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Sherman-Lauricella equation on contours with

corners
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Abstract

Spline Galerkin approximation methods for the Sherman-Lauricella inte-
gral equation on simple closed piecewise smooth contours are studied, and
necessary and sufficient conditions for their stability are obtained. It is shown
that the method under consideration is stable if and only if certain operators
associated with the corner points of the contour are invertible. Numerical
experiments demonstrate a good convergence of the spline Galerkin methods
and validate theoretical results. Moreover, it is shown that if all corners of
the contour have opening angles located in interval (0.1π, 1.9π), then the cor-
responding Galerkin method based on splines of order 0, 1 and 2 is always
stable. These results are in strong contrast with the behaviour of the Nyström
method, which has a number of instability angles in the interval mentioned.
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1 Introduction

Let D be a simply connected planar domain bounded by a piecewise smooth curve
Γ. It is well known that the solution of various boundary value problems for the
biharmonic equation

∆2u(x, y) ≡ ∂4u

∂x4
+ 2

∂4u

∂x2∂y2
+
∂4u

∂y4
= 0, (x, y) ∈ D,

where ∆ is the Laplace operator, can be constructed via solutions of boundary
integral equations. Consider the biharmonic Dirichlet problem

∆2|D = 0,

u|Γ = f1,
∂u

∂n

∣∣∣
Γ
= f2,

(1.1)

where ∂u/∂n denotes the normal derivatives and f1, f2 are sufficiently smooth func-
tions defined on the boundary Γ. Setting z = x + iy, i2 = −1, one can identify
D with a domain in the complex plane C. This problem arises in various appli-
cations, in particular while considering the behaviour of viscous flows with small
Reynolds numbers, bacteria movement, deflection of plates, elastic equilibrium of
solids, sintering [3, 14, 17, 20, 22, 23, 24].

Let us equip the curve Γ with the counterclockwise orientation and consider the
Sherman–Lauricella equation

ω(t) +
1

2πi

∫

Γ

ω(ζ) d ln

(
ζ − t

ζ − t

)
− 1

2πi

∫

Γ

ω(ζ)d

(
ζ − t

ζ − t

)
= f(t), t = x+ iy ∈ Γ,

(1.2)
where the bar denotes the complex conjugation and ω is an unknown function.
Equation (1.2) originated in works of G. Lauricella (see [19]). He was the first who
used the method of integral equations in elasticity. Later D.I. Sherman rewrites
Lauricella equation in a complex form and proposes a new simple way to derive
it [27]. The equation (1.2) is uniquely solvable in appropriate functional spaces,
provided f satisfies certain smoothness conditions and

Re

∫

Γ

f(t) dt = 0, (1.3)

[13, 20, 24]. Moreover, let α = α(x, y), (x, y) ∈ Γ denote the angle between the
real axis R and the outward normal n to Γ at the point (x, y) and let l be the unit
vector such that the angle between l and the real axis is α− π/2. If one defines the
function f = f(t) = f(x, y), t = x+ iy by

f(t) := e−iα

(
f2(t) + i

∂f1
∂l

(t)

)
, t ∈ Γ, (1.4)
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then the solution of the Sherman-Lauricella equation (1.2) with such right-hand
side f can be used to determine a solution of the boundary value problem (1.1).
More precisely, if ω is a solution of the equation (1.2) with the right-hand side (1.4),
consider two holomorphic functions ϕ = ϕ(z) and ψ = ψ(z), z ∈ D defined by

ϕ(z) =
1

2πi

∫

Γ

ω(ζ)

ζ − z
dζ, z ∈ D, (1.5)

ψ(z) =
1

2πi

∫

Γ

ω(ζ)

ζ − z
dζ +

1

2πi

∫

Γ

ω(ζ)

ζ − z
dζ − 1

2πi

∫

Γ

ζω(ζ)

(ζ − z)2
dζ, z ∈ D. (1.6)

According to [20], the pair {ϕ(z), ψ(z)} represents a solution of the boundary value
problem

ϕ(t) + tϕ′(t) + ψ(t) = e−iα

(
f2(t) + i

∂f1
∂l

(t)

)
, t ∈ Γ.

Therefore, by [11, Lemma 5.1.4] the function

u(x, y) := Re (zϕ(z) + ψ(z)), z = x+ iy ∈ D (1.7)

is the solution of the boundary value problem (1.1).
Thus if an exact or an approximate solution of the integral equation (1.2) is

known, a solution of the biharmonic problem (1.1) can be obtained by using for-
mulas (1.5), (1.6) and (1.7). Therefore, the main effort should be directed to the
determination of solutions of the Sherman-Lauricella equation (1.2). Note that the
Nyström method for the Sherman-Lauricella equation on smooth contours has been
used in [14, 18] to find approximate solution of biharmonic problems arising in fluid
dynamics. However, the authors of those works have not presented any stability
conditions for the method considered. If Γ has corner points, the stability study
becomes more involved since the integral operators in (1.2) are not compact. For
piecewise smooth contours, conditions of the stability of the Nyström method are
established in [6, 7]. These results have been used in [8] in order to construct a very
accurate numerical method to find solutions of the biharmonic problem (1.1) in
piecewise smooth domains in the case of piecewise continuous boundary conditions.

In the present paper, we consider spline based Galerkin methods for the equation
(1.2) and study their stability. It is shown that the corresponding method is stable if
and only if certain operators Rτ from an algebra of Toeplitz operators are invertible.
These operators depend on the spline space used and on the opening angles of the
corner points τ ∈ Γ. Unfortunately, nowadays there is no analytic tool to verify
whether the operators in question are invertible or not. Nevertheless, we propose a
numerical approach which can handle this problem. Thus spline Galerkin methods
are applied to the Sherman–Lauricella equation on simple model curves and the
behaviour of the corresponding approximation operators provide an information
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about the invertibility of the operators Rτ , τ ∈ Γ. Note that in comparison to
the Nyström method, the implementation of spline Galerkin methods to solve the
Sherman–Lauricella equation, requires more preparatory work. On the other hand,
numerical experiments suggest that these methods have no ”critical” angles located
in the interval [0.1π, 1.9π], i.e. if the boundary Γ does not possess corners with
opening angles from the interval mentioned, then these methods are stable. In a
sense, this is similar to the behaviour of the corresponding approximation methods
for Sherman–Lauricella and Muskhelishvili equations in the case of smooth curves
which always converge [5, 7, 10]. Of course, one also has to study the opening angles
in the intervals (0, 0.1π) and to (1.9π, 2π) but this is a time consuming operation
and will be considered elsewhere.

2 Splines and Galerkin method

We start this section with the construction of spline spaces on the contour Γ. Let
γ = γ(s), s ∈ R be a 1-periodic parametrization of Γ, and let MΓ denote the set of
all corner points τ0, τ1, . . . , τq−1 of Γ. Without loss of generality we can assume that
τj = γ(j/q) for all j = 0, 1, . . . , q−1. In addition, we also suppose that the function
γ is two times continuously differentiable on each interval (j/q, (j + 1)/q) and

∣∣∣∣γ
′

(
j

q
+ 0

)∣∣∣∣ =
∣∣∣∣γ

′

(
j

q
− 0

)∣∣∣∣ , j = 0, 1, . . . , q − 1.

Note that the last condition is not very restrictive and can always be satisfied by
changing the parametrization of Γ in an appropriate way.

Let f and g be functions defined on the real line R, and let f ∗ g denote the
convolution

(f ∗ g)(s) :=
∫

R

f(s− x)g(x)dx

of f and g. If χ is the characteristic function of the interval [0, 1),

χ(s) :=

{
1 if s ∈ [0, 1),
0 otherwise,

then φ̂ = φ̂(d)(s) refers to the function defined by

φ̂(d)(s) :=

{
χ(s) if d = 0,

(χ ∗ φ̂(d−1))(s) if d = 1, 2 . . . .

Recall that for any given non-negative integer d, the function φ̂ generates spline
spaces on R. Thus if an n ∈ N is fixed, then closure in the L2-norm of the set of all
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finite linear combinations of the functions φ̂nj(s) := φ̂(ns − j), j ∈ Z constitutes a
spline space on R.

Using the above defined spline functions, one can introduce spline spaces on the
contour Γ. More precisely, for a fixed non-negative integer d and an n ∈ N, n ≥ d+1,
we denote by Sd

n = Sd
n(Γ) the set of all linear combinations of the functions

φ̂nj(t) := φ̂(ns− j), t = γ(s) ∈ Γ, j = 0, 1, . . . , n− (d+ 1), s ∈ R,

the support of which belongs entirely to one of the arcs [τk, τk+1), k = 0, . . . , q and

τq+1 := τ0. This definition is correct since the support supp φ̂ of the function φ̂ is
contained in the interval [0, d+ 1] [26] and γ is a 1-periodic function.

In what follows, we also consider operators acting on various subspaces of the
Hilbert space l̃2 = l2(Z) of all sequences (ξk) of complex numbers ξk, k ∈ Z satisfying
the condition

||(ξk)|| :=
(
∑

k∈Z

|ξk|2
)1/2

<∞.

The space l̃2 is closely connected to spline spaces on the real line R. Thus the
following result is true.

Lemma 2.1 ([4]) Let n ∈ N. Then there are constants c1 and c2 such that for any

sequence (ξk) ∈ l̃2 the relations

||(ξk)|| ≤ c1
√
n
∣∣∣
∣∣∣
∑

k∈Z

ξkφ̂nk

∣∣∣
∣∣∣
L2(R)

≤ c2√
n
||(ξk)||

hold.

Further, let L2(Γ) denote set of all Lebesgue measurable functions f such that

||f ||L2 :=

(∫

Γ

|f(t)|2 ds
)1/2

<∞,

and let AΓ : L2(Γ) → L2(Γ) be the operator corresponding to the Sherman-Lauricella
equation (1.2). It is well known that the operator AΓ is not invertible on the space
L2(Γ) [20]. On the other hand, the invertibility of the corresponding operator is a
necessary condition for the applicability of any Galerkin method to any operator
equation. Therefore, for approximate solution of the equation (1.2) we use the
equation with the operator BΓ instead of AΓ and chose the right-hand sides f of the
initial equation (1.2) from a suitable subspace of L2(Γ). More precisely, let W 1,2(Γ)
denote the closure of the set of all functions f with bounded derivatives in the norm

||f ||W 1,2 :=

(∫

Γ

|f(t)|2 ds+
∫

Γ

|f ′(t)|2 ds
)1/2

,
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and let TΓ : L2(Γ) → L2(Γ) refer to the operator defined by

TΓω(t) :=
1

(t− a)

1

2πi

∫

Γ

(
ω(ζ)

(ζ − a)2
dζ +

ω(ζ)

(ζ − a)2
dζ

)
, (2.1)

where a is a point in D.

Theorem 2.1 ([7]) If Γ is a simple closed piecewise smooth contour, then operator

BΓ := AΓ + TΓ

is invertible on the space L2(Γ). Moreover, if function f ∈ W 1
2 (Γ) satisfies the

condition (1.3), then the solution of the equation

BΓω = f (2.2)

belongs to the space W 1
2 (Γ) and is a solution of the original Sherman-Lauricella

equation (1.2).

Thus if the right hand sides f ∈ W 1
2 (Γ), the corrected Sherman-Lauricella equa-

tion can be used in order to find an exact or an approximate solution of the equation
(1.2). In the present paper, we employ spline based Galerkin methods to the equa-
tion (2.2) and study their stability and convergence. Let us describe these methods
in more detail. First of all, we normalize all the basis spline functions used. If n is
fixed, then for any j ∈ Z the norm ||φ̂nj|| of any basis element φ̂nj is

||φ̂nj||2 =
1

n

∫ d

0

φ̂2(s) ds.

Therefore, if νd refers to the number

νd :=

(∫ d

0

φ̂2(s) ds.

)−1/2

, (2.3)

then
φnj := νd

√
n φ̂nj , j ∈ Z (2.4)

are unit norm vectors. An approximate solution of the equation (2.2) is sought in
the form

ωn(t) =
∑

φnk∈Sd
n(Γ)

akφnk(t), (2.5)

the coefficients ak of which are obtained from the following system of algebraic
equations

(BΓωn, φnj) = (f, φnj), φnj ∈ Sd
n(Γ). (2.6)
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An important problem now is to study the solvability of the equations (2.6) and con-
vergence of the approximate solutions to an exact solution of the original Sherman–
Lauricella equation (1.2). In Section 3, this problem is discussed in a more detail
but, at the moment, we would like to illustrate the method under consideration by
a few numerical examples. Thus we present Galerkin solutions of the equation (1.2)
with the right-hand side f = f1,

f1(z) = f(x, y) = 4x3 − 12xy2 + i(4y3 − 12x2y); z = x+ iy ∈ Γ, (2.7)

on the unite square and rhombuses, and trace the evolution of the solution when
the initial contour is transformed from the unit square into rhombuses with various
opening angle α. Some of these contours have been used in [7] in order to illustrate
the behaviour of the Nyström method. Note that in the corresponding examples
from [7], approximate solutions of the equation (1.2) with the right-hand side

f2(z) = |z|

have been determined. We apply the spline Galerkin method to the equations with
such right-hand side, too. The results obtained have a very good correlation with [7]
and the error evaluation for both cases are reported in Table 1, where Efi

n,α denotes
the relative error ‖ω2n−ωn‖2/‖ω2n‖2 computed for the righthand side fi and equation
(1.2) is considered on the rhombus with the opening angle α. In addition, Figures

Table 1: Relative error of the spline Galerkin methods
n Ef1

n,π/2 Ef1
n,π/3 Ef1

n,π/4 Ef1
n,π/5 Ef2

n,π/2 Ef2
n,π/3 Ef2

n,π/6

128 0.0373 0.6194 1.3577 2.1716 0.0121 0.0217 0.0205
256 0.0198 0.0268 0.2046 0.6169 0.0067 0.0112 0.0245
512 0.0096 0.0059 0.0616 0.1888 0.0045 0.0102 0.0193

1–4 show the convergence of the approximate solutions of the equation (1.2) with the
right-hand side (2.7) obtained by the Galerkin method based on the splines of degree
d = 0 and the transformation of these approximate solutions when n increases.

Let us mention a few technical details related to the examples below. Thus the
rhombus with an opening angle α is parameterized as follows,

γ(s) =





4s− cos
(α
2

)
eiα/2 if 0 ≤ s < 1/4,

(4s− 1)eiα − i sin
(α
2

)
eiα/2 if 1/4 ≤ s < 1/2,

−(4s− 2) + cos
(α
2

)
eiα/2 if 1/2 ≤ s < 3/4,

−(4s− 3)eiα + i sin
(α
2

)
eiα/2 if 3/4 ≤ s ≤ 1.

(2.8)
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Moreover, we have to compute the scalar products (BΓωn, φnj). Recall that suppφnj ⊂
[j/n, (j + d + 1)/n] and use the Gauss-Legendre quadrature rule with quadrature
points which coincide with the zeros of the Legendre polynomial P24(x) on the canon-
ical interval [−1, 1], scaled and shifted to the interval [j/n, (j + d + 1)/n]. More
specifically, the corresponding formula is

(BΓωn, φnj) =

∫ (j+d+1)/n

j/n

BΓωn(φ(s))φnj(φ(s))ds ≈
24∑

k=1

wkBΓωn(φ(sk))φnj(φ(sk)),

(2.9)
where wk, sk are the Gauss-Legendre weights and the Gauss-Legendre points on the
interval [j/n, (j + d + 1)/n]. In order to find the values of the corresponding line
integrals at the Gauss-Legendre points, the composite Gauss-Legendre quadrature
is used [7, Section 3], namely,

∫

Γ

k(t, τ)x(τ)dτ =

∫ 1

0

k(γ(σ), γ(s))x(γ(s))γ′(s)ds

≈
m−1∑

l=0

r−1∑

p=0

wpk(γ(σ), γ(slp))x(γ(slp))τ
′

lp/m,

(2.10)
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Figure 1: Approximate solution ωn(t) of the Sherman–Lauricella equation (1.2) on the

unit square Γ with f := f1 defined by (2.7) and d = 0. From the left to the right:

n = 128, 256, 512, 1024
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where τ ′lp = γ′(slp) with m = 40 and r = 24.
Table 1 and Figures 1-2 show a good convergence of approximate solutions if the

corner point of the contour has an opening angle close or equal to π/2. On the other
hand, the presence of opening angles of a small magnitude can cause problems and
lead to a convergence slowdown (see Figures 3-4). Note that although the focus of
this work is on the stability, the error estimates presented in Table 1 are comparable
with estimates of recent work [16] for fast Fourier–Galerkin method for an integral
equation used to solve boundary value problem (1.1) in smooth domains. Moreover,
further improvement of the convergence rate is possible if for the approximations of
singular integrals and inner products arising in the Galerkin method one employs
graded meshes of various kind [2, 15].

3 Galerkin method. Local operators and stability

Our next task is to find conditions of applicability of the spline Galerkin methods to
the equation (2.2). It is worth mentioning that for smooth contours Γ, the methods
considered here are always applicable and provide satisfactory results. For details
the reader can consult [5], where similar methods for the Muskhelishvili equation on
smooth contours are considered. On the other hand, the presence of corners changes
the situation drastically, and the applicability of the approximation method is not
always guaranteed.

Let Pn be the orthogonal projection from L2(Γ) on the subspace Sd
n(Γ). Then

the systems (2.6) is equivalent to the following operator equations

PnBΓPnωn = Pnf, n ∈ N. (3.1)

Definition 3.1 We say that the sequence (PnBΓPn) is stable if there is an m ∈ R

and an n0 ∈ N such that for all n ≥ n0 the operators PnBΓPn : Sd
n(Γ) → Sd

n(Γ) are
invertible and

||(PnBΓPn)
−1Pn|| ≤ m

for all n ≥ n0.

Recall that if the stability of the corresponding sequence (PnBΓPn) is established,
then the convergence of the Galerkin method and error estimates can be obtained
from well known results, cf. [11, Section 1.6, inequality (1.30)]. Therefore, in this
work we mainly deal with the stability and our approach is based on C∗-algebra
methods often used in operator theory. Let Ladd(L

2(Γ)) refer to the real C∗-algebra
of all additive continuous operators on the space L2(Γ). One can show [11] that any
operator A ∈ Ladd(L

2(Γ)) admits the unique representation A = A1 + A2M where
A1, A2 are linear operators and M is the operator of complex conjugation. This
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Figure 2: Approximate solution ωn(t) of the Sherman–Lauricella equation (1.2) on the

rhombus Γ, α = π/3 with f := f1 defined by (2.7) and d = 0. From the left to the

right: n = 128, 256, 512, 1024

−5 −4 −3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 3: Approximate solution ωn(t) of the Sherman–Lauricella equation (1.2) on the

rhombus Γ, α = π/4 with f := f1 defined by (2.7) and d = 0. From the left to the

right: n = 128, 256, 512, 1024
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Figure 4: Approximate solution ωn(t) of the Sherman–Lauricella equation (1.2) on the

rhombus Γ, α = π/5 with f := f1 defined by (2.7) and d = 0. From the left to the

right: n = 128, 256, 512, 1024

representation allows one to introduce the operation of involution on Ladd(L
2(Γ)) as

follows
A∗ := A∗

1 +MA∗

2, (3.2)

with A∗
1, A

∗
2 being usual adjoint operators to the linear operators A1, A2, cf. [11,

Theorem 1.3.8 and Example 1.3.9]. ByAΓ we denote the set of all bounded sequences
(An) of bounded additive operators An : imPn → imPn such that there is an
operator A ∈ Ladd(L

2(Γ)) with the property

s− limAnPn = A, s− lim (AnPn)
∗Pn = A∗,

where s− limAn denotes the strong limit of the operator sequence (An).
Provided with natural operations of addition, multiplication, multiplication by

scalars λ ∈ C, with an involution introduced according to (3.2), and with the norm

||(An)|| := sup
n∈N

||An||,

the set AΓ becomes a real C∗-algebra. Consider also the subset J Γ ⊂ AΓ consisting
of all sequences (Jn) of operators Jn : imPn → imPn which can be represented in



GALERKIN METHODS FOR SHERMAN-LAURICELLA EQUATION 12

the form
Jn = PnTPn + Cn, n ∈ N,

where the operator T belongs to the ideal Kadd(L
2(Γ)) ⊂ Ladd(L

2(Γ)) of all compact
operators and the sequence (Cn) tends to zero uniformly, i.e.

lim
n→∞

||Cn|| = 0.

The stability of sequences from the algebra AΓ can be characterized as follows.

Theorem 3.1 (cf. [11, Proposition 1.6.3]) A sequence (An) ∈ AΓ such that
A := s− limAnPn is stable if and only if the operator A is invertible in Ladd(L

2(Γ))
and the coset (An) + J Γ is invertible in the quotient algebra AΓ/J Γ.

Consider now the sequence (PnBΓPn) of the Galerkin operators defined by the
projection operators Pn. Recall that on the space L2(Γ) the sequence of the orthog-
onal projections (Pn) strongly converges to the identity operator I and P ∗

n = Pn, n ∈
N. It implies that for any operator A ∈ Ladd(L

2(Γ)) the following relations

s− limPnAPn = A, s− lim(PnAPn)
∗Pn = A∗

hold [25]. Therefore, combining Theorem 2.1 and Theorem 3.1 one obtains the
following result.

Corollary 3.1 Let Γ be a simple closed piecewise smooth curve. The spline Galer-
kin method (3.1) is stable if and only if the coset (PnBΓPn)+J Γ is invertible in the
quotient algebra AΓ/J Γ.

Thus in order to establish the stability of the Galerkin method, one has to study
the invertibility of the coset (PnBΓPn) + J Γ in the algebra AΓ/J Γ. This problem
can be tackled more efficiently, if we restrict ourselves to a smaller algebra containing
the coset (PnBΓPn)+J . More precisely, let M refer to the operator of the complex
conjugation,

Mφ(t) := φ(t), t ∈ Γ,

and let SΓ be the Cauchy singular integral operator,

SΓφ(t) :=
1

πi

∫

Γ

φ(ζ)

ζ − t
dζ.

Consider the smallest closed real C∗-subalgebra BΓ of the algebra AΓ which con-
tains all operator sequences of the form (PnMPn), (PnSΓPn) and also the sequences
(PnfPn), f ∈ CR(Γ) and (Gn), where limn→∞ ||Gn|| = 0 and CR(Γ) is the set of all
continuous real-valued functions on the contour Γ.
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Remark 3.1 It follows from [10, 12, 21, 25] that J Γ ⊂ BΓ and that the sequence
(PnBΓPn) belongs to BΓ. Therefore, BΓ/J Γ is a real C∗-subalgebra of AΓ/J Γ, and
by [11, Corollary 1.4.10] the coset (PnBΓPn) + J Γ is invertible in AΓ/J Γ if and
only if it is invertible in BΓ/J Γ. Therefore, one can now study the invertibility of
the coset (PnBΓPn)+J Γ in the smaller algebra BΓ/J Γ. To this end we will employ
a localizing principle.

Thus with each point τ ∈ Γ we associate a model contour Γτ as follows. Let θτ
be the angle between the right and the left semi-tangents to Γ at the point τ , and
let βτ refer to the angle between the right semi-tangent to Γ and the real line R.
Consider now the curve

Γτ := ei(βτ+θτ )R
−

+ ∪ eiβτR
+
+

where R
+
− and R

+
+ denote the positive semi-axis R+ correspondingly directed to

and out of the origin. Further, on each such contour Γτ , τ ∈ Γ we consider the
corresponding Sherman-Lauricella operator

Aτ = I + Lτ −KτM, (3.3)

where

Lτω(t) :=
1

2πi

∫

Γτ

ω(ζ) d ln

(
ζ − t

ζ − t

)
, Kτω(t) :=

1

2πi

∫

Γτ

ω(ζ) d

(
ζ − t

ζ − t

)
.

Analogously to the algebra BΓ and to the ideal J Γ one can introduce algebras BΓτ

and ideals J Γτ ⊂ BΓτ , τ ∈ Γ, which allow to establish conditions of the applicability
of the corresponding Galerkin method for the operators (3.3). For this we also
need appropriate spline spaces on both the contour Γτ and the positive semi-axis
R+ := R

+
+. These spline spaces can be constructed by using the functions (2.4)

again. More precisely, consider the functions

φ̃nj(t) :=





{
φnj(s) if t = eiβτ s

0 otherwise
j ≥ 0

{
φn,j−d(s) if t = ei(βτ+θτ )s

0 otherwise
j < 0

. (3.4)

Let Sd
n(Γτ ) and Sd

n(R
+) be, respectively, the smallest closed subspaces of L2(Γτ )

and L2(R+) which contains all functions (3.4) and all functions φnj , j ≥ 0 of (3.4)
for βτ = 0. Moreover, let P τ

n , n ∈ N and P+
n denote the orthogonal projection

onto subspaces Sd
n(Γτ ) and S

d
n(R

+), respectively. In order to study the stability of
the sequence (P τ

nAτP
τ
n ), one can apply Theorem 3.1 and Remark 3.1 to obtain the

following result.



GALERKIN METHODS FOR SHERMAN-LAURICELLA EQUATION 14

Corollary 3.2 The sequence (P τ
nAτP

τ
n ) ∈ BΓτ is stable if and only if the operator

Aτ is invertible in Bτ and the coset (P τ
nAτP

τ
n ) + J Γτ is invertible in the quotient

algebra BΓτ /J Γτ .

Further, let L2
2(R

+) be the space of all pairs (ϕ1, ϕ2)
T , ϕ1, ϕ2 ∈ L2(R+) provided

with the norm
||(ϕ1, ϕ2)

T || := (| |ϕ1||2 + ||ϕ2||2)1/2,
and let η : L2(Γτ ) → L2

2(R
+) be the mapping defined by

η(ϕ) = (ϕ(sei(βτ+ωτ )), ϕ(seiβ))T , s ∈ R
+,

where aT denotes the transposition of the vector a. It is clear that η is a linear
isometry from L2(Γτ ) onto L2

2(R
+). Moreover, the mapping Ψ : Ladd(L

2(Γτ )) →
Ladd(L

2
2(R

+)) defined by
Ψ(A) = ηAη−1, (3.5)

is an isometric algebra isomorphism. In particular, straightforward calculations show
that

Ψ(P τ
n ) = diag (P+

n , P
+
n ), (3.6)

Ψ(M) = diag (M̃, M̃), (3.7)

Ψ(Lτ ) =

(
0 Nθτ

Nθτ 0

)
, (3.8)

Ψ(Kτ ) =

(
0 ei2βτM2π−θτ

−ei2(βτ+θτ )Mθj 0

)
, (3.9)

where

Nθτϕ(σ) =
1

2

1

2πi

∫
∞

0

(
1

1− (σ/s)eiθτ
− 1

1− (σ/s)ei(2π−θτ )

)
ϕ(s)

ds

s
,

Mθτϕ(σ) :=
1

π

∫
∞

0

(σ
s

) sin θτ
(1− (σ/s)eiθτ )2

ϕ(s)
ds

s
,

and the symbol M̃ in the right-hand side of (3.7) refers to the operator of the complex
conjugation on the space L2(R+). Moreover, one can observe that the operators Nθτ

and Mθτ have a special form – viz.

Kϕ(σ) :=

∫
∞

0

kθτ

(σ
s

)
ϕ(s)

ds

s
(3.10)
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and

kθτ = kθτ (u) := nθτ (u) =
1

2π

u sin θτ
|1− ueiθτ |2 , if K = Nθτ , (3.11)

kθτ = kθτ (u) := mθτ (u) =
1

π

u sin θτ
(1− ueiθτ )2

, if K = Mθτ . (3.12)

On the space l2 of the sequences (ξk) of complex numbers ξk, k = 0, 1, . . .,

l2 := {(ξk)∞k=0 :

∞∑

k=0

|ξk|2 <∞},

the function kθτ defines a bounded linear operator A(kθτ ) with the matrix represen-
tation

A(kθτ ) =

(
ν2d

∫ d+1

0

φ̂(t)

∫ d+1

0

kθτ

(
u+ l

t+ q

)
φ̂(u)

du

u+ q
dt

)∞

q,l=0

,

where νd is the constant (2.3).

Theorem 3.2 Let nθτ and mθτ be the functions defined by (3.11) and (3.12), re-
spectively. The spline Galerkin method (3.1) is stable if and only if the operators
Rτ : l2 × l2 → l2 × l2,

Rτ :=
(

I A(nθτ )

A(nθτ ) I

)
+

(
0 eiβτA(m2π−θτ )

−e−i(βτ+θτ )A(mθτ ) 0

)(
M 0

0 M

)
(3.13)

are invertible for all τ ∈ MΓ.

Proof. By Corollary 3.1 the sequence (PnBΓPn) is stable if and only if the coset
(PnBΓPn) +J Γ is invertible. Moreover, since TΓ of (2.1) is a compact operator, the
sequences (PnAΓPn) and (PnBΓPn) belong to the same coset (PnAΓPn) +J Γ of the
quotient algebra BΓ/J Γ. However, by a version of the Allan’s Local Principle [1]
for real C∗-algebras [11, Theorem 1.9.5], the coset (PnAΓPn) + J Γ is invertible if
and only if for every τ ∈ Γ the coset (P τ

nAΓτ
P τ
n ) + J Γτ is invertible in the corre-

sponding algebra BΓτ /J Γτ . Therefore, the stability of our operator sequence will be
established if we manage to show the invertibility of all cosets (P τ

nAΓτ
P τ
n ) + J Γτ ,

τ ∈ Γ. Let us start with the case where τ is not a corner point of Γ. If τ /∈ MΓ,
then θτ = π, and straightforward calculations show that Lτ and Kτ are the zero
operators. Hence, Aτ is just the identity operator I in the corresponding space, so
that P τ

nAτP
τ
n = P τ

n . The sequence (P
τ
n ) is obviously stable so that the corresponding

coset (P τ
n ) + J τ is invertible.
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Consider next the case where τ ∈ MΓ. Note that by [7, Theorem 2.2] the
operator Aτ is invertible on the space L2(Γ). Therefore, by Corollary 3.2 the coset
(P τ

nAτP
τ
n ) + J τ is invertible in BΓτ /J Γτ if and only if the sequence (P τ

nAτP
τ
n ) is

stable. However, the stability of this sequence is equivalent to the stability of the
sequence (Ψ(P τ

nAτP
τ
n )), where mapping Ψ is defined by (3.5). Consider also the

operators Λn : Sd
n(R

+) → l2 defined by

Λn

(
∞∑

j=0

ξjφnj

)
= (ξ0, ξ1, . . . , ).

By Lemma 2.1 these operators are bounded and continuously invertible. Set Λ−n :=
Λ−1

n and note that the sequence (Ψ(P τ
nAτP

τ
n )) is stable if and only if so is the

sequence (Rτ
n), where

Rτ
n = diag (Λn,Λn) ·Ψ(P τ

nAτP
τ
n ) · diag (Λ−n,Λ−n) : l

2 × l2 → l2 × l2.

From the definition of the mappings Ψ and Λ±n one obtains that the operators Rτ
n

have the form
Rτ

n = (A
(n,τ)
lp )2l,p=1 + (B

(n,τ)
lp )2l,p=1diag (M,M),

with the operators A
(n,τ)
lp , B

(n,τ)
lp : l2 → l2 defined according to the relations (3.6)-

(3.9). However, these operators do not depend on the parameter n at all. Really,

consider the matrix representations of the operators A
(n,τ)
12 , A

(n,τ)
21 , B

(n,τ)
12 , B

(n,τ)
21 . It

follows from (3.10) that the entries alq of the corresponding matrices (alq)
∞
l,q=0 are

apq =

∫

R+

Kφqn(σ)φln(σ) dσ =

∫

R+

∫

R+

kθτ

(σ
s

)
φ(ns− q)

ds

s
φ(nσ − l) dσ

=
1

n

∫

R+

∫

R+

kθτ

(
u+ l

t + q

)
φ(u)

du

u+ q
φ(t) dt

=
1

n

∫

R+

∫

R+

kθτ

(
u+ l

t + q

)
(νd

√
nφ̂(u))

du

u+ q
(νd

√
nφ̂(t)) dt

= ν2d

∫ d+1

0

φ̂(t)

∫ d+1

0

kθτ

(
u+ l

t + q

)
φ̂(u)

du

u+ q
dt,

hence these operators are independent of n. Moreover, B
(n,τ)
11 , B

(n,τ)
22 = 0 and A

(n,τ)
11 =

A
(n,τ)
22 = I. Combining all the above representations, one obtains that the operators

Rτ
n do not depend on the parameter n. Therefore, (Rτ

n) is a constant sequence and
it is stable if and only if any its member, say Rτ

1 , is invertible. It remains to observe
that Rτ = Rτ

1 , which completes the proof.
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4 Numerical approach to the invertibility of local

operators

.
As was already mentioned, there is no efficient analytic method to verify the

invertibility of the local operators Rτ . On the other hand, numerical approaches
turn out to be surprisingly fruitful. Recall that the operators Rτ , τ ∈ MΓ do
not depend on the shape of the contour Γ but only on the relevant angles θτ and
βτ . Therefore, for contours having only one corner point, Theorem 3.2 can be
reformulated as follows.

Corollary 4.1 If τ is the only corner point of the contour Γ, then the operator Rτ

is invertible if and only if the Galerkin method (PnBΓPn) is stable.

Thus in order to determine the critical angles, i.e. the opening angles θ for which
the operators Rτ are not invertible, one can consider the behaviour of the spline
Galerkin methods on special contours. A family of such contours Γθ

1, θ ∈ (0, 2π),

Γθ
1 := {t ∈ C : t = γ1(s) = sin(πs) exp(iθ(s− 0.5)), s ∈ [0, 1]}

has been used in [6, 9] to study the local operators of the Nyström method for
Sherman–Lauricella and Muskhelishvili equations. Changing the parameter θ in
the interval (0, 2π), one obtains contours located at the origin and having only one
corner of various magnitude. In the present paper, we use the same contours to
detect the critical angles of the spline Galerkin methods. It is worth mentioning
that the operator Rτ depends not only on θτ but also on the angle βτ between the
right semi-tangent to the contour Γθ

1 at the point τ and the real line R. However,
numerical experiments conducted for both the Nyström and spline Galerkin methods
show that, in fact, the angle βτ does not influence the invertibility of the operatorRτ .
This opens a way for verifying the results obtained for contour Γθ

1 by conducting
similar tests for equations on contours with two or more corner, all of the same
magnitude. To this end, we will use another contour Γθ

2, which is the union of two
circular arcs with the parametrization

γ1(s) = −0.5 cot(0.5θ) + 0.5/ sin(0.5θ) exp(iθ(s− 0.5)), 0 ≤ s ≤ 1,

γ2(s) = 0.5 cot(0.5θ)− 0.5/ sin(0.5θ) exp(iθ(s− 0.5)), 0 ≤ s ≤ 1.

To find the angles of instability, the interval [0.1π, 1.9π] has been divided by the
points θk := π(0.1+0.01k) and for each opening angle θk we constructed the matrices
of the corresponding approximation operators for the Galerkin methods based on
the splines of degree d = 0, d = 1 and d = 2. Note that we consider Galerkin
methods for two choices of n, namely for n = 128 and n = 256, and the integrals
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Figure 5: Condition numbers vs. opening angles in case n = 128. From row 1 to row

3: splines of degree 0, 1 and 2, respectively. Left column: one-corner geometry, right

column: two-corner geometry.

arising in the equation (2.2) and in the method (2.6) have been approximated by
quadrature formulas (2.9), (2.10). Further, to verify the stability of the method,
for each angle θk we compute the condition numbers of the corresponding matrices
and the results of these computations are presented in Figures 5-7, where possible
presence of peaks might indicate critical angles. Thus it seems that inside of the
interval (0.1π, 1.9π) neither of the Galerkin methods based on splines of degree 0, 1
or 2 has critical angles. This differs from the Nyström method, where critical angles
have been discovered for both Sherman–Lauricella and Muskhelishvili equations [6,
9]. Contrariwise, information about the critical angles at the interval ends is not so
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conclusive. Thus in the case n = 256, the computation of the condition numbers for
both one and two corner geometry shows that for the Galerkin method based on the
splines of degree zero there can be a critical angle at the right end of the interval
mentioned.

For splines of the degree d = 0 and d = 1, the one and two corner geometries
give contradictory results (see Figure 6). To clarify the situation one has to refine
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Figure 6: Condition numbers vs. opening angles in case n = 256. From row 1 to row

3: splines of degree 0, 1 and 2, respectively. Left column: one-corner geometry, right

column: two-corner geometry.

the mesh {θk} and essentially increase the dimension of the matrices used. Note
that while discovering a suspicious critical angle for n = 256, we refined the mesh
{θk} in a neighbourhood of that angle by reducing its step to 0.001π, and calculated
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the condition numbers for the corresponding Galerkin methods with n changed to
512. This allows us to show that, in fact, there are no critical angles in the interval
mentioned. However, the computing time increases drastically.

The numerical experiments are performed in MATLAB environment (version
7.9.0) and executed on an Acer Veriton M680 workstation equipped with a Intel
Core i7 vPro 870 Processor and 8GB of RAM, and it took from one to two weeks of
computer work in order to obtain every single graph presented in Figure 5, 6 or 7.
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Figure 7: Condition numbers vs. opening angles in case n = 256 and n = 512 in

neighbourhoods of suspicious points. From row 1 to row 3: splines of degree 0, 1 and

2, respectively. Left column: one-corner geometry, right column: two-corner geometry.
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