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EPIDEMIC OUTBREAKS IN NETWORKS WITH EQUITABLE OR

ALMOST-EQUITABLE PARTITIONS ∗

S. BONACCORSI∗, S. OTTAVIANO∗† , D. MUGNOLO‡ , AND F. DE PELLEGRINI †

Abstract. We study the diffusion of epidemics on networks that are partitioned into local com-
munities. The gross structure of hierarchical networks of this kind can be described by a quotient

graph. The rationale of this approach is that individuals infect those belonging to the same commu-
nity with higher probability than individuals in other communities. In community models the nodal
infection probability is thus expected to depend mainly on the interaction of a few, large intercon-
nected clusters. In this work, we describe the epidemic process as a continuous-time individual-based
susceptible–infected–susceptible (SIS) model using a first-order mean-field approximation.

A key feature of our model is that the spectral radius of this smaller quotient graph (which
only captures the macroscopic structure of the community network) is all we need to know in order
to decide whether the overall healthy-state defines a globally asymptotically stable or an unstable
equilibrium. Indeed, the spectral radius is related to the epidemic threshold of the system.

Moreover we prove that, above the threshold, another steady-state exists that can be computed
using a lower-dimensional dynamical system associated with the evolution of the process on the
quotient graph. Our investigations are based on the graph-theoretical notion of equitable partition

and of its recent and rather flexible generalization, that of almost equitable partition.

Key words. susceptible-infected-susceptible model, hierarchical networks, graph spectra, equi-
table and almost equitable partitions

AMS subject classifications.

1. Introduction. Metapopulation models of epidemics consider the entire pop-
ulation partitioned into communities (also called households, clusters or subgraphs).
Such models assume that each community shares a common environment or is defined
by a specific relationship (see, e.g., [1, 2, 3]).

Several authors also account for the effect of migration between communities
[4, 5]. Conversely, the model we are interested in suits better the diffusion of computer
viruses or stable social communities, which do not change during the infection period;
hence we do not consider migration.

In this work, we study the diffusion of epidemics over an undirected graph G =
(V,E) with edge set E and node set V . The order of G, denoted N , is the cardinality
of V , whereas the size of G is the cardinality of E, denoted L. Connectivity of the
graph G is conveniently encoded in the N×N adjacency matrix A. We are interested
in the case of networks that can be naturally partitioned into n communities: they
are represented by a node set partition π = {V1, ..., Vn}, i.e., a sequence of mutually
disjoint nonempty subsets of V , called cells, whose union is V .

The epidemic model adopted in the rest of the paper is a continuous-time Marko-
vian individual-based susceptible–infected–susceptible (SIS) model. In the SIS model
a node can be repeatedly infected, recover and yet be infected again. The viral state
of a node i, at time t, is thus described by a Bernoulli random variable Xi(t), where
we set Xi(t) = 0 if i is healthy and Xi(t) = 1 if i is infected. Every node at time t
is either infected with probability pi(t) = P(Xi(t) = 1) or healthy (but susceptible)
with probability 1 − pi(t) = P(Xi(t) = 0). Each node becomes infected following a
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2 Epidemic Outbreaks in Networks with Equitable or Almost-Equitable Partitions

Poisson process with rate β. Also, i recovers following a Poisson process with rate δ.
We further assume that infection and curing processes are independent [6]. The ratio
τ = β/δ is called the effective spreading rate.

Recently, also non Markovian types of epidemic spread were introduced in the lit-
erature, by choosing other than the exponential interaction time for infection and/or
curing (see for instance [7, 8]). However, this seems to complicate the analysis con-
siderably and it is beyond the scope of this work.

Compared to the homogeneous case where the infection rate is the same for all
pairs of nodes, in our model we consider two infection rates: the intra-community in-
fection rate β for infecting individuals in the same community and the inter-community
infection rate εβ i.e., the rate at which individuals among different communities get
infected. We assume 0 < ε < 1, the customary physical interpretation being that
infection across communities occur at a much smaller rate. Clearly the model can be
extended to the case ε ≥ 1.

Further models where the epidemic process within communities is faster compared
to the rate at which it spreads across communities, have been studied in literature
[9, 10, 11, 12].

As described in [6, 13], the SIS process developing on a graph with N nodes
is modeled as a continuous-time Markov process with 2N states. The dynamics of
the nodal infection probability is obtained by the corresponding Kolmogorov differ-
ential equations, but the resulting dynamical system consists of 2N linear differential
equations, not a viable approach for large networks. Hence, often, an approxima-
tion of the SIS process is needed. In this work we consider the first-order mean-field
approximation NIMFA, proposed by Van Mieghem et al. in [6, 14, 15].

NIMFA replaces the original 2N linear differential equations by N non-linear dif-
ferential equations; they represent the time-change of the infection probability of a
node. As typical in first-order approximations of SIS dynamics, the only approxima-
tion required by NIMFA is that the infectious state of two nodes in the network are
uncorrelated, i.e., E [Xi(t)Xj(t)] = E [Xi(t)] E [Xj(t)].

1.1. Long-term prediction and epidemic threshold. For a network with
finite order N , the exact SIS Markov process will always converge towards its unique
absorbing state, that is the zero-state where all nodes are healthy. The other states
form a transient class, from which one can reach the zero-state with positive proba-
bility. Because transitions from the zero-state have zero probability∗ the stochastic
model predicts that the virus will disappear from the network [16].

However the waiting time to absorption is a random variable whose distribution
depends on the initial state of the system, and on the parameters of the model [17, 18].
In fact there is a critical value τc of the effective spreading rate τ = β/δ, whereby if
τ > τc the time to absorption grows exponentially in N , while for τ < τc the infection
vanishes exponentially fast in time. The critical value τc is often called the epidemic

threshold [6, 19, 20, 21].

Thus above the threshold, a typical realization of the epidemic process may experi-
ence a very long waiting time before absorption to the zero-state. During such waiting
time, the so-called quasi-stationary distribution can be used in order to approximate
the probability distribution of occupancy of the system’s states. The quasi-stationary
distribution is obtained by conditioning on the fact that there is no extinction [17, 18].

∗Some models, as, e.g., the ε-SIS model [13], include the possibility of a nodal self-infection, thus
making the whole process irreducible.
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The quasi-stationary distribution can be regarded as the limiting conditional distri-
bution, useful in representing the long-term behavior of the process “that in some
sense terminates, but appears to be stationary over any reasonable time scale”[23].

In fact, numerical simulations of SIS processes also reveal that, already for rea-
sonably small networks (N ≥ 100) and when τ > τc, the overall-healthy state is
only reached after an unrealistically long time. Hence, the indication of the model is
that, in the case of real networks, one should expect that the extinction of epidemics
is hardly ever attained [22, 24]. For this reason the literature is mainly concerned
with establishing the value of the epidemic threshold, being a key parameter behind
immunization strategies related to the network protection against viral infection.

For an SIS process on graphs, τc depends on the spectral radius λ1(A) of the
adjacency matrix A [25, 6]. NIMFA determines the epidemic threshold for the effective

spreading rate as τ
(1)
c = 1

λ1(A) , where the superscript (1) refers to the first-order mean-

field approximation [6, 31]. Farther, in Thm. 2.1, we shall study the asymptotic
behavior of the solutions of the NIMFA system, both above and below the threshold.

We observe that, with respect to the exact Markovian SIS model, the state of
nodes was recently proved to be not negatively correlated [27]. It is hence possible
to prove that, due to the assumption of independence, NIMFA yields an upper bound
for the probability of infection of each node, as well as a lower bound for the epidemic

threshold, i.e., τc = ατ
(1)
c with α ≥ 1.

From the application standpoint, a key issue is to determine for which networks of
given order NIMFA performs worst, meaning that α = τc

τ
(1)
c

is largest. To this respect,

further efforts have been made to satisfactorily quantify the accuracy of the model
[28].

Finally, when τ > τ
(1)
c , a limiting occupancy probability appears as the second

constant solution† of the NIMFA non-linear system which exists, apart from the zero-
vector solution. Such non-zero steady-state reflects well the observed viral behavior
[14]: it can be seen as the analogous of the quasi-stationary distribution of the exact
stochastic SIS model.

1.2. Outline and main results. As already observed in [9], the presence of
communities generates a strong mixing effect at local level (e.g., the rate of infection
inside a community tends to be homogeneous) as opposed to the much lower speed
of mixing (i.e., much larger inhomogeneity) within the whole population. In [9] a
complete graph represents the internal structure of each community. Such assumption
appears natural for small community orders, for example, because the members of a
small community usually know each other, as they may be friends, relatives, members
of a common club, employees of the same department, etc. Moreover, given two
connected communities, all of their nodes are mutually linked.

In this work, instead, we allow for the case of sparser community structures. More
precisely we consider an equitable partition of the graph. First of all this means that all
nodes belonging to the same community have the same internal degree: formally the
subgraph Gi of G(V,E) induced by Vi is regular for all i’s (recall that π = {V1, ..., Vn}
is a partition of the node set V , which is assumed to be given a priori). Furthermore,
for any two subgraphs Gi, Gj , each node in Gi is connected with the same number of
nodes in Gj .

†We remember that all bounded trajectories of an autonomous first-order differential equation
tend to an equilibrium, i.e., to a constant solution of the equation.
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Fig. 1: A sample graph with equitable partition V =
{{v1}, {v2, v3}, {v3, v4, v5, v6}, {v7, v8, v9, v10, v11, v12, v13}}.

The macroscopic structure of such a network can be described by the quotient
graph G/π, an oriented graph (possibly) featuring loops and multiple edges. The
nodes of the quotient graph are the cells V1, . . . , Vn in G. In the last part of the work
we extend our study to the case of almost equitable partitions that does not require
any specific structural condition inside each Gi.

Such network structure can be observed, e.g., in the architecture of some com-
puter networks where clusters of clients connect to single routers, whereas the routers’
network has a connectivity structure with nodes’ degree constrained by the number
of ports. Also, graphs representing multi-layer networks may be characterized using
equitable and almost equitable partitions [29].

In Sec. 2 we describe the NIMFA differential equations and provide an analysis of

the global dynamics that allows us to identify the epidemic threshold τ
(1)
c . In Sec. 3,

after defining equitable partitions, we introduce the so-called quotient matrix Q that
is related to G/π. Since matrix Q has the same spectral radius of adjacency matrix A,

a novel expression is found for the bound on the epidemic threshold τ
(1)
c as a function

of network metrics. Thus, a relation between the epidemic threshold and the spectral
properties of the corresponding quotient matrix is obtained.

In Sec. 4 we show under which conditions the matrix Q can be used in order to
express the whole epidemic dynamics by a system of n equations instead of N , where
n < N . We prove the existence of a positively invariant set for the original system
of N differential equations that contains the equilibrium points. Moreover we show
that, above the threshold, when a second non-zero equilibrium point appears, we can
use the reduced system for its computation.

In Sec. 5 we finally extend our investigations to the case of almost equitable
partitions. We consider the special case of almost equitable partitions obtained by
perturbing an equitable one, i.e., by adding/deleting a certain set of edges from an
equitable partition. Thus, we relax the assumption that the internal structure of each
community is regular. Even in this case we obtain a lower bound for the epidemic
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threshold.

2. The epidemic model. The NIMFA model describes the process of diffusion
of epidemics on a graph by expressing the time-change of the probability pi that node
i is infected.

Thus, node i obeys a following differential equation [6]

(2.1)
dpi(t)

dt
= (1− pi(t))β




N∑

j=1

aijpj(t)


 − δpi(t), i = 1, . . . , N.

In (2.1) the time-derivative of the infection probability of node i consists of two
competing processes:

1. while healthy with probability 1−pi(t), all infected neighbors, whose average

number is
∑N

j=1 aijpj(t), infect node i at rate β.
2. while node i is infected with probability pi(t), it is cured at rate δ.

The following matrix representation of (2.1) holds

(2.2)
dP (t)

dt
= βAP (t) − diag(pi(t))(βAP (t) + δu),

where P (t) = ( p1(t) p2(t) . . . pN (t) )T , diag(pi(t)) is the diagonal matrix with elements
p1(t), p2(t), . . . , pN(t) and u is the all-one vector. From (2.2), considering P (t) =
diag(pi(t))u, we can write

dP (t)

dt
= βAP (t)− δ diag(pi(t))u − diag(pi(t))βAP (t)

= (βA− δI)P (t)− β diag(pi(t))AP (t).(2.3)

Clearly we study the system for (p1, . . . , pN) ∈ IN = [0, 1]N . It can be shown that
the system (2.3) is positively invariant in IN , i.e. if P (0) ∈ IN then P (t) ∈ IN for all
t > 0 [33, Lemma 3.1].

The analysis of the global dynamics of (2.3) leads to identify the epidemic thresh-

old τ
(1)
c in terms of the effective spreading rate τ = β/δ where, as mentioned in Sec.

1.1,

(2.4) τ (1)c =
1

λ1(A)
,

with λ1(A) spectral radius of A. This critical value separates the absorbing phase
from the endemic phase. We shall prove this, in Thm 2.1, by studying the stability
of the equilibrium points of (2.3), that are solutions of the equation

(2.5) P =
β

δ
(I − diag(pi))AP.

To this aim we shall adapt the results in [33] to our individual-based SIS model. Let us
denote by f the right hand side of (2.3), i.e., (2.3) can be re-written as a vector-valued
differential equation

(2.6)
dP

dt
= f(P ),
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where f : [0, 1]N → RN is a C∞ function. Let P0 = 0 be the vector of all zero
components, one can easily check that P0 is an equilibrium point of the system (2.6),
i.e. f(P0) = 0. Also, the following holds

Theorem 2.1. If τ ≤ 1/λ1(A) then P0 is a globally asymptotically stable equi-
librium of (2.3).
If τ > 1/λ1(A), P0 is unstable and there exists another equilibrium point P∞ that is
globally asymptotically stable in IN − {0}.

Proof. We can rewrite the system (2.6) in the following form (see [32, p. 108])

(2.7) Ṗ = DfP + F (P ),

where Df is the Jacobian matrix of f at P0 and F (P ) is a column vector whose i-th

component is −β
∑N

j=1 aijpipj .
From (2.3) we have

(Df(P0))ij =

{
βaij i 6= j

−δ i = j

that is Df = βA− δI. Since adjacency matrix A is real and symmetric its eigenvalues
are real. Hence, the eigenvalues of Df are real as well and of the form

λi(Df ) = βλi(A) − δ.

In particular, let λ1(Df ) = maxi λi(Df ), since the spectral radius of A is positive we
have

λ1(Df ) = βλ1(A)− δ.

Now we can apply [33, Thm. 3.1] to the system (2.7) and assert that when λ1(Df ) ≤ 0,
i.e., τ ≤ 1/λ1(A), P0 is a globally asymptotically stable equilibrium of (2.3).

Conversely, if λ1(Df ) > 0, i.e. τ > 1/λ1(A), there exists another equilibrium
point P∞. P0 and P∞ are the only equilibrium points in IN and P∞ is globally
asymptotically stable in IN − {0}.

Finally, since τ > 1/λ1(A), we have λ1(Df ) > 0. From Lyapunov’s Linearization
(or First) Method, it follows that P0 is an unstable equilibrium point in IN .

3. Equitable Partitions. In this section we describe the SIS individual-based
model for graphs with equitable partitions. The original definition of equitable parti-
tion is due to Schwenk [30].

Definition 3.1. Let G = (V,E) be a graph. The partition π = {V1, ..., Vn} of
the node set V is called equitable if for all i, j ∈ {1, . . . , n}, there is an integer dij
such that

dij = deg(v, Vj) := # {e ∈ E : e = {v, w} , w ∈ Vj} .

independently of v ∈ Vi.
We shall identify the set of all nodes in Vi with the i-th community of the whole

population. In particular, each Vi induces a subgraph of G that is necessarily regular.
Remark 1. We use the notation lcm and gcd to denote the least common multiple

and greatest common divisor, respectively. We can observe that the partition of a graph
is equitable if and only if

dij = α
lcm(ki, kj)

ki
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where α is an integer satisfying 1 ≤ α ≤ gcd(ki, kj) and ki the number of nodes in Vi,
for all i = 1, ..., n.

An equitable partition generates the quotient graph G/π, which is a multigraph
with cells as vertices and dij edges between Vi and Vj . For the sake of explanation,
in the following we will identify G/π with the (simple) graph having the same cells
vertex set, and where an edge exists between Vi and Vj if at least one exists in the
original multigraph. We shall denote by B the adjacency matrix of the graph G/π.

Remark 2. In [9] it has been considered the special case when each community
has a clique structure, i.e, dii = ki−1 for all i = 1, ..., n. Moreover all nodes belonging
to two linked communities i and j are connected, dij = kj. By considering the theory
of equitable partition, we generalize the cited work and consider any kind of regular
graph to represent the internal structure of each community. Moreover, unlike before,
if two communities i and j are connected, each node in community i is connected with
dij ≤ kj nodes in community j.

3.1. Example. Let us assume that the adjacency matrix B of the quotient graph
is given and that, for any i, j ∈ {1, . . . , n}, bij 6= 0 implies dij = kj , i.e., each node in Vi

is connected with every node inside Vj . We can explicitly write the adjacency matrix
A in a block form. Let CVi = (cij)ki×ki be the adjacency matrix of the subgraph
induced by Vi and Jki×kj is an all ones ki × kj matrix; then

(3.1) A =




CV1 εJk1×k2b12 . . εJk1×knb1n
εJk2×k1b21 CV2 . . εJk2×knb2n

. . . . .

. . . . .

. . . . CVn




We observe that (3.1) represents a block-weighted version of the adjacency matrix
A. The derivation of NIMFA for the case of two different infection rates, considered
in this paper, results in the replacement of the unweighted adjacency matrix in the
NIMFA system (2.3) with its weighted version (see [26] for a deeper explanation).

3.2. The quotient matrix. We search for a smaller matrix Q that contains the
relevant information for the evolution of the system. Such a matrix is the quotient
matrix of the equitable partition. In Prop. 3.3 we will see that Q and A have the
same spectral radii. As a consequence, we can compute its spectral radius in order to
estimate the epidemic threshold, instead of computing the spectral radius of matrix
A.

The quotient matrix Q can be defined for any equitable partition: in view of the
internal structure of a graph with an equitable partition, it is natural to consider the
cell-wise average value of a function on the node set, that is to say the projection of
the node space into the subspace of cell-wise constant functions.

Definition 3.2. Let G = (V,E) a graph. Let π = {Vi, i = 1, . . . , n} be any
partition of the node set V , let us consider the n×N matrix S = (siv), where

siv =

{
1√
|Vi|

v ∈ Vi

0 otherwise.

The quotient matrix of G (with respect to the given partition) is

Q := SAST .
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Observe that by definition SST = I.
In the case of the example in Sec. 3.1 the form of Q is rather simple:

qii =

ki∑

h=1

(
1√
ki

)2 ki∑

k=1

(CVi)kh =
1

ki

ki∑

h,k=1

(CVi)kh

and

qij =
1√
kikj

∑

z∈Vi,l∈Vj

azl =
√
kikjεbij .

Hence we obtain that

Q = diag(dii) + (
√
kikjεbij)i,j=1,...n,

where dii =
1
ki

∑ki

h,k=1(CVi)kh is the internal degree of the subgraph induced by Vi.
In the case of general equitable partitions, the expression for Q writes

Q = diag(dii) + (
√
dijdjiεbij)i,j=1,...n.

There exists a close relationship between the spectral properties of Q and that
of A. Being the order of Q smaller of that of A, a result in [35] basically shows that
σ(Q) ⊆ σ(A), where with σ(A) we refer, hereafter, to the spectrum of a square matrix
A. Furthermore it holds the following

Proposition 3.3. Let G = (V,E) a graph. Let π = {Vi, i = 1, . . . , n} be an
equitable partition of the node set V . The adjacency matrix A and the quotient matrix
Q have the same spectral radius, i.e.

λ1(Q) = λ1(A).

Proof. See [36, art. 62].

3.3. Complexity reduction. Prop. 3.3 further details that, once the network
structure is encoded in the connectivity of a quotient graph Q, then the epidemic

threshold τ
(1)
c is expressed by the spectral radius of Q.

Now, since the order of Q is smaller than the order of A, this can provide a
computational advantage. The complexity reduction can be evaluated easily, e.g, in
the case of the power iteration method [34]. The power iteration method is a numerical
technique for approximating a dominant eigenpair of a diagonalizable matrix L, using
the following iteration

yh = Lyh−1, h = 1, 2, . . .

for a given initial vector y0. As the iteration step h increases, yh approaches a vector
which is proportional to a dominant eigenvector of L. If we order the eigenvalues of
L such as as |λ1(L)| ≥ |λ2(L)| ≥ . . . ≥ |λn(L)|, the rate of convergence of the method
is ruled by |λ2(L)|/|λ1(L)|.

In our case, for the Perron-Frobenius Theorem the dominant eigenvalue λ1(A)
is positive and by Prop. 3.3, λ1(A) = λ1(Q). Furthermore σ(Q) ⊆ σ(A), hence
maxi≥2 |λi(A)| ≥ maxi≥2 |λi(Q)|: this means that the convergence of power iteration
for matrix Q is never slower than for matrix A. Finally, it is immediate that at each
step the computational complexity is O(n2) for Q whereas for A it is O(N2).
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Fig. 2: Lower bound (3.3) versus epidemic threshold: comparison for different values of k in
a 40-communities network. The internal structure of each community is a ring and dij = 2
for all i, j = 1, . . . , n.

3.4. A lower bound for τ
(1)
c . We can write Q = D + B̂, where D = diag(dii)

and B̂ = (
√

dijdjiεbij)i,j=1,...n. By the Weyl’s theorem [34] we have

(3.2) λ1(Q) ≤ λ1(D) + λ1(B̂) = max
1≤i≤n

dii + λ1(B̂).

From (2.4) and by Proposition 3.3

τ (1)c = 1/λ1(A) = 1/λ1(Q),

thus a lower bound for the epidemic threshold can be derived from (3.2)

(3.3) τ (1)c ≥ τ⋆ = min
i

1

dii + λ1(B̂)
,

In applications, when designing or controlling a network, this value can be adopted
to determine a safety region {τ ≤ τ⋆} for the effective spreading rate that guarantees
the extinction of epidemics.

Fig. 2 reports on the comparison of the lower bound and the actual threshold
value: it refers to the case of a sample equitable partition composed of interconnected
rings for increasing values of the community order.

We observe that obtaining a lower bound for τ
(1)
c is meaningful because τ

(1)
c is

itself a lower bound for the epidemic threshold τc of the exact stochastic model, i.e.

τc = ατ
(1)
c with α ≥ 1, as anticipated in Sec. 1.1. In fact, smaller values of the effective

spreading rate τ , namely δ > β/τ
(1)
c , correspond, in the exact stochastic model, to

a region where the decay towards the healthy state decreases exponentially fast in
time. By forcing the effective spreading rate below τ∗, one ensures that the epidemic
will go extinct in a reasonable time frame (we recall that, above the threshold, the
overall-healthy state is only reached after an unrealistically long time.).
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Equality can be attained in (3.3): consider for instance the graph described by
the adjacency matrix A in (3.1). Furthermore, we may require that all Vi’s have the
same number of nodes ki = k and same internal degree dii = d, i = 1, . . . , n. In this
case Q = d Idn + B̂, where B̂ := (kεbij)i,j=1,...n, and

λ1(Q) = d+ kελ1(B),

which is the exact value of λ1(A) and consequently of τ
(1)
c .

4. Infection Dynamics for Equitable Partitions. In this section we show
under which conditions matrix Q can be used in order to express the epidemic dy-
namics introduced in (2.3). This allows us to describe the time-change of the infection
probabilities by a system of n differential equations instead of N .

Theorem 4.1. Let G = (V,E) a graph and π = {Vj , j = 1, . . . , n} an equitable
partition of the node set V . Let Gj be the subgraph of G = (V,E) induced by cell
Vj. If ph(0) = pw(0) for all h,w ∈ Gj and for all j = 1, . . . , n, then ph(t) = pw(t)
for all t > 0. In this case we can reduce the number of equations representing the
time-change of infection probabilities using the quotient matrix Q.

Proof. Let pj(t) =
1
kj

∑
h∈Gj

ph(t) be the average value of the infection probabil-

ities at time t of nodes in Gj . Then starting from (2.3), we can write a new system
of differential equations

d
(
ph(t)− pj(t)

)

dt
= −δ(ph(t)− pj(t)) + β(1− ph(t))

N∑

z=1

ahzpz(t)

− 1

kj
β
∑

l∈Gj

(1− pl(t))

N∑

z=1

alzpz(t), ∀h ∈ Gj , j = 1, . . . , n.(4.1)

From (4.1) we have

d
(
ph(t)− pj(t)

)

dt
= −δ(ph(t)− pj(t)) + β




n∑

m=1

∑

z∈Gm

ahzpz(t)−
1

kj

∑

l∈Gj

n∑

m=1

∑

z∈Gm

alzpz(t)




− β


ph(t)

n∑

m=1

∑

z∈Gm

ahzpz(t)−
1

kj

∑

l∈Gj

pl(t)

n∑

m=1

∑

z∈Gm

alzpz(t)


 ,

that can be written as

d
(
ph(t)− pj(t)

)

dt
= −δ(ph(t)− pj(t)) + β


 1

kj

∑

l∈Gj

n∑

m=1

∑

z∈Gm

(ahz − alz) pz(t)




− β
1

kj

∑

l∈Gj

n∑

m=1

∑

z∈Gm

(ahzph(t)− alzpl(t)) (pz(t)− pm(t))

− β
1

kj



∑

l∈Gj

n∑

m=1

∑

z∈Gm

(ahzph(t)− alzpl(t))


 pm(t).
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Whence, since
∑

z∈Gm
ahz = djm, for h ∈ Gj and for all m = 1, . . . , n, we have

d
(
ph(t)− pj(t)

)

dt
= −

[
n∑

m=1

βdjmpm(t) + δ

]
(ph(t)− pj(t))(4.2)

+ β
1

kj

∑

l∈Gj

n∑

m=1

∑

z∈Gm

(ahz − alz) pz(t)

− β
1

kj

∑

l∈Gj

n∑

m=1

∑

z∈Gm

(ahzph(t)− alzpl(t)) (pz(t)− pm(t)).

Now, we note that

− 1

kj

∑

l∈Gj

n∑

m=1

∑

z∈Gm

(ahzph(t)− alzpl(t)) (pz(t)− pm(t))

can be written as

− 1

kj

∑

l∈Gj

n∑

m=1

∑

z∈Gm

(
(ph(t)− pj(t))ahz − (pl(t)− pj(t))alz

)
(pz(t)− pm(t))

− 1

kj

∑

l∈Gj

n∑

m=1

∑

z∈Gm

pj(t)(ahz − alz) (pz(t)− pm(t)) ,

whence we can rewrite (4.2) as

d
(
ph(t)− pj(t)

)

dt
= −

[
n∑

m=1

βdjmpm(t) + δ

]
(ph(t)− pj(t))

+ β
1

kj

∑

l∈Gj

n∑

m=1

∑

z∈Gm

(ahz − alz) (pz(t)− pm(t) + pm(t))

− β
1

kj

∑

l∈Gj

n∑

m=1

∑

z∈Gm

(
(ph(t)− pj(t))ahz − (pl(t)− pj(t))alz

)
(pz(t)− pm(t))

− β
1

kj

∑

l∈Gj

n∑

m=1

∑

z∈Gm

pj(t)(ahz − alz) (pz(t)− pm(t)) .

Finally, since 1
kj

∑
l∈Gj

∑n
m=1

∑
z∈Gm

(ahz − alz) pm(t) = 0, we can consider the fol-

lowing system

d
(
ph(t)− pj(t)

)

dt
= −

[
n∑

m=1

βdjmpm(t)− δ

]
(ph(t)− pj(t))

+β
1

kj

∑

l∈Gj

n∑

m=1

∑

z∈Gm

(ahz − alz)(pz(t)− pm(t))(1 − pj(t))

−β
1

kj

∑

l∈Gj

n∑

m=1

∑

z∈Gm

((ph(t)− pj(t))ahz − (pl(t)− pj(t))alz)(pz(t)− pm(t)),

∀h ∈ Gj , j = 1, . . . , n
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Now let us denote by g(t) the solution of (4.1), where g : R → RN and consider
the case where

(4.3) ph(0)− pj(0) = 0, ∀h ∈ Gj , j = 1, . . . , n,

i.e., ph(0) = pw(0) for all h,w ∈ Gj . Then, from (4.3), we can easily see that the
identically zero function g ≡ 0 is the unique solution of (4.1) with initial conditions
(4.3). Indeed g ≡ 0 means that for all t ≥ 0, ph(t) = pw(t) for all h,w ∈ Gj ,
j = 1, . . . , n. Moreover the vector P (t) such that ph(t) = pw(t) for all h,w ∈ Gj ,
j = 1, . . . , n, is a solution of (2.3) and it is unique in [0, 1]N with respect to the initial
conditions (4.3), [32, Cap. 2, Sec. 2.2]. Thus we can conclude that also g = 0 is a
unique solution of (4.1) in [−1, 1]N .

Basically we have shown that the following subset of IN

M =
{
P ∈ [0, 1]N |p1 = . . . = pk1 = p1, pk1+1 = . . . = pk1+k2 = p2,

. . . , p(k1+..kn−1+1) = . . . = pN = pn
}

is a positively invariant set for the system (2.3). This allows us to reduce the sys-
tem (2.3) of N differential equations and describe the time-change of the infection
probabilities by a system of n equations involving the matrix Q.

Indeed, let us consider P (0) ∈ M and P = (p1, . . . , pn), we can write

dpj(t)

dt
= β(1− pj(t))

n∑

m=1

εbjmdjmpm(t)(4.4)

+ βdj(1− pj(t))pj(t)− δpj(t), j = 1, . . . , n

Hence, based on Thm. 2.1 in [35], we observe that

qij = (kj/ki)
1/2dji,

This relation in our case brings

djm =

(
kj
km

)−1/2
qmj

ε
=

(
kj
km

)−1/2
qjm
ε

,

where the last equality holds because Q is symmetric. We can rewrite (4.4) as

dpj(t)

dt
= β(1 − pj(t))

n∑

m=1,m 6=j

(
kj
km

)−1/2

qjmpm(t)

+βqjj(1 − pj(t))pj(t)− δpj(t); j = 1, . . . , n(4.5)

where qjj = djj = λ1(CVj ). The matrix representation of (4.5) is the following

(4.6)
dP (t)

dt
= β

(
In − diag(pj(t))

)
Q̃P (t)− δP (t),

where Q̃ = diag

(
1√
kj

)
Q diag(

√
kj). It is immediate to observe that σ(Q) = σ(Q̃).

Corollary 4.2. When τ > τ
(1)
c the non-zero steady-state P∞ of the system

(2.3) belongs to M − {0}.
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Proof. In Theorem 2.1 we have shown that when τ > τ
(1)
c , the system (2.3) has a

globally asymptotically stable equilibrium P∞ in IN −{0}; hence for any initial state
P (0) ∈ IN − {0}

lim
t→∞

||P (t)− P∞|| = 0.

We have proved in Thm. 4.1 that if P (0) ∈ M then P (t) ∈ M for all t > 0, thus we

can conclude that P∞ must be in M − {0} when τ > τ
(1)
c .

Basically, Corollary 4.2 says that one can compute the n × 1 vector, P∞, of
the reduced system (4.6) in order to obtain the N × 1 vector, P∞, of (2.3): indeed
pz∞, . . . , px∞ = pj∞, for all z, x ∈ Gj and j = 1, . . . , n. This provides a computational
advantage by solving a system of n equations instead of N . Moreover, since P∞ is a
globally asymptotically stable equilibrium in IN−{0}, the trajectories starting outside
M will approach those starting in M − {0}. The same holds clearly for trajectories

starting in IN and in M when τ ≤ τ
(1)
c . Numerical experiments in Fig. 6 depict this

fact.
The statements proved above can be easily verified, with a direct computation, in

the simple case of graphs considered in [9] (see Remark 2). Indeed for all h,w ∈ Gj ,
j = 1, . . . , n, we have

d(ph(t)− pw(t))

dt
=− δ (ph(t)− pw(t)) + β

∑

z /∈Gj

[(1− ph(t))ahz − (1 − pw(t))awz ] pz(t)

+ β
∑

z∈Gj ,z 6=h,w

[(1− ph(t))ahz − (1− pw(t))awz] pz(t)

+ β
∑

z=h,w

[(1− ph(t))ahz − (1− pw(t))awz ] pz(t)(4.7)

Since in this special case ahz = awz, for all z ∈ V s.t. z 6= h, j, we can rewrite (4.7) as

d(ph(t)− pw(t))

dt
= −


δ + β




N∑

z=1,z 6=h,w

ahzpz(t) + 1




 (ph(t)− pw(t)) .

whence

ph(t)− pw(t) = (ph(0)− pw(0)) e
−

∫ t
0
δ+β(

∑N
z=1,z 6=h,w ahzpz(s)+1)ds.

Thus if ph(0) = pw(0) for the uniqueness of solution it will occur ph(t) = pw(t) for all
t > 0, as we have proved in Thm. 4.1, but if the initial conditions are different, the
distance between pw(t) and pz(t) decreases exponentially.

Remark 3. The framework of quotient graphs extends the NIMFA model to
graphs with prescribed community network structure. It reduces to the original NIMFA
model when kj = 1 for all j = 1, .., n.

4.1. Steady-state. We focus now on the computation of the steady-state P∞ =(
pi∞

)
i=1,...,N

of system (2.3). To this aim, by Corollary 4.2, we can compute the

steady-state P∞ =
(
pj∞

)
j=1,...,n

of the reduced system (4.6) and obtain

β(1 − pj∞)

n∑

m=1

(
kj
km

)−1/2

qjmpm∞ − δpj∞ = 0, j = 1, . . . , n
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whence

pj∞ =
β
∑n

m=1

(
kj

km

)−1/2

qjmpm∞

β
∑n

m=1

(
kj

km

)−1/2

qjmpm∞ + δ

= 1− 1

1 + τ
∑n

m=1

(
kj

km

)−1/2

qjmpm∞

= 1− 1

1 + τgj
(
P
)(4.8)

where

gj
(

P
)

:=

(

djj + ε

n
∑

m=1

(

kj
km

)−1/2
√

djmdmj

)

−

n
∑

m=1

(

kj
km

)−1/2

qjm(1− pm∞).

From (4.8) follows that the steady-state infection probability of any node j is
bounded by

(4.9) 0 ≤ pj∞ ≤ 1− 1

1 + τ(djj + ε
∑n

m=1

(
kj

km

)−1/2√
djmdmj)

,

where the inequality holds true because pj∞ ∈ [0, 1] for all j = 1, . . . , n.

By introducing 1− pm∞ = 1

1+τ
∑

n
z=1(

km
kz

)−1/2
qmzpz∞

in (4.8), we can express pj∞

as a continued fraction iterating the formula

xj,s+1 = f(x1;s, .., xn;s) = 1− 1

1 + τgj(x1;s, .., xn;s)
,

As showed in [6], after a few iterations of the formula above, one can obtain a good
approximation of pj∞, with a loss in the accuracy of the calculation around τ = τc.
Ultimately, such numerical estimation can be used to improve the bound in (4.9).

If we consider a regular graph where communities have the same number of nodes,
then

pj∞ = 1−
(
1/τ

(
djj + ε

n∑

m=1

(
kj
km

)−1/2√
djmdmj

))

is the exact solution of (4.8).

Now let rj = djj + ε
∑n

m=1

(
kj

km

)−1/2√
djmdmj and r(1) = minj rj ; relying on

the estimate pj∞ ≈ 1 − (1/τrj) we can express the steady-state average fraction of
infected nodes y∞(τ) = (1/N)

∑n
j=1 kjpj∞(τ) by

(4.10) y∞(τ) ≈ 1− 1

τN

n∑

j=1

kj
1

djj + ε
∑n

m=1

(
kj

km

)−1/2√
djmdmj

.

According to the analysis reported in [6], approximation (4.10) becomes the more
precise the more the difference r(2)− r(1) is small, where r(2) is the second smallest
of the rj ’s. In Sec. 4.3 we report on some related numerical experiments.
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4.2. Examples. In Fig. 1 we provide an example of a graph which has an eq-
uitable partition with respect to V1 = {v1}, V2 = {v2, v3}, V3 = {v3, v4, v5, v6},
V4 = {v7, v8, v9, v10, v11, v12, v13}}.

The corresponding quotient matrix reads

Q =




0 ε
√
2 ε2 0

ε
√
2 1 ε

√
2 ε

√
3

ε2 ε
√
2 2 0

0 ε
√
3 0 3




From (4.6) we have that the steady-state can be computed by

P∞ =
β

δ
(In − diag(p∞)) diag(sj)Q diag(1/sj)P∞,

where sj is the j-th entry of vector s = (1,
√
2, 2,

√
6).

4.3. Numerical experiments. In Figures 3 and 4 we provide a comparison
between the solution of the reduced ODE system (4.6) for the graph in Fig. 1 and the
averaged 50 · 104 sample paths resulting from a discrete event simulation of the exact
SIS process. The discrete event simulation is based on the generation of independent
Poisson processes for both the infection of healthy nodes and the recovery of infected
ones. We observe that, as expected, NIMFA provides an upper bound to the dynamics
of the infection probabilities. Also, in Fig. 3 we observe that the dynamics for the
communities that are initially healthy is characterized by a unique maximum for the
infection probability, which decreases afterwards. The communities initially infected,
conversely, show a monotonic decrease of the infection probability.

Fig. 5 depicts the same comparison in the case of a network with eighty nodes
partitioned into four communities; each community is a complete graph and all nodes
belonging to two linked communities are connected (see Remark 2). The agreement
between NIMFA and simulations improves compared to Fig. 4. This is expected,
because the accuracy of NIMFA is known to increase with network order N , under
the assumption that the nodes’ degree also increases with the number of nodes. Con-
versely, it is less accurate, e.g., in lattice graphs or regular graphs with fixed degree
not depending on N [6, 28].

Fig. 6 depicts the solutions of system (2.3) for each node belonging to V3 in the
graph of Fig. 1; here nodes in V3 have different initial infection probabilities pi(0)’s.
These solutions are compared with the one computed using the reduced system (4.6),
in the case when the initial conditions for those nodes are the same, precisely equal
to the mean value of the pi(0)’s. As expected, trajectories starting outside invariant
set M described in Thm. 4.1 tend to approach the one starting in M as time elapses.
Finally, we report on numerical experiments about the steady-state average fraction
of infected nodes. More precisely, Fig. 7 compares the value obtained by solving the
original system (2.5) and the value obtained from approximation (4.10), as a function
of τ .

In Fig. 8, instead, we have reported on the comparison between the steady-state
average fraction of infected nodes, as function of τ , computed via NIMFA and via
simulations. We consider a graph of regular degree d = 10 and N = 500, whose
communities are clique, each with the same number of elements k. We repeat the
same calculation for different values of k in the communities. As it can be observed,
our model and the exact SIS model are in good agreement and the root mean square
error between them decreases as k increases.
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Fig. 3: Dynamics of infection probabilities for each community of the network in Fig.1:
simulation versus numerical solutions of (4.6); τ = β/δ < τ

(1)
c = 0.3178, with β = 0.29 and

δ = 1, ε = 0.3. At time 0 the only infected node is node 1.
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Fig. 4: Dynamics of infection probabilities for each community of the network in Fig.1:
simulation versus numerical solutions of (4.6); τ = β/δ > τ

(1)
c = 0.3178, with β = 1.5 and

δ = 0.3, ε = 0.3; initial conditions as in Fig. 3.
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Fig. 5: Infection probabilities for each community in a network with N = 80, dii = ki−1 = 19
and dij = 20, for all i, j = 1, .., 4: simulation versus numerical solutions of (4.6); τ = β/δ >

τ
(1)
c = 0.0348, with β = 5 and δ = 2, ε = 0.3; at time 0 all nodes of the 1-st community are
infected.

5. Almost equitable partitions. In this section we consider graphs where
the partition of the vertex set is almost equitable. Thus, we can relax the initial
assumption on the regularity of the internal community structure implied by the
definition of equitable partition.

Definition 5.1. The partition π = {V1, ..., Vn} is called almost equitable if for
all i, j ∈ {1, . . . , n} with i 6= j, there is an integer dij such that for all v ∈ Vi, it holds

dij = deg(v, Vj) := # {e ∈ E : e = {v, w} , w ∈ Vj}

independently of v ∈ Vi.

The difference between equitable and almost equitable partitions is that, in the
former case, subgraph Gi of G induced by Vi has regular structure, whereas the latter
definition does not impose any structural condition into Gi.

Ideally we can think of a network G̃ whose node set has an almost equitable
partition as a network G with equitable partition where links between nodes in one
or more communities have been added or removed.

The objective is to obtain lower bounds on threshold τ
(1)
c , useful in determining a

safety region for the extinction of epidemics. We start assuming that links are added
only.

To this aim, let us consider two graphs G = (V,E) and G̃ = (V, Ẽ) with the
same partition {V1, . . . , Vn}, but different edge sets E  Ẽ, and assume G to have
an equitable partition but G̃ to have merely an almost equitable partition. Then if Ã
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Fig. 6: Comparison between the dynamics of the original system (2.3) for each of the nodes
belonging to V3 in Fig. 1, for different initial conditions and the dynamics of the reduced
system (4.6). In the latter case the initial conditions for each node are the mean value of the
pi(0)s. a) case below the threshold: β = 0.29, δ = 1, ε = 0.3 b) case above the threshold:
β = 1.5, δ = 0.3, ε = 0.3.
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Fig. 7: Steady-state average fraction of infected nodes, for different values of τ : comparison
between the approximation (4.10) and the exact computation (2.5); a) the graph is the one
considered in Fig. 1 and b) the one considered in Fig. 5.

and A are the adjacency matrices of G̃ and G respectively it holds

Ã = A+R,

where R = diag(R1, . . . , Rn); the dimension of Ri is ki × ki for i = 1, ..., n, as before
ki is the order of Gi and n is the number of the communities.

The theorem of Weyl can be applied to Ã = A+R and then it yields

(5.1) λ1(Ã) ≤ λ1(A) + λ1(R).

In the following we shall provide a more explicit formulation of the right hand side of
(5.1) involving the number of added edges.
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square error between the simulated and the approximated fraction of infected nodes.
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Fig. 9: Comparison of the bound and the spectral radius for a 40-communities network. Each
community has k = 25 nodes, whose internal structure is a initially a ring; the perturbation
graph is obtained by adding in each of them the same increasing number of links. The
spectral radius of the adjacency matrix Ã (Aae in the legend, where the subscript “ae” stays
for “almost equitable”) is compared to the upper bound as a function of the links added in
each community.

Proposition 5.2. Let G = (V,E) and G̃ = (V, Ẽ) be two graphs and consider
a partition {V1, . . . , Vn} of the set of vertices V ; we shall denote by Gi = (Vi, Ei)
and G̃i = (Vi, Ẽi) the subgraph of G and G̃ induced by the cell Vi, respectively, for
i = 1, ...n. Assume this partition to be equitable for G and almost equitable for G̃. Let
E ⊂ Ẽ with

Ẽ \ E =

n⋃

i=1

(Ẽi \ Ei)
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(i.e., the edge sets can only differ within cells) and denote by R the adjacency matrix
corresponding to a graph with Ẽ \ E as edge set. Finally, let us denote by GC

i the
graph with edge set Ẽi \ Ei and whose node set is simply the set of endpoints of its
edges (i.e., no further isolated nodes).

1. If ∆(GC
i ) denotes the maximal degree in GC

i , i = 1, . . . , n, then

λ1(R) ≤ max
1≤i≤n

min





√
2ei(ki − 1)

ki
,∆(GC

i )



 ,

where ei is the number of edges added to Gi, i.e., ei = (|Ẽi| − |Ei|), and ki is
the number of nodes in Vi.

2. If additionally GC
i is connected for each i = 1, . . . , n, then

λ1(R) ≤ max
1≤i≤n

min
{√

2ei − k′i + 1,∆(GC
i )
}

,

where k′i is the number of nodes of GC
i .

Proof. (1) By assumption, R is a diagonal block matrix whose blocks Ri are the
adjacency matrices of the induced subgraphs GC

i . Thus, λ1(R) is the maximum of all
spectral radii λ1(Ri). On the other hand, one has by [36, (3.45)] that

λ1(Ri) ≤ min





√
2ei(ki − 1)

ki
,∆(GC

i )



 .

and the claim follows.
(2) By Gershgorin’s theorem, the spectral radius of an adjacency matrix of a graph
without loops is never larger than the graph’s maximal degree, i.e., λ1(Ri) ≤ ∆(GC

i ).
By assumption, there exists a permutation of the vertices in Vi such that the matrix
Ri has the form

Ri =

[
R′

i 0

0 0

]

where R′
i is the adjacency matrix of a connected graph with k′i nodes (i.e., the block

R′
i has dimension k′i × k′i). Now, we deduce from [36, art. 50] that

λ1(R
′
i) ≤

√
2ei − k′i − 1,

and since λ(Ri) = λ(R′
i), the statement follows.

By using estimate (3.2) and Proposition 5.2 in the first and the second term on
the right hand side of (5.1), respectively, we deduce

(5.2) λ1(Ã) ≤ max
1≤i≤n

λ1(CVi) + λ1(B̂) + max
1≤i≤n

min





√
2ei(ki − 1)

ki
,∆(GC

i )



 .

The inequality in (5.2) gives us a lower bound for the epidemic threshold in the case
of a graph whose partition of nodes set is almost equitable. Actually
(5.3)

τ (1)c =
1

λ1(Ã)
≥ τ⋆ =

1

max
1≤i≤n

λ1(CVi) + λ1(B̂) + max
1≤i≤n

min

{√
2ei(ki−1)

ki
,∆(GC

i )

} .
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Now let us consider the case where we remove edges, inside the communities, in a
network whose set nodes has an equitable partition, thus because the spectral radius
of an adjacency matrix is monotonically non increasing under the deletion of edges,
we have

λ1(Ã) ≤ λ1(A)

whence

1

λ1(Ã)
≥ 1

λ1(A)
≥ min

i

1

dii + λ1(B̂)
.

The bounds developed so far support the design of community networks with
safety region for the effective spreading rate, that guarantees the extinction of epi-
demics. E.g. if we consider some Gi, i = 1, . . . , n, it is possible to connect them
such in a way to form a graph G̃ = (V, Ẽ) with an almost equitable partition. Now,
any subgraph obtained from G̃, by removing edges inside the communities, will have
smaller spectral radius than G̃, and consequently a larger epidemic threshold. Thus
the lower bound in (5.3) still holds.

6. Conclusion. In this work we have discussed the relation between the epi-
demic threshold of a given graph with equitable partitioning of its node set, and the
spectral properties of the corresponding quotient matrix. Because the quotient matrix
Q has the same spectral radius of A, this may lead to a significative computational

advantage in the calculation of λ1(A) and, consequently, of τ
(1)
c , since the order of Q

is smaller than that of A.
A novel expression has been derived for the lower bound on τ

(1)
c as function of

network metrics, e.g., the maximum among the internal degrees of the nodes over
all communities. In practice this value can be adopted to determine a safety region
for the extinction of epidemics, i.e., by forcing the effective spreading rate below the
lower bound; it can be also useful in order to design new network architectures robust
to long-term, massive infections.

In the analysis, we have showed that it is possible to reduce the number of equa-
tions representing the time-change of infection probabilities using the quotient matrix
Q, when all nodes belonging to the same community have the same initial conditions.
After proving the existence of a positively invariant set for the original system of N
differential equations, we have shown that the non-zero steady-state infection prob-
abilities belongs to this invariant set, and that it can be computed by the reduced
system of n equations.

Finally, we have also considered the case when the partition is almost equitable.
An input graph whose partition is equitable can be perturbed, by adding or removing
edges inside communities, in order to obtain a graph with an almost equitable par-
tition. A lower bound for the epidemic threshold has been derived, and the effect of
perturbations of the communities’ structure has been explored.
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