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Abstract

Mean-field systems have been previously derived for networks of coupled, two-dimensional, integrate-and-fire
neurons such as the Izhikevich, adapting exponential (AdEx) and quartic integrate and fire (QIF), among
others. Unfortunately, the mean-field systems have a degree of frequency error and the networks analyzed
often do not include noise when there is adaptation. Here, we derive a one-dimensional partial differential
equation (PDE) approximation for the marginal voltage density under a first order moment closure for
coupled networks of integrate-and-fire neurons with white noise inputs. The PDE has substantially less
frequency error than the mean-field system, and provides a great deal more information, at the cost of
analytical tractability. The convergence properties of the mean-field system in the low noise limit are
elucidated. A novel method for the analysis of the stability of the asynchronous tonic firing solution is
also presented and implemented. Unlike previous attempts at stability analysis with these network types,
information about the marginal densities of the adaptation variables is used. This method can in principle
be applied to other systems with nonlinear partial differential equations.

1 Introduction

The population density approach is a commonly used framework for analyzing large networks of model neu-
rons [1, 2, 15, 16, 19, 22, 26]. Rather than tracking the individual behavior of neurons, a probability density
function (PDF) for each population is considered. The PDF represents the probability that any individual
neuron is in a particular state, or, equivalently, the proportion of neurons in the population that have the
particular state. The population density equation usually takes the form of a partial differential equation for
the probability density of the voltage and other neuronal variables. Unfortunately, the population density
equation has as many dimensions as the individual neuronal equations, and often has complicated boundary
conditions. Thus, the more complex the neural model, the more difficult it is to both analyze and solve the
associated population density equation.

Fortunately, a great deal of the rich dynamics displayed by real neurons can be replicated via suitably
complex, two-dimensional integrate-and-fire models. This class of models includes the Izhikevich model [17],
the Adaptive Exponential model (AdEx) [6], and the Quartic model [35], to name a few. These models
represent an excellent trade off in the sense that they are simple, discontinuous oscillators, however once
properly fit, they can predict the spike times and membrane potential of actual neurons with a great deal of
accuracy.

The population density equations generated by networks of these neurons are still exceptionally difficult
to analyze and numerically simulate. Thus mean-field equations for these types of networks were derived
[26]. The derivation uses a sequence of analytical reductions, including a first order moment closure, and a
separation of time scales to obtain a small system of ordinary differential equations for certain moments of
the network from the original population density equation. The mean-field system is usually very accurate for
slow behaviors, such as bursting oscillations, and for steady state and transient firing dynamics. Additionally,
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being a simple set of ordinary differential equations, the mean-field equations are easily solved using any
standard integration scheme. However, due to the approximations made in the process of the derivation,
the mean-field system cannot provide detailed information about fast-oscillations or network level synchrony.
There is also a marked error in the frequency of bursting observed in the mean-field system compared to full
network simulations [26].

Given the overly complex two-dimensional population density equations, and the inability of the mean-
field system to capture the full dynamics of the networks, here we suggest a reduction of the full population
density equation to a one-dimensional PDE coupled to a system of ODEs. The PDE-ODE system, which
is derived assuming first order moment closure, is simpler to solve numerically and to analyze. In addition,
it drastically minimizes the bursting frequency error present in the mean-field system [26], and is able to
predict rapid behaviors while providing information about the synchrony of the network. In particular,
we find that this system robustly captures the complex temporal dynamics exhibited in simulations of the
networks. While moment-closure methods have been analyzed in [22], the networks were primarily leaky
integrate-and-fire networks. This paper considers several neuron models with two dimensions: voltage and
adaptation. The neurons all receive external white noise forcing and are in all-to-all coupled networks. The
bulk of the numerical simulations and results have been obtained with the Izhikevich model [17]. For the
purposes of comparison however, the general mean-field system which applies to any of the models is derived.

In section 1.1, we introduce the class of networks we are considering, followed by their respective popu-
lation density equations in section 1.2. The first order moment closure approximation is applied in section
2 to derive the coupled PDE-ODE system. A closed form expression for the steady state solution of the
PDE is found and used with a quasi-steady state approximation derived the associated mean-field model.
In this section we will also present various results about the boundary conditions used in the population
density equations and the convergence of the mean-field system in the low noise limit. Numerical simulation
examples for several model types are presented in section 2.4, while a novel stability analysis method is
presented in section 3 that qualitatively captures some of the features of the network. This method can
potentially be applied to other systems with nonlinear partial differential equations of two state variables.

1.1 2-Dimensional Neural Models with White Noise

The set of models we consider are all-to-all recurrently coupled networks described by the following equations:

v̇i = F (vi)− wi + I + gs(er − vi) + ηi = Gv(vi, s, wi) + ηi (1)

ẇi =
W∞(vi)− w

τW (vi)
= Gw(vi, wi) (2)

ṡ = −
s

τs
+

sjump

N

N
∑

j=1

∑

t<tj,k

δ(t− tj,k) (3)

where vi is the scaled dimensionless voltage, wi is a recovery/adaptation variable (for i = 1, 2, . . .N), s is
population averaged synapse variable, and tj,k is the kth spike fired by the jth neuron in the network. The
quantity ηi is a gaussian white noise process that models the large amount of random inputs neurons receive,
with

〈ηi(t)〉 = 0, 〈ηi(tp)η(tq)〉 = σ2δ(tp − tq).

Additionally, the variables v and w have the following resets/jumps:

v(t−) = vpeak ⇒

{

v(t+) = vreset

w(t+) = w(t−) + wjump

(4)
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This is a fairly broad class of models, that includes various subtypes, such as:

F (v) = −
v

τm
, (Leaky Integrate and Fire),

F (v) = v(v − α), τW (v) = τw, W∞(v) = bv, (Izhikevich),

F (v) = ev − v, τW (v) = τw, W∞(v) = bv, (Adaptive Exponential),

F (v) = v4 −
2v

τw
, τW (v) = τw, W∞(v) = bv, (Quartic Integrate and Fire)

Additionally, the Izhikevich model has various modifications aside from the default form presented above,
all of which fall under the general set of equations given by (1)-(3). While the majority of these models
are relatively new, they are readily being fit to neural data recordings, and to describe a wide variety of
network level phenomena [6, 12, 13, 17]. For example, networks of these neurons burst for a large variety of
parameter sets, as shown in Figure 1, and in [12, 25, 26]. Despite the abundance of noise in neural networks,
the aforementioned models are often analyzed without noise. Some exceptions include [25] which considered
a leaky integrate-and-fire network with adaptation and slow noise, and [33] which considered an adaptive
exponential integrate-and-fire model with noisy voltage.

1.2 Population Density Methods

For networks with a large number of neurons (N → ∞), the behavior of the population can be described by
a probability density function, ρ(v, w, t), where

∫

Ω

ρ(v, w, t) dvdw = P ((vi(t), wi(t)) ∈ Ω)

i.e., integration of the probability density function over a subset Ω of state space gives the probability a
neuron in the network is in the region Ω. In the large network limit, one can rigorously derive a population
density equation for the network of neurons. The evolution equation for ρ(v, w, t) is:

∂ρ(v, w, t)

∂t
= −∇ · J(v, w, s, t) (5)

where

J(v, w, s, t) =

(

JV (v, w, s, t)
JW (v, w, t)

)

(6)

JV (v, w, s, t) = Gv(v, s, w)ρ(v, w, t) −
σ2

2

∂ρ(v, w, t)

∂v
(7)

JW (v, w, t) = Gw(v, w)ρ(v, w, t). (8)

Additionally, the discontinuities in the integrate-and-fire models result in boundary conditions on the prob-
ability flux:

JV (vpeak, w, s, t) = lim
v→v

+

reset

JV (v, w + wjump, s, t)− lim
v→v

−

reset

JV (v, w + wjump, s, t) (9)

JW |∂W = 0 (10)

This yields a discontinuous flux term, due to the reset. Note that if we force v ∈ [vreset, vpeak] by implementing
a boundary on the neurons when v = vreset in addition to the typical reset at v = vpeak, then we can simply
rewrite the boundary condition as

JV (vpeak, w, s, t) = JV (vreset, w + wjump, s, t), (11)
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as done in [26]. Further, numerical simulation of the population density equation requires a restriction in the
domain which we choose to be [vreset, vpeak] for convenience. Thus in the rest of the paper, we will assume
v ∈ [vreset, vpeak]. For the sake of completeness, however, we include a derivation of the mean-field system
on the unrestricted domain −∞ < v ≤ vpeak in Appendix A.

In the large network limit, one can also show that s(t) converges to the ODE:

ṡ = −
s

τs
+ sjump

∫

W

JV (vpeak, w, s, t) dw (12)

where the integral term is the network averaged firing rate ν(t) [26]. To summarize, we have the following
PDE/ODE coupled system:

∂ρ(v, w, t)

∂t
= −

∂

∂v

(

(F (v)− w + gs(er − v) + I)ρ(v, w, t) −
σ2

2

∂ρ(v, w, t)

∂v

)

(13)

−
∂

∂w

((

W∞(v) − w

τW (v)

)

ρ(v, w, t)

)

(14)

ṡ = −
s

τs
+ sjump

∫

W

JV (vpeak, w, s, t) dw (15)

subject to the boundary conditions (9)-(10). This system is fairly difficult to solve beyond some rudimentary
first order methods. However, there are analytical techniques that substantially reduce the complexity of the
PDE. The technique that we will employ is a moment closure [22]. The general principle of such dimension
reduction methods have been applied to the statistics of network connectivity [20, 30] and to master equations
of stochastic networks [5, 9].

2 First and Higher Order Moment Closure

The population density equation is equivalent to the marginal voltage density multiplied by the conditional
w density:

ρ(v, w, t) = ρW (w|v, t)ρV (v, t) (16)

Substituting this into eq. (5), integrating with respect to w and using the boundary condition (10), we arrive
at the one-dimensional PDE:

∂ρV (v, t)

∂t
= −

∂

∂v

[

ρV (v, t) (F (v)− 〈w|v〉 + I + gs(er − v))−
σ2

2

∂ρV (v, t)

∂v

]

(17)

:= −
∂J(v, 〈w|v〉, s, t)

∂v
(18)

where the flux, J has been redefined and 〈w|v〉 is the conditional mean of w given v. Additionally, the
equation for s becomes

ṡ = −
s

τs
+ sjumpJ(vpeak, 〈w|vpeak〉, s, t)

= −
s

τs
+ sjump

(

(F (vpeak)− 〈w|vpeak〉+ gs(er − vpeak) + I)ρV (vpeak, t)−
σ2

2

∂ρV (v, t)

∂v

∣

∣

∣

∣

vpeak

)

.(19)
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Integration with respect to w is also needed to derive a new boundary condition on ρV (v, t). Starting with
the right-hand side of (11):

∫

W

JV (vreset, w + wjump, s, t) dw =

∫

W

GV (vreset, s, w + wjump)ρW (w + wjump|vreset, t)ρV (vreset, t) dw

−
σ2

2

∫

W

ρV (vreset, t)
∂ρW (w + wjump|v, t)

∂v

∣

∣

∣

∣

vreset

dw

−
σ2

2

∫

W

ρW (w + wjump|vreset, t)
∂ρV (v, t)

∂v

∣

∣

∣

∣

vreset

dw.

Note that ρW (w +wjump|v) is merely the conditional density in w shifted by wjump to the left. Thus, since
we are still integrating over the entire w domain, we have the following:

∫

W

ρW (w + wjump|vreset, t)ρV (vreset, t)G(vreset, s, w + wjump) dw = G(vreset, s, 〈w|vreset〉)ρV (vreset, t)

∫

W

ρV (vreset, t)
∂ρW (w + wjump)

∂v

∣

∣

∣

∣

v=vreset

dw = ρV (vreset, t)
∂

∂v

(
∫

W

ρW (w + wjump) dw

)
∣

∣

∣

∣

vreset

= 0

∫

W

ρW (w + wjump, t|vreset)
∂ρV (v, t)

∂v

∣

∣

∣

∣

v=vreset

dw =
∂ρV (v, t)

∂v

∣

∣

∣

∣

vreset

It follows that
∫

W

JV (vreset, w+wjump, s, t) = G(vreset, s, 〈w|vreset〉)ρV (vreset, t)−
σ2

2

∂ρV (v, t)

∂v

∣

∣

∣

∣

vreset

= J(vreset, s, 〈w|vreset〉, t)

Similar integration steps show that

∫

W

JV (vpeak, w, s, t) = G(vpeak, s, 〈w|vpeak〉)ρV (vpeak, t)−
σ2

2

∂ρV (v, t)

∂v

∣

∣

∣

∣

vpeak

= J(vpeak, s, 〈w|vpeak〉, t)

and the boundary condition becomes

J(vreset, s, 〈w|vreset〉, t) = J(vpeak, s, 〈w|vpeak〉, t) (20)

So far every step applied has been exact and no approximation has been made. However, without a PDE
for 〈w|v〉, one cannot solve the PDE (17) for ρV . Using the probability density function (5), one can derive
a PDE for the quantity 〈w|v〉ρV (v, t)

(

=
∫

wρ(v, w, t) dw
)

:

∂

∂t
(ρV (v, t)〈w|v〉) = −

∂

∂v

[

〈w|v〉 (F (v) + gs(er − v) + I) ρV (v, t)− 〈w2|v〉ρV (v, t)−
σ2

2

∂〈w|v〉ρV
∂v

]

−

(

〈w|v〉 −W∞(v)

τW (v)

)

ρV (v, t) (21)

There are two issues with this equation. The first is that we would need to divide by ρ(v, t) to isolate for
〈w|v〉, which yields problems when ρ(v, t) = 0 [22]. The second is that the presence of 〈w2|v〉 necessitates
yet another 1-dimensional PDE for 〈w2|v〉ρV (v, t) and in general, the PDE of the nth conditional moment
contains the n + 1st conditional moment. An approximation is necessary to end the dependence of the
〈wn|v〉 moment on 〈wn+1|v〉, i.e., to close the system. Moment closure approximations in general assume a
relationship between the higher moments with the lower moments. We will consider two cases, the noiseless
network (σ = 0) and the network with noise σ > 0.
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2.1 The σ = 0 Case

For the σ = 0 case, one can apply a higher order moment closure assumption with a straightforward physical
meaning. In particular, making the assumption

〈w2|v〉 − 〈w|v〉2 = σ2
w|v = 0 (22)

we have the following:

∂

∂t
(ρV (v, t)〈w|v〉) = −

∂

∂v
[〈w|v〉Gv(v, s, 〈w|v〉)ρV (v, t)] +

(

〈w|v〉 −W∞(v)

τW (v)

)

ρV (v, t)

=
∂ρV (v, t)

∂t
〈w|v〉 −Gv(v, s, 〈w|v〉)ρV (v, t)

∂〈w|v〉

∂v
+

(

〈w|v〉 −W∞(v)

τW (v)

)

ρV (v, t)

ρV (v, t)
∂〈w|v〉

∂t
= −ρV (v, t)Gv(v, s, 〈w|v〉)

∂〈w|v〉

∂v
−

(

〈w|v〉 −W∞(v)

τW (v)

)

ρV (v, t) (23)

As every term in eq. (23) contains ρV (v, t), we can factor it out (assuming it is non zero on [vreset, vpeak] for
all t) which results in the following closed form equation for 〈w|v〉:

∂〈w|v〉

∂t
= −Gv(v, s, 〈w|v〉)

∂〈w|v〉

∂v
−

〈w|v〉 −W∞(v)

τw(v)
(24)

Given the moment closure assumption (22), in addition to the reset in the voltage and the jump in w at
each spike, it is clear that the following boundary condition should apply:

〈w|vreset〉 = 〈w|vpeak〉+ wjump (25)

(see Appendix 4 for a derivation). Coupling this partial differential equation to the PDE (17) for ρV (v, t)
with σ = 0 and the ODE (19) for s gives the following system:

∂ρV
∂t

= −
∂

∂v
(Gv(v, s, 〈w|v〉)ρV ) (26)

∂〈w|v〉

∂t
= −Gv(v, s, 〈w|v〉)

∂〈w|v〉

∂v
−

〈w|v〉 −W∞(v)

τw(v)
(27)

ṡ = −
s

τS
+ sjumpJ(vpeak, 〈w|vpeak〉, s, t) = −

s

τS
+ sjumpGv(vpeak, s, 〈w|vpeak〉)ρV (vpeak, t) (28)

where v ∈ [vreset, vpeak].
One can interpret the assumption σ2

w|v = 0 statistically as the random variable w is a function of the

random variable v, w = g(v) = 〈w|v〉 in which case the density in w will be determined by the standard
change of variables formula:

ρW (w) = ρV (g
−1(w))

∣

∣

∣

∣

d

dw
(g−1(w))

∣

∣

∣

∣

.

We have simulated this system for the noiseless network, and it improves on the first order moment closure
approach in the noiseless case by providing more details and accuracy of the distribution of w by accurately
approximating 〈w|v〉. However, the situation is more complicated once noise is added to the network.

2.2 The σ > 0 Case

Returning to eq. (21) with σ > 0 and applying the moment closure assumption (22) results in the following
simplified equation for ρV (v, t)〈w|v〉:

ρV
∂〈w|v〉

∂t
= −ρV Gv(v, s, 〈w|v〉)

∂〈w|v〉

∂v
−

〈w|v〉 −W∞(v)

τw(v)
ρV +

σ2

2

(

ρV
∂2〈w|v〉

∂v2
+

∂ρV
∂v

∂〈w|v〉

∂v

)

(29)
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Unfortunately, unlike the noiseless case, ρV is not a factor in every term in particular it is not a factor of
the last term in eq. (29), and thus it cannot be removed from the equation. This results in a substantially
more complicated and possibly ill-posed system. Thus, we will not employ this moment closure assumption
when σ > 0. However, a potential avenue of future research is to use a perturbation approach to study the
solutions of this PDE in the low noise limit.

As an alternative, we will use a standard first order moment closure assumption, given by

〈w|v〉 = 〈w〉, (30)

which reduces the PDE for ρV (v, t) to

∂ρV (v, t)

∂t
= −

∂J(v, 〈w〉, s, t)

∂v
. (31)

All that remains is to derive a differential equation for 〈w〉. In particular, one can show that

〈w〉′ =

〈

W∞(v)− w

τW (v)

〉

+ wjumpJ(vpeak , 〈w|vpeak〉, s, t) +O(w2
jump) (32)

≈

〈

W∞(v)− w

τW (v)

〉

+ wjumpJ(vpeak , 〈w〉, s, t) (33)

≈
〈W∞(v)〉 − 〈w〉

〈τW (v)〉
+ wjumpJ(vpeak, 〈w〉, s, t) (34)

where any function of v, g(v), can be averaged using ρV (v, t). Combining (34) with the PDE (31) for ρV (v, t)
and the ODE (15) for s, gives the following system:

∂ρV (v, t)

∂t
= −

∂

∂v

(

(F (v) − 〈w〉+ gs(er − v) + I)ρV (v, t)−
σ2

2

∂ρV (v, t)

∂v

)

= −
∂

∂v
J(v, 〈w〉, s, t) (35)

˙〈w〉 =
〈W∞(v)〉 − 〈w〉

〈τW (v)〉
+ wjumpJ(vpeak, 〈w〉, s, t) (36)

ṡ = −
s

τs
+ sjumpJ(vpeak, 〈w〉, s, t) (37)

As in the σ = 0 case, first order moment closure can be used derive to the boundary condition for the PDE
(35):

J(vpeak, s, 〈w〉, t) = J(vreset, s, 〈w〉, t). (38)

We note that a similar PDE/ODE system for ρV (v, t) and 〈w〉 was derived in [3] for an excitatory/inhibitory
network of AdEx neurons. The coupling used in [3] was different from the synaptic coupling function s
considered here. We will consider the application of this model to some examples in section 2.4.

2.3 Steady state density, boundary conditions and mean-field equations

The coupled system of one PDE and two ordinary differential equations derived above is one step removed
from a mean-field approximation. In particular, if the variables 〈w〉 and s operate on a slow enough time
scale, then one can apply a separation of time scales to solve the PDE for ρV (v, t) at steady state and hence
solve for the t−independent flux: J(v, 〈w〉, s). This in turn can be used to derive a two dimensional ODE
mean-field model.

Assuming 〈w〉 and s are fixed parameters, the steady-state solution of the one-dimensional PDE (35)–(37)
must satisfy the following ordinary differential equation:

0 = −
∂

∂v

[

(F (v)− 〈w〉 + gs(er − v) + I)ρV (v) −
σ2

2

∂ρV (v)

∂v

]

= −
∂J(v, 〈w〉, s)

∂v
. (39)
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It is clear from this equation that the boundary condition (38) is automatically satisfied at steady state as
the solution for J(v, 〈w〉, s) is independent of v. Thus alternate boundary conditions will be needed. One
can solve this ODE on the interval (−∞, vpeak) or add a reflecting boundary condition at vreset and restrict
the solution to [vreset, vpeak]. Using the interval (−∞, vpeak], one obtains a solution which is continuous
everywhere, but not differentiable at v = vreset. The solution is smooth if we restrict it to the interval
[vreset, vpeak], as we do henceforth. To explicitly show the dependence of the density and the firing rate on
the noise level, we will temporarily write ρV (v) = ρV (v;σ) and ν = ν(σ)

When the system has no noise, one can easily solve for the steady-state density, ρV (v; 0) = ρ0(v), using
only a boundary condition relating the flux to the firing rate, ν(0) = ν0:

J(vpeak, 〈w〉, s) = ν0.

The firing rate can then be determined using the normalization condition

∫ vpeak

vreset

ρ0(v) dv = 1. (40)

Doing this one obtains:

ρ0(v) =

{

ν0
Gv(v,s,〈w〉) I − I∗(s, 〈w〉) > 0

δ(v − v−(s, 〈w〉)) I − I∗(s, 〈w〉) ≤ 0

ν0 =







[

∫ vpeak

vreset

dv
Gv(v,s,〈w〉)

]−1

I − I∗(s, 〈w〉) > 0

0 I − I∗(s, 〈w〉) ≤ 0

where I − I∗(s, 〈w〉) is the switching manifold for the system and is given by:

I − I∗(s, 〈w〉) = min
v∈[vreset,vpeak]

[Gv(v, s, 〈w〉)] (41)

and v−(s, 〈w〉) is the asymptotically stable equilibrium point that exists when I − I∗ ≤ 0 for the DE

v̇ = F (v)− 〈w〉 + gs(er − v) + I = Gv(v, s, 〈w〉).

with s and 〈w〉 treated as parameters.
The resulting mean-field system is

ṡ = −
s

τs
+ sjumpν0(s, 〈w〉) (42)

˙〈w〉 =
〈W∞(v)〉 − 〈w〉

〈τW (v)〉
+ wjumpν0(s, 〈w〉) (43)

Note that this is a non-smooth system of differential equations. As we shall see, the mean-field system for
noise is a qualitatively different class of system because it is a completely smooth system of ODE’s. However,
we will show how these two systems are related to one another in the σ → 0 limit.

To solve for the steady state of the system with noise, an additional boundary condition is required as
eq.(39) is a second order ODE. The typical boundary conditions applied are:

J(vpeak, 〈w〉, s) = ν(σ) (Definition of firing rate) (44)

ρV (vpeak;σ) = 0 (Absorbing Boundary Condition) (45)

These boundary conditions have been previously used in [14] in their analysis of the leaky integrate-and-fire
models with white noise, and in [1]. We note that in these two papers the justification for the absorbing
boundary condition appears to be different. In [14], the justification is that ρV (v;σ) = 0 for v > vpeak and
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thus for continuity and integrability reasons, the authors set ρ(vpeak;σ) = 0. In [1], the authors state that
ρ(vpeak;σ) = 0 as all the firing is due to noise, and thus the deterministic component of the flux should not
contribute anything.

In the following, we will derive the solution in some detail. This will allow us to offer an alternative
justification for the boundary conditions and to investigate the limiting behaviour of ρ(vpeak;σ) and ν(σ)
as σ → 0. We restrict ourselves to the case where I > I∗(s, 〈w〉). The case when I < I∗(s, 〈w〉) is more
complicated, but can be dealt with using the same approach. Solving equation (39) for ρV (v;σ) and using
the boundary condition (44) yields:

ρ(v;σ) = −
2ν(σ)

σ2

∫ v

vreset

exp

(

−
2

σ2
(M(v′)−M(v))

)

dv′ +D exp

(

2

σ2
M(v)

)

whereM(v) is an anti-derivative of F (v)−〈w〉+gs(er−v)+I = Gv(v, s, 〈w〉) andD = ρ(vreset) exp(
2
σ2M(vreset)).Before

proceeding further, we use Laplace’s method for integrals [4] to shed some insight into the asymptotic be-
havior of ρ(v;σ). In particular, note the following asymptotic behaviors that are valid if I > I∗(s, 〈w〉):

2

σ2

∫ v

vreset

exp

(

−
2

σ2
(M(v′)−M(v))

)

dv′ ∼
exp( 2

σ2 (M(v) −M(vreset)))

Gv(v, s, 〈w〉)
, σ → 0

2

σ2

∫ vpeak

v

exp

(

−
2

σ2
(M(v′)−M(v))

)

dv′ ∼
1

Gv(v, s, 〈w〉)
, σ → 0

This would seem to imply that if ν(σ) is convergent in the σ → 0 limit, the density function contains a
divergent term as if Gv(v, s, 〈w〉) > 0, then M(v) > M(vreset) and the first term diverges exponentially fast
as σ → 0. Thus, to obtain a convergent density function, we need to remove the first term in the integral.

Rewriting the density as:

ρ(v;σ) =
2ν

σ2

∫ vpeak

v

exp

(

−
2

σ2
(M(v′)−M(v))

)

dv′ +

[

D −
2ν

σ2

∫ vpeak

vreset

exp

(

−
2

σ2
M(v′)

)

dv′
]

exp

(

2

σ2
M(v)

)

Since we are still free to specify a boundary condition, we may choose D (and hence ρ(vreset)) to eliminate
the divergent term, yielding:

ρ(v;σ) =
2ν(σ)

σ2

∫ vpeak

v

exp

(

−
2

σ2
(M(v′)−M(v))

)

dv′ (46)

Note that this choice of D is equivalent to applying the boundary condition (45). Thus, the boundary
condition can be seen as a regularity condition requiring the density ρ(v;σ) be well behaved in the small
noise limit.

As in the noiseless case, applying the normalization condition on ρ(v;σ) yields an expression for the firing
rate:

ν(σ) =

(

2

σ2

∫ vpeak

vreset

∫ vpeak

v′

exp

(

−
2

σ2
(M(v′, 〈w〉, s) −M(v, 〈w〉, s))

)

dv′dv

)−1

. (47)

This leads to the following mean-field system for the network:

ṡ = −
s

τs
+ sjumpν(σ, s, 〈w〉) (48)

˙〈w〉 =
〈W∞(v)〉 − 〈w〉

〈τW (v)〉
+ wjumpν(σ, s, 〈w〉). (49)

Using the expansions of the integrals given above shows that the solution has the following asymptotic
behaviour

ρ(v;σ) ∼ ρ0(v) =
ν0

Gv(v, s, 〈w〉)
σ → 0

ν(σ) ∼ ν0 σ → 0
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for I > I∗(s, 〈w〉). This implies that, in the tonic firing region of the parameter space, the firing rate
converges to the noiseless value, which in turn implies that the mean field equations converge to the noiseless
mean field model. The convergence of the density is more delicate. Note that the firing rate and density at
steady state are related by

ρ0(v)Gv(v, s, 〈w〉) = ν0, I > I∗(s, 〈w〉)

for the noiseless network. Since ν0 > 0 when I > I∗(s, 〈w〉), the boundary condition (45) leads to an
inconsistency at v = vpeak. Thus the convergence of the density is only pointwise and for vreset ≤ v < vpeak.
An example of this is shown in Figure 2(c).

This inconsistency can be dealt with by noting that ρ(vpeak;σ) = 0 is a sufficient, but not necessary
condition for ρ(v;σ) to converge to ρ0(v) for v 6= vpeak. In fact it can be weakened to yield convergence even
at vpeak. Specifically, making the following choice for D

D =
2ν

σ2

∫ vpeak

vreset

exp

(

−
2

σ2
M(v′)

)

dv′ + exp

(

−
2

σ2
M(vpeak)

)

ρ0(vpeak)

one can show that the term

exp

(

2

σ2
(M(v)−M(vpeak))

)

ρ0(vpeak)

added to the density converges to ρ0(vpeak) if v = vpeak and 0 otherwise. Thus, the criteria ρ(vpeak;σ) = 0
is not necessary even for convergence at v = vpeak as σ → 0.

The point here is not to use alternate solutions for the density and the firing rate, but rather to demon-
strate that the absorbing boundary condition is sufficient and illustrate that the mean-field system does
converge to the mean-field system without noise for I > I∗(s, 〈w〉). A similar approach when I < I∗(s, 〈w〉)
demonstrates the same convergence. Thus, solutions of the non-smooth noiseless mean-field system (42)-(43)
could be used as order zero solutions in a weak noise perturbation expansion of solutions of the mean-field
system above. We remark that the noiseless mean-field system has an analytically tractable bifurcation
structure [27]. We leave analysis of the bifurcation structure of the mean-field system with noise for future
work.

2.4 Numerical Examples

In this section, we compare simulations of the PDE system (35)–(37), the mean-field system (48)-(49) and
of the full network (1)-(3) with 10,000 neurons.

We begin by considering different parameter sets for the Izhikevich model, taken from [18], which were
fit to data for various neuron types. We use parameter sets for the CA1 pyramidal neuron, the intrinsically
bursting neuron (IB), the chattering neuron (CH), and the rapidly spiking neuron (RS). The parameter values
are given in Table 1. As illustrated in Figure 3 for the chattering neuron, when these neurons are connected
with excitatory coupling, the networks can exhibit both tonic firing and network induced bursting with or
without noise. We will focus on the situation where the networks are bursting as this is where the mean-field
systems can lose accuracy. The results of simulations using the intrinsically bursting and chattering neuron
parameter values are shown in Figure 4. In the bursting region, the frequency error present in the mean-field
system is dramatically reduced in the moment-closure reduced PDE, as shown in Figure 4. Similar results
were found for the CA1 and rapidly spiking parameter values (not shown). This demonstrates that the bulk
of the frequency error in the mean-field system is actually due to the separation of time scales approximation.
Thus, the PDE system is superior to the mean-field system in predicting the steady state and dynamics for
the actual network.

To quantify the amount of synchrony in the network, one can use an order parameter defined by :

r(t) =
1

N

N
∑

i=1

exp

(

2πi

[

v − vreset
v − vpeak

])

(50)
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which has been done for example in [1]. If |r(t)| = 1, then the neurons are perfectly synchronized across
the network, while if |r(t)| = 0, they are asynchronous, with the zi uniformly distributed around the unit
cycle. As shown in Figures 4(b) and 4(d), the first order moment closure equation provides a great deal
more information about synchrony than the mean-field system.

In addition to the plain Izhikevich model derived from topological normal form theory, various modifi-
cations have been suggested to make model better fit the spiking dynamics and spike profiles for different
neurons. For example, the model can be fit to a fast spiking inhibitory interneuron via the following (see
page 299 of [18])

ẇ =

{

a((v − vb)
3 − w) if v ≥ vb

−aw if v < vb
(51)

Additionally, it is possible to fit sharper spike upstrokes present in actual neurons via the following adjust-
ment:

v̇ = k(v)v(v − α) − w + gs(er − v) + I

where

k(v) =

{

kmin if v ≤ α

1 if v > α
(52)

This has been done for a hippocampal CA3 pyramidal neuron in [12] in addition to other examples in [18].
The parameter values for these models are given in Table 1.

For both of these modified Izhikevich models, one can derive the corresponding moment-closure reduced
PDE and mean-field system. Comparisons of simulations of these systems with those of the full network are
shown in Figure 5. It is clear that in both cases, the PDE substantially outperforms the mean-field system,
both in reproducing network behaviour and capturing synchrony levels.

3 Stability Analysis and Transition to Bursting

As discussed above and studied in several papers [26, 27, 25] an important phenomenon of the network
behaviour is the transition from tonic firing to bursting. In particular, we may wish to characterize how
this transition depends on various parameters in the model. In principle this can be done by running many
simulations of the model, but this can be time consuming, thus in this section we will explore how we may
use the reduced models derived in the previous section to do this characterization.

To begin, we generated some benchmark examples using simulations of the full model (1)-(3). We
simulated the network over a mesh of values of the parameters g and I for several values of σ. This is shown,
by the magenta curves, for networks of chattering neurons in Figure 6(a) and intrinsically bursting neurons
in Figure 6(b). For both these parameter sets (and others not shown), the general bifurcation diagram is
as follows: without noise, above rheobase (Irh) there is an enclosed bursting region surrounded by a tonic
firing region, while below rheobase there is quiescence. Once noise is added, both the bursting region and the
tonic firing region extend below rheobase, dramatically altering the dynamics of the network. Thus, these
simulations suggest the network can exhibit noise induced bursting.

Since the mean-field model is a system of ODEs, it can be studied using numerical bifcuration analysis.
In fact, numerical two-parameter bifurcation analysis of the mean-field system for the noiseless network was
done in [26] to study the emergence of bursting in the network. It was shown that the bifurcation to bursting
for I > Irh is via a non-smooth saddle-node of limit cycles closely associated with a smooth sub-critical Hopf
bifurcation of the tonic firing equilibrium point. Since the two bifurcations occurred closely together, it was
found that, for I > Irh, the Hopf bifurcation curves for the mean-field system were a good predictor of
the boundary of the bursting region for the full network. The Hopf bifurcation curves are easier to obtain
numerically since they can be found using standard numerical continuation packages such as MATCONT
[10]. Motivated by this work we used MATCONT to find the Hopf bifurcation curves for the mean-field
system of the network with noise, eqs. (48)-(49) (see Appendix B for numerical details). These curves are
shown in Figure 6 (see figure caption for details) The agreement with the bursting regions for the full network
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is good. In particular, the mean field model for the networks reproduces the fact that, in the presence of
noise, the Hopf bifurcation curves self-intersect and form regions which extend below I = Irh.

However, there are discrepencies between the mean-field results and the full network simulations. Thus,
motivated by the results of the previous section, we will attempt to use the information in the moment-closure
PDE system to improve these results. Our approach will be to study the stability of the asynchronous tonic
firing solution, since its loss of stability is closely associated with the transition to bursing.

The class of models considered present challenges when attempting to analyze the full probability density
function eqs. (5)–(12). The stability of the steady-state solution with σ > 0, or asynchronous state, is
commonly analyzed by linearizing the nonlinear partial differential equation around this solution [34, 1, 7].
The original system has a two dimensional PDE: while two dimensional PDEs are often tractable, the
equations, and in particular the boundary conditions (9)–(10) for these networks, present numerical and
analytical difficulties that are not easily resolved with standard methods. Although the entire spectrum of
eigenvalues of the linearized PDE contains abundant information about the (infinite-dimensional) system,
we choose to consider a lower dimensional subset of variables that is still insightful. Since the population
firing rate ν(s, 〈w〉;σ) feeds into both the synapse variable s(t) and the (mean) adaptation variable 〈w(t)〉,
we will analyze the stability of the steady-state values of these two variables [25].

Omitting some details of the PDE, the first order moment closure approximation to the system can be
rewritten as:

˙〈w〉 =
〈W∞(v)〉 − 〈w〉

〈τW (v)〉
+ wjumpν(s, 〈w〉) = W (s, 〈w〉) (53)

ṡ = −
s

τs
+ sjumpν(s, 〈w〉) = S(s, 〈w〉) (54)

ρ(v, 〈w〉, s) = ν(s, 〈w〉)

∫ vpeak

v

exp

(

−
2

σ2
(M(v′, 〈w〉, s) −M(v, 〈w〉, s

)

dv′ (55)

where

ν(s, 〈w〉) =

(

2

σ2

∫ vpeak

vreset

∫ vpeak

v′

exp

(

−
2

σ2
(M(v′′, 〈w〉, s)−M(v′, 〈w〉, s))

)

dv′′dv′
)−1

=: F (s, 〈w〉) (56)

Note that 〈W∞(v)〉, and 〈τw(v)〉 also depend on s and 〈w〉 through ρ(v, 〈w〉, s).
We denote the steady-state values of this system by (w̄, s̄, ν̄, v̄); we emphasize that w̄ and v̄ are the

steady-state mean values. The steady-state solution satisfies:

w̄ = 〈W∞(v)〉 + 〈τW (v)〉wjumpν̄ (57)

s̄ = τssjumpν̄ (58)

ν̄ = F (s̄, w̄) (59)

v̄ =

∫

vρV (v; w̄, s̄) dv (60)

For numerical simplicity, we focus only on the first two variables: (w̄, s̄). Additionally we restrict the
dynamics of 〈w〉 to the case where τW (v) = τW and W∞(v) = bv. Linearizing around the steady state via
substituting (w̄, s̄)T + ε~xeλt yields:

d~x

dt
= M |(w̄,s̄,ν̄,v̄)~x (61)

where

M =

(

− 1
τw

+ b
τw

∂〈v〉
∂〈w〉 + wjump

∂ν
∂〈w〉

b
τw

∂〈v〉
∂s

+ wjump
∂ν
∂s

sjump
∂ν
∂s

− 1
τs

+ sjump
∂ν
∂s

)

. (62)

The eigenvalues of M indicate the stability of the asynchronous state.
The stability analysis described thus far is fairly standard. However, the rest of the calculations described

below are different and novel to the best of our knowledge.
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3.1 An accurate approximation to the steady-state firing rate

We first describe how to calculate the steady-state firing rate ν̄. Normally, one would use eq. (47) to calculate
ν(〈w〉, s). However, in the first order moment closure system, much of the information about the density
in w is lost in the approximation process, which contributes to the error in the mean-field approach. Our
approach to rectify this involves calculating the firing rate in an alternative way to take into account the
information about the marginal density in ρw(w).

The rate is calculated via a dimension reduction method based on [21] (also see [23, 24, 25] for similar
approaches) where only 1 dimensional PDEs need to be numerically solved. A standard application of the
analogous dimension reduction method assumes w is a parameter rather than a random variable and s̄
is given (eq. (58)), thus resulting in a 1 dimensional PDE for the steady-state marginal voltage density
ρV (v;w, s̄) (eq. (46) but with (w, s) as parameters). So we have a family of ρV (v;w, s̄) that depends on
(w, s̄), which also has a corresponding family of steady-state firing rates that depend on (w, s̄):

ν̃(w, s̄) = F (w, s̄)

where F (w, s) is given by eq. (56). Again, we interpret the firing rate ν(w, s̄) as a conditional firing rate,
conditioned on the variables (w, s̄). There is a w variable for each individual neuron in the population, with
a marginal w density (recall eq. (5)):

ρW (w, t) :=

∫ vpeak

vreset

ρ(v, w, t) dv.

Solving for the actual ρW (w, t) function is difficult numerically and high dimensional, so we make the
following approximation for the steady-state ρW (w) equation:

0 = −
∂

∂w

(

〈W∞(v)〉 − w

〈τW (v)〉
ρW (w) + ν̄

∫ w

w−wjump

ρW (w′) dw′

)

(63)

where the angular brackets in 〈W∞(v̄)〉 and 〈τW (v̄)〉 represent integrating over ρV (v; w̄, s̄). This essentially
assumes that the firing rate of the population is a Poisson process and the jumps in w are independent of w
[29]. We can use this approximation for the marginal w density to calculate the population firing rate:

ν̄ =

∫ ∞

0

J(vpeak;w
′, s̄)ρW (w′) dw′ =

∫ ∞

0

ν̃(w′, s̄)ρW (w′) dw′

Note that the (average) synapse variable s̄ is exactly the same for all neurons, and its steady-state value
will be determined by ν̄ (eq. (58)). Since this is a nonlinear system, the steady-state solution using this
reduction method should satisfy the following system of equations:

s̄ = τssjumpν̄ (64)

ν̄ =

∫ ∞

0

ν̃(w′, s̄)ρW (w′) dw′ (65)

Unfortunately, requiring this system to be solved self-consistently predominately results in an unstable system
with iteration methods, even when Monte Carlo simulations of the true system have very stable asynchronous
states and even when ν̄ is set to be the ’correct’ value. Hence, it would seem that applying this approach
results in instabilities in the numerical solutions.

To rectify this issue, we relaxed the self-consistency condition and consider eqs. (64)–(65) as a linear
input (νin) / output (νout) system or mapping. Specifically, νin is used in eq. (63) in place of ν̄ to solve for
ρW (w; νin); νin determines s̄ in eq. (64), and that s̄ is used in the equation for the family of ρV (v;w) and
thus ν̃(w, s̄). Finally, νout =

∫∞

0 ν̃(w, s̄)ρW (w′; νin) dw
′. We calculate (νin, νout) on a fine grid of reasonable

νin values and select the one with the smallest difference |νout−νin| as ν̄ = νout. This approach is numerically
the closest approximation to the self-consistent solution for νin = νout. It turns out this system always has a
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unique minimum |νout− νin| for the parameters considered, and the approximation to the steady-state firing
rate is extremely accurate.

To summarize, we view the nonlinear system as a mapping of νin to νout with the following sequential
steps:

s̄ = τssjumpνin (66)

0 = −
∂

∂v

(

(F (v)− w + gs̄(er − v) + I)ρV −
σ2

2

∂ρV
∂v

)

, calculate a family of ρV (v;w, s̄) (67)

ν(w′, s̄) = J(vpeak ;w
′, s̄), and thus, family of firing rates [J is a linear functional of ρV ] (68)

0 = −
∂

∂w

(

〈W∞(v)〉 − w

〈τW (v))〉
ρW (w) + νin

∫ w

w−wjump

ρW (w′) dw′

)

, calculate ρW (69)

where 〈W∞(v)〉 =

∫

W∞(v)ρV (v;w = τWwjumpνin, s̄) dv and similarly for 〈τW (v))〉 (70)

νout =

∫ ∞

0

ν(w′, s̄)ρW (w′) dw′ (71)

Recall that the steady state values corresponds to minimizing |νout − νin|.
We remark that this method is not the same firing rate from the first order moment closure equations

(35)–(37) because in those equations only the mean of the w variable is used, not its probability distribution.
In particular, in the traditional mean-field approach, one uses ν(s, 〈w〉) and ρV (v, 〈w〉, s) and interprets
these as the network averaged firing rate, and the marginal density in v as simple functions of 〈w〉. In our
approach, we use the same equations but now interpret ν(s, w) and ρV (v;w, s) as the conditional quantities
(conditioned on w), and use a pragmatic approximation to the self-consistency condition. This allows us to
incorporate information about the density in w with an approximation for the marginal w density.

3.2 Linear stability analysis with approximation to steady-state firing rate

With the approximation method for the steady-state firing rate in section 3.1 summarized in eqs. (66)-
(71), we can numerically perform the stability analysis described in equations (61)–(62) assuming that w(t)
represents the population average. Note that this stability analysis of a two-dimensional nonlinear PDE
system does not rely on any Monte Carlo simulations, but rather just analyses and reductions based on the
PDEs. In the matrix in eq. (62), the partial derivatives of the steady-state firing rate with respect to s̄ and
w̄ are calculated numerically using a finite difference method.

This method is implemented for the Izhikevich all-to-all neural network for two parameter sets: chattering
neurons (Figure 6a, black dotted curve) and intrinsically bursting neurons (Figure 6b, black dotted curve).
Since this method is non-standard, we were not able to leverage MATCONT [10] to numerically continue
the bifurcation points but rather had to perform the analysis on a fine grid in parameter space. Over a
two dimensional region of parameter space where the behavior varies appreciably, an implementation of the
method is able to capture the regions where the neural network exhibits oscillations and quiescence (black
dotted curves in Figure 6). The feature of noise-induced bursting is also captured with the method, as well
as the qualitative shape of the various regions of stability. We omit the curve for σ = 0 because a standard
discretization of the operators requires manual refinement of the various meshes and is quite tedious; note that
the black dotted curves are for a fixed discretization using a standard finite difference method. Furthermore,
despite only focusing on two variables in the system, this approach gives an approximation to the marginal
voltage density ρV (v) that matches well with the Monte Carlo simulations (not shown), and as already
mentioned it also provides an approximation to the steady-state firing rate, and marginal w density.
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4 Discussion

We considered a population density approach to study the dynamics of large networks of integrate-and-fire
type models with adaptation. We presented a first order moment closure reduction which results in a one
dimensional partial differential equation for the density of the voltage, ρV (v, t), coupled to a two dimensional
system of ODEs for the network mean adaptation and synaptic activity. We obtained an analytical solution
for the steady-state voltage density and use this to derive a steady-state mean-field system for the network.
When applied to various recurrently coupled spiking networks, the PDE-ODE system is able to successfully
capture a large range of transient dynamics of the network. In contrast to a steady-state mean-field system,
the frequency error in capturing oscillations, i.e., bursts, is reduced if not absent in the coupled PDE-ODE
system. Additionally, one obtains information about synchrony and other rapid temporal correlations with
the reduced population density equations, unlike in the mean-field system. However, one can still use
the mean-field approach for a white noise system to ascertain the stability of the steady states and slow
oscillations as before.

A novel linear stability analysis method was presented and applied to particular instances of these class
of neural network models. The method is also able to predict the bursting region for the network of neurons.
The method has a pragmatic solution for dealing with a dimension reduction method that would make
a bad problem worse (see [22] for similar issues with higher order moment closure methods), and does
provide approximations for other entities of interest (marginal densities, firing rate). However, the method is
impractical in leveraging continuation software [11, 10] currently and would likely require more programming
and development to do so. Even though the dimension reduction method and corresponding linear stability
analysis could be applied to other systems, the details of the implementation could present specific technical
and numerical challenges in itself. Nevertheless, taken together these results are valuable and will hopefully
be insightful for other nonlinear systems with higher dimensional PDEs that require dimension reduction.

Brunel & Latham [8] analyzed a two-dimensional quadratic integrate-and-fire with temporally correlated
noise, and calculated the population firing rates in various regimes. Their state variables were voltage and
the noise (Ornstein-Uhlenbeck) forcing, and did not include an adaptation variable. Their work resulted in
analytic formulas for the firing rates in the slow and fast colored noise limits. They suggest using the mean
firing rate for the purposes of a mean-field system, and indeed we do apply their idea here. However, the
networks in [8] were uncoupled, and non-adapting quadratic integrate-and-fire neurons. Thus, the network
cannot display bursting as the intrinsic dynamics of the neurons do not support bursting at the individual
level, and without coupling the network cannot display emergent bursting at the network level. Also, it
appears that for accurate estimates of the frequency of bursting, a mean-field system is not sufficient and
one has to numerically solve at least the marginal voltage density to obtain the correct dynamics.

Similarly, Richardson [31, 32] considered nonlinear integrate-and-fire networks (e.g., exponential and
Izhikevich) without adaptation, where analytic formulas were provided for various network statistics. In
particular, the firing rate quantities [31] and the spike train spectra and first passage time density [32]
were calculated. Adaptation has been considered in the context of noisy nonlinear neural networks for
example by [33]. In that paper, the author considered recurrent noisy nonlinear integrate-and-fire networks
with biophysical adaptation currents using a similar Fokker-Planck or population density formalism. Their
analyses were based on linear response theory with small amplitude sinusoidal drive and relied on a separation
of time scales between the two state variables. Thus, our work differs from [33] not only in the functional
forms of the equations, but also because our stability analyses were different (first order moment closure
and the method described in section 3.1). To the best of our knowledge, they did not consider oscillatory
or bursting regimes; oscillatory firing in their work appears to be primarily driven by background sinusoidal
inputs.

In the work of [25], a network of leaky integrate-and-fire neuron with noise was studied with a mean-field
model using bifurcation analysis. The mean-field system they derive is very different from the one considered
here. In particular, the noise in their system is synaptically filtered through a double exponential synapse, so
the correlation time in the noise is fairly high and can be treated as static heterogeneity. Using I and σ as the
bifurcation parameters, they show that transitions to bursting occur via both subcritical and supercritical
Hopf bifurcations and that co-dimension 2 Bautin points occur at the interface between these two kinds of
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Parameter Set CA1 CH IB RS FS KS

α 0.25 0.33 0.4 0.33 0.18 0.72
vreset 0.25 0.33 0.25 0.17 0.18 0.154
vpeak 1.67 1.42 1.67 1.58 1.45 1.462
wjump 0.028 0.028 0.019 0.04 0 0.012
1/τw 0.033 0.017 0.017 0.07 0.2 0.005
b 0.017 0.011 0.056 -0.048 1.38 -0.003

Table 1: The dimensionless parameters for the fitted Izhikevich models used in network, mean-field, and
population density simulations throughout the text. The models are CA1 pyramidal cell (CA1), chattering
neuron (CH), intrinsically bursting neuron (IB), rapid spiking neuron (RS), fast spiking (FS) and k-switching
(KS). The corresponding dimensional parameters can be found in [18]. The values of the following parameters
were the same for all simulations: τs = 1.5, er = 1, and sjump = 1. The parameters g and I and σ vary, and
are treated as bifurcation parameters.

bifurcations. Recently, we showed in [27] that the bifurcation sequence in a static heterogeneous network is
identical to the one in [25], aside from the model differences. We remark that there are complications that
arise with the notion of a mean-field system for a heterogeneous network of neurons, as there is no unique
mean-field system in this case because multiple systems can be derived depending on what assumptions are
used [27]. Thus, there is still some insight to be gained by analyzing the network/mean-field system in the
true white noise limit, as opposed to the large time correlation limit in the correlation function for the noise.

While the mean-field system we derive does have some error in terms of the dynamics of the network level
oscillations, it appears to be quite accurate for the steady-state firing rate and its stability. In particular,
it shows that the region of bursting, which lies completely in the I > Irh part of parameter space in the
noiseless case, extends below I = Irh when noise is present. Further, the curve of Hopf bifurcations associated
with the emergence of bursting becomes a self-intersecting curve in the presence of noise. Recent analytical
work [28] in the noiseless case, has shown there is a region of coexistence of quiescence and tonic firing when
I < Irh and that there are several non-smooth co-dimension 2 bifurcations on I = Irh which are associated
with the loss of bursting for I < Irh. Preliminary numerical bifurcation analysis of the mean-field equations
indicates that the non-smooth co-dimension 2 bifurcations found in the noiseless case become regularized as
smooth co-dimension 2 bifurcations when noise is added. The emergence of bursting for I < Irh and the
associated change in the Hopf bifurcation curves is worthy of further analysis, but beyond the scope of this
paper. We leave futher investigation of these bifurcations for future work.

For the full population density equations, a future direction may be to numerically solve the two-
dimensional partial differential equation(s) coupled with the ordinary differential equations. Standard finite
difference methods, even with higher orders of accuracy, proved to be unstable and not accurate compared
to Monte Carlo simulations. Therefore, developing the numerical solutions to these equations is nontrivial
and beyond the scope of this paper, but has the potential benefit of capturing the full statistical quantities
of the network and may provide further analytical insights. To our knowledge, only a rudimentary first order
method appears in the literature for this system.
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Appendix A: The Extended Mean-Field System

One can also apply the methods in developed this paper on the extended interval, (−∞, vpeak]. In particular,
the one-dimensional moment closure PDE has to be solved on a larger interval with the boundary condition
(9) which is easily discretized in space. For the mean-field system, one has to solve for the steady state ρ(v)
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and ν on the interval (−∞, vpeak]. Note that due to the boundary condition, the density function ρ(v) will
be continuous at steady state, but not differentiable as the flux is piecewise constant at steady state, and
given by:

J(v, s, 〈w〉) =

{

ν(s, 〈w〉) vreset ≤ v ≤ vpeak

0 v < vreset
(72)

Solving for the density function on these two intervals, and forcing continuity of the density function at
ρ(vreset) yields the following:

ρ(v, σ) =

{

ν 2
σ2

∫ vpeak

v
exp

(

− 2
σ2 [M(v′, 〈w〉, s)−M(v, 〈w〉, s)]

)

dv′ vreset ≤ v ≤ vpeak

ν 2
σ2

∫ vpeak

vreset
exp

(

− 2
σ2 [M(v′, 〈w〉, s)−M(v, 〈w〉, s)]

)

dv′ v < vreset
(73)

In order to determine ν, one has to us the normalization condition on ρ(v, σ) to yield:

ν−1 =
2

σ2

[
∫ vpeak

vreset

∫ vpeak

v

exp

(

−
2

σ2
[M(v′, 〈w〉, s) −M(v, 〈w〉, s)]

)

dv′dv

+

∫ vreset

−∞

∫ vpeak

vreset

exp

(

−
2

σ2
[M(v′, 〈w〉, s)−M(v, 〈w〉, s)]

)

dv′dv

]

(74)

As in section 2.3, one can use Laplace’s method to prove convergence of the mean-field system with noise to
the noiseless mean-field system as σ → 0.

Appendix B: Implementing the Mean-Field System

In order to numerically simulate the mean-field system derived in section 2.3, one has to compute the integral:

ν(σ, s, 〈w〉)−1 =
2

σ2

∫ vpeak

vreset

∫ vpeak

v

exp

(

−
2

σ2
(M(v′, 〈w〉, s) −M(v, 〈w〉, s))

)

dv′dv (75)

as a function of s and 〈w〉 at each time step. This requires numerically computing a double integral over a
triangular region in the v plane. As σ → 0, the exponential term inside the integral often becomes difficult

to work with due to the 1
σ2 . However, by using the substituion v′ = v + σ2

2 z, one arrives at the integral:

ν(σ, s, 〈w〉)−1 =

∫ vpeak

vreset

∫ 2

σ2 (vpeak−v)

0

exp

(

−
2

σ2

[

M

(

v +
σ2z

2
, 〈w〉, s

)

−M(v, 〈w〉, s)

])

dzdv

=

∫ vpeak

vreset

∫ 2

σ2 (vpeak−v)

0

exp

(

−

[

∞
∑

i=1

∂iM(v, 〈w〉, s)

∂vi
zi
(

σ2

2

)i−1
])

dzdv

=

∫ vpeak

vreset

∫ 2

σ2 (vpeak−vreset)

0

exp

(

−

[

∞
∑

i=1

∂iM(v, 〈w〉, s)

∂vi
zi
(

σ2

2

)i−1
])

H

(

2

σ2
(vpeak − v)− z

)

dzdv

Note that the term inside the exponential no longer has a 2
σ2 term which yields numerical difficulties in the

σ → 0 limit. While the bounds of the integral now diverge as the upper bound now has a σ2

2 , the integrand
converges to zero for large z exponentially fast. For the Izhikevich and quartic integrate and fire models,
there is only a finite number of terms in the sum, as F (v) and thus M(v) is a polynomial in v. For other
models, one can take a finite number of terms to approximate the firing rate. The Heaviside function H(x)
converts the triangular integration region into a rectangular one. The remaining integral can be simply
computed with the two-dimensional trapezoidal method over a rectangular region. The Matlab function
trapz is used to compute the integral at each time step over a two-dimensional finite mesh in the v′ and z
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variables. This is used for both direct simulation of the mean-field system and numerical bifurcation analysis
of the system in MATCONT. Note that this implementation is similar to the one suggested in [8] only we
compute the firing rate at each time step, as there does not appear to be much computational overhead in
this approach versus using a function table, as first suggested in [8].

Appendix C: Validity of the First Order Moment Closure Assump-

tion

In the derivation of section 2, we had to assume independence of specific moments, a series expansion in
wjump, and the first order moment closure approximation 〈w|v〉 = 〈w〉. While an error bound on the first
assumption is difficult to arrive at, we can show that under certain assumptions, the first order moment
closure does not contribute much to the error if wjump is small. In particular, one can show that the
conditional moment 〈w|v〉 has to satisfy the condition

〈w|vreset〉 = 〈w|vpeak〉+ wjump (76)

when the network is undergoing firing (for I > I∗(s, 〈w〉)) if the following conditions hold:

σ2
w|vρV (v, t)

∣

∣

∣

∣

∂V

+
σ2

2

∂〈w|v〉

∂v
ρV (v, t)

∣

∣

∣

∣

∂V

= 0 (77)

which holds with the higher order moment closure assumption in the σ = 0 case discussed in section 2.
The condition 76 can be derived by looking at the differential equation for 〈w〉 by changing the order of
integration (w first then v as opposed to v first then w) and equating the two resulting expressions for 〈w〉′.

If we further assume that 〈w|v〉 is a function that is bounded within the interval [〈w|vpeak〉, 〈w|vreset〉]
then it follows that

〈w|vpeak〉 ≤ 〈w|v〉 < 〈w|vreset〉 = 〈w|vpeak〉+ wjump. (78)

In this case the conditional moment 〈w|v〉 is contained within an interval of size [wjump] for vreset ≤ v ≤ vpeak
and thus after multiplying by ρV (v, t) and integrating with respect to v, we have:

〈w|vpeak〉 ≤ 〈w〉 ≤ 〈w|vpeak〉+ wjump. (79)

Thus, the approximation 〈w|v〉 = 〈w〉 is valid so long as 〈w|v〉 is bounded to the wjump interval and wjump

is small, as both the conditioned and unconditioned moments lie in the same wjump sized interval. This is
shown in Figure 3. It is most apparent in the tonic firing regime shown in Figure 3a.

When many of the neurons are quiescent, the boundary condition for the first order moment closure
system analogous to (9) is difficult to observe numerically as, for a finite network with noise, very few of
the neurons are firing. We have found numerically, however, that in these regimes, the bounds on 〈w|v〉
still hold as 〈w|vreset〉 < 〈w|vpeak〉 + wjump, and in fact the interval boundary on the conditional moment
is significantly smaller than wjump. This is due to the fact that when I < I∗(s, 〈w〉), many of the neurons
are synchronized around the same stable pseudo-equilibrium in the voltage. This is shown for example in
Figure 3d where the bulk of the neurons are contained in the interval [0.33, 0.365] at t = 200. Effectively,
the neurons are synchronized around v−(s, 〈w〉) aside from a small amount of noise induced firing. In this
situation, first order moment closure contributes even less to the error in these regions.
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Figure 1: Numerical simulation of a network of 1000 all-to-all excitatory coupled Izhikevich neurons with
white noise currents using the intrinsically bursting parameter set (IB) in Table 1. Other parameter values
are g = 1.111, I = 0.035, and σ = 0.04. (a) Voltage traces for 10 randomly selected neurons. (b) Network
average adaptation and synaptic activity. The synchronous bursting is induced by the noise as the mean-
current level is below rheobase.
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(c) A close up of the convergence of the density ρV (v;σ) as σ → 0 near vpeak

Figure 2: (a) A coupled network of 50,000 Izhikevich neurons was simulated until steady state and the steady
state density ρV (v;σ) was determined by using a normalized histogram. (b) The solution for the steady-state
density was found analytically using eq. (46). (c) The nature of the convergence of the density ρ(v;σ) to
ρ0(v), the analytical solution to the steady-state density without noise. The density function ρ(v;σ) only
converges pointwise to ρ0(v) on [vreset, vpeak), with the derivative becoming unbounded at v = vpeak. The
parameters are the rapid spiking (RS) parameter set in Table 1., with g, I chosen such that the steady state
of the network was tonic firing. 22
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(d) 〈w|v〉 at t = 150.

Figure 3: The first conditional moment 〈w|v〉 is computed by sorting the wi as a increasing function of vi
and then averaging locally the vi and wi. A network of 50,000 neurons was simulated using the chattering
neuron (CH) parameter sets in Table 1 in either the tonic firing (a)-(b) (g = 0.33, I = 0.29, σ = 0.05) or the
bursting regions (c)-(d) (g = 0.33, I = 0.11, σ = 0.05). Note that 〈w|vpeak〉+wjump is plotted at v = vreset
(black dot in (b),(d)) to demonstrate the validity of the boundary condition in the tonic firing region. The
red line is 〈w〉. In both the tonic firing and bursting regions, 〈w|v〉 is a monotonically decreasing function
of v with a narrow range. When the network is bursting, 〈w|vreset〉 = 〈w|vpeak〉 + wjump during the active
portion of the bursts, and 〈w|vreset〉 < 〈w|vpeak〉+ wjump during the quiescent periods.
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(c) Izhikevich Model, CH Parameters
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Figure 4: Comparison of direct numerical simulations of large coupled networks of Izhikevich neurons with
noise, the mean field system and the moment closure PDE system. The direct simulations are shown in
blue, while the mean-field system is shown in red, and the first order moment closure PDE is shown in
green. (a),(c) Network mean variables; (b),(d) order parameter as defined in eq. (50). The PDE system has
substantially less frequency error than the mean-field system and gives a better representation of the amount
of synchronization in the network. The parameter sets are those of an intrinsically bursting neuron (a),(b)
and a chattering neuron (c),(d). The values can be found in table 1. The standard deviation for the noise
is σ = 0.02 for the intrinsically bursting network, and σ = 0.014 for the chattering neuron network with the
other parameters being g = 0.33, I = 0.037 and g = 0.56 and I = 0.055, respectively.
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(b) Order Parameter, k-switching
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Figure 5: Comparison of direct simulations of large coupled networks of networks of Izhikevich neurons
with noise, the mean field system and the moment closure PDE. (a) the model with k-switching, defined by
eq. (52), to accurately represent spike half-widths. (c) the model for fast spiking interneurons which has
nonlinear w dynamics given by eq. (51). The standard deviation of the noise noise is σ = 0.1 for the fast
spiking network, with g = 1.81 and I = 0.0661 with the parameter vb = 0. For the k-switching network,
the parameter values used were σ = 0.032, I = 0.0189, g = 0.7692 in addition to kmin = 0.03. The other
parameters can be found in Table 1 The direct simulations are shown in blue, while the mean-field system
is shown in red, and the first order moment closure PDE is shown in green. As with the plain Izhikevich
model, the PDE has substantially less frequency error than the mean-field system. The order parameter for
the networks, as defined by (50), is shown in (b), (d). While not perfect, the moment-closure reduced PDE
provides substantially more information about network synchrony than the mean-field system.
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Figure 6: Two parameter bifurcation diagram, generated with various methods, for a noisy network of
Izhikevich neurons with the parameter sets of (a) the chattering neuron and (b) the intrinsically bursting
neuron. (See columns CH and IB in Table 1 for parameter values.) Magenta curves: A network of 2000
neurons was simulated over a two parameter mesh in the (g, I) parameter space for various σ (see labels).
The network was classified as bursting or non-bursting by using a peak finding algorithm on s(t) and 〈w〉,
computed by averaging wi(t) over the network. A spline boundary was then fit to the bursting region
manually. Thick coloured dots: MATCONT was used to numerically continue the Hopf bifurcation curve
(see Appendix B). There are two Bautin bifurcation points for networks with noise that separate the two-
parameter Hopf curve into subcritical (red dots) and supercritical (blue dots) branches. The noiseless network
only contains a subcritical branch of Hopf bifurcations. Black dotted lines: The Real λ = 0 contour generated
by eqs. (66)-(71) and eqs. (61)–(62) was used to estimate the bursting region. The σ = 0 case was omitted
for reasons outlined in the text.
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