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A PROBABILISTIC APPROACH TO GENERALIZED ZECKENDORF
DECOMPOSITIONS

IDDO BEN-ARI AND STEVEN J. MILLER

ABSTRACT. Generalized Zeckendorf decompositions are expansions ofintegers as sums of ele-

ments of solutions to recurrence relations. The simplest cases are base-b expansions, and the stan-

dard Zeckendorf decomposition uses the Fibonacci sequence. The expansions are finite sequences of

nonnegative integer coefficients (satisfying certain technical conditions to guarantee uniqueness of

the decomposition) and which can be viewed as analogs of sequences of variable-length words made

from some fixed alphabet. In this paper we present a new approach and construction for uniform

measures on expansions, identifying them as the distribution of a Markov chain conditioned not to

hit a set. This gives a unified approach that allows us to easily recover results on the expansions

from analogous results for Markov chains, and in this paper we focus on laws of large numbers,

central limit theorems for sums of digits, and statements ongaps (zeros) in expansions. We expect

the approach to prove useful in other similar contexts.

1. INTRODUCTION

1.1. Background. A representation of the set of integers in terms of a sequenceof digits is known

in the literature as a numeration system. The most common numeration systems are decimal (aka

radix) expansions, yet many other numeration systems appear in theory and applications, and the

study of numeration systems has been an active research areain mathematics and theoretical com-

puter science. Many of these arise from a greedy algorithm (see for example [Fra]), though there
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are systems arising from recurrence relations where the greedy algorithm fails a positive percent-

age of the time (see [CFHMN2, CFHMNPX]). While our focus willbe on recurrence relations and

greedy algorithms, other choices are possible and often closely related. These include starting from

a rational language and, using an ordering inherited from anordering of the digits, representing

n as thenth element of the language (see [LR]), or (see [Du, DuTh1]) starting with a substitution

σ on a finite alphabet and encodingn by then letter prefix of a fixed point ofσ (represented by

concatenating iterates ofσ applied to certain letters, which are the digits), or havingvariable rules

for which summands are available at which points in a decomposition (see thef -decompositions

of [DDKMMU]).

As many closely related systems are studied in different disciplines, often the same result is

proved again and again, though from different vantages. Stolarsky [Sto] (see also [CHZ]) wrote:

Whatever its mathematical virtues, the literature on sums of digital sums reflects a lack of commu-

nication between researchers.We agree, and in fact this lack of communication was the impetus

for the present paper. While many of our results are already known, we adopt a perspective used

fruitfully in related problems and give a unified treatment using Markov methods (see for example

[DuTh2, GR, Ma, MW1]) of many results previously done through combinatorial approaches. In

particular, we apply these techniques to some problems thatappear not to have been studied by

other researchers using these methods, such as properties of gaps between summands.

We focus on the case where the numeration system is obtained from the greedy algorithm.

Unfortunately there are several different notational conventions in the subject, depending on the

perspective one adopts. We use a simple one below to motivatethe problem, and discuss the small

changes later.

Fix a sequence of integers1 = u0 < u1 < · · · (also known as the basis). Then anyN ∈ N

can be represented uniquely as a combination of elements from the sequence as follows. Letun be

the largest element in the sequence which is≤ N , and setdn = ⌊N/un⌋. Continue inductively by

letting dk−1 = ⌊(N −∑n≥k≥j djuj)/uk−1⌋, for k = n, . . . , 1. Clearly, the digitsd1, . . . , dN are

uniquely determined, and it is easy to see thatN =
∑

0≤j≤n djuj. We refer the reader to [Fra] for

more details and results. The sequence of digitsdn . . . d1, is the word representingN relative to the
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basis(un). A numeration system is called regular if it can be given as anoutput of a finite automa-

ton, or, equivalently, the set of words is a regular language. It is known that for the greedy algorithm

to be regular,(un) must satisfy a linear recurrence relation with integer coefficients [Sha]. A partial

converse also holds [Hol]. As a result, the numeration systems associated to linear recurrence are

of outmost importance for theory and applications. The simplest examples are whenun = bn for

some integerb ≥ 2, and the resulting numeration system is the base-b decimal system (orb-radix

system). The corresponding language is simply set of all word from the alphabet{0, . . . , b − 1}.

Whenu1 = 1, u2 = 2 and forn ≥ 1 we takeun+1 = un + un−1, we obtain the Fibonacci

numeration system, also commonly and henceforth referred to as the Zeckendorf decomposition.

In this system each natural number is uniquely expressed as asum of non-adjacent elements of

the Fibonacci sequences (for us the Fibonacci sequence starts 1, 2, 3, 5, 8, . . . , as otherwise we do

not have unique decompositions), and the corresponding language is all binary sequences starting

with 1 and with no adjacent1’s, formally expressed as1{0, 01}∗ where∗ is the Kleene star. For

example forN = 11 = 8 + 3 = F5 + F3, so thatd5 = 1, d4 = 0, d3 = 1, d2 = d1 = 0, and the

decomposition could be viewed as the binary sequence10100.

1.2. The Generalized Zeckendorf Decomposition.We now introduce the generalized Zeck-

endorf decomposition and present some related results. This discussion is mostly a motivation

and preparation for our probabilistic construction. Theseresults have been extensively studied in

the past both for the Zeckendorf and generalized Zeckendorfand also for other numeration sys-

tems, and we will discuss this in Section 1.3 below.

Recall that if we define the Fibonacci numbers{Fn} byF1 = 1, F2 = 2 andFn+2 = Fn+1+Fn,

then every integer can be written uniquely as a sum of non-adjacent Fibonacci numbers. This is

known as Zeckendorf’s Theorem [Ze]. For integersm ∈ [Fn, Fn+1), using a continued fraction

approach Lekkerkerker [Lek] proved that the average numberof summands isn/(ϕ2 + 1), with

ϕ = 1+
√
5

2
the golden mean. The precise probabilistic meaning of “average" is the expectation

with respect to the uniform measure on the decompositions ofintegers in[Fn, Fn+1), and then

Zeckendorf’s theorem provides an asymptotic statement on acertain statistic under the sequence

of uniform probability measures on decompositions of length n, asn → ∞. Analogues hold for

more general recurrences, such as linear recurrences with non-negative coefficients [Al, BCCSW,
3



Day, GT, Ha, Hog, Ke, Len, MW1, MW2], generalizations where additionally the summands are

allowed to be signed [DDKMU, MW1], andf -decompositions (given a functionf : N → N, if an

is in the decomposition then we do not havean−1, . . . , an−f(n) in the decomposition) [DDKMMU].

The notion of a legal decomposition below generalizes the non-adjacency condition.

Definition 1.1. Given a length L ∈ N and coefficientsc1, . . . , cL ∈ Z+ with c1cL > 0, the

correspondingpositive linear recursionis a sequence1 = G1, G2, . . . ∈ N satisfying

Gn+1 = c1Gn + c2Gn−1 + · · ·+ cnG1 + 1, n = 1, . . . , L− 1,

Gn+1 =

L∑

j=1

cjGn+1−j, n = L, L+ 1, . . . . (1.1)

Definition 1.2. Given a positive linear recursion with coefficientsc1, . . . , cL, an integerN has a

legaldecomposition of lengthn ∈ N if there exista1 ∈ N, a2, . . . , an ∈ Z+, such that

N =
n∑

i=1

aiGn+1−i, (1.2)

and

• n < L andai = ci for 1 ≤ i ≤ n; or

• there exists somes ∈ {1, . . . , L} such that

a1 = c1, a2 = c2, . . . , as−1 = cs−1, andas < cs,

as+1, . . . , as+ℓ = 0 for someℓ ≥ 0,

{bi}n−s−ℓ
i=1 with bi = as+ℓ+i, is either legal or empty.







(1.3)

We remark that the notation above differs slightly from the representation as
∑

j djuj; because

of our use of the recurrence relation for our analysis it is more convenient to index this way.

To emphasize this we now useai for the digits andGn for our sequence. It is important that

c1cL > 0, as when this fails there are some sequences where decompositions still exist but are no

longer unique, and others where the decompositions are still unique; see [CFHMN1, CFHMN2,

CFHMNPX, DFFHMPP]. The following theorem has been proved many times (see for example

[MW1]), and is the starting point for our investigations.

Theorem 1.3 (Generalized Zeckendorf Decomposition). Consider a positive linear recurrence

with coefficientsc1, . . . , cL andc1cL > 0. Then everyN ∈ N has a unique legal decomposition.
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The main idea in the theorem is to identify the notion of legaldecomposition from (1.2) with

the representation obtained from the greedy algorithm. Thecharacteristic polynomial for the re-

currence relation is given by Lemma 2.4 and is equal top(x) = xL −∑L
j=1 cjx

L−j . Its Perron

(aka dominant) eigenvalueλC > 1, and satisfies1 =
∑L

j=1 cjλ
−j
C , and it then follows from [Hol,

Theorem 8.1] that the generalized Zeckendorf decomposition is regular. Here is a corresponding

finite automaton. The states are labeled(i, j), wherei = 1, . . . , L andj ∈ {0, . . . , ci} for i < L

andj ∈ {0, . . . , ci − 1} if i = L. If L > 1, the initial states are(1, 0), . . . , (1, c1). The transitions

are as follows. From(i, j) wherej < ci, there an edge to all states of the form(i, j′), and ifj = ci

(only possible wheni < L), then there an arrow to all states of the form(i+ 1, j′). As an example

of how this works, consider the recurrence relation of length L = 3 with c1 = c2 = c3 = 1. Then

we have(Gn)n∈N = (1, 2, 3, 6, 11, 20, 37, . . . ). Consider the word1101. Then the corresponding

path for the automaton is(1, 1) → (2, 1) → (1, 0) → (1, 0), and it is accepted. If, however, we

consider the word1110 then the first two vertices in the path are(1, 1) → (2, 1). However, since

c2 = 1, L = 3 andc3 = 1, it follows that the only allowed transition from(2, 1) is to (3, 0), but as

the third digit is equal to1, this sequence is rejected. In fact, the accepted sequencesare exactly

those beginning with1, and having no three consecutive ones, which we can formallywrite as the

regular language{1, 11}{0, 01, 011}∗, where∗ is the Kleene star, and this is exactly the set of legal

decompositions.

In the sequel we will fix a linear recurrence as in Definition 1.1. From Theorem 1.3 it follows

that there’s a one-to-one correspondence between the set ofintegers in[Gn, Gn+1) through (1.2),

where the integerN is mapped to its legal decomposition(a1(N), . . . , an(N)). LetQn denote the

uniform distribution on the legal decompositions of integers in [Gn, Gn+1), and with this identifi-

cation it is natural to considerN anda1(N), . . . , an(N) as random variables. In what follows, we

denote expectation with respect toQn byEQn .

ForN ∈ [Gn, Gn+1), (1.2) can be rewritten as

N = Gi1(N) +Gi2(N) + · · ·+Gik(N)
, (1.4)

where1 ≤ i1 ≤ · · · ≤ ik(N) ≤ n. The random variablek(N) gives the number of summands, in the

generalized Zeckendorf decomposition, or the sum of digits, that is,k(N) =
∑n

i=1 ai(N). It was
5



the main object of previous works. The first result was Lekkerkerker’s theorem on the asymptotic

expectation ofk(N) whenGn = Fn. Here is its generalization to our setting.

Theorem 1.4(Generalized Lekkerkerker’s Theorem). There exist constantsCLek > 0 andd such

that

EQnk(N) = CLekn+ d+ o(1) asn → ∞. (1.5)

Many of the proofs of Theorem 1.4 are plagued by the need to prove results about roots of the

characteristic polynomials associated to the recurrence in order to showCLek > 0; recently, though,

a combinatorial approach was developed in [CFHMNPX] which bypasses these technicalities.

Once the average number of summands has been determined, it is natural to investigate other

and finer properties of the decompositions. Three natural questions concern the fluctuations in

the number of summandsk(N) about the mean, the distribution of gapsij+1(N) − ij(N), j =

1, . . . , k(N)−1 between adjacent summands, and the length of the longest gapin a decomposition.

For positive linear recurrences as in Theorem 1.3, the distribution of the number of summands con-

verges to a Gaussian with computable mean and variance, bothof ordern. There is an extensive

literature on these results. See [DG, FGNPT, GTNP, LT, Ste1]for an analysis using techniques

from ergodic theory and number theory, and [KKMW, MW1, MW2] for proofs via a combinatorial

perspective. These results hold true for other numeration systems and are exactly the kind of results

referred to by Stolarsky in the quote given in Section 1.1. Asbefore, all these are statements on

the asymptotic behavior of certain statistics of generalized Zeckendorf decompositions of integers

in [Gn, Gn+1) under the uniform measure, asn → ∞.

Results on the distribution of gaps between adjacent summands have recently been obtained

by Beckwith, Bower, Gaudet, Insoft, Li, Miller and Tosteson[BBGILMT, BILMT]. They show

that the distribution of gaps larger than the recurrence length converges to that of a geometric

random variable whose parameter is the largest eigenvalue of the characteristic polynomial of the

recurrence relation. For gaps smaller than the recurrence relation closed forms exist for special re-

currences, though with enough work explicit formulas can bederived for any given relation. They

also determine the distribution of the longest gap, and prove the behavior is similar to that of the

length of the longest run of heads in a sequence of tosses of a possibly biased coin. Their proofs
6



are a mix of combinatorics and a careful analysis of polynomials associated with the recurrence re-

lations. The details become involved as some of the associated polynomials depend on the interval

[Gn, Gn+1) under consideration.

1.3. Probabilistic Approach. Most results mentioned in Section 1.2 above are not unique tothe

generalized Zeckendorf, and similar and even finer results were obtained for other numeration

systems. A recurring subject of study is the sum of digits function, which, as in the case of gener-

alized Zeckendorf, we denote byk(N). The sum of digits has a natural generalization to additive

functions, that is that instead of summing the digits, the summation is over some fixed function

applied to each digit (example: the indicator that the digitis not zero, and the resulting sum is

the number of nonzero digits. This is the same ask(N) for the standard Zeckendorf and for the

binary system). We note that in many of the works, these additive functionals are referred to as

sums of digits functions or additive functions. The recent survey paper [CHZ] presents results on

sum of digits for the base-b expansion, under the uniform measure on[1, . . . , N), and includes a

very rich list of bibliography on the topic, including othernumeration systems. Two other works

we would like to highlight are [DuTh2], which provides expressions for limiting distributions for

regular languages, based on combinatorial and matrix analysis, and [Ma], which studies the addi-

tive functional through analysis of a corresponding time-inhomogeneous Markov chains.

So why another work on this topic? We believe that we have a newapproach, which allows for

a more comprehensive treatment, and is not limited to additive functionals. Specifically, what we

provide here is a tractable analytic expression for the uniform distribution on generalized Zeck-

endorf decompositions of fixed length, that is for random numbers in the intervals of the form

[Gn, Gn+1). The reason why we focus on these intervals is because this iswere the structure

has the simplest expression (though with additional work the results can be extended to[1, N), as

shown in Appendix C of [BILMT] and §4.2). The reason why we chose the generalized Zeckendorf

is because of the large body of work on the generalized Zeckendorf in the setting of fixed-length

decompositions, mentioned above, which was the motivationfor the present work, a natural setting

to our construction and a reference point to examine our new approach to the model.
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The main idea concerns the problem of constructing uniform measures on words of fixed length

n from some alphabet under certain prescribed constraints. The alphabet is the set of digits

{0, . . . ,max ci}, the word is a sequence of lengthn from the alphabet, and the constraint is that

the word yields a legal decomposition. The uniform measure we are interested in is then the uni-

form measure on the set of legal decompositions of lengthn. In the base-b case, the alphabet is

{0, . . . , b − 1} and there is no constraint, in the Zeckendorf case, the alphabet is{0, 1} and the

constraint is to have no consecutive1’s. In the generalized Zeckendorf, we will consider a sim-

ilar, yet more complex constraint. We construct the uniformmeasure on legal decompositions

from the uniform measure on the sequence of digits, that is, when the digits are IID, by condition-

ing. The observation is that if the constraints are in some sense shift-homogenous and localized –

which is exactly the case for the generalized Zeckendorf decomposition – then they can be realized

through a stopping rule for the IID sequence, which eventually is reduced to a hitting time of a

time-homogeneous Markov chain, and our uniform measure under constraints is then viewed as

a Markov chain conditioned not to hit some set. Through some elementary transformations this

conditioned measure coincides with the distribution of a time-homogeneous Markov chain known

in the literature as Doob’sh-process, pinned to a point aftern steps. In other words, the analysis

of the uniform measure boils down to the analysis of a certainrelated time-homogeneous Markov

chain. We note that all the quantities above depend on the length of the sequence only through the

time the Markov chain is pinned, so that regardless of the length of the decomposition, we only

need to consider the evolution of a single Markov chain. Thisidentification gives a very simple

expression and characterization of the uniform measure on legal decompositions, which allows to

compute many quantities with little effort, as we show in later sections. Furthermore, this approach

gives access to the vast literature on Markov chains, specifically asymptotic results, but not limited

to, as we have a simple formula for the uniform measure in terms of the Markov chain.

We illustrate our method by studying the classical problemsof additive functionals including

mean, law of large numbers and central limit theorem, as wellas obtain new results on the distri-

bution of gaps between non-zero digits in decompositions.

1.4. Organization. The paper is organized as follows. In Section 2 we describe the Markovian

model, and how to obtain large-time asymptotics for our model from that of the underlying Markov
8



chain. In Section 3 we present the results on additive functionals in a setting which includes our

particular model, first by introducing the theoretical results in Section 3.1 and then applying them

to the generalized decompositions in Section 3.2. These results include the classical results in

this area: sharp estimates on expectation, a law of large numbers and a central limit theorem. In

Section 4 we then apply the results on additive functionals (or the sum of digits) to the general-

ized Zeckendorf decompositions. In Section 4 we treat the gap distribution as a consequence of

the regenerative structure of the underlying Markov chain,and the analogy with Bernoulli trials.

Finally, in the Appendix we explain how to extend our resultsfor decompositions of fixed length,

or numbers in the interval[Gn, Gn+1) to numbers in intervals of the form[1, N).

2. PROBABILISTIC APPROACH

We remind that throughout the discussion we assume thatL ∈ N and the coefficientsc1, . . . , cL ∈
Z+ satisfyc1cL > 0 as in Definition 1.1.

The main idea is to show that for a givenn ∈ Z+, the uniform distribution on generalized

Zeckendorf decompositions consisting ofn+1 digits (that is, the(n+1)-th digit is non-vanishing

and all higher digits are not present) coincides with the distribution of a certain conditioned Markov

chain. This provides a unified framework for the model, which, in particular, gives rather easy

access to many asymptotic results. We first define the Markov chain. Let(X, Y ) =
(
(Xn, Yn) :

n ∈ Z+

)
be the two-dimensional process withXn ∈ {0, . . . ,maxi ci} andYn ∈ {1, . . . , L}. The

idea is thatX0, X1, . . . will be used to represent the coefficientsai in (1.2), whileY0, Y1, . . . will

be used to keep track whether theXn’s satisfy the condition (1.3). This will be explained below,

after we finish describing our construction. LetP denote the distribution under which this is an

IID process,(X0, Y0) being uniformly distributed over{0, . . . ,maxi ci} × {1, . . . , L}.

Definition 2.1. SupposeL ∈ N and c1, . . . , cL ∈ Z+, c1cL > 0 are the coefficients of a linear

recursion. We say that the realization
(
(X0, Y0), (X1, Y1), . . .

)
of the process(X, Y ) is legal with

respect to the recursion if

(1) X0 > 0 andY0 = 1,

(2) there exists a random variableJ ∈ Z+ such thatXJ > 0, Xn = 0 andYn = 1 for n > J ,

(3) For all n ∈ N, either
9



(a) Xn < cYn
andYn+1 = 1 or

(b) Xn = cYn
andYn = Yn+1 + 1.

Note that condition 3b and the assumption thatYn ∈ {1, . . . , L} for all n implicitly mean that in

a legal realizationXn = cYn
only if Yn < L.

The main observation is the following. Given a legal realization and letting (compare to (1.2))

N =

n∑

j=0

XjGn−j+1, (2.1)

then(X0, . . . , Xn) is the legal decomposition ofN ∈ [Gn+1, Gn+2), according to Definition 1.2.

Let

τ = inf{n ∈ Z+ : ((X0, Y0), (X1, Y1), . . . , (Xn, Yn)) does not extend to a legal realization}.
(2.2)

With a slight abuse of notation, letQn be the probability measure on theσ-algebra generated by

(X0, Y0), . . . , (Xn, Yn) defined through

Qn(B) = P (B|τ > n). (2.3)

SinceP is uniform,Qn is uniform over all finite realizations(X0, Y0), . . . , (Xn, Yn) that extend to

legal realizations. Any such finite realization corresponds to a unique Zeckendorf decomposition

of lengthn+ 1 given in (2.1). Conversely, every integer with Zeckendorf decomposition of length

n + 1 corresponds to a unique finite realization(X0, Y0), . . . , (Xn, Yn) extending to a legal real-

ization. ThereforeQn could be identified with the uniform distribution on generalized Zeckendorf

decompositions of lengthn + 1.

We now define an auxiliary process that allows us to introduceideas on conditioned Markov

chains. The reason for doing that is the following:τ is not a hitting or even stopping time for

(X, Y ), as in order to determine whetherτ = n, it is evident from Definition 2.1(3b) that on

certain circumstances the value ofYn+1 is needed. Therefore, the probabilistic analysis of Markov

chains through stopping times, and which is key to our approach, cannot be applied. To fix this, let

Zn = (Xn, Yn, Yn+1), and letZ = (Zn : n ∈ Z+). Below we will writeZn(1) for Xn, Zn(2) for
10



Yn andZn(3) for Yn+1. It is easy to see thatτ is a hitting time forZ. Specifically, letting

L = {(x, j, j′) : (x < cj andj′ = 1) or (j < L andx = cj andj′ = j + 1)};

L0 = L ∩ {(x, 1, j′) : x > 0}, (2.4)

then

τ =







0 if Z0 6∈ L0

inf{n : Zn 6∈ L} otherwise.
(2.5)

UnderP , Z is a Markov chain. We abuse notation and denote its transition function byP

as well. Since the measureP is uniform, it immediately follows that the restrictionPL of the

transition functionP to L × L is an irreducible and aperiodic substochastic matrix. Fromthe

Perron-Frobenius theorem we know thatPL possesses a Perron rootλc ∈ (0, 1) and corresponding

left and right eigenfunctions,νc andϕc, respectively, whose entries are strictly positive. We nor-

malize them so thatϕc andνcϕc are probability measures. LetQ be a stochastic transition function

onL× L defined as follows:

Q(z, z′) =
1

λcϕc(z)
PL(z, z

′)ϕc(z
′). (2.6)

Observe thatQ inherits irreducibility and being aperiodic fromPL. As a result,Q is ergodic, and

we denote its unique stationary distribution byπQ. Recall that from the definition of a stationary

distribution,πQQ = πQ, if πQ is considered as a row vector, and it immediately follows that

πQ(z) = νc(z)ϕc(z). (2.7)

We also define the marginal of the first coordinateπQ
1 by letting

πQ
1 (x) =

∑

b,b′

πQ(x, b, b′). (2.8)

Next we fix some notation. We writePµ for the distribution of the Markov chainZ underP

with initial distributionµ, andEP
µ for the corresponding expectation. Whenµ is a point massδz,

we denote this withz as a subscript instead of the notationally correct but more cumbersomeδz.

We also define the analogous expressions withQ instead ofP .

The following result identifies the uniform distributionQn with the distribution of the Markov

chainZ underQ.
11



Theorem 2.2.Let f = f(Z0, . . . , Zn) be a complex-valued random variable. Then

EQn(f) =
EQ

ϕ̃c

(
f

ϕc(Zn)

)

EQ
ϕ̃c

(
1

ϕc(Zn)

) , (2.9)

whereϕ̃c is the probability measure given byϕc conditioned onL0 in (2.4).

The theorem has a nice and simple interpretation in terms of the Markov chain corresponding

to Q pinned at timen. Specifically, ifD is a random variable on the same probability space asZ,

independent ofZ and satisfyingQ(D = z) = c
ϕc(z)

, wherec is a normalizing constant to make the

righthand side a probability mass function, then we can restate the theorem as

EQn(f) =
EQ

ϕ̃c
(f1{Zn=D})

Qϕ̃c
(Zn = D)

. (2.10)

In other words,Qn is simply the distribution ofQ starting fromϕ̃c, pinned at timen to the

randomly selected pointD. Note that the dependence onn is only through the time of the pinning,

and this means that in order to study the sequence of probability measures(Qn), one only needs to

studyZ.

Proof of Theorem 2.2.Observe that ifz0 ∈ L0 andz1, . . . , zn ∈ L, then

Pz0(

n∏

j=0

{Zj = zj}, τ > n) =

n−1∏

j=0

P (zj, zj+1)

= λn
c

n−1∏

j=0

ϕc(zj)Q(zj , zj+1)
1

ϕc(zj+1)

= λn
cϕc(z0)Qz0(

n∏

j=0

{Zj = zj})
1

ϕc(zn)
, (2.11)

and otherwisePz0(
∏n

j=0{Zj = zj}, τ > n) = 0. In particular, iff = f(Z0, . . . , Zn) is a complex

valued random variable, then

EP (f, τ > n) =
∑

z0∈L0

EP (f, τ > n, Z0 = z0) =
∑

z0∈L0

EP (1{Z0=z0}f(z0, . . . , Zn), τ > n)

=
∑

z0∈L0

P (Z0 = z0)E
P
z0
(f(Z0, . . . , Zn), τ > n)

= λn
c

∑

z0∈L0

P (Z0 = z0)ϕc(z0)E
Q
z0

(
f

ϕc(Zn)

)

. (2.12)

SinceP is uniform, it follows thatP (Z0 = z0) is constant onL0, and the result follows. �

12



Next we consider limits. The following provides sufficient conditions under whichQn expecta-

tions and expectations with respect toQ are asymptotically equivalent.

Proposition 2.3. Suppose that forn ∈ Z+, fn(Z0, . . . , Zn) is a complex-valued random variable,

and(jn : n ∈ Z+) is a subsequence ofZ+ such that

(1) min(jn, n− jn) → ∞,

(2) EQ
ϕ̃c
|fn − fjn| → 0.

Then

|EQnfn −EQ
ϕ̃c
fn| = o(1)max(|EQ

ϕ̃c
(fn)|, 1). (2.13)

Proof. Because of condition (2), we have

EQn (fn) =
EQ

ϕ̃c

(
fjn

ϕc(Zn)

)

EQ
ϕ̃c

(
1

ϕc(Zn)

) + o(1). (2.14)

Then, by the Markov property,

EQ
ϕ̃c

(
fjn

ϕc(Zn)

)

= EQ
ϕ̃c

(

fjnEZjn

(
1

ϕc(Zn−jn)

))

. (2.15)

The ergodicity ofZ underQ and the fact thatn − jn → ∞ guarantee thatEQ
Zjn

(
1

ϕc(Zn−jn )

)

=

EπQ
1
ϕc

+ o(1) = ‖νc‖1 + o(1). Thus

EQn(fn) =
(‖νc‖1 + o(1))EQ

ϕ̃c
(fjn)

‖νc‖1 + o(1)
+ o(1)

= (1 + o(1))EQ
ϕ̃c
(fjn) + o(1) = (1 + o(1))EQ

ϕ̃c
(fn) + o(1). (2.16)

�

For applications, it would be useful to know more aboutQ. It turns out that the underlying

structure is determined by the matrixC, which we now describe. LetC be theL×L matrix given

by C = (Ci,j), Ci,1 = ci andCi,i+1 = 1, and all other entries equal to0:

C =













c1 1 0 · · ·
c2 0 1 0 · · ·
... 0 · · ·

cL−1 0 . . . 1

cL 0 . . . 0













. (2.17)
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Let λC denote the Perron eigenvalue ofC, ϕC a corresponding positive right eigenvector andνC a

corresponding left eigenvector. A straightforward computation gives the following.

Lemma 2.4. LetC be as in(2.17). Then

(1) the characteristic polynomial ofC is λL −∑L
j=1 cjλ

L−j;

(2) up to multiplicative constants:νC(b) = λ−b
C andϕC(b

′) = λb′

C −∑b′−1
j=1 cjλ

b′−j
C .

With this lemma we obtain a description ofQ.

Proposition 2.5. LetC be as in(2.17), and letλc, νc, ϕc, respectively, be the Perron eigenvalue,

and corresponding left and right eigenvectors forPL, the restriction of the transition functionP to

L, normalized so thatϕc andνcϕc are probability distributions. Then:

(1) λc =
λC

(max ci+1)L
.

(2) There exist positive constantsK1, K2 such thatϕc(a, b, b
′) = K1ϕC(b

′) andνc(a, b, b′) =

K2νC(b). In particular,πQ(a, b, b′) = K1K2νC(b)ϕC(b
′), andK1K2 =

1
λC

∑L
b=1 νC(b)ϕC (b)

.

(3) Q((a, b, b′), (a′, b′, b′′)) = ϕC(b′′)
λCϕC(b′)

for allowed transitions and is0 otherwise.

Furthermore, allowed transitions satisfy either of the following:

(a) b′′ = 1 and then the probability of the transition isϕC(1)
λCϕC(b′)

;

(b) b′′ = b′ + 1 and then the probability of the transition is1− ϕC(1)cb′
λCϕC(b′)

.

Example 2.6.For the standard Zeckendorf decomposition, we have:

(1) C =




1 1

1 0



. In particular,

(a) The characteristic polynomial isλ2 − λ− 1, andλC = φ, whereφ is the golden ratio

φ = 1+
√
5

2
.

(b) νC(b) = φ−b, andϕC(b
′) = φ2−b′ .

(2) L = {(0, 1, 1), (0, 2, 1), (1, 1, 2)}. Identifying these states as1, 2 and3 in the order written,

then

(a) Q =








1
φ

0 1− 1
φ

1
φ

0 1− 1
φ

0 1 0








,

(b) πQ(0, 1, 1) = φ
2+φ

, πQ(0, 2, 1) = 1
2+φ

πQ(1, 1, 2) = 1
2+φ

, and

πQ
1 (0) =

1+φ
2+φ

, πQ
1 (1) =

1
2+φ

,
14



(c) ϕc =
1

2φ+1
(φ, φ, 1)t, and

(d) νc = 1
φ+2

(2φ+ 1, φ+ 1, 2φ+ 1)t.

Proof of Proposition 2.5.

1. The first part is a straightforward calculation.

2. Observe that for the row ofP corresponding to transition from(a, b, b′), we have exactly

|S1| × |S2| = (maxi ci + 1)L allowed sites to transition to, and due to the choice of uniform

distribution, all are of equal probability. AsP is stochastic, its nonzero entries are equal toγ =

1
(max ci+1)L

. We first study the restrictionPL of P to L × L. Recall that the elements ofL are of

the form(x, k, 1), wherex < ck or (ck, k, k + 1) wherek = 1, . . . , L− 1. For each(a, b, b′) ∈ L,

PL has a corresponding row, listing all transitions from(a, b, b′). We will count the number of

such non-zero entries according to the value ofb′. If b′ ∈ {1, . . . , L − 1} then there are1 + cb′

transitions: one to the site(cb′, b′, b′ + 1) andcb′ to (x, b′, 1) wherex ∈ {0, . . . , cb′ − 1}. If b′ = L

then there are onlycL allowed transitions, all of which are of the second kind.

We define a functionϕ onL by lettingϕ(a, b, b′) = ϕC(b
′). Fix (a, b, b′) ∈ A. If b′ < L, then

according to the allowed transitions listed above, we have

PLϕ(a, b, b
′) = γ(ϕC(b

′ + 1) + cb′ϕC(1)) = γ(CϕC)(b
′) = γλCϕ(a, b, b

′). (2.18)

Similarly, if b′ = L, thenPLϕ(a, b, L) = γcLϕC(1) = γλCϕ(a, b, L). ThusγλC = λc, the

Perron root forPL, andϕ is a corresponding positive eigenvector. Next we want to findthe corre-

sponding left-eigenvector forPL. To do that, letD be the transpose ofC, and letνC be a Perron

eigenvector. Defineνc(a, b, b′) := νC(b). If b ∈ {2, . . . , L}, then there is exactly one allowed

transition to it, that is from(cb−1, b − 1, b). As a result,νcPL(a, b, b
′) = γνc(cb−1, b − 1, b) =

γ(DνC)(b) = γλCνc(a, b, b
′). Next, if b = 1, then the allowed transitions are from(x, k, 1)

wherek = 1, . . . , L andx ∈ {0, . . . , ck − 1}. We obtainνcPL(a, 1, b
′) = γ

∑L
k=1 ckνC(k) =

γ(DνC)(1) = γλCνc(a, 1, b
′).
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The formula forπQ follows directly from (2.7) and the preceding identities, while the formula

for K1K2 follows from the calculation below.

∑

a,b,b′

πQ(a, b, b′) =
∑

a,b

πQ(a, b, 1) +
∑

a,b

πQ(a, b, b+ 1)

= K1K2

(
L∑

b=1

cbνC(b)ϕC(1) +
L−1∑

b=1

νC(b)ϕC(b+ 1)

)

= K1K2

L∑

b=1

νC(b) (cbϕC(1) + ϕC(b+ 1))

= K1K2λC

L∑

b=1

νC(b)ϕC(b). (2.19)

3. This follows from (2.6) and parts 1. and 2. �

3. ADDITIVE FUNCTIONALS

3.1. General Theory. In this section we will study some theoretical aspects of large-time behavior

of additive functionals of an ergodic finite-state Markov chain, under a change of measure which

generalizes the wayQn was obtained fromQ. The assumptions in this section are the following:

Definition 3.1. LetZ = (Zn : n ∈ Z+) be an irreducible and aperiodic Markov chain on the finite

state spaceL with transition functionQ. Letϕ : L → (0,∞) be a positive function, and letµ be a

probability distribution onL. For everyn ∈ Z+, letQn be a probability measure onσ(Z0, . . . , Zn)

given by

Qn(A) =
EQ

µ

(
1A

ϕ(Zn)

)

EQ
µ

(
1

ϕ(Zn)

) , A ∈ σ(Z0, . . . , Zn). (3.1)

We will consider the behavior of additive functionals of theform Sn =
∑n

j=0 g(Zj) where

g : L → C underQn asn → ∞. In the context of generalized Zeckendorf decompositions,an

example for an additive functional is the number of, say, nonzero digits in the decomposition. In

the next section, we show that gaps in the decomposition can be viewed as additive functionals of

some Markov chain, so we can treat them with the same tools.

We need to fix some notation. Functions onL will interchangeably be viewed as column vectors.

As an example, ifg is such a function thenQg is to be identified as the function or, equivalently
16



the columnf vector given byf(z) =
∑

z′∈L Q(z, z′)g(z′). We will write hg for the product of

such two functions, namelyhg is the function given by(hg)(z) = h(z)g(z), z ∈ L. In addition,

h(Qg) means the product of the functionh and the functionQg, not their scalar product.

LetπQ denote the stationary distribution forQ. Recall thatI−Q is invertible on theQ-invariant

subspace ofV , whereV = {g : EπQg(z) = 0}. We denote this inverse byQ#, and extend it to

all functions by lettingQ#
1 = 0. This is the only choice that guarantees thatQ andQ# commute,

andQ# is known as the group inverse ofQ. It is well-known that
∞∑

j=0

EQ
z (g(Zj)− EπQg) = (Q#g)(z). (3.2)

Our first result is the following.

Theorem 3.2.Let g : L → C. Let g̃ = g − EπQg, andS̃n =
∑n

j=0 g̃(Zj). Then

EQnS̃n = Eµ(Q
#g) +

EπQ g̃(Q# 1
ϕ
)

EπQ
1
ϕ

+ o(1) (3.3)

EQ
πQS̃

2
n = (n + 1)EπQ

(
g̃((2Q# − I)g̃)

)
+ o(1) andEQnS̃2

n = (1 + o(1))EQ
πQS̃

2
n. (3.4)

Proof. We will first prove (3.3). From Theorem 2.2 withf = S̃n, and the Markov property, we

have that

EQ
µ

1

ϕ(Zn)
× EQnS̃n =

n∑

j=0

EQ
µ g̃(Zj)EZj

1

ϕ(Zn−j)

=

n∑

j=0

EQ
µ g̃(Zj)

(

EQ
Zj

1

ϕ(Zn−j)
− EπQ

1

ϕ

)

︸ ︷︷ ︸

(I)

+ EπQ

1

ϕ

n∑

j=0

EQ
µ g̃(Zj)

︸ ︷︷ ︸

(II)

. (3.5)

By (3.2),(II) → Eµ(Q
#g̃) = EµQ

#g, becauseQ# maps constant function to0. In order to esti-

mate(I), we recall that from the exponential ergodicity of irreducible finite state Markov chains,

there existsρ ∈ (0, 1) andc1 > 0, such that for every functionh andk ∈ Z+,

sup
z

|EQ
z h(Zk)−EπQh| ≤ c1‖h‖∞ρk. (3.6)
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Letting h(z) = 1
ϕ(z)

− EπQ
1
ϕ

, we have thatEπQh = 0. This allows us to rewrite(I) as
∑n

j=0Eµg̃(Zj)EZj
h(Zn−j). In order to estimate this sum, we break it into two parts. First

∣
∣
∣
∣
∣
∣

⌊n/2⌋
∑

j=0

EQ
µ g̃(Zj)EZj

h(Zn−j)

∣
∣
∣
∣
∣
∣

≤ ‖g̃‖∞
⌊n/2⌋
∑

j=0

sup
z

|Ezh(Zn−j)| ≤ c1‖g̃‖∞‖h‖∞ρn/2n/2 → 0,

(3.7)

where the last inequality follows from (3.6). Next, lethk(z) = g̃(z)Ezh(Zk). Then

n∑

j=⌊n/2⌋+1

EQ
µ g̃(Zj)EZj

1

ϕ(Zn−j)
=

n∑

j=⌊n/2⌋+1

EQ
µ hn−j(Zj). (3.8)

Applying (3.6) to each of the functionshk, and observing that‖hk‖∞ ≤ ‖g̃‖∞‖h‖∞, it follows

that forj ≥ ⌊n/2⌋ + 1,

|EQ
µ hk(Zj)−EπQhk| ≤ c1‖g̃‖∞‖h‖∞ρn/2. (3.9)

Also, sinceπQ is the stationary distribution forQ, we have thatEπQhk = EQ
πQhk(Zj), and as a

result

n∑

j=⌊n/2⌋+1

(

EQ
µ hn−j(Zj)−EQ

πQhn−j(Zj)
)

≤ c1‖g̃‖∞‖h‖∞ρn/2n/2 → 0. (3.10)

In addition,EQ
πQhn−j(Zj) = EπQ g̃(Z0)EZ0h(Zn−j), and therefore

n∑

j=⌊n/2⌋+1

EQ
πQhn−j(Zj) =

n−⌊n/2⌋−1
∑

k=0

EQ
πQ g̃(Z0)EZ0h(Zk). (3.11)

Since by our choiceEπQh = 0, it follows from (3.2) that the righthand side is equal toEπQ g̃(Q#h)+

o(1). As a result,(I) = EπQ g̃(Q# 1
ϕ
) + o(1), completing the proof of (3.3).
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We turn to proving (3.4). We first prove the first equality.

EQ
πQ

(

S̃2
n

)

=
n∑

j=0

EQ
πQ g̃

2(Zj) + 2
∑

0≤j<k≤n

EπQ g̃(Xj)g̃(Xk)

= (n+ 1)EQ
πQ g̃

2 + 2
∑

0≤j<k≤n

EQ
πQ g̃(X0)E

Q
X0
g̃(Xk−j)

= −(n + 1)EπQ g̃2 + 2

n∑

j=0

n∑

k=j

EQ
πQ g̃(X0)E

Q
X0
g̃(Xk−j)

= −(n + 1)EπQ g̃2 + 2
n∑

j=0

EQ
πQ g̃(X0)

(
n−j
∑

k=0

EQ
X0
g̃(Xk)

)

= −(n + 1)EπQ g̃2 + 2

n∑

j=0

EπQ g̃Q#g̃ − 2

n∑

j=0

EQ
πQ

(

g̃(X0)
∑

k>n−j

EQ
X0
g̃(Xk)

)

︸ ︷︷ ︸

(∗)

= (n+ 1)EπQ g̃(2Q# − I)g̃ + (∗). (3.12)

Observe that by exponential ergodicity, (3.6),|EQ
z g̃(Xk)| ≤ c1‖g̃‖∞ρk, uniformly overz, and so

|(∗)| ≤ c1‖g̃‖2∞
n∑

j=0

ρn−j+1

1− ρ
≤ c1‖g̃‖2∞

1

(1− ρ)2
= O(1). (3.13)

This completes the proof of the first equality in (3.4). It remains to the asymptotic equivalence of

EQ
Qn

S̃2
n andEQ

µ S̃
2
n. This, again, follows from the exponential ergodicity, as we now explain. We

have

S̃2
n = S̃2

m + 2S̃m(S̃n − S̃m) + (S̃n − S̃m)
2. (3.14)

From the Markov property and exponential ergodicity (3.6),it follows that

|Eµ(Sn − Sm)
2 −EπQS̃2

n−m| ≤ c1‖g̃‖∞n2ρm. (3.15)

Choosem = c lnn for c = 4/ ln(1/ρ). It follows that righthand side tends to0 asn → ∞. In

particular,Eµ(Sn − Sm)
2 ≤ c2n. Next, observe thatEµS̃

2
m ≤ ‖g̃‖2∞m2, and by Cauchy-Schwarz,

|EµS̃m(S̃n − S̃m)| ≤
√

EµS̃2
m

√

Eµ(S̃n − S̃m)2 ≤ c3m
√
n. In summary, for alln large enough,

|Eµ

(

S̃2
m + 2S̃m(S̃n − S̃m)

)

| ≤ c4(lnn)
2
√
n ≤ c4n

3/4. (3.16)

In particular,

|EµS̃
2
n −EQ

πQS̃
2
n−m| ≤ c4n

3/4, (3.17)
19



so that

EµS
2
n = (1 + o(1))nEπQ g̃(2Q# − I)g̃, (3.18)

and the claim is proved. �

We turn to laws of large numbers and central limit theorems for additive functionals.

Theorem 3.3. Under the same assumptions of Theorem 3.2 we have:

(1) Weak Law of Large Numbers: Forǫ > 0, limn→∞Qn

(

| S̃n

n+1
| > ǫ

)

= 0.

(2) Central Limit Theorem:Qn

(
S̃n√
n+1

≤ x
)

⇒ P (Y ≤ x) whereY ∼ N(0, σ2), andσ2 =

EπQ g̃((2Q# − I)g̃).

Proof of Theorem 3.3.The Weak Law of Large Numbers follows from Chebychev’s inequality and

the asymptotic estimate forEQnS̃2
n given in Theorem 3.2:

Qn

(

| S̃n

n+ 1
| > ǫ

)

≤ EQnS̃2
n

(n+ 1)2ǫ2
=

EπQ g̃(2Q# − I)g̃

(n+ 1)ǫ2
→ 0, asn → ∞. (3.19)

We now prove the Central Limit Theorem. To do this we apply Proposition 2.3 withjn =

n− ⌊lnn⌋ and

fn = exp

(
iθ√
n + 1

S̃n

)

. (3.20)

Observe that the choice ofjn guarantees that condition 1. in the proposition holds. Next,

EQ
z |fn − fjn| ≤ EQ

z |1− EQ
Zjn

e
iθ√
n+1

S̃n−jn |

≤ max
z

(

|1−EQ
z cos

(

θS̃n−jn√
n+ 1

)

|+ |EQ
z sin

(

θS̃n−jn√
n + 1

)

|
)

. (3.21)

Since|Sn−jn| = O(lnn), it follows from bounded convergence thatsupz E
Q
z |fn − fjn| → 0, and

so condition 2. holds. Finally, we recall from the Central Limit Theorem for additive functionals

of finite state Markov chains (e.g. [MW00],[BAN12, Theorem 5], that

EQ
µ (fn) → e−

σ2

2 , (3.22)

whereσ2 = limn→∞
1

n+1
EQ

πQ

(

S̃2
n

)

. The result now follows from Theorem 3.2. �

20



3.2. Application to Zeckendorf Decompositions. In this section we show how the results ob-

tained in Section 3.1 apply to generalized Zeckendorf decompositions. In particular we will show

that the generalized Lekkerkerker’s theorem (Theorem 1.4)and the corresponding Central Limit

Theorem are specials cases to Theorem 3.2-1 and Theorem 3.3-2. We will also carry out explicit

computations for the standard Zeckendorf decomposition, where all quantities are easily com-

putable.

In order to apply the results in the context of generalized Zeckendorf decomposition, in Defini-

tion 3.1 we identifyL, Z andQ in the definition as the same quantities defined in Section 2, and

also setϕ = ϕc, andµ = ϕ̃c, whereϕc andϕ̃c are as in Section 2. With these choices, the measure

Qn of Definition 3.1 coincides withQn of Section 2.

Recallk(N), the number of nonzero summands in the generalized Zeckendorf decomposition

of N , defined in (1.4). Letg : L → {0, 1} be defined asg(x, j, j′) = 1 if and only if x > 0. Then

if N ∈ [Gn+1, Gn+2), from (2.1) we have that thatk(N) = Sn, whereSn is the additive functional

Sn =
∑n

j=0 g(Zj). Observe thatEπQg = 1− π1(0), and sõg = g− 1 + π1(0). Furthermore, since

πQ(z) = ϕc(z)νc(z), it follows thatEπQ
1
ϕc

= ‖ϕ‖1. The following therefore follow immediately

from Theorem 3.2 and Theorem 3.3.

Corollary 3.4. For generalized Zeckendorf decomposition:

(1) Generalized Lekkerkerker’s Theorem (Theorem 1.4):

EQnk(N) = CLek(n + 1) + d (3.23)

where

CLek = 1− π1(0), d = Eϕ̃c
Q#(1− δ) +

EπQ(1− δ)(Q# 1
ϕc
)

‖νc‖1
, (3.24)

(2) Variance:

EQn(k(N)− CLek(n+ 1))2 = (1 + o(1))(n+ 1)σ2 (3.25)

where

σ2 = EπQ g̃((2Q# − I)g̃). (3.26)
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Corollary 3.5. For generalized Zeckendorf decompositions we have

(1) Law of Large Numbers:

Qn (|k(N)− CLek(n+ 1)| > nǫ) → 0; (3.27)

(2) Central Limit Theorem:

Qn

(
k(N)− CLek(n+ 1)√

n+ 1
∈ ·
)

→ N(0, σ2) (3.28)

whereσ2 is as in Corollary 3.4

In the remainder of the section we compute all constants above for the standard Zeckendorf

decomposition. First we need to computeQ#.

Example 3.6.For the standard Zeckendorf decomposition,

Q# =
1

5








5− φ φ− 4 −1

−φ φ+ 1 −1

1− 3φ 2φ− 2 φ+ 1








. (3.29)

To prove the identity, recall the expressions forQ and πQ computed in Example 2.6. Let

A = I − Q, and letv1 = (0, 1,−1)t, v2 = (1, 0,−φ)t, andv3 = (1, 1, 1)t. ThenEπQv1 =

EπQv2 = 0. Sincev1 andv2 are linearly independent, it follows that they span theA-invariant

spaceV = {v : EπQv = 0}. In additionAv3 = 0. Letting q = 1 − 1
λC

= 1
λ2
C

, a straightforward

calculation shows thatAv1 = qv2 + (1 + q)v1, andAv2 = v2. Thusv1 = qv2 + (1 + q)Q#v1,

Q#v2 = v2 andQ#v3 = 0. These determineQ#.

Also, from Example 2.6 we have thatπ1(0) = φ+1
φ+2

, ϕ̃c is a point mass, and‖νc‖1 = 5φ+3
φ+2

.

In addition,πQ = 1
φ+2

(φ, 1, 1)t, andϕc = 1
2φ+1

(φ, φ, 1)t. Since alsog = (0, 0, 1)t, we have

Q#g = 1
5
(1− 3φ, 2φ− 2, φ+ 1)t, andQ# 1

ϕc
= 1

5(φ−1)
(−1,−1, φ+ 1)t. As a result, we have the

following.

Example 3.7.For the standard Zeckendorf decomposition:

CLek =
1

φ+ 2
=

5−
√
5

10
, d =

3

5
. (3.30)
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We finally computeσ2. Clearly,g̃ = (0, 0, 1)t− 1
2+φ

(1, 1, 1)t = 1
2+φ

(−1,−1, 1+φ)t. It therefore

follows thatg̃Q#g̃ = g̃Q#(0, 0, 1)t = 1
5

(
1

φ+2
, 1
2+φ

, (1− 1
2+φ

)(φ+ 1)
)t

, and so the expectation is

equal to

2EπQ g̃Q#g̃ =
2

5

(
1 + φ+ (1 + φ)2

(φ+ 2)2

)

=
2(φ+ 2)

25
. (3.31)

Sinceg̃2 = ( 1
(φ+2)2

, 1
(φ+2)2

, (φ+1)2

(φ+2)2
)t = 1

5(1+φ)
(1, 1, (1 + φ)2)t, it follows that

EπQ g̃2 =
1

5(1 + φ)

(φ+ 1) + (φ+ 1)2

φ+ 2
=

1

5
. (3.32)

We therefore have

Example 3.8.For the standard Zeckendorf decomposition:σ2 = 2φ−1
25

=
√
5

25
.

4. GAPS IN ZECKENDORF DECOMPOSITION

4.1. Gap Distribution. In this section we consider the asymptotic distribution of gaps between

non-zero terms in the generalized Zeckendorf decomposition. This will be an application of our

results on additive functionals from the previous section.We will first prove a statement on an

“average" gap distribution, Theorem 4.1, and we will later prove convergence of empirical gap

measures in probability, Theorem 4.2. Let us first define the notion of a gap. We work under the

same assumptions and notation as in Section 2. Suppose thatN ∈ N admits a legal decomposition

(2.1) withX0 > 0. Note thatXj counts the repetitions ofGn−j+1, and if repeating more than1

times, we can view this asXj − 1 gaps of length zero. IfXj > 0, then we have a gap of length1

or larger, the length of the gap equal tomin{k ≥ 1 : Xj+k > 0}. LetNn(k) denote the number of

gaps of lengthk in the firstn digits, and letNn =
∑

k Nn(k). We define the gap distributionµn as

a probability measure onZ+ given by

µn(k) =
EQnNn(k)

EQnNn

. (4.1)

To state the next theorem, let

ν(k) = λ
−(k−1)
C (1− λ−1

C ) (4.2)

denote the probability density of a geometric random variable with parameterλ−1
C . We have
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Theorem 4.1.LetH1 = {(0, b, 1) ∈ L} andH2 = {(0, b+ 1, b+ 2) ∈ L : cb > 0, cb+1 = 0}. For

z = (0, b+ 1, b+ 2) ∈ H2 we let

r(b) = max{j : cb+j = 0},

ρ(b) = Q((0, b+ r(b), b+ r(b) + 1), (0, b+ r(b) + 1, 1)) =
ϕC(1)

λCϕC(b+ r(b) + 1)
, and

h(b, k) =







0 k < r(b) + 1

1− ρ(b) k = r(b) + 1

ρ(b)λ
−(k−r(b)−2)
C (1− λ−1

C ) k > r(b) + 1.

(4.3)

Then

(1) limn→∞
1
n
EQnNn = MπQ

1
.

(2)

lim
n→∞

µn(k) =







1− 1−πQ
1 (0)

M
π
Q
1

k = 0

1−πQ
1 (0)−πQ(H1)(1−λ−1

C
)−∑

z∈H2
πQ(z)(1−ρ(z(2)))

M
π
Q
1

k = 1.
(4.4)

(3) For k ≥ 2,

lim
n→∞

µn(k) =
πQ(H1)ν(k − 1)

MπQ
1

.

+

∑

z∈H2
πQ(z) (h(z(2)− 1, k)− ρ(z(2))ν(k − 1))

MπQ
1

. (4.5)

Since
∑

k≥2 ν(k−1) =
∑

k≥2 h(b, k) = 1, it follows that the limitlimn→∞ µn(·) is a probability

measure, which we denote byµ∞. A simple argument shows that a stronger result holds. For

n ∈ N, define the empirical gap distribution̂µn as a random measure onZ+, defined by

µ̂n(A) =

∑

k∈ANn(k)

max(Nn, 1)
. (4.6)

We therefore have the following.

Theorem 4.2.For anyA ⊂ Z+ andǫ > 0,

lim
n→∞

Qn(|µ̂n(A)− µ∞(A)| > ǫ) = 0. (4.7)

We comment that the expression for the limit in Theorem 4.1 ismuch simpler whencj > 0 for

all j = 1, . . . , L. In this caseH2 = ∅. For the standard Zeckendorf, we have the following.
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Example 4.3. For the standard Zeckendorf decomposition,MπQ
1

= πQ
1 (1) = 1

φ+2
andλC = φ.

Therefore

(1) limn→∞
1
n
EQnNn = 1

φ+2
.

(2) limn→∞ µn(k) =







0 k = 0, 1

φ−k k ≥ 2.

When some of the coefficients are zero, then some gaps of length ≥ 2 are forced by the recur-

rence relation, and taking this into account is the source ofthe lengthy expression in the theorem.

Example 4.4.Consider the recurrence relation withL = 4, c1 = 1, c2 = c3 = 0, c4 = 2. ThenλC

is the largest (real) root ofλ3(λ− 1) = 2, λC ≈ 1.5437. We have

h(k) =







0 k < 3

1
2

k = 3

1
2
λ
−(k−4)
C (1− λ−1

C ) k ≥ 4

(4.8)

and

lim
n→∞

µn(k) =







0 k = 0

2− λ2
C
+1

3λC
k = 1

(λC−1)2−λC

3λC
ν(k − 1) + 2λC−1

3λC
h(k) k ≥ 2.

(4.9)

In this example,

L =
{
z1 = (0, 1, 1), z2 = (1, 1, 2), z3 = (0, 2, 3), z4 = (0, 3, 4), z5 = (0, 4, 1), z6 = (1, 4, 1)

}
.

(4.10)

There are no gaps of length0 as the coefficients immediately show. Gaps of length1 only appear

in the form(1, 4, 1) followed by(1, 1, 2). Larger gaps can be formed as follows.

• Gaps of lengthk ≥ 2 through a sequence of the form(1, 4, 1), (0, 1, 1), . . . , (1, 1, 2), with

(0, 1, 1) repeatedk − 1 times.

• Gaps of lengthk ≥ 3 through a sequence beginning with(1, 1, 2), (0, 2, 3), (0, 3, 4), fol-

lowed by(1, 4, 1) if length is 3, or by k − 3 repetitions of(0, 1, 1) followed by (1, 1, 2)

otherwise.
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The larger gaps of the second type are forced by the recurrence, in the sense that the con-

dition c2 = c3 = 0 implies Q((1, 1, 2), (0, 2, 3)) = Q((0, 2, 3), (0, 3, 4)) = 1, and so every

time the sequence hits the state(1, 1, 2), a gap of minimal length3 occurs. Let us see how

this is reflected in the formula.H1 = {(0, 1, 1), (0, 4, 1)} andH2 = {(0, 2, 3)}. There’s only

one element inH2 and therefore we omit the reference tob in the functionsr, ρ, h. So r = 2,

ρ = Q((0, 3, 4), (0, 4, 1)) = 1
2
, and the expression forh follows.

We now computeπQ. Let p = πQ(z2). SinceQ(z2, z3) = Q(z3, z4) = 1, we have that

p = πQ(z3) = πQ(z4). Next,Q(z4, z5) = Q(z4, z6) = 1
2
, and soπQ(z5) = πQ(z6) = p/2. We

also observe that

πQ(z1) = πQ(z1)λ−1
C + πQ(z5)Q(z5, z1) + πQ(z6)Q(z6, z1) (4.11)

Therefore,πQ(z1) = p
λC−1

. Now we have1 = p
λC−1

+ 4p, so altogether,p = λC−1
4λC−3

, and the

expression for the limit ofµn follow after some algebra.

Proof of Theorem 4.1.For a real numberx, letx+ = max(x, 0). We begin with gaps of length0:

EQ
z Nn(0) =

n−1∑

j=0

(Zj(1)− 1)+. (4.12)

The ergodicity ofZ underQ implies that

lim
n→∞

EQ
z Nn(0)

n
=

∑

z=(x,j,j′)

πQ(z)(x− 1)+ = MπQ
1
− 1 + πQ

1 (0). (4.13)

Before moving to gaps of larger length, we consider the totalnumber of jumps. We have

1

n
EQ

z

∑

k≥1

Nn(k) =
1

n
EQ

z

n−1∑

j=0

1{Zj(0)>0}

→
n→∞

1− πQ
1 (0), (4.14)

and so from (4.13), (4.14)

lim
n→∞

1

n
EQ

z Nn = MπQ
1
. (4.15)

We move to calculation of gaps of length≥ 2. We will treat gaps of length1 last. Letk ≥ 2. Then

1

n
EQ

z Nn(k) =
1

n
EQ

z

n−k∑

j=0

1{Zj(1)>0}

(
k−1∏

ℓ=1

1{Zj+ℓ(1)=0}

)

1{Zj+k(1)>0}. (4.16)
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Let B = {(0, b, b′) ∈ L}. It therefore follows from the Markov property and ergodicity that

lim
n→∞

1

n
EQ

z Nn(k) =
∑

z0∈A
πQ(z0)fB(z

0) (4.17)

where forD ⊂ L we have

fD(z
0) =




∑

z1∈D,...,zk−1∈B

k−1∏

ℓ=1

Q(zℓ−1, zℓ)



Q(zk−1, A). (4.18)

Letting

B0 = {(0, 1, 1)}

B1 = {(0, b+ 1, 1) ∈ L : b ≥ 1, cb > 0},

B2 = {(0, b+ 1, b+ 2) ∈ L : b ≥ 1, cb > 0, cb+1 = 0}, and

B3 = {(0, b+ 1, 1) ∈ L : b ≥ 1, cb = 0, cb+1 > 0}, (4.19)

we can write
∑

z0∈A
πQ(z0)fB(z

0) =
3∑

m=0

∑

z0∈A
πQ(z0)fBm

(z0). (4.20)

Note that∪3
m=0Bm = {(0, b, b′) ∈ L : cb−1 6= 0 or cb′ 6= 0}, and so this union does not necessarily

contain all elements(0, b, b′) ∈ L. However, it does contain all such elements which are accessible

from A in one step (and more, wheneverB3 is not empty).

We now simplify the expression, beginning with the sum overB1. It is important to observe that

B1 is the subset of states inB accessible in one step only fromA, In addition, if z1 ∈ B1, then

it immediately follows thatz2 = · · · = zk−1 = (0, 1, 1), and that allowed transitions to(0, 1, 1)

always have probabilityλ−1
C . As a result, we have that

fB1(z
0) = Q(z0, z1)λ

−(k−2)
C (1− λ−1

C ), (4.21)

and thus
∑

z0∈A
πQ(z0)fB1(z

0) = πQ(B1)ν(k − 1). (4.22)

Next we consider the sum overB0, namelyz1 = (0, 1, 1). Clearly:

∑

z0∈A
πQ(z0)f(0,1,1)(z

0) =
∑

z0∈L
πQ(z0)f(0,1,1)(z

0)−
∑

z0∈B
πQ(z0)f(0,1,1)(z

0). (4.23)

27



Since(0, 1, 1) is accessible in one step either fromA or from states inz ∈ B0 ∪ B1 ∪ B3 and for

all suchz, Q(z, (0, 1, 1)) = λ−1
C , it follows that

∑

z0∈A
πQ(z0)f(0,1,1)(z

0) =
(
πQ((0, 1, 1))− πQ(B0 ∪ B1 ∪ B3)λ

−1
C

)
ν(k − 1). (4.24)

Hence,

∑

z0∈A
πQ(z0)fB0∪B1(z

0) = πQ(B0 ∪ B1 ∪B3)(1− λ−1
C )ν(k − 1)− πQ(B3)ν(k − 1). (4.25)

We now considerz1 ∈ B2. Suppose then thatz0 ∈ A andz1 ∈ B2 andQ(z0, z1) > 0. Since

z1 = (0, b+ 1, b+ 2), it follows thatz0 = (cb, b, b+ 1) andcb > 0. Now if cb+2 = 0, then the only

allowed transition fromz1 is to z2 = (0, b+ 2, b+ 3). Let r = r(b) andρ = ρ(b) as defined in the

statement of the theorem. Thenzj = (0, b+ j, b+ j + 1) for all j = 1, . . . r, and we conclude that

Q(zj , zj+1) = 1 for j = 0, . . . , r. We continue according the the following two cases.

1. r > k − 1. In this caseQk(z0, A) = 0.

2. r ≤ k − 1. Then either

• r = k − 1, in which caseQk(z0, A) = Q((0, b+ r, b+ r + 1), A) = 1− ρ; or

• 1 < r ≤ k − 2, in which casezr+1 = (0, b + r + 1, 1) and zr+l = (0, 1, 1) for all

2 ≤ l ≤ k− 1− r. In particular, sinceQ((0, 1, 1), A) = Q((0, b+ r+1, 1), A) = 1−λ−1
C ,

we have that

Qk(z0, A) = Q((0, b+ r, b+ r + 1), (0, b+ r + 1, 1))ν(k − r − 1). (4.26)

The only allowed transitions from(0, b+r, b+r+1) to (x, b+r+1, 1) are tox = 0, . . . , cb+r+1−1,

all with equal transition probability. Since there are exactly cb+r+1 − δL(b+ r+1) possible values

for x, exactly one of which is withx = 0, lettingρ(b) = 1
cb−δL(b)

, we have

Qk(z0, A) =







0 k < r(z) + 1

1− ρ(b+ r + 1) k = r(z) + 1

ρ(b+ r + 1)ν(k − r − 1) k > r(z) + 1.

(4.27)

Summarizing the two cases, we conclude that

∑

z0∈A
πQ(z0)fB2(z

0) =
∑

z1∈B2

h(z1(2)− 1, k). (4.28)
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Next, whenz0 ∈ A, andz1 ∈ B3, thenQ(z0, z1) = 0. Thus, we have proved

3∑

m=0

πQ(z0)fBm
(z0) =

(
(1− λ−1

C )πQ(H1)− πQ(B3)
)
ν(k−1)+

∑

z0=(0,b+1,b+2)∈B2

πQ(z0)h(b−1, k).

(4.29)

Let z′ ∈ B3. Then there exists a uniquez1 = (0, b+1, b+2) ∈ B2 such thatz1 = (0, b, b+1), z2 =

(0, b + 2, b + 3), . . . , zr(b) = (0, b + r(b), b + r(b) + 1) andzr(b)+1 = z′. SinceQ(zk, zk+1) = 1

for k = 1, . . . , r(b) − 1, it easily follows thatπQ(z′) = πQ(zr)ρ(b) = πQ(zr−1)ρ(b) = · · · =
πQ(z1)ρ(b). This shows thatπQ(B3) =

∑

{z1=(0,b+1,b+2)∈B2} π
Q(z1)ρ(b). Plugging this into the

formula above, and noting thatH1 in the theorem isB0 ∪ B1 ∪ B3 andH2 in the theorem isB2,

we obtain

lim
n→∞

1

n
EQ

z Nn(k) =
2∑

m=0

πQ(z0)fBm
(z0)

= (1− λ−1
C )πQ(H1)ν(k − 1)

+
∑

z0=(0,b+1,b+2)∈H2

πQ(z0) (h(b− 1, k)− ρ(b)ν(k − 1))) . (4.30)

We turn to gaps of length1:

1

n
EQ

z Nn(1) =
1

n
EQ

z

n−1∑

j=0

1{Zj(1)>0}1{Zj+1(1)>0}

=
1

n

n−1∑

j=0

EQ
z 1{Zj(1)>0}E

Q
Zj
1{Z1(1)>0}, (4.31)

where in the second line we applied the Markov property. Let

A = {(x, b, b′) ∈ L : x > 0}. (4.32)

Ergodicity ofZ underQ then gives

lim
n→∞

1

n
EQ

z Nn(1) =
∑

z∈A
πQ(z)Q(z, A) = πQ(A)−

∑

z∈Ac

πQ(z)Q(z, A). (4.33)

Givenz = (0, b, b′) ∈ Ac, exactly one of the following holds.

• cb = 0, b′ = b+ 1, cb+1 = 0, and thenQ(z, A) = 0.
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• cb = 0, b′ = b+ 1, cb+1 > 0. From the argument in the paragraph above (4.30), and since

Q(z, A) = 1−Q(z, Ac) we obtain that

∑

{z=(0,b,b+1)∈L:cb=0,cb+1=1}
πQ(z)Q(z, A) = πQ(B2)− πQ(B3)

=
∑

z0=(0,b+1,b+2)∈H2

πQ(z0)(1− ρ(b)). (4.34)

• cb > 0 and thenb′ = 1, equivalently,z ∈ H1, in which caseQ(z, A) = 1−Q(z, (0, 1, 1)) =

1− λ−1
C .

Summarizing,

lim
n→∞

1

n
EQ

z Nn(1) = 1− πQ
1 (0)− (1− λ−1

C )πQ
1 (H1)−




∑

z0=(0,b+1,b+2)∈H2

πQ(z0)(1− ρ(b))



 .

(4.35)

To finish the proof, we need to show that the results continue to hold when considering the

measureQn instead ofQ. However, by the Markov property, the expectation underQn of Nn, and

Nn(k) are equal to the expectations of corresponding additive functionals. Therefore it follows

from Theorem 3.2 that the expectations ofNn(k) andNn underQn are asymptotical equivalent to

their expectations with respect toQϕc
. The theorem now follows. �

Proof of Theorem 4.2.We have

{|µ̂n(A)− µ∞(A)| > ǫ} ⊂ ∪k∈A{|µ̂n(k)− µ∞(k)| > ǫ}

= ∪k∈A{|Nn(k)− µ∞(k)Nn| > ǫNn} ∪ {Nn = 0}. (4.36)

SinceQn(Nn = 0) = Qn(Z0 > 0, Z1 = · · · = Zn = 0) → 0, we can ignore the event{Nn = 0}.

Now for every fixedk ∈ A, we have

{|Nn(k)− µ∞(k)Nn| > ǫNn} ⊂ {|Nn(k)− µ∞(k)EQ
πQNn| > ǫ/2} ∪ {|Nn −EQ

πQNn| > ǫ/2}.
(4.37)

Next observe that bothNn andNn(k) are additive functionals for the processZk = (Zk
n : k ∈ Z+),

whereZk
n = (Zn, Zn+1, . . . , Zn+k), and so we can considerNn(k) andNn as additive functionals

of Zk. Letting ϕ′
c(z

0, z1, . . . , zk) = ϕc(z
0), and ϕ̃′

c(z
0, . . . , zk), the distribution ofZ0, . . . , Zk
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underQϕ̃c
, then if as in Definition 3.1 we define

Q′
n,k(A) =

EQ
ϕ̃′
c

(
1A

ϕ′
c(Z

k
n)

)

EQ
ϕ̃′
c

(
1

ϕ′
c(Z

k
n)

) , (4.38)

it follows that the restriction ofQ′
n,k to events generated byZ0, . . . , Zn coincides withQn. In

particular, the distribution of the additive functionalsNn andNn(k) for Zk underQn,k′ coincides

with their distribution underQn. From the variance estimate (3.4) in Theorem 3.2 applied to these

additive functionals underQ′
n,k, we conclude that

Qn({|Nn(k)− µ∞(k)EQ
πQNn| > ǫ/2}) = O(n−1) andQn({|Nn − EQ

πQNn| > ǫ/2}) = O(n−1).

(4.39)

Therefore ifA is finite, we obtain that

lim
n→∞

Qn(|µ̂n(A)− µ∞(A)| > ǫ) = 0. (4.40)

Now if A is infinite, lettingAM = A ∩ {0, . . . ,M}, we observe that

|µ̂n(A)− µ∞(A)| = |µ̂n(AM)− µ∞(AM)|+ µ̂n({M + 1, . . . }) + µ∞({M + 1, . . . })

≤ |µ̂n(AM)− µ∞(AM)|+ µ̂({M + 1, . . . }) + µ∞({M + 1, . . . }). (4.41)

Fix ǫ, and letM be such thatµ∞({M + 1, . . . }) < ǫ. Thus forn large enough,

{|µ̂n(A)− µ∞(A)| > 5ǫ} ⊂ {|µ̂n(AM)− µ∞(AM)| > 2ǫ} ∪ {µ̂n({M + 1, . . . }) > 2ǫ}. (4.42)

The measure of the first event on the right-hand side tends to0 asn → ∞ by (4.40). As for the

second event, it is equal to the event{µ̂n({0, . . . ,M}) < 1− 2ǫ}. However, since, again by (4.40)

µ(|µ̂n({0, . . . ,M})−µ∞({M+1, . . . })| > ǫ/2) tends to0, it follows thatQn({µ̂n({0, . . . ,M} >

1−3ǫ/2) tends to1. But this event is{µ̂n({M+1, . . . , }) < 3ǫ/2}, and soQn(µ̂n({M+1, . . . , }) >
2ǫ) tends to0 as well. The result now follows. �

4.2. Maximal Gap. Next we consider the maximal gapMn, defined as

Mn = sup{k ∈ Z+ : Nn(k) > 0}. (4.43)

Although we can prove the results at the same level of generality as in the previous section, we

prefer to keep the expressions cleaner and simpler, and willassume throughout this section that
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c1, . . . , cL > 0.

Our analysis is based on a renewal structure we now describe.We refer to the gaps of length

k ≥ 2 as “long gaps", and denote the lengths of the long gaps, indexed by order of appearance, by

(Rj : j ∈ N). Observe that any long gap is followed by a possibly empty sequence of: gaps of zero

length (summand repeated more than once, see first paragraphof Section 4.1) and gaps of length

1, independent ofk. This is then followed again by an independent long gap. The number of the

small gaps is bounded above by(L− 1)+
∑

i(ci − 1) = (
∑

i ci)− 1, as the first summand bounds

the number of length1, and the second summand bounds the number of gaps of length zero. Let

Tm denote the first time exactlym long gaps are completed,m(n) = sup{m : Tm ≤ n}. Observe

that a long gap is completed whenever the digit zero is followed by a nonzero digit. Therefore

m(n) =

n−1∑

j=0

10(Zj(1))1{Zj+1(1)>0}. (4.44)

From the Markov property,

EQm(n) =
n−1∑

j=0

EQ
(
10(Zj(1))QZj

(Z1(1) > 0)
)
, (4.45)

LettingA = {z = (x, b, b′) ∈ L : x > 0}, and repeating a similar computation as in the proof of

the casek = 1 in Theorem 4.1, it follows that

lim
n→∞

1

n
EQm(n) =

∑

z∈Ac

πQ(z)Q(z, A) = πQ(Ac)−
∑

z∈A
πQ(z)Q(z, A)

= (1− πQ(0))− (1− πQ(0)) + (1− λ−1
C )πQ(0), (4.46)

where the last equality follows from (4.33) and (4.35). Also, by the renewal theorem [Dur10,

Theorem 2.4.6]

lim
n→∞

m(n)

n
= α, Q-a.s., (4.47)

whereα = 1/EQ
ρ T1 andρ is the uniform distribution onc1 elements:(x, 1, 1), 1 < x < c1 and

(c1, 1, 2). The limit above also holds inL1(Q), asm(n) ≤ n. Consequently

α = πQ
1 (0)

(

1− 1

λC

)

. (4.48)
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To state our result we need to introduce some additional assumption. We say that a sequence

(nk : k ∈ N) of natural numbers tending to∞ satisfies thespacing conditionwith respect toα and

q if

lim inf
k→∞

inf
z∈Z+

∣
∣
∣
∣
∣

ln(nkα)

ln 1
q

− z

∣
∣
∣
∣
∣
> 0. (4.49)

Roughly speaking, this means thatnkα is eventually uniformly far from integer powers of1/q

in some normalized sense.

Theorem 4.5.Assumec1c2 · · · cL > 0. Then for everyk ∈ Z,

lim
n→∞

Qn

(

Mn ≤
⌊

lnnπ1(0)(1− 1
λC

)

lnλC

⌋

+ k

)

= e−λ
−(k−2)
C , (4.50)

when the limit is taken along any sequence satisfying the spacing condition(4.49)with respect to

α = π1(0)(1− 1
λC

) andq = 1
λC

.

Example 4.6.For the standard Zeckendorf decomposition,λC = φ andπ1(0) =
φ+1
φ+2

. This gives

lim
n→∞

Qn

(

Mn ≤
⌊
lnn− ln(φ+ 2)

lnφ

⌋

+ k

)

= e−φ−(k−2)

. (4.51)

Proof of Theorem 4.5.To prove the theorem, we need to recall some facts on the maximum of neg-

ative geometric random variables. LetG be a negative geometric random variable with parameter

p ∈ (0, 1). That is, fork ∈ Z+, P (G ≥ k) = qk whereq = 1 − p. Let G be negative geometric

with parameterp. That is,G takes values inZ+, andP (G ≥ k) = qk, whereq = 1− p. We denote

this distribution byGeom−(p). Let (Gk : k ∈ N) be IID Geom−(p)-distributed random variables,

and letMGm = maxk≤m Gk. ThenP (MGm ≤ j) = (1 − qj)m. For eachm ∈ N, let δm be chosen so

that lnmδm
ln 1/q

=
⌊

lnm
ln 1/q

⌋

. Observe then thatδm ∈ (q, 1]. From this we obtain that for anyk ∈ Z,

P

(

MGm ≤
⌊
lnm

ln 1/q

⌋

+ k

)

=

(

1− qk

mδm

)m

→
m→∞

e−qk . (4.52)

We return to the proof. Fix some sequence satisfying the spacing condition. Abusing notation,

we will refer to a generic element in the sequence asn. Observe that if we chooseGj = Rj − 2,

then (Gj : j ∈ N) is an IID sequence ofGeom−(p) random variables withp = 1 − λ−1
C . In

particular, for everym

MTm
= MGm + 2. (4.53)
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ClearlyTm(n) ≤ n, but also by the law of large numbers and (4.47)

Tm(n)

n
=

Tm(n)

m(n)
× m(n)

n
→

n→∞
1, Q-a.s. (4.54)

From (4.47) we can findǫn > 0 with limn→∞ ǫn = 0 and satisfying

Q

(
m(n)

n
∈ [1− ǫn, 1 + ǫn]α

)

→
n→∞

1. (4.55)

Observe then that

Q

(

Mn ≤
⌊

lnnα

ln 1
q

⌋

+ k

)

≥ Q

(

Mn ≤
⌊

lnnα

ln 1
q

⌋

+ k, 0 < m(n) ≤ (1 + ǫn)nα

)

≥ Q

(

MG⌊(1+ǫn)nα⌋ ≤
⌊

lnnα

ln 1
q

⌋

+ k − 2

)

−Q(m(n)

> (1 + ǫn)nα)−Q(m(n) = 0). (4.56)

The last two terms on the righthand side tend to0. In addition, sinceln(n(1+ǫn)α)−ln(nα) →
n→∞

0,

it follows from the spacing condition that for alln large enough,

⌊

⌊(1+ǫn)nα⌋
ln 1

q

⌋

=

⌊

lnnα
ln 1

q

⌋

. It then

follows from (4.52) that

lim inf
n→∞

Q

(

Mn ≤
⌊

lnnα

ln 1
q

⌋

+ k

)

≥ e−qk−2

. (4.57)

We turn to the upper bound.

Q

(

Mn ≤
⌊

lnnα

ln 1
q

⌋

+ k

)

≤ Q

(

Mn ≤
⌊

lnnα

ln 1
q

⌋

+ k − 2, m(n) ≥ (1− ǫn)nα

)

+ Q (m(n) < (1− ǫn)nα)

≤ Q

(

MG⌈(1−ǫn)nα⌉ ≤
⌊

lnnα

ln 1
q

⌋

+ k

)

+ o(1). (4.58)

The same argument as before shows that forn large enough,

⌊

ln⌈(1−ǫn)nα⌉
ln 1

q

⌋

=

⌊

lnnα
ln 1

q

⌋

, and so

lim sup
n→∞

Q

(

Mn ≤
⌊

lnnα

ln 1
q

⌋

+ k

)

≤ e−qk−2

. (4.59)

Summarizing,

lim
n→∞

Q

(

Mn ≤
⌊

lnnα

ln 1
q

⌋

+ k

)

= e−qk−2

. (4.60)
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It remains to convert the result toQn. Let An = {Mn ≥ ⌊ln lnn⌋}. ThenQ(An) →
n→∞

1. Let

bn = ⌊ln lnn⌋. Then asn− bn = n(1 + o(1)), we conclude that the sequencen− bn also satisfies

the spacing condition. Furthermore, for sufficiently largen,
⌊
ln(n−bn)α

ln 1/q

⌋

=
⌊

lnnα
ln 1/q

⌋

. Thus, from

(4.60)

lim
n→∞

Q

(

Mn−bn ≤
⌊

lnnα

ln 1
q

⌋

+ k

)

= e−qk−2

. (4.61)

LettingBn = {Mn−bn ≤
⌊

lnnα
ln 1

q

⌋

+ k}, it follows from the Markov property and the ergodicity of

Z that

EQ

(

1Bn

1

ϕc(Zn)

)

= EQ

(

1Bn
EXn−bn

1

ϕc(Xbn)

)

= EQ

(

1Bn
EπQ

1

ϕc

)

+ o(1) = Q(Bn) + o(1). (4.62)

Now

Q

(

Mn ≤
⌊

lnnα

ln 1
q

⌋

+ k,
1

ϕc(Xn)

)

≤ Q

(

1Bn
, EQ

Xn−bn

1

ϕc(Xbn)

)

= Q(Bn)EπQ

1

ϕc

+ o(1), (4.63)

and so

lim sup
n→∞

Qn

(

Mn ≤
⌊
lnnα

ln 1/q

⌋

+ k

)

≤ e−qk−2

. (4.64)

We turn to the lower bound. Observe thatMn > Mn−bn only if one of the lastbn + 1 long gaps

among the firstm(n) is maximal. Fixc > 0, then for alln large enough, depending onc and on the

event{Mn > c lnn}, those maximal gap among the lastbn + 1 must begin beforen− bn (because

otherwise it will have length at mostbn < c lnn) and end aftern− bn (otherwise already included

in Mn−bn). That is,

{Mn > Mn−bn} ∩ {Mn > c lnn} ⊂ { max
j=1,...,m(n−bn)+1

Gj = Gm(n−bn)+1}. (4.65)

Denote the event on the right-hand side byCn. We have that

Q(Cn) ≤ Q(Cn, m(n) ∈ ((1− ǫ)nα, (1 + ǫ)nα)) + o(1)

≤ 2ǫnα × 1

(1− ǫ)nα
+ o(1) →

n→∞

2ǫ

1− ǫ
. (4.66)
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Sinceǫ is arbitrary, we conclude thatQ(Cn) →
n→∞

0. Hence

EQ

(

Mn >

⌊

lnnα

ln 1
q

⌋

+ k,
1

ϕc(Zn)

)

≤ Q

(

Mn−bn >

⌊

lnnα

ln 1
q

⌋

+ k, Cc
n,

1

ϕc(Xn)

)

+Q(Cn)

≤ Q

(

Mn−bn >

⌊

ln(n− bn)α

ln 1
q

⌋

+ k,
1

ϕc(Zn)

)

+ o(1).

(4.67)

The remainder of the proof is identical to the argument presented in (4.62), with the obvious

changes. This gives the lower bound

lim inf
n→∞

Qn

(

Mn ≤ ⌊lnnα⌋
ln 1

q

+ k

)

≥ e−qk−2

, (4.68)

thus completing the proof. �

APPENDIX: GENERALIZATION TO INITIAL SEGMENTS

Although our approach is most natural for intervals of the form [Gn, Gn+1), most of the results

can be easily extended to the general case where we consider the interval[1, N). We will now

briefly show how this can be done. For everyN ∈ N there exists a uniquen = n(N) such that

N ∈ [Gn+1, Gn+2). Denote the uniform measure on[1, N) byWN . Then it follows from Theorem

2.2 that

WN(A) =

n(N)−1
∑

j=0

αjQ
j(A) + αnQ

n(A|[Gn+1, N)), (4.69)

whereG0 = 0, αj = (min(Gj+2, N)−Gj+1)/N , and for simplicity we considerQj as a probabil-

ity measure onN which gives zero mass to elements outside the interval[Gj+1, Gj+2).

Consider now a functionF : N → [0, 1], and assume thatlimj→∞EQjF = c(F ). We will make

more assumptions onF later. We will basically requireF not to depend too much on its first and

last digits.

Then we can write

EWNF =

N(n)−1
∑

j=1

αjE
Qj

F + αnE
Qn

(F |[Gn+1, N)) = (I) + (II). (4.70)
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It is easy to see that along sequences satisfying eitherαn → 0 or αn → 1, the righthand side

converges toc(F ). However, when this is not the case, then the term (II) may be oscillatory. How-

ever, if we can show thatEQn

(F |[Gn+1, N)) → c(F ), then it follows thatEWNF → c(F ). The

idea is very much in the spirit of Proposition 2.3. This cannot hold for allF , so we need to restrict

our discussion to thoseF not affected much by first or last digits.

In order to do this we make some assumptions ofF so that the oscillations will asymptotically

vanish. Denote the length of the decomposition ofx by |x|. Suppose that for eachx large enough,

there existsnx such thatnx, |x| − nx → ∞, and ifAx denotes all numbers with length|x| whose

decomposition differs from that ofx only in the firstnx or lastnx digits, we will assume

lim
x→∞

sup
x′∈Ax

|F (x′)− F (x)| = 0. (4.71)

An example of such a function is any additive functionalS, divided by the length of the de-

compositionD (a random variable we localized to numbers with decompositions of fixed length in

previous sections). Another example iseiθ(S−c)/
√
D for somec. We note that we can make weaker

assumptions onF for the argument to work. Before presenting the argument, westate the result:

Proposition 4.7. Suppose thatF : N → [0, 1] satisfieslimj→∞EQjF = c(F ). If (4.71)holds,

thenlimN→∞EWNF = c(F ).

Proof. Assume then that we have a sequenceN1 < N2 < · · · with n1(N1) ≤ n2(N2) ≤ · · · .
Without loss of generality, we may assume that thatnj < nj+1 andinf αnj

> ρ ∈ (0, 1). That is,

(Nj −Gnj+1)/Nj > ρ, (4.72)

which in turn impliesNj > (1 + c2)Gnj+1. This along with the exponential growth of(Gn),

guarantee that for anyǫ > 0, there exists someK ∈ N andÑj ∈ [Gnj+1, Nj), such that

(1) The firstK digits of Ñj coincide with those ofNj .

(2) All other digits ofÑj are zero.

(3) Ñj/Nj ≥ (1− ǫ).

In other words, the fact thatNj is at least a certain fixed multiple (depending only on(Nj) ) of

Gnj+1 means that the first digits may have some constraints, but notthe last (because they cannot

contribute much to the sum). This allows us to “round" downNj to Ñj , a near number for which
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the condition of being in the interval[Gnj+1, Ñj) is determined only by the firstK digits.

Now we repeat the argument from Proposition 2.3 which allowsto separate the firstK < nx and

the lastnx digits from the rest. This gives

lim
j→∞

EQnj

(

F (X)|X < Ñj

)

= c(F ). (4.73)

The last step is to recover (II) forNj from the corresponding expression forÑj . We have

EQnj (F (X), X < Nj) = EQnj

(

F (X), X < Ñj

)

+ EQnj

(

F (X), Ñj ≤ X < Nj

)

. (4.74)

By condition (3) in the choice of̃Nj , the absolute value of second summand on the righthand

side is bounded above by(Nj − Ñj)/(Gnj+2 −Gnj+1) ≤ ǫ
Nj

GNj+2
−GNj+1

. This implies

EQnj (F (X)|X < Nj) = EQnj

(

F (X)|X < Ñj

) |Ñj −Gnj+1
|

|Nj −Gnj+1
| + ǫ

Nj

|Nj −Gnj+1
|O(1). (4.75)

Thus,
∣
∣
∣EQnj (F (X)|X < Nj)− EQnj

(

F (X)|X < Ñj

)∣
∣
∣ =

|Nj − Ñj|
Nj −Gnj+1

O(1) + ǫ
Nj

|Nj −Gnj+1
|O(1)

= ǫ
Nj

Nj −Gnj+1
O(1) = ǫO(1), (4.76)

the first equality on the second line is from condition (3) in the choice ofÑj, and the second

equality there follows from (4.72). Therefore
∣
∣EQnj (F (X)|X < Nj)− c(F )

∣
∣ = O(ǫ), and it then

follows from (4.70) thatlim supj |EWNjF (X)− c(F )| = ǫO(1), completing the proof. �
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