Edge collapsing. The most significative operation in view of a mesh coars-
ening is the edge collapsing. To this aim, we resort to an edge contraction technique
(e.g., [26, 11, 32]), after identifying the edges e with ||e||r,, < 1. The endpoints of e
are moved toward each other until they both coincide with a new vertex v. Different
choices are possible to fix vertex v. We usually select the midpoint of the edge to
be contracted unless this choice leads to invalid topological configurations, e.g., to
inverted triangles (see Figure 5, left). Following [14], to overcome this issue we make
an additional check on the sets of vertices connected to a and b, respectively. In
particular, if the intersection between these two sets includes any point different from
the vertices of the faces Apax and Apay, the contraction of the edge ab into the vertex
v leads to an inverted triangle. With reference to Figure 5, left, the presence of the
point c justifies the failure of the contraction algorithm. Finally, exactly as for the
edge splitting, after any edge contraction we have to project the new position of the
vertex v on the surface I' to actually guarantee the fitting of the surface at hand.

D. Node smoothing. Node smoothing improves the quality of a mesh. In
contrast to the previous ones, this operation simply moves the nodes of the mesh
into new positions without modifying the mesh topology. We may provide a physical
interpretation of this operation by identifying the patch A, of elements associated
with the vertex v with a system of springs. Thus, the smoothing procedure aims at
locating the vertex v in the position that minimizes the elastic energy of the whole
system. In an isotropic context, the smoothing moves v to the barycenter of A,. On
the contrary, when dealing with an anisotropic mesh adaptation, we have to properly
include the effect of the metric, for instance, by varying the stiffness coefficient of the
different springs. Exactly as for the edge collapsing, the new position for the point v
may lead to invalid configurations (see Figure 5, right) where inverted elements are
generated. As a consequence, a careful check on the predicted new configuration is
performed before applying any smoothing.

5.1.2. The adaptation sequence. The iterative procedure leading to the op-
timal mesh with ||e||a, = 1 might be strongly affected by the sequence of local
operations applied to the initial mesh. We resort to the following strategy. The edge
splitting and the edge collapsing, in combination with a local edge swapping and fol-
lowed by a global edge swapping, are iteratively repeated, together with a cycle of
runs of node smoothing.
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—

FI:

a

Fia. 4. Splitting of the edge ab wvia the addition of the point v and projection of v on the
surface T via point d.

5o~ 0 A~

c

Fi1c. 5. Invalid topological configuration yielded by the contraction of the edge (left) and by the
smoothing of vertex v (right).

The iterative procedure is controlled by three different flags, involving the toler-
ance TOL on the approximation accuracy, a maximum number maxIter of adaptive
iterations, and a check on the cardinality of the mesh:

(FL1) errCheck: If the global error evaluated on the adapted mesh via n;g =
N1 + nq is greater than TOL, errCheck is set true; otherwise it is false.

(FL2) iterCheck: The value of this flag is true until the number of iterations is
lower than maxIter.

(FL3) meshCheck: We compute #7air = |#Tola — # Tnew|/# Tola, with #75a and
#Thew the cardinality of the mesh before and after the adaptation, respec-
tively. Then, if #74i¢ > 0.05, meshCheck is true; otherwise it is false.

The whole adaptive algorithm reads as follows.

Mesh adaptation algorithm.

MeshAdaptation(TOL, maxIter)
1: set errCheck=true, iterCheck=true, meshCheck=true;
2: count=1;
3: while (errCheck && iterCheck && meshCheck) do
4: compute the metric Mg associated with tolerance TOL;

5. split the edges s.t. |le||m,o > 1.5; local edge swapping;

6: global edge swapping;

7. collapse the edges s.t. |le||am,e < 0.5; local edge swapping;
8: global edge swapping;

9: for ke {l,..,5} do

10: smooth all the vertices; local edge swapping;

11: global edge swapping;

12:  end for

13: count=count+1;

14:  update errCheck, iterCheck, meshCheck;
15: end while
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The adaptive procedure stops when one of the flags (FL1)—(FL3) is false. We
highlight the intensive employment of the function EdgeSwap, both at a local (lines 5,
7, 10) and at a global (lines 6, 8, 11) level, in accordance with the goal of generating
an anisotropic mesh. Finally, the number of node smoothing iterations is heuristically
set.

The meaning of request (R1) becomes clear in light of the whole adaptive proce-
dure. Since the swapping quickly propagates to the edges of the mesh, an edge marked
as swappable might be previously involved by other operations before swappig actually
takes place.

5.2. Test cases. We investigate the robustness of the error analysis as well as of
the adaptive procedure on both an open and a closed surface. Starting from the same
grid, we compare the adapted meshes generated via four different metrics, namely,
M, MPEX, M defined in section 4.2 together with the metric M; taking into
account the interpolation error only. A quantitative investigation of the anisotropic
analysis is also provided.

5.2.1. Test case 1: An open surface. Let I'; be the sinusoidal surface defined
by dy : [0,1] x [0,1] x [-0.2,0.2] — R with d;(x) = 0.2cos (7x1) cos (rxg) — x3. We
consider the function f; : 'y — R with f1(x) = 422(1 — 21)(1 — 22)(1 — e~100021),
Figure 6, left, depicts the colorplot of f; on I'y. The solution exhibits a boundary
layer along {(0,z2), 0 < x5 < 1}, where it reaches its maximum value. We run the
adaptive procedure by making different choices for Mjs. In particular, in algorithm
MeshAdaptation, we set TOL = 6.e-05, maxIter= 10, while we choose the value 2/3
for the parameter v combining the interpolation with the geometric metrics.

Comparison among metrics. Figure 7 compares a detail of the adapted grid
associated with the metric M',, MJE*, M|, and M for a similar number (about
8700) of elements. In particular, we focus on the boundary layer. It is correctly de-
tected by all the metrics and the elements are properly stretched. Nevertheless, the
anisotropic features of the mesh are significantly less evident when the metric inter-
section drives the adaptive procedure (compare, e.g., Figure 7(a) with Figure 7(b)).
This is confirmed by the maximum value oy = MaXpera O of the corresponding
aspect ratio, as shown in Table 1, left panel. Moreover, the mesh in Figure 7(d) ob-
tained via M exhibits elements correctly stretched as well, with a maximum aspect
ratio similar to the one associated with M7&*.

The benifits led by the geometric information are evident if we drastically diminish
the number of elements (i.e., if we increase the value of TOL). As Figure 8(d) shows,
the quality of the approximation provided by M becomes very poor in such a case.
The four adapted meshes are generated after fixing TOL = 8e-04 and are characterized

1,0000
0,75000
0,50000
0,25000
0.,0000

F1G. 6. Function f1 on the surface I'1 (left); function fa on the surface U'a (right).
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(a) (b)
(c) (d)
F1G. 7. Test case 1: detail in correspondence with the boundary layer of the adapted mesh ThA
generated via the metric (a) MY, (b) MPEX, (c) M] s, and (d) M.

TABLE 1
Mazimum aspect ratio and surface mismatch for test case 1 (left panel) and for test case 2
(right panel).

Test Case 1 Test Case 2
Metric | omax dmax Omax dmax

M7, | 493 | 7.923¢-03 || 9.967¢+00 | 2.174e-02
Mpax | 2805 | 7.785¢-03 || 3.105e+01 | 2.359¢-02
M, | 36.97 | 8537¢-03 || 2.601e+01 | 2.259¢-02

M; | 22.68 | 8.901e-02 || 6.176e+01 | 1.168¢-01

by about 2600 elements. Metric M; does not correctly describe surface I'y with
an evident loss of accuracy, for instance, in detecting the peak at the corner (1,1).
On the contrary, despite the limited number of elements, the geometric information
integrated in MY, MTEX, M], is enough to meet the main geometric features of I';.
The best approximation in terms of geometry fitting is provided by MYg*. This is
confirmed by the values of dy,. = max g c7-a lprx — b ||2 in the left panel of Table 1,

which measures the mismatch between I'; and 7;;4, for the four meshes in Figure 8,
bk being the barycenter of the triangle K and pyx the corresponding projection on
the surface I'y, with || - ||2 the standard Euclidean norm. As expected the largest value
of dp.x is associated with the mesh predicted by M;.

Anisotropy versus isotropy. The computational advantages led by an aniso-
tropic versus an isotropic mesh adaptation are well-established in the literature (see,
e.g., [7, 8,29, 36]). To make this analysis quantitative, we introduce the following
definitions:

€tot E\
5.2) eiot = — I, fF , €mean = ——=———, €max = Max — 1 .
(5.2) etot = |f = Inf"lr(r) S 7 TeT,;“Hf nf N
TeT?
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& W
&y <y

Fia. 8. Test case 1: adapted mesh 771A generated via the metric (a) MY, (b) MYEX, (c) M,
and (d) M.

TABLE 2
Test case 1: anisotropy versus isotropy for a fixed cardinality of the mesh.

My MEE™ Mig
Isotropy  Anisotropy | Isotropy Anisotropy Isotropy  Anisotropy
Elements 2664 2618 3483 3434 2952 2925
Etot 3.654e-03 1.195e-03 3.648e-03 9.160e-04 4.334e-03 1.392e-03
€mean 1.371e-06 4.568e-07 1.047e-06 2.667e-07 1.468e-06 4.762e-07
€max 6.431e-05 3.135e-05 6.566e-05 1.669e-05 1.027e-04 5.424e-05

In particular, to compute e;o, we employ the equality in the proof of Proposition 3.2,
(53) 1 = Pl = [ 1776 = 1260 | )| T,
h

whereas ||f — Ith”zl(T) = [; [fP(x) = InfP(x)| | un(x)| dT is derived by localizing
(5.3) to face T'. First, we verify that anisotropy provides an improvement in terms
of accuracy for a fixed cardinality of the adapted mesh. Table 2 exemplifies such
a trend. We have excluded from this comparison the adaptive procedure based on
M due to the limited anisotropy characterizing such an approach. While a not so
striking difference on the maximum error is obtained, we appreciate a reduction of
at least one-third or more on the total error as well as a gain of one order on the
mean error. Then, we perform the dual check, i.e., we fix the accuracy TOL and we
assess the gain in terms of computational cost. The results are collected in Table 3.
The dimension of the linear system we are led to solve in the anisotropic framework
is remarkably lower. The maximum gain is yielded by the approach based on the
maximum metric (one-ninth of elements!) and, also in the worst case, i.e., for My,
we reduce of one-fifth the number of degrees of freedom.
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TABLE 3

A2775

Test case 1: anisotropy versus isotropy for a fixed accuracy of the mesh.

i M M
Isotropy  Anisotropy | Isotropy  Anisotropy | Isotropy  Anisotropy
Elements 11479 2009 18201 2024 16548 2031
Etot 3.168e-03 3.529e-03 3.159e-03 3.373e-03 3.049e-03 3.441e-03
€mean 2.759e-07 1.756e-06 1.735e-07 1.666e-06 1.842e-07 1.694e-06
€max 6.557e-05 1.814e-04 6.619e-05 2.089e-04 7.004e-05 1.651e-04
|00
-1 - Y(#T) ——— .
..... ~——. - YT _—-];//?:T)
- ~m—_— (T Y? / lc
-,y o 1\4,(,.7
===N¢ MG
107k Seo
“.15 T
107 “"\“ ~:~ Wi 10°
2 - ‘\\\\\-‘,\ “\\ N
~o i e
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10°

F1G. 9. Test case 1: convergence history for the estimators nr (solid line) and ng (dashed line)
in a loglog plot (left); convergence trend of the global error estimator for three different metrics in
a loglog plot (right).

A comparison of Tables 2 and 3 does not identify a most strategical approach in
terms of computational advantages provided by the anisotropic adaptation. Indeed,
by properly scaling the error with respect to the number of elements, we obtain a
similar computational gain for M, MYE*, M] .

Convergence analysis. We deal with a twofold check. First, we perform an
asymptotic analysis of both the interpolation and the geometric error estimators. As
shown in Figure 9, left, the estimator 7; exhibits the expected trend as a function of
the mesh cardinality #7, namely, the rate of convergence turns out to be of the first
order with respect to 1/#7. Concerning the geometric error estimator, according
to [12], we expect a higher order of convergence. This statement is confirmed by the
trend of ng characterized by an order of about 1.5. The different order of convergence
of n; and n¢ justifies the good performances of the adaptation procedure driven only
by M for a sufficiently fine mesh. As a second check, we verify if the selection of a
specific metric does influence the order of convergence of the global error estimator
Nrg. The numerical validation shows that no significant difference is detected by
selecting a different metric and, for all the choices of M, the order of convergence of
the global error estimator is one. In Figure 9, right, we provide an enlarged view of
such a comparison, which shows the slight difference among the procedures associated
with MY, MPEX, and M].

Robustness of the error estimators. We investigate the robustness of the
error estimators n; and ng by computing the associated effectivity index

nr Ule
5.4 Elj=—— M glg—— 16
(54) TN 7 ld—Indl pary
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TABLE 4
Effectivity index for the interpolation and the geometric errors for the first test case (left panel)
and for the second test case (second panel).

Test Case 1 Test Case 2
Elements E.lL;r E.lg Elements E.lL;r E.lg
2920 1.6083 | 0.927002 4152 1.7695 | 0.6102

6635 1.4692 | 0.888572 11818 1.8502 | 0.6348
10573 1.4105 | 0.851926 15506 1.6897 | 0.6854
14240 1.4798 | 0.874772 22144 1.694 | 0.6401

Fic. 10. Test case 1: particular of the function f1 on the surface I'y for v = 0.1 (left), 0.5
(middle), 0.7 (right).

respectively. The optimal value is 1. Nevertheless, at least a stagnation of the effec-
tivity index is desirable, when the number of the mesh elements increases. Such a
stagnation is assessed by Table 4, left panel, for both estimators n; and 7ng, whose
effectivity index settles around 1.4 and 0.8, respectively. Thus, while the interpola-
tion error estimator slighly overestimates the actual error, an underestimation of the
geometric error is provided by 7nq.

Sensitivity with respect to . We analyze the sensitivity of the adapted mesh
yielded by the metric M], with respect to the value of the parameter . To this aim,
we fix the tolerance TOL to 2.e-05 and we choose v = 0.1, 0.5, and 0.7. This choice leads
to gradually increasing the contribution of interpolation information in Mj,. The
selected TOL is sufficiently small to ensure a rather accurate description of the surface,
independently of v. We focus on the peak at (1,1). Figure 10 depicts the enlarged
view of the adapted mesh for the three values of 7, together with the contour lines of
the solution. The gradual inclusion of the interpolation information provides smoother
contour lines, together with a slight increase of the mesh cardinality and of the aspect
ratio of the elements which are correctly stretched to follow the directionalities of the
surface.

Mismatch between I'y, and Ind. As a last check we furnish numerical support
to the statement of Proposition 3.3. To verify that the zero level set of function Id
may be assumed as a surrogate of the discrete surface I'y,, we compute the value of
Ind on the adapted mesh I'y, and we check if such a value approaches zero when the
surface mesh is gradually adapted. Figure 11 certifies the expected trend. We plot the
interpolated distance function I, d on three adapted meshes generated via M7E* and
consisting of 1643, 3792, and 6051 triangular faces (left to right), respectively. The
values assumed by Ij,d exhibit a more uniform distribution and are closer to zero as
the mesh is progressively adapted. Moreover, the maximum value reached by I d also
on the coarsest grid is small (about 8.e-03). This confirms that I;,d may be reasonably
employed to represent the discrete surface I'j,.
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Fia. 11. Test case 1: evaluation of the distance Ip,d on the adapted mesh T'y, for an increasing
number of mesh elements (left to right).

5.2.2. Test case 2: A closed surface. Let I'5 be the toroidal surface coinciding
with the zero level set of the signed distance function ds : [-1.5,1.5] x [—1.5,1.5] x
[—0.5,0.5] = R such that dy(x) = (0.5 — /2% + x%)z + 2% — 1. On this surface we
assign the function fo : I's — R with fo(x) = 100 tanh (40x1) which assumes the
two constant values —100 and 100 separated by a steep gradient in correspondence
with the two unitary circumferences in the plane xoOx3 and centered at (0, —1,0) and
(0,1,0), respectively (see Figure 6, right).

On this new configuration we repeat some of the numerical controls performed
for the first test case. For this purpose, we run algorithm MeshAdaptation by setting
TOL = 5.e-03, maxIter= 10. Moreover, we fix v = 2/3 for the parameter mixing the
interpolation with the geometric information in M7.

Comparison among metrics. We collect in Figure 12 the adapted meshes gen-
erated by the four metrics M%7, MTE*, M, and My, respectively. The layer is
sharply captured by all four metrics via thin elements correctly oriented (see Fig-
ure 13). The coarsest grids are predicted by M. (about 7600 triangles) and M
(about 5100 triangles), whereas the other two meshes are constituted by about 9200
faces. Unlike test case 1, the limits of the adaptive procedure associated with M
are evident despite the small tolerance. Indeed, the shape of I'; is badly captured as
highlighted by the very irregular surface in Figure 12(d) and by the largest value of
dmax in Table 1, right panel.

The intersection metric locates the anisotropic elements essentially in correspon-
dence with the layer and correctly stretches them (see Figure 13(a)). Nevertheless,
analogously to the previous test case, the anisotropic features of the corresponding
mesh are less meaningful compared with the ones yielded by the other metrics. This
is confirmed by the details in Figure 13(b)—(c) as well as by the values of opax in
Table 1, right panel. The details in Figure 14 on the regions where f5 reaches the
maximum value corroborate that the absence of geometric information in M yields
a very inaccurate approximation of I'y. Moreover, also for this test case metric M,
generates a more isotropic mesh (see Figure 14(a)).

Anisotropy versus isotropy. We verify the benefits led by an anisotropic mesh
adaptation via Tables 5 and 6. As for the first test case, we exclude from this check
the procedure driven by M?G while computing the errors etot, €mean, €max i (5.2)
for My, MPE*, M.

In Table 5, the comparison between anisotropy and isotropy is performed for a
fixed number of elements. Both the total and the mean error reduce by a factor
about equal to one-half and the accuracy of the approximation improves also in terms
of maximum error (this trend is not detected in Table 2). If vice versa, we fix the
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(a) (b)
(c) (d)

Fra. 12. Test case 2: adapted mesh T;A generated via the metric (a) M7, (b) MJa*, (c)
Mg, and (d) M.

accuracy and compare the two strategies in terms of number of elements as in Table 6,
and we get the expected reduction in the anisotropic case, with a factor of one-third
for M; and MYPE* and of one-half for M7.

TABLE 5
Test case 2: anisotropy versus isotropy for a fixed cardinality of the mesh.

M M M
Isotropy  Anisotropy | Isotropy Anisotropy Isotropy  Anisotropy
elements 3376 3640 3672 3652 1548 1660
€etot 1.901e-01 8.884e-02 1.864e-01 8.887e-02 5.820e-01 3.463e-01
€mean 5.633e-05 2.440e-05 5.078e-05 2.429e-05 3.759e-04 2.086e-04
€max 2.237e-03 1.646e-03 1.848e-02 1.641e-03 1.648e-02 8.074e-03

Convergence analysis. We analyze the asymptotic trend of both the estimators
nr and ng as a function of #7,. Figure 15, left, shows the associated loglog plot. The
interpolation error estimator is characterized by an order of convergence equal to one
with respect to 1/(#7}), exactly as in Figure 9, left. The geometric error estimator
converges faster than 7y, with an order very close to two (instead of the order 1.5 as
in Figure 9, left).
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(a) (b)
(c) (d)

F1G. 13. Test case 2: detail in correspondence with the layer for the adapted mesh '7'hA generated
via the metric (a) Mg, (b) MPEX, (c) M] s, and (d) M.

(a) (b)
(c) (d)

Fia. 14. Test case 2: detail on the constant part associated with the maximum value of fa for
the mesh generated via the metric (a) M7, (b) MYEX, (c) M, and (d) M.

Figure 15, right, confirms the slight sensitivity of the rate of convergence of the
global estimator with respect to the metric driving the adaptive procedure by provid-
ing a zoom-in on the convergence history of n;¢. Indipendently of the selected metric,
we confirm a convergence of the first order.

Robustness of the error estimators. In Table 4, right panel, we compute
the effectivity indices in (5.4) on four adapted meshes to check the robustness of the
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TABLE 6
Test case 2: anisotropy versus isotropy for a fixed accuracy of the mesh.

By M M

Isotropy  Anisotropy | Isotropy  Anisotropy | Isotropy  Anisotropy

elements 11030 4732 11030 4746 8162 4084
Etot 6.327e-02 6.490e-02 6.327e-02 6.420e-02 8.656e-02 8.733e-02
€mean 5.736e-06 1.371e-05 5.736e-06 1.352e-05 1.060e-05 2.138e-05
€max 4.212e-04 1.019e-03 4.212e-04 1.019e-03 7.884e-04 1.775e-03

- 1(#T)

- /\A ?(.'
Mig

T My

- 1(#T) S S

== UT)"® o ~
U(#T)? . ~o

5| —1 2 -~

===1g w0 S ]

r
10° 10

Fic. 15. Test case 2: convergence history for the estimators ny (solid line) and ng (dashed
line) in a loglog plot (left); convergence trend of the global error estimator for three different metrics
in a loglog plot (right).

interpolation and the geometric error estimators. A sort of stagnation is detected
for both indices, around the values 1.7 and 0.6, respectively. This means that an
overestimation of 777 and an underestimation of 7g take place, with a more emphatic
trend with respect to the first test case.

6. Conclusions and future developments. We have proposed a new ap-
proach for an anisotropic control of the error related to the approximation of an
H(TI')-function via a piecewise linear quasi-interpolant operator on a surface I' C R?
implicitly defined. The analysis automatically takes into account the approximation
of the function and the fitting of the surface, thus leading to a unique adaptive pro-
cedure able to simultaneously match the directionalities of f and I'. The numerical
validation in section 5.2 confirms the robustness of the adaptive tool. The expected
advantages with respect to a standard isotropic mesh adaptation are verified on both
open and closed surfaces. The convergence analysis corroborates the results expected
from the theory, i.e., an order of convergence equal to one for the interpolation error
and a higher order for the geometric contribution, independently of the selected global
metric. Concerning the robustness of the separate error estimators, the values of the
corresponding effectivity index highlight a slight overestimation for the interpolaton
estimator, whereas the geometric estimator underestimates the actual error.

The promising results of this work suggest as a next step the development of a
corresponding a posteriori error analysis, possibly in a goal-oriented setting [4, 22].
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