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Abstract

We study a general class of problems called p-F-Deletion problems. In an p-F-
Deletion problem, we are asked whether a subset of at most k vertices can be deleted
from a graph G such that the resulting graph does not contain as a minor any graph from
the family F of forbidden minors. We obtain a number of algorithmic results on the p-F-
Deletion problem when F contains a planar graph. We give

• a linear vertex kernel on graphs excluding t-claw K1,t, the star with t leves, as an
induced subgraph, where t is a fixed integer.

• an approximation algorithm achieving an approximation ratio of O(log3/2OPT ), where
OPT is the size of an optimal solution on general undirected graphs.

Finally, we obtain polynomial kernels for the case when F contains graph θc as a minor for
a fixed integer c. The graph θc consists of two vertices connected by c parallel edges. Even
though this may appear to be a very restricted class of problems it already encompasses
well-studied problems such as Vertex Cover, Feedback Vertex Set and Diamond
Hitting Set. The generic kernelization algorithm is based on a non-trivial application of
protrusion techniques, previously used only for problems on topological graph classes.

1 Introduction

Let F be a finite set of graphs. In an p-F-Deletion problem1, we are given an n-vertex graph
G and an integer k as input, and asked whether at most k vertices can be deleted from G
such that the resulting graph does not contain a graph from F as a minor. More precisely the
problem is defined as follows.

p-F-Deletion
Instance: A graph G and a non-negative integer k.

Parameter: k
Question: Does there exist S ⊆ V (G), |S| ≤ k,

such that G \ S contains no graph from F as a minor?

We refer to such subset S as F-hitting set. The p-F-Deletion problem is a generalization of
several fundamental problems. For example, when F = {K2}, a complete graph on two vertices,
this is the Vertex Cover problem. When F = {C3}, a cycle on three vertices, this is the
Feedback Vertex Set problem. Another famous cases are F = {K2,3,K4}, F = {K3,3,K5}
and F = {K3, T2}, which correspond to removing vertices to obtain outerplanar graphs, planar
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1We use prefix p to distinguish the parameterized version of the problem.
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Figure 1: Graphs T2, t-claw K1,t with t = 7, and θc with c = 7

graphs and graphs of pathwidth one respectively. Here Ki,j is a complete bipartite graph with
bipartitions of sizes i and j, Ki is a complete graph on i vertices, and T2 is the graph in the
left of Figure 1. In literature these problems are known as p-Outerplanar Deletion Set,
p-Planar Deletion Set and p-Pathwidth One Deletion Set respectively.

Our interest in the p-F-Deletion problem is motivated by its generality and the recent
development in kernelization or polynomial time preprocessing. The parameterized complexity
of this general problem is well understood. By a celebrated result of Robertson and Seymour,
every p-F-Deletion problem is fixed-parameter tractable (FPT). That is, there is an algorithm
solving the problem in time O(f(k) · n3) [44]. In this paper we study this problem from the
view point of polynomial time preprocessing and approximation, when the obstruction set F
satisfies certain properties.

Preprocessing as a strategy for coping with hard problems is universally applied in practice
and the notion of kernelization provides a mathematical framework for analyzing the quality of
preprocessing strategies. We consider parameterized problems, where every instance I comes
with a parameter k. Such a problem is said to admit a polynomial kernel if every instance (I, k)
can be reduced in polynomial time to an equivalent instance with both size and parameter
value bounded by a polynomial in k. The study of kernelization is a major research frontier
of Parameterized Complexity and many important recent advances in the area are on kernel-
ization. These include general results showing that certain classes of parameterized problems
have polynomial kernels [3, 12, 31, 38]. The recent development of a framework for ruling out
polynomial kernels under certain complexity-theoretic assumptions [11, 25, 32] has added a new
dimension to the field and strengthened its connections to classical complexity. For overviews
of the kernelization we refer to surveys [10, 33] and to the corresponding chapters in books on
Parameterized Complexity [30, 42].

While the initial interest in kernelization was driven mainly by practical applications, the
notion of kernelization appeared to be very important in theory as well. It is well known, see
e.g. [26], that a parameterized problem is fixed parameter tractable, or belongs to the class
FPT, if and only if it has (perhaps exponential) kernel. Kernelization is a way to classify the
problems belonging to FPT, the most important class in Parameterized Complexity, according
to the sizes of their kernels. So far, most of the work done in the field of kernelization is still
specific to particular problems and powerful unified techniques to identify classes of problems
with polynomial kernels are still in nascent stage. One of the fundamental challenges in the area
is the possibility to characterise general classes of parameterized problems possessing kernels of
polynomial sizes. From this perspective, the class of the p-F-Deletion problems is very inter-
esting because it contains as special cases p-Vertex Cover and p-Feedback Vertex Set
problems which are the most intensively studied problems from the kernelization perspective.
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Our contribution and key ideas. One of the main conceptual contributions of this work
is the extension of protrusion techniques, initially developed in [12, 31] for obtaining meta-
kernelization theorems for problems on sparse graphs like planar and H-minor-free graphs, to
general graphs. We demonstrate this by obtaining a number of kernelization results on the p-F-
Deletion problem, when F contains a planar graph. Our first result is the following theorem
for graphs containing no star with t leaves K1,t, see Figure 1, as an induced subgraph.

Theorem 1. Let F be an obstruction set containing a planar graph. Then p-F-Deletion
admits a linear vertex kernel on graphs excluding K1,t as an induced subgraph, where t is a fixed
integer.

Several well studied graph classes do not contain graphs with induced K1,t. Of course, every
graph with maximum vertex degree at most t − 1 is K1,t-free. The class of K1,3-free graphs,
also known as claw-free graphs, contains line graphs and de Bruijn graphs. Unit disc graphs are
known to be K1,7-free [19]. We remark that the number of vertices O(k) in kernels of Theorem 1
is (up to a multiplicative constant) optimal, unless P=NP.

Our kernelization is a divide and conquer algorithm which finds and replaces large protru-
sions, that is, subgraphs of constant treewidth separated from the remaining part of the graph
by a constant number of vertices, by smaller, “equivalent” protrusions. Here we use the results
from the work by Bodlaender et al. [12] that enable this step whenever the parameterized prob-
lem in question “behaves like a regular language”. To prove that p-F-Deletion has the desired
properties for this step, we formulate the problem in monadic second order logic and show that
it exhibits certain monotonicity properties. As a corollary we obtain that p-Feedback Vertex
Set, p-Diamond Hitting Set, p-Pathwidth One Deletion Set, p-Outerplanar Dele-
tion Set admit linear vertex kernel on graphs excluding K1,t as an induced subgraph. With
the same methodology we also obtain O(k log k) vertex kernel for p-Disjoint Cycle Packing
on graphs excluding K1,t as an induced subgraph. It is worthwhile to mention that p-Disjoint
Cycle Packing does not admit polynomial kernel on general graphs [13].

Let θc be a graph with two vertices and c ≥ 1 parallel edges, see Figure 1. Our second result
is the following theorem on general graphs.

Theorem 2. Let F be an obstruction set containing θc. Then p-F-Deletion admits a kernel
of size O(k2 log3/2 k).

A number of well-studied NP-hard combinatorial problems are special cases of p-θc-Deletion.
When c = 1, this is the classical Vertex Cover problem [41]. For c = 2, this is another well
studied problem, the Feedback Vertex Set problem [5, 7, 18, 35]. When c = 3, this is the
Diamond Hitting Set problem [29]. Let us note that the size of the best known kernel for
c = 2 is O(k2), which is very close to the size of the kernel in Theorem 2. Also Dell and van
Melkebeek proved that no NP-hard vertex deletion problem based on a graph property that is
inherited by subgraphs can have kernels of size O(k2−ε) unless coNP ⊆ NP/poly [25] and thus
the sizes of the kernels in Theorem 2 are tight up to polylogarithmic factor.

The proof of Theorem 2 is obtained in a series of non-trivial steps. The very high level idea
is to reduce the general case to problem on graphs of bounded degrees, which allows us to use
the protrusion techniques as in the proof of Theorem 1. However, vertex degree reduction is not
straightforward and requires several new ideas. One of the new tools is a generic O(log3/2OPT )-
approximation algorithm for the p-F-Deletion problem when the class of excluded minors for
F contains at least one planar graph. More precisely, we obtain the following result, which is
interesting in its own.

Theorem 3. Let F be an obstruction set containing a planar graph. Given a graph G, in
polynomial time we can find a subset S ⊆ V (G) such that G[V \ S] contains no element of F
as a minor and |S| = O(OPT · log3/2OPT ). Here OPT is the minimum size of such a set S.
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While several generic approximation algorithms were known for problems of minimum vertex
deletion to obtain subgraph with property P , like when P is a hereditary property with a finite
number of minimal forbidden subgraphs [40], or can be expressed as a universal first order
sentence over subsets of edges of the graph [37], we are not aware of any generic approximation
algorithm for the case when a property P is characterized by a finite set of forbidden minors.

We then use the approximation algorithm as a subroutine in a polynomial time algorithm
that transforms the input instance (G, k) into an equivalent instance (G′, k′) such that k′ ≤ k
and the maximum degree of G′ is bounded by O(k log3/2 k). An important combinatorial tool
used in designing this algorithm is the q–Expansion Lemma. For q = 1 this lemma is Hall’s
theorem and its usage can be seen as applying Crown Decomposition technique [1, 17]. After we
manage to reduce the maximum degree of a graph, we apply protrusion techniques and prove
Theorem 2.

Related work. All non-trivial p-F-Deletion problems are NP-hard [39]. By one of the most
well-known consequences of the celebrated Graph Minor theory of Robertson and Seymour, the
p-F-Deletion problem is fixed parameter tractable for every finite set of forbidden minors. A
special case of that problem, when the set F contains θc was studied from approximation and pa-
rameterized perspectives. In particular, the case of p-θ1-Deletion or, equivalently, p-Vertex
Cover, is the most well-studied problem in Parameterized Complexity. Different kernelization
techniques were tried for it, resulting in a 2k-sized vertex kernel [1, 16, 24, 34]. For the kernel-
ization of p-Feedback Vertex Set, or p-θ2-Deletion, there has been a sequence of dramatic
improvements starting from an O(k11) vertex kernel by Buragge et al. [15], improved to O(k3)
by Bodlaender [9], and then finally to O(k2) by Thomassé [46]. Recently Philip et al. [43] and
Cygan et al. [23] obtained polynomial kernels for p-Pathwidth One Deletion Set. Con-
stant factor approximation algorithm are known for Vertex Cover and Feedback Vertex
Set [5, 6]. Very recently, a constant factor approximation algorithm for the Diamond Hitting
Set problem, or p-θ3-Deletion, was obtained in [29]. Prior to our work, no polynomial kernels
were known for p-Diamond Hitting Set or more general families of p-F-Deletion problems.

The remaining part of the paper is organised as follows. In Section 2 we provide preliminaries
on basic notions from Graph Theory and Logic used in the paper. Section 3 is devoted to the
proof of Theorem 1. In Section 4 we give an approximation algorithms proving Theorem 3. The
proof of Theorem 2 is given in Section 5. We conclude with open questions in Section 6.

2 Preliminaries

In this section we give various definitions which we use in the paper. For n ∈ N, we use [n] to
denote the set {1, . . . , n}. We use V (G) to denote the vertex set of a graph G, and E(G) to
denote the edge set. The degree of a vertex v in G is the number of edges incident on v, and is
denoted by d(v). We use ∆(G) to denote the maximum degree of G. A graph G′ is a subgraph
of G if V (G′) ⊆ V (G) and E(G′) ⊆ E(G). The subgraph G′ is called an induced subgraph of G
if E(G′) = {{u, v} ∈ E(G) | u, v ∈ V (G′)}. Given a subset S ⊆ V (G) the subgraph induced by
S is denoted by G[S]. The subgraph induced by V (G) \ S is denoted by G \ S. We denote by
N(S) the open neighborhood of S, i.e. the set of vertices in V (G) \ S adjacent to S. Let F be
a finite set of graphs. A vertex subset S ⊆ V (G) of a graph G is said to be a F-hitting set if
G \ S does not contain any graphs in the family F as a minor.

By contracting an edge (u, v) of a graph G, we mean identifying the vertices u and v, keeping
all the parallel edges and removing all the loops. A minor of a graph G is a graph H that can be
obtained from a subgraph of G by contracting edges. We keep parallel edges after contraction
since the graph θc which we want to exclude as a minor itself contains parallel edges.
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Let G,H be two graphs. A subgraph G′ of G is said to be a minor-model of H in G if G′

contains H as a minor. The subgraph G′ is a minimal minor-model of H in G if no proper
subgraph of G′ is a minor-model of H in G.

A graph class C is minor closed if any minor of any graph in C is also an element of C. A
minor closed graph class C is H-minor-free or simply H-free if H /∈ C.

2.1 Monadic Second Order Logic (MSO)

The syntax of MSO on graphs includes the logical connectives ∨, ∧, ¬, ⇔, ⇒, variables for
vertices, edges, sets of vertices and sets of edges, the quantifiers ∀, ∃ that can be applied to
these variables, and the following five binary relations:

1. u ∈ U where u is a vertex variable and U is a vertex set variable;

2. d ∈ D where d is an edge variable and D is an edge set variable;

3. inc(d, u), where d is an edge variable, u is a vertex variable, and the interpretation is that
the edge d is incident on the vertex u;

4. adj(u, v), where u and v are vertex variables u, and the interpretation is that u and v are
adjacent;

5. equality of variables representing vertices, edges, set of vertices and set of edges.

Many common graph-theoretic notions such as vertex degree, connectivity, planarity, being
acyclic, and so on, can be expressed in MSO, as can be seen from introductory expositions [14,
21]. Of particular interest to us are p-min-MSO problems. In a p-min-MSO graph problem
Π, we are given a graph G and an integer k as input. The objective is to decide whether there
is a vertex/edge set S of size at most k such that the MSO-expressible predicate PΠ(G,S) is
satisfied.

2.2 Parameterized algorithms and Kernels

A parameterized problem Π is a subset of Γ∗ × N for some finite alphabet Γ. An instance of
a parameterized problem consists of (x, k), where k is called the parameter. A central notion
in parameterized complexity is fixed parameter tractability (FPT) which means, for a given
instance (x, k), solvability in time f(k) · p(|x|), where f is an arbitrary function of k and p is a
polynomial in the input size. The notion of kernelization is formally defined as follows.

Definition 1. [Kernelization, Kernel] [30] A kernelization algorithm for a parameterized
problem Π ⊆ Σ∗ × N is an algorithm that, given (x, k) ∈ Σ∗ × N, outputs, in time polynomial
in |x| + k, a pair (x′, k′) ∈ Σ∗ × N such that (a) (x, k) ∈ Π if and only if (x′, k′) ∈ Π and (b)
|x′|, k′ ≤ g(k), where g is some computable function. The output instance x′ is called the kernel,
and the function g is referred to as the size of the kernel. If g(k) = kO(1) then we say that Π
admits a polynomial kernel.

2.3 Tree-width and protrusions

Let G be a graph. A tree decomposition of a graph G is a pair (T,X = {Xt}t∈V (T )) such that

• ∪t∈V (T )Xt = V (G),

• for every edge {x, y} ∈ E(G) there is a t ∈ V (T ) such that {x, y} ⊆ Xt, and

• for every vertex v ∈ V (G) the subgraph of T induced by the set {t | v ∈ Xt} is connected.
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The width of a tree decomposition is maxt∈V (T ) |Xt|−1 and the treewidth of G is the minimum
width over all tree decompositions of G. A tree decomposition (T,X ) is called a nice tree
decomposition if T is a tree rooted at some node r where Xr = ∅, each node of T has at most
two children, and each node is of one of the following kinds:

1. Introduce node: a node t that has only one child t′ where Xt ⊃ Xt′ and |Xt| = |Xt′ |+ 1.

2. Forget node: a node t that has only one child t′ where Xt ⊂ Xt′ and |Xt| = |Xt′ | − 1.

3. Join node: a node t with two children t1 and t2 such that Xt = Xt1 = Xt2 .

4. Base node: a node t that is a leaf of t, is different than the root, and Xt = ∅.
Notice that, according to the above definitions, the root r of T is either a forget node or a
join node. It is well known that any tree decomposition of G can be transformed into a nice
tree decomposition in time O(|V (G)| + |E(G)|) maintaining the same width [36]. We use Gt
to denote the graph induced on the vertices ∪t′X ′t, where t′ ranges over all descendants of t,
including t. We use Ht to denote Gt[V (Gt) \Xt].

Given a graph G and S ⊆ V (G), we define ∂G(S) as the set of vertices in S that have a
neighbor in V (G) \ S. For a set S ⊆ V (G) the neighborhood of S is NG(S) = ∂G(V (G) \ S).
When it is clear from the context, we omit the subscripts. We now define the notion of a
protrusion.

Definition 2. [r-protrusion] Given a graph G, we say that a set X ⊆ V (G) is an r-protrusion
of G if tw(G[X]) ≤ r and |∂(X)| ≤ r.

2.4 t-Boundaried Graphs

In this section we define t-boundaried graphs and various operations on them. Throughout this
section, t is an arbitrary positive integer.

Definition 3. [t-Boundaried Graphs] A t-boundaried graph is a graph G with t distinguished
vertices, uniquely labeled from 1 to t. The set ∂(G) of labeled vertices is called the boundary
of G. The vertices in ∂(G) are referred to as boundary vertices or terminals.

For a graph G and a vertex set S ⊆ V (G), we will sometimes consider the graph G[S] as
the |∂(S)|-boundaried graph with ∂(S) being the boundary.

Definition 4. [Gluing by ⊕] LetG1 andG2 be two t-boundaried graphs. We denote byG1⊕G2

the t-boundaried graph obtained by taking the disjoint union of G1 and G2 and identifying each
vertex of ∂(G1) with the vertex of ∂(G2) with the same label; that is, we glue them together
on the boundaries. In G1 ⊕G2 there is an edge between two labeled vertices if there is an edge
between them in G1 or in G2.

In this paper, t-boundaried graphs often come coupled with a vertex set which represents a
partial solution to some optimization problem. For ease of notation we define Ht be to be the
set of pairs (G,S), where G is a t-boundaried graph and S ⊆ V (G).

Definition 5. [Replacement] Let G be a graph containing a r-protrusion X. Let G1 be
an r-boundaried graph. The act of replacing G[X] with G1 corresponds to changing G into
G[(V (G) \X) ∪ ∂(X)]⊕G1.

2.5 Finite Integer Index

Definition 6. [Canonical Equivalence] For a parameterized problem Π and two t-boundaried
graphs G1 and G2, we say that G1 ≡Π G2 if there exists a constant c such that for all t-
boundaried graphs G3 and for all k,

(G1 ⊕G3, k) ∈ Π if and only if (G2 ⊕G3, k + c) ∈ Π.

6



Definition 7. [Finite Integer Index] We say that a parameterized problem Π has finite
integer index if for every t there exists a finite set S of t-boundaried graphs such that for any
t-boundaried graph G1 there exists G2 ∈ S such that G2 ≡Π G1. Such a set S is called a set of
representatives for (Π, t).

Note that for every t, the relation ≡Π on t-boundaried graphs is an equivalence relation. A
problem Π is finite integer index if and only if for every t, ≡Π is of finite index, that is, has
a finite number of equivalence classes. The notion of strong monotonicity is an easy to check
sufficient condition for a p-min-MSO problem to have finite integer index.

Definition 8. [Signatures] Let Π be a p-min-MSO problem. For a t-boundaried graph G we
define the signature function ζΠ

G : Ht → N∪{∞} as follows. For a pair (G′, S′) ∈ Ht, if there is no
set S ⊆ V (G) (S ⊆ E(G)) such that PΠ(G⊕G′, S∪S′) holds, then ζΠ

G((G′, S′)) =∞. Otherwise
ζΠ
G((G′, S′)) is the size of the smallest S ⊆ V (G) (S ⊆ E(G)) such that PΠ(G⊕G′, S∪S′) holds.

Definition 9. [Strong Monotonicity] A p-min-MSO problem Π is said to be strongly mono-
tone if there exists a function f : N→ N such that the following condition is satisfied. For every
t-boundaried graph G, there is a subset S ⊆ V (G) such that for every (G′, S′) ∈ Ht such that
ζΠ
G((G′, S′)) is finite, PΠ(G⊕G′, S ∪ S′) holds and |S| ≤ ζΠ

G((G′, S′)) + f(t).

2.6 MSO Formulations

We now give MSO formulations for some properties involving F or θc that we use in our
arguments. For a graph G and a vertex set S ⊆ V (G), let Conn(G,S) denote the MSO formula
which states that G[S] is connected, and let MaxConn(G,S) denote the MSO formula which
states that G[S] is a maximal connected subgraph of G.

H minor-models. Let F be the finite forbidden set. For a graph G, we use φH(G) to denote
an MSO formula which states that G contains H as a minor — equivalently, that G contains a
minimal H minor model. Let V (H) = {h1, . . . , hc}. Then, φH(G) is given by:

φH(G) ≡ ∃X1, . . . , Xc ⊆ V (G)[∧
i 6=j

(Xi ∩Xj = ∅) ∧
∧

1≤i≤c
Conn(G,Xi)∧∧

(hi,hj)∈E(H)

∃x ∈ Xi ∧ y ∈ Xj [(x, y) ∈ E(G)]

] (1)

Minimum-size F-hitting set. A minimum-size F-hitting set of graph G can be expressed
as:

Minimize S ⊆ V (G)[
∧
H∈F

¬φH(G \ S)] (2)

Largest θc “flower”. Let v be a vertex in a graph G. A maximum-size set M of θc minor-
models in G, all of which pass through v and no two of which share any vertex other than v,
can be represented as:

7



Maximize S ⊆ V (G)[

∃F ⊆ E(G)[∀x ∈ S[

∃X ⊆ V ′[MaxConn(G′, X) ∧ x ∈ X ∧ ∀y ∈ S[y 6= x =⇒ y /∈ X] ∧ φc(X ∪ {v})]
]]] (3)

Here G′ is the graph with vertex set V (G) and edge set F , and V ′ = V (G) \ {v}. S is a
system of distinct representatives for the vertex sets that constitute the elements of M .

3 Kernelization for p-F-Deletion on K1,t free graphs

In this section we show that if the obstruction set F contains a planar graph then the p-F-
Deletion problem has a linear vertex kernel on graphs excluding K1,t as an induced subgraph.
We start with the following lemma which is crucial to our kernelization algorithms.

Lemma 1. Let F be an obstruction set containing a planar graph of size h. If G has a F–hitting
set of S size at most k, then tw(G \ S) ≤ d and tw(G) ≤ k + d, where d = 202(14h−24)5.

Proof. By assumption, F contains at least one planar graph. Let h be the size of the smallest
planar graph H contained in F . By a result of Robertson et al. [45], H is a minor of the
(` × `)-grid, where ` = 14h − 24. In the same paper Robertson et al. [45] have shown that
any graph with treewidth greater than 202`5 contains a (` × `)-grid as a minor. Let S be a
F–hitting set of G of size at most k. Since the (`× `)-grid contains H as a minor, we have that
tw(G \ S) ≤ 202`5 . Therefore, tw(G) ≤ k + d, where d = 202`5 — indeed, a tree decomposition
of width (k + d) can be obtained by adding the vertices of S to every bag in an optimal tree
decomposition of G \ S. This completes the proof of the lemma.

3.1 The Protrusion Rule — Reductions Based on Finite Integer Index

Wo obtain our kernelization algorithm for p-F-Deletion by applying protrusion based reduc-
tion rule. That is, any large r-protrusion for a fixed constant r depending only on F (that is,
r depends only on the problem) is replaced with a smaller equivalent r-protrusion. For this we
utilize the following lemma of Bodlaender et al. [12].

Lemma 2 ([12]). Let Π be a problem that has finite integer index. Then there exists a computable
function γ : N → N and an algorithm that given an instance (G, k) and an r-protrusion X
of G of size at least γ(r), runs in O(|X|) time and outputs an instance (G∗, k∗) such that
|V (G∗)| < |V (G)|, k∗ ≤ k, and (G∗, k∗) ∈ Π if and only if (G, k) ∈ Π.

Remark: Let us remark that if G does not have K1,t as an induced subgraph then the proof
of Lemma 2 also ensures that the graph G′ does not contain K1,t as an induced subgraph. This
makes sure that even after replacement we do not leave the graph class we are currently working
with. The remark is not only true about graphs excluding K1,t as an induced subgraph but also
for any graph class G that can be characterized by either finite set of forbidden subgraphs or
induced subgraphs or minors. That is, if G is in G then so does the graph G′ returned by the
Lemma 2.

In order to apply Lemma 2 we need to be able to efficiently find large r-protrusions whenever
the instance considered is large enough. Also, we need to prove that p-F-Deletion has finite
integer index. The next lemma yields a divide and conquer algorithm for efficiently finding large
r-protrusions.
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Lemma 3. There is a linear time algorithm that given an n-vertex graph G and a set X ⊆ V (G)

such that tw(G \X) ≤ d, outputs a 2(d+ 1)-protrusion of G of size at least n−|X|
4|N(X)|+1 . Here d

is some constant.

Proof. Let F = G \X. The algorithm starts by computing a nice tree decomposition of F of
width at most d. Notice that since d is a constant this can be done in linear time [8]. Let S be
the vertices in V (F ) that are neighbors of X in G, that is, S = NG(X).

The nice tree decomposition of F is a pair (T,B = {B`}`∈V (T )), where T is a rooted binary
tree. We will now mark some of the nodes of T . For every v ∈ S, we mark the topmost node ` in
T such that v ∈ B`. In this manner, at most |S| nodes are marked. Now we mark more nodes of
T by exhaustively applying the following rule: if u and v are marked, mark their least common
ancestor in T . Let M be the set of all marked nodes of T . Standard counting arguments on
trees give that |M | ≤ 2|S|.

Since T is a binary tree, it follows that T \M has at most 2|M |+1 connected components. Let
the vertex sets of these connected components be C1, C2 . . . Cη, η ≤ 2|M |+1. For every i ≤ η, let
C ′i = NT (Ci)∪Ci and let Pi =

⋃
u∈C′i Bu. By the construction of M , every component of T \M

has at most 2 neighbors in M . Also for every 1 ≤ i ≤ η and v ∈ S, we have that if v ∈ Pi, then
v should be contained in one of the bags of NT (Ci). In other words, S∩Pi ⊆

⋃
u∈C′i\Ci

Bu. Thus

every Pi is a 2(d+ 1)-protrusion of G. Since η ≤ 2|M |+ 1 ≤ 4|S|+ 1, the pigeon-hole principle

yields that there is a protrusion Pi with at least n−|X|
4|S|+1 vertices. The algorithm constructs M

and P1 . . . Pη and outputs the largest protrusion Pi. It is easy to implement this procedure to
run in linear time. This concludes the proof.

No we show that p-F-Deletion has finite integer index. For this we need the following
lemma.

Lemma 4 ([12]). Every strongly monotone p-min-MSO problem has finite integer index.

Lemma 5. p-F-Deletion has finite integer index.

Proof. One can easily formulate p-F-Deletion in MSO, which shows that it is a p-min-MSO
problem, see Section 2.6. To complete the proof that p-F-Deletion has finite integer index
we show that Π =p−F-Deletion is strongly monotone. Given a t-boundaried graph G, with
∂(G) as its boundary, let S′′ ⊆ V (G) be a minimum set of vertices in G such that G \ S′′ does
not contain any graph in F as a minor. Let S = S′′ ∪ ∂(G).

Now for any (G′, S′) ∈ Ht such that ζΠ
G((G′, S′)) is finite, we have that G ⊕ G′[(V (G) ∪

V (G′)) \ (S ∪ S′)] does not contain any graph in F as a minor and |S| ≤ ζΠ
G((G′, S′)) + t.

This proves that p-F-Deletion is strongly monotone. By Lemma 4, p-F-Deletion has finite
integer index.

3.2 Analysis and Kernel Size – Proof of Theorem 1

Now we give the desired kernel for p-F-Deletion. We first prove a useful combinatorial lemma.

Lemma 6. Let G be a graph excluding K1,t as an induced subgraph and S be a F-hitting set. If
F contains a planar graph of size h, then |N(S)| ≤ g(h, t) · |S| for some function g of h and t.

Proof. By Lemma 1, tw(G \ S) ≤ d for d = 202(14h−24)5 . It is well known that a graph of
treewidth d is d + 1 colorable. Let v ∈ S and let Sv be its neighbors in G \ S. We first show
that |Sv| ≤ (t− 1)(d + 1). Consider the graph G∗ = G[Sv]. Since tw(G \ S) ≤ d we have that
tw(G∗) ≤ d and hence G∗ is d + 1 colorable. Fix a coloring κ of G∗ with d + 1 colors and let
η be the size of the largest color class. Clearly η ≥ (|Sv|/d + 1). Since each color class is an
independent set, we have that η ≤ (t − 1), else we will get K1,t as an induced subgraph in G.
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This implies that |Sv| ≤ (t − 1)(d + 1). Since v was an arbitrary vertex of S, we have that∑
v∈S |Sv| ≤

∑
v∈S(t− 1)(d+ 1) ≤ |S| · g(h, t). Here g(h, t) = (t− 1)(202(14h−24)5 + 1). Finally

the observation that N(S) = ∪v∈SSv, yields the result.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Let (G, k) be an instance of p-F-Deletion and h be the size of a
smallest planar graph in the obstruction set F . We first apply Theorem 3 (to be proved in
next section), an approximation algorithm for p-F-Deletion with factor O(log3/2OPT ), and
obtain a set X such that G \X contains no graph in F as a minor. If the size of the set X is
more than O(k log3/2 k) then we return that (G, k) is a NO-instance to p-F-Deletion. This is
justified by the approximation guarantee provided by the Theorem 3.

Let d denote the treewidth of the graph after the removal of X, that is, d := tw(G\S). Now
we obtain the kernel in two phases: we first apply the protrusion rule selectively (Lemma 2)
and get a polynomial kernel. Then, we apply the protrusion rule exhaustively on the obtained
kernel to get a smaller kernel. This is done in order to reduce the running time complexity of
the kernelization algorithm. To obtain the kernel we follow the following steps.

Applying the Protrusion Rule. By Lemma 1, d ≤ 202(14h−24)5 . We apply Lemma 3 and obtain

a 2(d+ 1)-protrusion Y of G of size at least |V (G′)|−|X|
4|N(X)|+1 . By Lemma 5, p-F-Deletion has finite

integer index. Let γ : N → N be the function defined in Lemma 2. If |V (G′)|−|X|
4|N(X)|+1 ≥ γ(2d + 1),

then using Lemma 2 we replace the 2(d+ 1)-protrusion Y in G and obtain an instance (G∗, k∗)
such that |V (G∗)| < |V (G)|, k∗ ≤ k, and (G∗, k∗) is a YES-instance of p-F-Deletion if and
only if (G, k) is a YES-instance of p-F-Deletion . Recall that G∗ also excludes K1,t as an
induced subgraph.

Let (G∗, k∗) be a reduced instance with hitting set X. In other words, there is no (2d+ 2)-
protrusion of size γ(2d + 2) in G∗ \X, and Protrusion Rule no longer applies. We claim that
the number of vertices in this graph is bounded by O(k log3/2 k). Indeed, since we cannot apply

Protrusion Rule, we have that |V (G∗)|−|X|
4|N(X)|+1 ≤ γ(2d+ 2). Because k∗ ≤ k, we have that

|V (G∗)| ≤ γ(2d+ 2)(4|N(X)|+ 1) + |X|.

By Lemma 6, |N(X)| ≤ g(h, d) · |X| and thus

|V (G∗)| = O(γ(2d+ 2) · k log3/2 k) = O(k log3/2 k).

This gives us a polynomial time algorithm that returns a vertex kernel of size O(k log3/2 k).

Now we give a kernel of smaller size. We would like to replace every large (2d+2)-protrusion
in graph by a smaller one. We find a (2d+ 2)-protrusion Y of size at least γ(2d+ 2) by guessing
the boundary ∂(Y ) of size at most 2d+2. This could be performed in time kO(d). So let (G∗, k∗)
be the reduced instance on which we cannot apply the Protrusion Rule. If G is a YES-instance
then there is a F-hitting set X of size at most k such that tw(G \X) ≤ d. Now applying the
analysis above with this X yields that |V (G∗)| = O(k). Hence if the number of vertices in the
reduced instance G∗, to which we can not apply the Protrusion Rule, is more than O(k) then
we return that G is a NO-instance. This concludes the proof of the theorem.

Corollary 1. p-Feedback Vertex Set, p-Diamond Hitting Set, p-Pathwidth One
Deletion Set, p-Outerplanar Deletion Set admit linear vertex kernel on graphs exclud-
ing K1,t as an induced subgraph.

10



The methodology used in proving Theorem 1 is not limited to p-F-Deletion. For example,
it is possible to obtain an O(k log k) vertex kernel on K1,t-free graphs for p-Disjoint Cycle
Packing, which is for a given graph G and positive integer k to determine if there are k vertex
disjoint cycles in G. It is iteresting to note that p-Disjoint Cycle Packing does not admit a
polynomial kernel on general graphs [13]. For our kernelization algorithm, we use the following
Erdős-Pósa property [27]: given a positive integer ` every graph G either has ` vertex disjoint
cycles or there exists a set S ⊆ V (G) of size at most O(` log `) such that G \ S is a forest. So
given a graph G and positive integer k we first apply factor 2 approximation algorithm given
in [5] and obtain a set S such that G \S is a forest. If the size of S is more than O(k log k) then
we return that G has k vertex disjoint cycles. Else we use the fact that p-Disjoint Cycle
Packing [12] has finite integer index and apply protrusion reduction rule in G \ S to obtain
an equivalent instance (G∗, k∗), as in Theorem 1. The analysis for kernel size used in the proof
of Theorem 1 together with the observation that tw(G \ S) ≤ 1 shows that if (G, k) is an yes
instance then the size of V (G∗) is at most O(k log k).

Corollary 2. p-Disjoint Cycle Packing has O(k log k) vertex kernel on graphs excluding
K1,t as an induced graph.

Next we extend the methods used in this section for obtaining kernels for p-F-Deletion on
graphs excluding K1,t as an induced graph to all graphs, though for restricted F , that is when
F is θc. However to achieve this we need a polynomial time approximation algorithm with a
factor polynomial in optimum size and not depending on the input size. For an example for
our purpose an approximation algorithm with factor O(log n) is no good. Here we obtain an
approximation algorithm for p-F-Deletion with a factor O(log3/2OPT ) whenever the finite
obstruction set F contains a planar graph. Here OPT is the size of a minimum F-hitting set.
This immediately implies a factor O(log3/2 n) algorithm for all the problems that can categorized
by p-F-Deletion. We believe this result has its own significance and is of independent interest.

4 An approximation algorithm for finding a F–hitting set

In this section, we present anO(log3/2OPT )-approximation algorithm for the p-F-Deletion prob-
lem when the finite obstruction set F contains at least one planar graph.

Lemma 7. There is a polynomial time algorithm that, given a graph G and a positive integer
k, either reports that G has no F-hitting set of size at most k or finds a F-hitting set of size at
most O(k log3/2 k).

Proof. We begin by introducing some definitions that will be useful for describing our al-
gorithms. First is the notion of a good labeling function. Given a nice tree decomposition
(T,X = {Xt}t∈V (T )) of a graph G, a function g : V (T ) → N is called a good labeling function
if it satisfies the following properties:

• if t is a base node then g(t) = 0;

• if t is an introduce node, then g(t) = g(s), where s is the child of t;

• if t is a join node, then g(t) = g(s1) + g(s2), where s1 and s2 are the children of t; and

• if t is a forget node, then g(t) ∈ {g(s), g(s) + 1}, where s is the child of t.

A max labeling function g is defined analogously to a good labeling function, the only difference
being that for a join node t, we have the condition g(t) = max{g(s1), g(s2)}. We now turn to
the approximation algorithm.

Our algorithm has two phases. In the first phase we obtain a F-hitting set of sizeO(k2
√

log k)
and in the second phase we use the hitting set obtained in the first phase to get a F-hitting set
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Algorithm 1 Hit-Set-I-(G)

1: if tw(G) ≤ d then
2: Find a minimum F-hitting set Y of G and return Y .
3: end if
4: Compute an approximate tree decomposition (T,X = {Xt}t∈V (T )) of width `.

5: if ` > (k + d)
√

log(k + d), where d is as in Lemma 1 then
6: Return that G does not have F–hitting set of size at most k.
7: end if
8: Convert (T,X = {Xt}t∈V (T )) to a nice tree decomposition of the same width.
9: Find a partitioning of vertex set V (G) into V1, V2 and X (a bag corresponding to a node in
T ) such that tw(G[V1]) = d as described in the proof.

10: Return
(
X
⋃

Hit-Set-I-(G[V1])
⋃

Hit-Set-I-(G[V2])
)
.

of size O(k log3/2 k). The second phase could be thought of as “bootstrapping” where one uses
initial solution to a problem to obtain a better solution.

By assumption we know that F contains at least one planar graph. Let h be the number of
vertices in the smallest planar graph H contained in F . By a result of Robertson et al. [45], H
is a minor of the (t × t)-grid, where t = 14h − 24. Robertson et al. [45] have also shown that
any graph with treewidth greater than 202t5 contains a t× t grid as a minor. In the algorithm
we set d = 202t5 .

We start off by describing the first phase of the algorithm, see Algorithm 1. We start by
checking whether a graph G has treewidth at most d (the first step of the algorithm) using the
linear time algorithm of Bodlaender [8]. If tw(G) ≤ d then we find an optimum F-hitting set of
G in linear time using a modification of Lemma 9. If the treewidth of the input graph is more
than d then we find an approximate tree decomposition of width ` using an algorithm of Feige
et al. [28] such that tw(G) ≤ ` ≤ d′tw(G)

√
log tw(G) where d′ is a fixed constant.

So if ` > (k + d)d′
√

log(k + d) then by Lemma 1, we know that the size of a minimum
F-hitting set of G is at least k + 1. Hence from now onwards we assume that tw(G) ≤ ` ≤
(k + d)d′

√
log(k + d). In the next step we convert the given tree decomposition to a nice tree

decomposition of the same width in linear time [36]. Given a nice tree decomposition (T,X =
{Xt}t∈V (T )) of G, we compute a partial function β : V (T ) → N, defined as β(t) = tw(Ht).
Observe that β is a max labeling function. We compute β in a bottom up fashion starting from
base nodes and moving towards the root. We stop this computation the first time that we find
a node t such that β(t) = tw(Ht) = d. Let V1 = V (Ht), V2 = V (G) \ V1 \ Xt and X = Xt.
After this we recursively solve the problem on the graphs induced on V1 and V2.

Let us assume that G has a F-hitting set of size at most k. We show that in this case the
size of the hitting set returned by the algorithm can be bounded by O(k2

√
log k). The above

recursive procedure can be thought of as a rooted binary tree T where at each non-leaf node of
the tree the algorithm makes two recursive calls. We will assume that the left child of a node
of T corresponds to the graph induced on V1 such that the treewidth of G[V1] is d. Assuming
that the root is at depth 0 we show that the depth of T is bounded by k. Let P = a0a1 · · · aq
be a longest path from the root to a leaf and let Gi be the graph associated with the node ai.
Observe that for every i ∈ {0, . . . , q−1}, ai has a left child, or else ai cannot be a non-leaf node
of T . Let the graph associated with the left child of ai, i ∈ {0, . . . , q − 1}, be denoted by Hi.
Observe that for every 0 ≤ i < j ≤ q − 1, V (Hi) ∩ V (Hj) = ∅ and tw(Hi) = d. This implies
that every Hi has at least one H minor model and all of these are vertex-disjoint. This implies
that q ≤ k and hence the depth of T is bounded by k.

Let us look at all the subproblems at depth i in the recursion tree T . Suppose at depth i
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Algorithm 2 Hit-Set-II-(G,Z)

1: if tw(G) ≤ d then
2: Find a minimum F-hitting set Y of G and Return Y .
3: end if
4: Compute an approximate tree decomposition (T,X = {Xt}t∈V (T )) of width `.
5: Convert it to a nice tree decomposition of G. Now compute the function µ : V (T ) → N,

defined as follows: µ(t) = |V (Ht) ∩ Z|.
6: if (µ(r) = 0) then
7: Return φ.
8: else
9: Find the partitioning of the vertex set V (G) into V1, V2 and X (a bag corresponding to

a node in T ) as described in Cases 1 and 2 of the proof of Theorem 7.
10: end if
11: Return

(
X
⋃

Hit-Set-II-(G[V1], Z)
⋃

Hit-Set-II-(G[V2], Z)
)
.

the induced subgraphs associated with these subproblems are G[Vi], i ∈ [τ ], where τ is some
positive integer. Then observe that for every i, j ∈ [τ ] and i 6= j, we have that Vi ∩ Vj = ∅,
there is no edge (u, v) such that u ∈ Vi, v ∈ Vj , and hence

∑τ
i=1 ki ≤ k, where ki is the size of

the minimum F–hitting set of G[Vi]. Furthermore the number of instances at depth i such that
it has at least one H minor model and hence contributes to the hitting set is at most k. Now
Lemma 1 together with the factor d′

√
log tw(G) approximation algorithm of Feige et al. [28]

implies that the treewidth of every instance is upper bounded by (ki + d)d′
√

log(ki + d), where
ki is the size of the minimum F–hitting set of G[Vi]. Hence the total size of the union of sets
added to our hitting set at depth i is at most

τ∑
i=1

χ(i)(ki + d)d′
√

log(ki + d) ≤ d′(k + d)
√

log(k + d).

Here χ(i) is 1 if G[Vi] contains at least one H minor model and is 0 otherwise. We have
shown that for each i the size of the union of the sets added to the hitting set is at most
d′(k + d)

√
log(k + d). This together with the fact that the depth is at most k implies that the

size of the F-hitting set is at most O(k2
√

log k). Hence if the size of the hitting set returned by
the algorithm is more than d′(k+d)k

√
log(k + d) then we return that G has at no F-hitting set

of size at most k. Hence when we move to the second phase we assume that we have a hitting
set of size O(k2

√
log k). This concludes the description of the first phase of the algorithm.

Now we describe the second phase of the algorithm. Here we are given the hitting set Z
of size O(k2

√
log k) obtained from the first phase of the algorithm. The algorithm is given in

Algorithm 2. The new algorithm essentially uses Z to define a good labeling function µ which
enables us to argue that the depth of recursion is upper bounded by O(log |Z|). In particular,
consider the function µ : V (T ) → N, defined as follows: µ(t) = |V (Ht) ∩ Z|. Let k′ := µ(r),
where r is the node corresponding to the root of a fixed nice tree decomposition of G.

Let t ∈ V (T ) be the node where µ(t) > 2k′/3 and for each child t′ of t, µ(t′) ≤ 2k′/3. Since
µ is a good labeling function, it is easy to see that this node exists and is unique provided that
k′ > 0. Moreover, observe that t could either be a forget node or a join node. We distinguish
these two cases.

• Case 1. If t is a forget node, we set V1 = V (Ht′) and V2 = V (G) \ (V1 ∪Xt′) and observe
that Pθc(G[Vi]) ≤ b2k′/3c, i = 1, 2. Also we set X = Xt′ .

• Case 2. If t is a join node with children t1 and t2, we have that µ(ti) ≤ 2k′/3, i = 1, 2.
However, as µ(t1) + µ(t2) > 2k′/3, we also have that either µ(t1) ≥ k′/3 or µ(t2) ≥ k′/3.
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Without loss of generality we assume that µ(t1) ≥ k′/3 and we set V1 = V (Ht1), V2 =
V (G) \ (V1 ∪Xt1) and X = Xt1 .

Now we argue that if G has a F–hitting set of size at most k then then the size of the hitting
set returned by the algorithm is upper bounded by O(k log3/2 k). As in the first phase we can
argue that the size of the union of the sets added to the hitting set in the subproblems at
depth i is at most d′(k + d)

√
log(k + d). Observe that the recursive procedure in Algorithm 2

is such that the value of the function µ() drops by at least a constant fraction at every level of
recursion. This implies that the depth of recursion is upper bounded by O(log |Z|) = O(log k).
Hence the size of the hitting set returned by the algorithm is upper bounded by O(k log3/2 k)
whenever G has a F–hitting set of size at most k. Thus if the size of the hitting set returned

by Hit-Set-II-(G,Z) is more than d′(k + d)

√
log3/2(k + d), we return that G does not have a

F–hitting set of size at most k. This concludes the proof.

Proof of Theorem 3. Given a graph G on n vertices, let k be the minimum positive integer
in {1, . . . , n} such that Lemma 7 returns a F-hitting set S when applied on (G, k). We return
this S as an approximate solution. By our choice of k we know that G does not have F-hitting
set of size at most k − 1 and hence OPT ≥ k. This implies that the size of S returned by
Lemma 7 is at most O(k log3/2 k) = O(OPT log3/2OPT ). This concludes the proof.

We now define a generic problem. Let η be a fixed constant. In the Treewidth η-Deletion
Set problem, we are given an input graph G and the objective is to delete minimum number
of vertices from a graph such that the resulting graph has treewidth at most η. For an example
Treewidth 1-Deletion Set is simply the Feedback vertex set problem. We obtain the
following corollary of Theorem 3.

Corollary 3. Feedback Vertex Set, Diamond Hitting Set, Pathwidth One Dele-
tion Set, Outerplanar Deletion Set and Treewidth η-Deletion Set admit a factor
O(log3/2 n) approximation algorithm on general undirected graphs.

5 Kernelization for p-θc-Deletion

In this section we obtain a polynomial kernel for p-θc-Deletion on general graphs. To obtain
our kernelization algorithm we not only need approximation algorithm presented in the last
section but also a variation of classical Hall’s theorem. We first present this combinatorial tool
and other auxiliary results that we make use of.

5.1 Combinatorial Lemma and some Linear-Time Subroutines.

We need a variation of the celebrated Hall’s Theorem, which we call the q–Expansion Lemma.
The q–Expansion Lemma is a generalization of a result due to Thomassé [46, Theorem 2.3],
and captures a certain property of neighborhood sets in graphs that implicitly has been used
by several authors to obtain polynomial kernels for many graph problems. For q = 1, the
application of this lemma is exactly the well-known Crown Reduction Rule [1].

The Expansion Lemma. Consider a bipartite graph G with vertex bipartition A]B. Given
subsets S ⊆ A and T ⊆ B, we say that S has |S| q-stars in T if to every x ∈ S we can associate
a subset Fx ⊆ N(x)∩T such that (a) for all x ∈ S, |Fx| = q; (b) for any pair of vertices x, y ∈ S,
Fx∩Fy = ∅. Observe that if S has |S| q-stars in T then every vertex x in S could be thought of
as the center of a star with its q leaves in T , with all these stars being vertex-disjoint. Further,
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a collection of |S| q-stars is also a family of q edge-disjoint matchings, each saturating S. We
use the following result in our kernelization algorithm to bound the degrees of vertices.

Lemma 8. [The q–Expansion Lemma] Let q be a positive integer, and let m be the size of
the maximum matching in a bipartite graph G with vertex bipartition A ]B. If |B| > mq, and
there are no isolated vertices in B, then there exist nonempty vertex sets S ⊆ A, T ⊆ B such
that S has |S| q-stars in T and no vertex in T has a neighbor outside S. Furthermore, the sets
S, T can be found in time polynomial in the size of G.

Proof. Consider the graph H = (X ] B,E) obtained from G = (A ] B,E) by adding (q − 1)
copies of all the vertices in A, and giving all copies of a vertex v the same neighborhood in B
as v. Let M be a maximum matching in H. In further discussions, vertices are saturated and
unsaturated with respect to this fixed matching M .

Let UX be the vertices in X that are unsaturated, and RX be those that are reachable from
UX via alternating paths. We let SA = X \ (UX ∪ RX). Let UB be the set of unsaturated
vertices in B, and let S′ denote the set of partners of SA in the matching M , that is, S′ = {x ∈
B | {u, x} ∈M and u ∈ SA}. Let T = S′ ∪ UB (see Figure 2).

Figure 2: The construction used in the proof of the q–Expansion Lemma

For every v ∈ A, let C(v) be the set of all copies of v (including v). We claim that either
C(v) ∩ SA = C(v), or C(v) ∩ SA = ∅. Suppose that v ∈ SA but a copy of v, say u, is in
UX . Let {v, w} ∈ M . Then v is reachable from u because {u,w} ∈ E(H), and hence w is not
unsaturated in M , contradicting the assumption that w ∈ UX . In the case when v ∈ SA but a
copy of u is in RX , let {w, u} be the last edge on some alternating path from UX to u. Since
{w, v} ∈ E(H), we have that there is also an alternating path from UX to v, contradicting
the fact that v ∈ SA. Let S = {v ∈ A|C(v) ⊆ SA}. Then the subgraph G[S ∪ T ] contains q
edge-disjoint matchings, each of which saturates S in G — this is because in H, M saturates
each copy of v ∈ S separately.

If no vertex in T has a neighbor outside SA in H, then from the construction no vertex in
T has a neighbor outside S in G. We now prove that no vertex in T has a neighbor outside
SA in H. For the purpose of contradiction, let us assume that for some v ∈ T , u ∈ N(v), but
u /∈ SA. First, consider the case when v ∈ S′. Suppose u ∈ RX . We know that u ∈ RX because
there is some unsaturated vertex (say w) that is connected by an alternating path to u. This
path can be extended to a path to v using the edge {u, v}, and can be further extended to v′,
where {v, v′} ∈M . However, v′ ∈ SA, and by construction, there is no path from w ∈ UX to v′,
a contradiction. If u ∈ UX , then we arrive at a contradiction along the same lines (in fact, the
paths from w to a vertex in S will be of length two in this case). Now consider the case when
v ∈ UB. Again, we may arrive at u from some w ∈ UX (if u ∈ RX) or {u,w} is an independent
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edge outside M (if u ∈ UX). In both cases, we have an augmenting path, contradicting the fact
that M is a maximum matching. This completes the proof.

We will need the following proposition for the proof of next observation. Its proof follows
from definitions.

Proposition 1. For any c ∈ N, a subgraph M of graph G is a minimal minor-model of θc in
G if and only if M consists of two trees, say T1 and T2, and a set S of c edges, each of which
has one end vertex in T1 and the other in T2.

Observation 1. For c ≥ 2, any minimal θc minor-model M of a graph G is a connected
subgraph of G, and does not contain a vertex whose degree in M is less than 2, or a vertex
whose deletion from M results in a disconnected graph (a cut vertex of M).

Proof. From Proposition 1, whose terminology we use in this proof, M is connected and contains
no isolated vertex. Suppose x is a vertex of degree exactly one in M . Then x is a leaf node
in one of the two trees in M , say T1, and no edge in S is incident on x. Removing x from T1

results in a smaller θc minor-model, contradicting the minimality of M . It follows that every
vertex of M has degree at least two.

Now suppose x is a cut vertex in M which belongs to, say, the tree T1. Let T 1
1 , T

2
1 , . . . , T

l
1

be the subtrees of T1 obtained when x is deleted from T1. Let M ′ be the graph obtained by
deleting x from M . If l > 0, then each T i1 has a leaf node, which, by the above argument, has
at least one neighbor in T2. If l = 0, then M ′ = T2. Thus M ′ is connected in all cases, and so
x is not a cut vertex, a contradiction.

The following well known result states that every optimization problem expressible in MSO
has a linear time algorithm on graphs of bounded treewidth.

Proposition 2 ([4, 8, 14, 20, 22]). Let φ be a property that is expressible in Monadic Second
Order Logic. For any fixed positive integer t, there is an algorithm that, given a graph G of
treewidth at most t as input, finds a largest (alternatively, smallest) set S of vertices of G that
satisfies φ in time f(t, |φ|)|V (G)|.

Proposition 2 together with MSO formulations 2 and 3 given in Section 2.6 implies the
following lemma.

Lemma 9. Let G be a graph on n vertices and v a vertex of G. Given a tree decomposition
of width t ∈ O(1) of G, we can, in O(n) time, find both (1) a smallest set S ⊆ V of vertices
of G such that the graph G \ S does not contain θc as a minor, and (2) a largest collection
{M1,M2, . . . ,Ml} of θc minor models of G such that for 1 ≤ i < j ≤ l, (V (Mi)∩V (Mj)) = {v}.

Now we describe the reduction rules used by the kernelization algorithm. In contrast to the
reduction rules employed by most known kernelization algorithms, these rules cannot always
be applied on general graphs in polynomial time. Hence the algorithm does not proceed by
applying these rules exhaustively, as is typical in kernelization programs. We describe how to
arrive at situations where these rules can in fact be applied in polynomial time, and prove that
even this selective application of rules results in a kernel of size polynomial in the parameter k.

5.2 Bounding the Maximum Degree of a Graph

Now we present a set of reduction rules which, given an input instance (G, k) of p-θc-Deletion,
obtains an equivalent instance (G′, k′) where k′ ≤ k and the maximum degree of G′ is at most a
polynomial in k. In the sequel a vertex v is irrelevant if it is not a part of any θc minor model,
and is relevant otherwise. For each rule below, the input instance is (G, k).
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Reduction Rule 1 (Irrelevant Vertex Rule). Delete all irrelevant vertices in G.

Given a graph G and a vertex v ∈ V (G), an `-flower passing through v is a set of ` different
θc minor-models in G, each containing v and no two sharing any vertex other than v.

Reduction Rule 2 (Flower Rule). If a (k + 1)-flower passes through a vertex v of G, then
include v in the solution and remove it from G to obtain the equivalent instance (G\{v}, (k−1)).

The argument for the soundness of these reduction rules is simple and is hence omitted.
One can test whether a particular vertex v is part of any minimal minor-model corresponding
to θc using the rooted minor testing algorithm of Robertson and Seymour [44]. It is not clear,
however, that one might check whether a vertex is a part of (k + 1)-θc flower in polynomial
time. Hence we defer the application of these rules and apply them only when the vertices are
“evidently” irrelevant or finding a flower can be solved in polynomial time. Now we state an
auxiliary lemma which will be useful in bounding the maximum degree of the graph.

Lemma 10. Let G be a n-vertex graph containing θc as a minor and v be a vertex such that
G′ = G \ {v} does not contain θc as a minor and the maximum size of a flower containing v is
at most k. Then there exists a set Tv of size O(k) such that v /∈ Tv and G \ Tv does not contain
θc as a minor. Moreover we can find the set Tv in polynomial time.

Proof. We first bound the treewidth of G′. Robertson, Seymour and Thomas [45] have shown
that any graph with treewidth greater than 202c5 contains a c×c grid, and hence θc, as a minor.
This implies that for a fixed c, tw(G′) ≤ 202c5 = O(1). Now we show the existence of a Tv
of the desired kind. Recall the algorithm used to show the existence of a θc hitting set for a
graph described in Algorithm 2. We use the same algorithm to construct the desired Tv. Let
Fθc(G) denote the size of the maximum flower passing through v in G. Consider a nice tree
decomposition (T,X = {Xt}t∈V (T )) of G′ of width at most tw(G′). We define the function
µ(t) := Fθc(G[V (Ht) ∪ {v}]). It is easy to see that µ is a good labeling function, and can be
computed in polynomial time due to Lemma 9. Observe that µ(r) ≤ k, where r is the root
node of the tree decomposition. Let S(G′, k) denote the size of the hitting set returned by the
algorithm. Thus the size of the hitting set returned by the algorithm Hit-Set-II (Algorithm 2)
is governed by the following recurrence:

S(G′, k) ≤ max
1/3≤α≤2/3

{
S(G[V1], αk) + S(G[V2], (1− α)k) +O(1)

}
.

Using Akra-Bazzi [2] it follows that the above recurrence solves to O(k). This implies that there
exists a set Tv of size O(k) such that v /∈ Tv and G \ Tv does not contain θc as a minor. We
now proceed to find an optimal hitting set in G avoiding v. To make the algorithm Hit-Set-II
run in polynomial time we only need to find the tree decomposition and compute the function
µ() in polynomial time. Since tw(G) = O(1), we can find the desired tree decomposition of G
or one of its subgraphs in linear time using the algorithm of Bodlaender [8]. Similarly we can
compute a flower of the maximum size using Lemma 9 in linear time. Hence the function µ()
can also be computed in polynomial time. This concludes the proof of the lemma.

Flowers, Expansion and the Maximum Degree. Now we are ready to prove the lemma
which bounds the maximum degree of the instance.

Lemma 11. There exists a polynomial time algorithm that, given an instance (G, k) of p-θc-
Deletion returns an equivalent instance (G′, k′) such that k′ ≤ k and that the maximum degree
of G′ is O(k log3/2 k). Moreover it also returns a θc-hitting set of G′ of size O(k log3/2 k).

17



Proof. Given an instance (G, k) of p-θc-Deletion, we first apply Lemma 7 on (G, k). The
polynomial time algorithm described in Lemma 7, given a graph G and a positive integer k
either reports that G has no θc-hitting set of size at most k, or finds a θc-hitting set of size at
most k∗ = O(k log3/2 k). If the algorithm reports that G has has no θc-hitting set of size at
most k, then we return that (G, k) is a NO-instance to p-θc-Deletion. So we assume that we
have a hitting set S of size k∗. Now we proceed with the following two rules.

Selective Flower Rule. To apply the Flower Rule selectively we use S, the θc-hitting set. For
a vertex v ∈ S let Sv := S \ {v} and let Gv := G \ Sv. By a result of Robertson et. al. [45] we
know that any graph of treewidth greater than 202c5 contains a c × c grid, and hence θc, as a
minor. Since deleting v from Gv makes it θc-minor-free, tw(Gv) ≤ 202c5 + 1 = O(1). Now by
Lemma 9, we find in linear time the size of the largest flower centered at v, in Gv. If for any
vertex v ∈ S the size of the flower in Gv is at least k + 1, we apply the Flower Rule and get an
equivalent instance (G← G \ {v}, k ← k− 1). Furthermore, we set S := S \ {v}. We apply the
Flower Rule selectively until no longer possible. We abuse notation and continue to use (G, k)
to refer to the instance that is reduced with respect to exhaustive application of the Selective
Flower Rule. Thus, for every vertex v ∈ S the size of any flower passing through v in Gv is at
most k.

Now we describe how to find, for a given v ∈ V (G), a hitting set Hv ⊆ V (G) \ {v} for all
minor-models of θc that contain v. Notice that this hitting set is required to exclude v, so Hv

cannot be the trivial hitting set {v}. If v /∈ S, then Hv = S. On the other hand, suppose v ∈ S.
Since the maximum size of a flower containing v in the graph Gv is at most k by Lemma 10, we
can find a set Tv of size O(k) that does not contain v and hits all the θc minor-models passing
through v in Gv. Hence in this case we set Hv = Sv ∪ Tv (See Figure 3.). We denote |Hv| by
hv. Notice that Hv is defined algorithmically, that is, there could be many small hitting sets in
V (G) \ {v} hitting all minor-models containing v, and Hv is one of them.

Figure 3: The hitting set in Selective Flower Rule

q-expansion Rule with q = c. Given an instance (G, k), S, and a family of sets Hv, we
show that if there is a vertex v with degree more than chv + c(c− 1)hv, then we can reduce its
degree to at most chv + c(c− 1)hv by repeatedly applying the q–Expansion Lemma with q = c.
Observe that for every vertex v the set Hv is also a θc hitting set for G, that is, Hv hits all
minor-models of θc in G. Consider the graph G \ Hv. Let the components of this graph that
contain a neighbor of v be C1, C2, . . . , Cr. Note that v cannot have more than (c− 1) neighbors
into any component, else contracting the component will form a θc minor and will contradict
the fact that Hv hits all the θc minors. Also note that none of the Ci’s can contain a minor
model of θc.

We say that a component Ci is adjacent to Hv if there exists a vertex u ∈ Ci and w ∈ Hv
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such that (u,w) ∈ E(G). Next we show that vertices in components that are not adjacent to
Hv are irrelevant in G. Recall a vertex is irrelevant if there is no minimal minor model of θc
that contains it. Consider a vertex u in a component C that is not adjacent to Hv. Since
G[V (C) ∪ {v}] does not contain any θc minor we have that if u is a part of a minimal minor
model M ⊆ G, then v ∈ M and also there exists a vertex u′ ∈ M such that u′ /∈ C ∪ {v}.
Then the removal of v disconnects u from u′ in M , a contradiction to Observation 1 that for
c ≥ 2, any minimal θc minor model M of a graph G does not contain a cut vertex. Applying
the Irrelevant Vertex Rule to the vertices in all such components leaves us with a new set of
components D1, D2, . . . , Ds, such that for every i, in Di, there is at least one vertex that is
adjacent to a vertex in Hv.

As before, we continue to use G to refer to the graph obtained after the Irrelevant Vertex
Rule has been applied in the context described above. We also update the sets Hv for v ∈ V (G)
by deleting all the vertices w from these sets those have been removed using Irrelevant Vertex
Rule.

Now, consider a bipartite graph G with vertex bipartitions Hv and D. Here D = {d1, . . . , ds}
contains a vertex di corresponding to each component Di. We add an edge (v, di) if there
is a vertex w ∈ Di such that {v, w} ∈ E(G). Even though we start with a simple graph
(graphs without parallel edges) it is possible that after applying reduction rules parallel edges
may appear. However, throughout the algorithm, we ensure that the number of parallel edges
between any pair of vertices is at most c. Now, v has at most chv edges to vertices in Hv. Since
v has at most (c − 1) edges to each Di, it follows that if d(v) > chv + c(c − 1)hv, then the
number of components |D| is more than chv. Now by applying q–Expansion Lemma with q = c,
A = Hv, and B = D, we find a subset S ⊆ Hv and T ⊆ D such that S has |S| c-stars in T and
N(T ) = S.

The reduction rule involves deleting edges of the form (v, u) for all u ∈ Di, such that di ∈ T ,
and adding c edges between v and w for all w ∈ S. We add these edges only if they were not
present before so that the number of egdes between any pair of vertices remains at most c. This
completes the description of the q-expansion reduction rule with q = c. Let GR be the graph
obtained after applying the reduction rule. The following lemma shows the correctness of the
rule.

Lemma 12. Let G, S and v be as above and GR be the graph obtained after applying the c-
expansion rule. Then (G, k) is an yes instance of p-θc-Deletion if and only if (GR, k) is an
yes instance of p-θc-Deletion.

Proof. We first show that if GR has hitting set Z of size at most k, then the same hitting set
Z hits all the minor-models of θc in G. Observe that either v ∈ Z or S ⊆ Z. Suppose v ∈ Z,
then observe that GR \ {v} is the same as G \ {v}. Therefore Z \ {v}, a hitting set of GR \ {v}
is also a hitting set of G \ {v}. This shows that Z is a hitting set of size at most k of G. The
case when S ⊆ Z is similar.

To prove that a hitting set of size at most k in G implies a hitting set of size at most k in
GR, it suffices to prove that whenever there is a hitting set of size at most k, there also exists
a hitting set of size at most k that contains either v or all of S. Consider a hitting set W that
does not contain v, and omits at least one vertex from S. Note the |S| c-stars in G[S ∪ T ],
along with v, correspond to minor-models of θc centered at v in G, vertex-disjoint except for
v. Thus, such a hitting set must pick at least one vertex from one of the components. Let D
be the collection of components Di such that the (corresponding) vertex di ∈ T . Let X denote
the set of all vertices of W that appeared in any Di ∈ D. Consider the hitting set W ′ obtained
from W by removing X and adding S, that is, W ′ := (W \X) ∪ S.

We now argue that W ′ is also a hitting set of size at most k. Indeed, let S′ be the set of
vertices in S that do not already belong to W . Clearly, for every such vertex that W omitted,
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W must have had to pick distinct vertices from D to hit the θc minor-models formed by the
corresponding c-stars. Formally, there exists a X ′ ⊆ X such that there is a bijection between
S′ and X ′, implying that |W ′| ≤ |W | ≤ k.

Finally, observe that W ′ must also hit all minor-models of θc in G. If not, there exists a
minor-model M that contains some vertex u ∈ X. Hence, u ∈ Di for some i, and M contains
some vertex in Hv \S. However, v separates u from Hv \S in G\S, contradicting Observation 1
that M does not contain a cut vertex. This concludes the proof.

Observe that all edges that are added during the application of the q-expansion reduction
rule have at least one end point in S, and hence S remains a hitting set of GR. We are now
ready to summarize the algorithm that bounds the degree of the graph (see Algorithm 3).

Algorithm 3 Bound-Degree(G, k,S)

1: Apply the Selective Flower Rule
2: if ∃v ∈ V (G) such that d(v) > chv + c(c− 1)hv then
3: Apply the q-expansion reduction rule with q = c.
4: else
5: Return (G, k,S).
6: end if
7: Return Bound-Degree(G, k,S).

Let the instance output by Algorithm 3 be (G′, k′,S). Clearly, in G′, the degree of every
vertex is at most chv + c(c − 1)hv ≤ O(k log3/2 k). The routine also returns S — a θc-hitting
set of G′ of size at most O(k log3/2 k).

We now show that the algorithm runs in polynomial time. For x ∈ V (G), let ν(x) be
the number of neighbors of x to which x has fewer than c parallel edges. Observe that the
application of q-expansion reduction rule never increases ν(x) for any vertex and decreases ν(x)
for at least one vertex. The other rules delete vertices, which can never increase ν(x) for any
vertex. This concludes the proof.

5.3 Analysis and Kernel Size – Proof of Theorem 2

In this section we give the desired kernel for p-θc-Deletion.

Proof of Theorem 2. Let (G, k) be an instance to p-θc-Deletion. We first bound the maxi-
mum degree of the graph by applying Lemma 11 on (G, k). If Lemma 11 returns that (G, k) is a
NO-instance to p-θc-Deletion then we return the same. Else we obtain an equivalent instance
(G′, k′) such that k′ ≤ k and the maximum degree of G′ is bounded by O(k log3/2 k). Moreover
it also returns a θc-hitting set, X, of G′ of size at most O(k log3/2 k). Let d denote the treewidth
of the graph after the removal of X, that is, d := tw(G \X).

Now, we obtain our kernel in two phases: we first apply the protrusion rule selectively
(Lemma 2) and get a polynomial kernel. Then, we apply the protrusion rule exhaustively on
the obtained kernel to get a smaller kernel. To obtain the kernel we follow the following steps.

Applying the Protrusion Rule. By a result of Robertson et. al. [45] we know that any graph
of treewidth greater than 202c5 contains a c× c grid, and hence θc, as a minor. Hence d ≤ 202c5 .

Now we apply Lemma 3 and get a 2(d + 1)-protrusion Y of G′ of size at least |V (G′)|−|X|
4|N(X)|+1 . By

Lemma 5, p-θc-Deletion has finite integer index. Let γ : N → N be the function defined

in Lemma 2. Hence if |V (G′)|−|X|
4|N(X)|+1 ≥ γ(2d + 1) then using Lemma 2 we replace the 2(d + 1)-

protrusion Y of G′ and obtain an instance G∗ such that |V (G∗)| < |V (G′)|, k∗ ≤ k′, and (G∗, k∗)
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is a YES-instance of p-θc-Deletion if and only if (G′, k′) is a YES-instance of p-θc-Deletion
.

Before applying the Protrusion Rule again, if necessary, we bound the maximum degree of
the graph by reapplying Lemma 11. This is done because the application of the protrusion
rule could potentially increase the maximum degree of the graph. We alternately apply the
protrusion rule and Lemma 11 in this fashion, until either Lemma 11 returns that G is a NO
instance, or the protrusion rule ceases to apply. Observe that this process will always terminate
as the procedure that bounds the maximum degree never increases the number of vertices and
the protrusion rule always reduces the number of vertices.

Let (G∗, k∗) be a reduced instance with hitting set X. In other words, there is no (2d+ 2)-
protrusion of size γ(2d+ 2) in G∗ \X, and the protrusion rule no longer applies. Now we show
that the number of vertices and edges of this graph is bounded by O(k2 log3 k). We first bound

the number of vertices. Since we cannot apply the Protrusion Rule, |V (G∗)|−|X|
4|N(X)|+1 ≤ γ(2d + 2).

Since k∗ ≤ k this implies that

|V (G∗)| ≤ γ(2d+ 2)(4|N(X)|+ 1) + |X|
≤ γ(2d+ 2)(4|X|∆(G∗) + 1) + |X|
≤ γ(2d+ 2)(O(k log3/2 k)×O(k log3/2 k) + 1) +O(k log3/2 k)

≤ O(k2 log3 k).

To get the desired bound on the number of edges we first observe that since tw(G∗ \ X) ≤
202c5 = d, we have that the number of edges in G∗ \ X ≤ d|V (G∗) \ X| = O(k2 log3 k). Also
the number of edges incident on the vertices in X is at most |X| ·∆(G∗) ≤ O(k2(log k)3). This
gives us a polynomial time algorithm that returns a kernel of size O(k2 log3 k).

Now we give a kernel of smaller size. To do so we apply combination of rules to bound the
degree and the protrusion rule as before. The only difference is that we would like to replace
any large (2d + 2)-protrusion in graph by a smaller one. We find a 2d + 2-protrusion Y of
size at least γ(2d + 2) by guessing the boundary ∂(Y ) of size at most 2d + 2. This could be
performed in time kO(d). So let (G∗, k∗) be the reduced instance on which we can not apply the
Protrusion Rule. Then we know that ∆(G∗) = O(k log3/2 k). If G is a YES-instance then there
exists a θc-hitting set X of size at most k such that tw(G \X) ≤ 202c5 = d. Now applying the
analysis above with this X yields that |V (G∗)| = O(k2 log3/2 k) and |E(G∗)| ≤ O(k2 log3/2 k).
Hence if the number of vertices or edges in the reduced instance G∗, to which we can not apply
the Protrusion Rule, is more than O(k2 log3/2 k) then we return that G is a NO-instance. This
concludes the proof of the theorem.

Theorem 2 has following immediate corollary.

Corollary 4. p-Vertex Cover , p-Feedback Vertex Set and p-Diamond Hitting Set
have kernel of size O(k2 log3/2 k).

6 Conclusion

In this paper we gave the first kernelization algorithms for a subset of p-F-Deletion problems
and a generic approximation algorithm for the p-F-Deletion problem when the set of excluded
minors F contains at least one planar graph. Our approach generalizes and unifies known ker-
nelization algorithms for p-Vertex Cover and p-Feedback Vertex Set. By the celebrated
result of Robertson and Seymour, every p-F-Deletion problem is FPT and our work naturally
leads to the following question: does every p-F-Deletion problem have a polynomial kernel?
Can it be that for some finite sets of minor obstructions F = {O1, . . . , Op} the answer to this
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question is NO? Even the case F = {K5,K3,3}, vertex deletion to planar graphs, is an inter-
esting challenge. Another interesting question is if our techniques can be extended to another
important case when F contains a planar graph.
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