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EFFICIENCY OF THE GIRSANOV TRANSFORMATION
APPROACH FOR PARAMETRIC SENSITIVITY ANALYSIS OF

STOCHASTIC CHEMICAL KINETICS

TING WANG∗ AND MURUHAN RATHINAM†

Abstract. Most common Monte Carlo methods for sensitivity analysis of stochastic reaction
networks are the finite difference (FD), the Girsanov transformation (GT) and the regularized path-
wise derivative (RPD) methods. It has been numerically observed in the literature, that the biased
FD and RPD methods tend to have lower variance than the unbiased GT method and that centering
the GT method (CGT) reduces its variance. We provide a theoretical justification for these observa-
tions in terms of system size asymptotic analysis under what is known as the classical scaling. Our
analysis applies to GT, CGT and FD, and shows that the standard deviations of their estimators
when normalized by the actual sensitivity, scale as O(N1/2),O(1) and O(N−1/2) respectively, as
system size N → ∞. In the case of the FD methods, the N → ∞ asymptotics are obtained keeping
the finite difference perturbation h fixed. Our numerical examples verify that our order estimates
are sharp and that the variance of the RPD method scales similarly to the FD methods. We combine
our large N asymptotics with previously known small h asymptotics to obtain the best choice of h
in terms of N , and estimate the number Ns of simulations required to achieve a prescribed relative

L2 error δ. This shows that Ns depends on δ and N as δ
−2−

γ2
γ1 N−1, δ−2 and Nδ−2, for FD, CGT

and GT respectively. Here γ1 > 0, γ2 > 0 depend on the type of FD method used.

Key words. stochastic chemical kinetics, Girsanov transformation, asymptotic analysis, para-
metric sensitivity, finite difference, variance analysis.
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1. Introduction. Estimation of parametric sensitivities of dynamical systems
is an essential part of the modeling and parameter estimation process. For instance
the problem of finding the set of parameters that best fit some observed data can be
formulated as an optimization problem over the parameter space where the partial
derivatives of the objective function depend on the parametric sensitivities defined as
partial derivatives of some system output with respect to the parameters.

In deterministic dynamical systems governed by ordinary differential equations
(ODEs), the sensitivities defined by the partial derivatives ∂f(X(t))/∂ck, of some
function f of the state with respect to the parameters are essentially computed by
numerical integration of an auxiliary system of evolution equations obtained by lin-
earization of the original ODEs. In contrast, for stochastic dynamical systems, several
vastly different approaches exist. We note that we shall treat the parameters ck as de-
terministic and not as random quantities, while the dynamic behavior of the systems
we consider is stochastic.

Our primary focus will be stochastically modeled chemical reaction systems.
While the stochastic chemical kinetic model under the well stirred assumption [10]
has been around for decades, it wasn’t until the late nineties that the importance of
stochastic chemical models in some applications was realized [4, 19]. Especially, intra-
cellular chemical reactions systems, often contain certain molecular species in small
copy numbers, and as such, the deterministic model based on ordinary differential
equations (ODEs) or partial differential equations (PDEs) for the concentrations of
various molecular species is not appropriate. A more appropriate model, under the
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well stirred assumption, consists of a continuous time Markov process X(t) with the
nonnegative integer lattice Z

n
+ as state space.

While we focus on stochastic chemical kinetics which we describe in the next
subsection, we note that analogous models appear in other fields such as epidemiology
and predator-prey systems.

1.1. Stochastic chemical kinetics. As a simple example, let us consider the
chemical reaction system

S1 + S2 → S3, S3 → S1 + S2, (1.1)

consisting of three species S1, S2 and S3 undergoing two reaction channels. The
state space is the set Z

3
+ of nonnegative three dimensional integer vectors, where

the state x = (x1, x2, x3) describes the copy numbers x1 of S1, x2 of S2 and x3 of
S3. When the first reaction channel fires, the state changes by ν1 = (−1,−1, 1)T ,
and when the second reaction channel fires it changes by ν2 = (1, 1,−1)T . The
quantities νj are known as stoichiometric vectors and for chemical reaction systems
the νj are parameters and state independent. The “probabilistic rate” at which these
two reactions occur is given by the intensity functions a1(x, c) and a2(x, c) (where c is
a vector of parameters). The precise meaning of the intensity functions is as follows.
If X(t) = (X1(t), X2(t), X3(t)) is the stochastic process of species counts, then given
X(t) = x, the probability of at least one firing of the jth reaction channel during
interval (t, t+ h] is aj(x, c)h+ o(h) as h → 0+.

Stochastic mass action form: Under the well stirred model of Gillespie [10],
the intensity functions take the stochastic mass action form: a1(x, c) = c1x1x2 and
a2(x, c) = c2x3. The rationale for this specific form is based on the following con-
siderations. The probability that a given pair of one S1 and one S2 molecules come
together and react during time interval (t, t + h] is given by c1h + o(h) where c1 is
a constant. Given that there are x1x2 different ways to choose the pair, we obtain
the probability of c1x1x2h + o(h) for any pair of S1 and S2 to react. Likewise, the
probability that a given S3 molecule gives rise to an S1 and an S2 via the second
reaction during (t, t + h] is given by c2h + o(h) where c2 is a constant. Given that
there are x3 different S3 molecules, we obtain the probability of c2x3h+ o(h) for any
of the S3 to react.

General chemical system: More generally, a chemical reaction system consists
of m reaction channels and n chemical species {S1, · · · , Sn}. The n-dimensional state
vector X(t) characterizes the state of the system where each entry Xi(t) represents
the number of molecules of the species Si at time t. The firing of a reaction channel
j ∈ {1, · · · ,m} at time t causes the state to be incremented by the stoichiometric
vector νj . We assume that X is càdlàg, i.e. paths of X are right continuous with left-
hand limits and hence, if reaction channel j fires at time t, then X(t) = X(t−) + νj .
For j = 1, · · · ,m we denote by Rj(t) the number of firings of the j-th reaction channel
during (0, t]. ThusX(t) = X(0)+νR(t) for t ≥ 0, where ν is the stoichiometric matrix
whose jth column is νj and R(t) = (R1(t), · · · , Rm(t))T . We note that R(0) = 0
and Rj(t) − Rj(t−) is either 0 or 1. The process X is assumed to be Markovian,
and associated with each reaction channel is an intensity function (also known as
propensity function in the chemical kinetics literature) aj(x, c), j = 1, · · · ,m, which
is such that, given X(t) = x the probability of one or more firing of reaction channel
j during (t, t + h] is aj(x, c)h + o(h) as h → 0+. Here, c are parameters. Following
the terminology of [8], we note that Rj are counting processes which admit the Ft-
predictable intensity process aj(X(t−), c) where Ft is the filtration generated by X
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and R.
Random time change representation: Naturally, the probability laws of the

stochastic processes X and R, depend on the parameters c. For the purpose of
analyses, it proves convenient to find a way to represent the processes X and R
corresponding to different c values on the same sample space (Ω,F ,P). To this end,
we use the random time change representation [9] to express X via the stochastic
equation

X(t, c) = x0 +

m
∑

j=1

Yj

(∫ t

0

aj(X(s, c), c)ds

)

νj (1.2)

where Yj are independent unit rate Poisson processes. It follows that

Rj(t, c) = Yj

(∫ t

0

aj(X(s, c), c)ds

)

, j = 1, . . . ,m, (1.3)

where x0 is the initial state assumed to be deterministic. We note that in this rep-
resentation, we have a family of stochastic processes X(t, c) and R(t, c) on the same
sample space (Ω,F ,P) where each element ω ∈ Ω may be identified with a specific
trajectory of Y (t) = (Y1(t), . . . , Ym(t)), the underlying unit rate independent Pois-
sons. We note that the Yj(t) do not depend on the parameters. See [24] for a detailed
explanation of how to compute X(t, c) once a sample path of Y (t) is generated.

1.2. Parametric sensitivity estimation. We consider parametric sensitivities
of the stochastic process X(t, c) with respect to an output function f : Zn

+ → R,
defined by the partial derivatives

∂

∂ck
E(f(X(t, c))),

where ck are scalar parameters, f is some suitable scalar function of the state space,
E is the expectation and t > 0 is some fixed final time. For simplicity we shall
focus on one scalar parameter c. When the number of species n is large (in several
applications it is of the order of 10− 100), due to the curse of dimensionality, Monte
Carlo approaches are the most viable for both simulation of the process X as well
as estimation of sensitivities. Monte Carlo simulation of exact sample paths of the
process X is feasible and is provided by the well known SSA or Gillespie algorithm
[10]. In this context several different Monte Carlo approaches exist for the numerical
computation of the parametric sensitivities as well.

We shall use S(t, c) to denote the exact sensitivity

S(t, c) =
∂

∂c
E(f(X(t, c))). (1.4)

As we will see later in this section, all the Monte Carlo methods for computing the
sensitivity involve the estimation of the expected value E(S(t, c)) of some process
S(t, c) at time t > 0, via i.i.d. sample estimation, where S(t, c) can be computed
easily from the knowledge of system parameters, the function f and the sample path
of X on the time interval [0, t]. In other words, one generates Ns independent copies
X(i)(t, c) of X(t, c) for i = 1, . . . , Ns, and then computes the corresponding copies
S(i)(t, c) of S(t, c). Then the sensitivity is estimated by

S̄(t, c) =
1

Ns

Ns
∑

i=1

S(i)(t, c).
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Since E(S̄(t, c)) = E(S(t, c)) and Var(S̄(t, c)) = Var(S(t, c))/Ns, the accuracy of
this estimate depends on the error (known as bias) E(S(t, c) − S(t, c)), the variance
Var(S(t, c)) of the underlying estimator S(t, c) and the sample size Ns.

One way to quantify the error in estimation is via the mean square error:

E
(

|S̄(t, c)− S(t, c)|2
)

=
Var(S(t, c))

Ns
+ (E(S(t, c)− S(t, c)))2. (1.5)

If Var(S(t, c)) is large, then one requires greater number Ns of simulations resulting
in loss of efficiency. On the other hand if a biased estimator is used, increasing the
number of simulations Ns does not help. It is often useful to consider the relative
error (RE) defined by

RE =
√

E
(

|S̄(t, c)− S(t, c)|2
)

/|S(t, c)|, (1.6)

provided the true sensitivity S(t, c) is nonzero.
Throughout this paper, we shall refer to S(t, c) as the underlying estimator or

simply the estimator and S̄(t, c) as the ultimate estimator. As the properties of the
latter depend directly on that of the former and Ns, the analysis of the variance of
the underlying estimator S(t, c) shall be our focus. We define the relative standard
deviation (RSD) and the relative bias (RB) of the underlying estimator S(t, c) by

RSD =
√

Var(S(t, c))/|S(t, c)|, (1.7)

and

RB = E(S(t, c)− S(t, c))/|S(t, c)|, (1.8)

when S(t, c) 6= 0. We note that the relative error is given by

RE =

√

RSD2

Ns
+RB2. (1.9)

Now, we turn our attention to the description of some common Monte Carlo
sensitivity estimators. As a general reference on this topic we suggest [5, 12]. The
Monte Carlo methods for sensitivity can broadly be categorized into finite difference
(FD) methods [1, 5, 24], pathwise derivative (PD) methods [5, 26] and the likelihood
ratio or the Girsanov transformation (GT) methods [5, 20].

The FD methods involve approximation of the partial derivative by the simple
finite difference E[f(X(t, c+h))− f(X(t, c))]/h or some higher order finite difference.
In the case of the simple FD above,

SFD(t, c) = h−1[f(X(t, c+ h))− f(X(t, c))]. (1.10)

Thus, E(SFD(t, c)) 6= ∂
∂cE(f(X(t, c))) in general, and the bias is decreased by decreas-

ing h. On the other hand,

Var(SFD(t, c)) = h−2 {Var(f(X(t, c+ h))) + Var(f(X(t, c)))− 2Cov (f(X(t, c+ h)), f(X(t, c)))} .

In general the numerator does not vanish as fast as h2 when h → 0, showing that small
h leads to large variance. When f(X(t, c+ h)) and f(X(t, c)) are strongly positively
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correlated, one may expect the variance to be small. If the processes X(t, c) and
X(t, c + h) are taken to be independent, which is accomplished by the use of two
independent streams of random numbers in the simulation, the resulting FD method
is known as the independent random number (IRN) method. If the processes X(t, c)
and X(t, c+ h) are strongly coupled, which is accomplished by the use of a common
random number stream, the resulting approach is known as common random number
(CRN) method. In general, the CRN FD methods have much lower variance than the
IRN FD methods. Moreover, different approaches to couple the processes X(t, c+ h)
and X(t, c) lead to different covariances and hence different variances for the FD
estimators. See [1, 24] for some approaches.

In the PD method one takes

SPD(t, c) =
∂

∂c
f(X(t, c)),

and the method is applicable provided the derivative exists, analytical computation
of the derivative is possible and the commutation

E

(

∂

∂c
f(X(t, c))

)

=
∂

∂c
E(f(X(t, c))) (1.11)

holds. In the context of stochastic chemical kinetics, direct application of the PD
method is not valid as the commutation in (1.11) does not hold. To see this, note
that f(X(t, c, ω)) is piecewise constant in c for fixed t and ω and hence the derivative
is 0, while the sensitivity ∂E(f(X(t, c)))/∂c is in general non-zero, showing that the
commutation in (1.11) is not valid (see [26] for details). It is possible to regularize
the problem by replacing ∂f(X(t, c))/∂c with

SRPD(t, c) =
∂

∂c

(

1

2w

∫ t+w

t−w

f(X(s, c))ds

)

, (1.12)

to obtain the regularized pathwise derivative (RPD) estimator for which the commuta-
tion of derivative with expectation holds for a restricted class of examples [26]. This,
however results in a bias which increases with large w. Also see [12] for similar work
in the context of computing the sensitivity of path integrals.

The GT approach may be motivated in different ways. For the purpose of our
analysis based on the random time change representation, it is natural to start with
the family of processes X(t, c) parametrized by c that are all defined on (Ω,F ,P) as
mentioned before. Suppose the sensitivity is required at a specific parameter value
c = c0. Under certain regularity conditions, a family of new probability measures
P (c) may be constructed on the same sample space (Ω,F) for a range of c values in
a neighborhood of c0 so that P (c0) = P, i.e. coincides with the original probability
measure (see [8] for instance). Moreover, the probability measures P (c) are absolutely
continuous with respect to P (c0) and the P (c)-law of the process X(t, c0) is the same
as the P (c0)(= P)-law of the process X(t, c). In other words, for all suitable functions
f ,

∫

Ω

f(X(t, c))dP (c0) =

∫

Ω

f(X(t, c0)dP (c).

We observe that the left hand side is E(f(X(t, c))). If we denote by L(t, c, c0) the
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Radon-Nikodym derivative dP (c)/dP (c0), then we have

∂

∂c

∣

∣

∣

∣

c=c0

E(f(X(t, c))) =
∂

∂c

∣

∣

∣

∣

c=c0

∫

Ω

f(X(t, c0))L(t, c, c0)dP (c0)

=

∫

Ω

f(X(t, c0))
∂

∂c

∣

∣

∣

∣

c=c0

L(t, c, c0)dP (c0)

(1.13)

provided the differentiation inside the integral is valid. It turns out that

Z(t, c0) =
∂

∂c

∣

∣

∣

∣

c=c0

L(t, c, c0), (1.14)

is analytically tractable and the required sensitivity is given by

∂

∂c

∣

∣

∣

∣

c=c0

E(f(X(t, c))) = E[f(X(t, c0))Z(t, c0)],

thus the sensitivity estimator S(t, c0) = f(X(t, c0))Z(t, c0).
In the context of stochastic chemical kinetics, the weight process Z defined by

(1.14) is given by [20, 26]

Z(t, c) =

m
∑

j=1

∫ t

0

∂aj

∂c (X(s−, c), c)

aj(X(s−, c), c)
dRj(s, c)−

m
∑

j=1

∫ t

0

∂aj
∂c

(X(s, c), c)ds. (1.15)

We have dropped c0 in favor of c for notational ease, however, it must be noted that all
computations are carried out at the specific parameter value c at which the sensitivity
is required.

We also investigate a modified GT method inspired by the work in [28], which
we call the centered Girsanov transformation (CGT) method in which we replace the
estimator f(X(t, c))Z(t, c) with (f(X(t, c)) − E(f(X(t, c))))Z(t, c). Since Z(t, c) has
zero mean this new estimator has the same mean as the original one and hence is
also unbiased. In practice E(f(X(t, c))) is not known and needs to be estimated as
well. One approach would be to generate Ns independent copies X i(t, c) of X(t, c)
and then use

f(X(t, c)) =
1

Ns

Ns
∑

i=1

f(X(i)(t, c)),

to estimate E(f(X(t, c))) and then use

S̄CGT =
1

Ns

Ns
∑

i=1

(

f(X(i)(t, c)) − f(X(t, c))
)

Z(i)(t, c),

as the ultimate estimator. In this case E(S̄CGT) 6= E(f(X(t, c))Z(t, c)) and the esti-
mator is biased. However, when Ns is large the bias is O(1/Ns). Also

Var(S̄CGT) = Var(SCGT)/Ns +O(1/N2
s ),

where SCGT = (f(X(t, c)) − E(f(X(t, c))))Z(t, c) is the underlying CGT estimator.
So it is adequate to study the variance of (f(X(t, c)) − E(f(X(t, c))))Z(t, c). In the
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formula used in [28] for the ultimate estimator, Z(i) above were replaced by Z(i) − Z̄
where Z̄ was the sample mean of Z(i). When the sample size Ns is large, both ultimate
estimators are similar. For the purpose of analysis, we shall focus on the underlying
CGT estimator

SCGT = f(X(t, c))Z(t, c)− E(f(X(t, c)))Z(t, c). (1.16)

We note that the variances of the GT and CGT estimators are given by the
following formulae:

Var(SGT) = E((f(X(t, c)))2Z2(t, c))− E
2(f(X(t, c))Z(t, c)),

Var(SCGT) = Var(SGT)− 2E(f(X(t, c))Z2(t, c)) + E
2(f(X(t, c)))E(Z2(t, c)).

(1.17)
It must be noted that it is not always the case that Var(SGT) is greater than or
equal to Var(SCGT). Thus, one cannot conclude that CGT is always superior to GT.
However, it was observed in [28] as well as in our simulations that CGT tends to have
lower variance than GT in most examples.

Recently introduced methods, auxiliary path algorithm (APA) [14] and Poisson
path algorithm (PPA) [15], do not strictly belong to these three categories mentioned
above. While they are closely related to the FD and the PD methods, they provide
unbiased estimators similar to the GT. We do not investigate these methods in this
paper.

It has been observed that the PD method, when applicable, yields an estimator
with lower variance than the GT estimator which is applicable in most situations [5,
26]. In the context of stochastic chemical kinetics, the regularized PD (RPD) method
is only applicable to a limited class of examples and results in a biased estimator [26].
The FD methods also result in biased estimators. Both the FD and RPD methods
also involve the use of method parameters, h or w, and the smaller these are the
less the bias of these methods. However, decreasing h or w results in an increase in
the variance of the FD or RPD estimators respectively. The GT estimator on the
other hand is unbiased and does not involve method parameters to be determined.
However, it has been observed that in many situations, the GT estimator has much
larger variance compared to the FD and RPD estimators [5, 20, 24, 26]. To our
knowledge, no theoretical explanation has been presented for the large variance of the
GT method observed in many applications. In this paper, we provide a theoretical
explanation for the large variance.

Remark 1.1. If a coefficient cj = 0 in the stochastic mass action form of
intensity functions, then reaction channel j is absent. However, one may want to
compute the sensitivity at cj = 0 to see the effect of “turning off” a reaction channel.
In this case the GT or CGT methods does not work, in fact the weight process Z is
undefined. However, the FD methods work. Given the dependence of Z on cj, one
also expects the variance of Z to approach infinity as cj → 0. This was numerically
examined in [14].

1.3. System size dependence in stochastic mass action. In stochastic
chemical kinetics as well as other population models, there is a “system size pa-
rameter” N and in the N → ∞ these systems behave deterministically (see Chapter
11 of [9] for instance). Our analysis shows that the variance of the GT method grows
much faster in N than the variances of the FD methods.

We describe the general stochastic mass action form of intensities that commonly
arise in stochastic chemical kinetics [10] and describe how system sizeN enters into the
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model. If we divide the stoichiometric vector νj into two parts, such that νj = ν′j−ν′′j ,
where

ν′j : the vector number of molecules of each species that are created in the jth
reaction,

ν′′j : the vector number of molecules of each species that are consumed in the
jth reaction,

then the intensity of the jth reaction is

aNj (x, c) =
cj

N |ν′′

j
|−1

n
∏

i

(

xi

ν′′ij

)

, (1.18)

where |ν′′j | =
∑n

i=1 ν
′′
ij andN is the volume of the system times Avogadro’s number, cj

is a constant specifying the rate of the reaction. We note that the term
(

xi

ν′′

ij

)

represents

the number of ways to choose ν′′ij molecules from xi molecules of the ith species. The

term 1/N |ν′′

j |−1 also plays a critical role. To understand this, let us return to the
example in (1.1). Let us relabel the parameters as c′1 and c′2. As c′1h + o(h) is the
probability that a given pair of S1 and S2 interact during (t, t+ h], one expects c′1 to
depend on the system volume or equivalently on system size N in inverse proportion:
c′1 = c1/N . Here, the newly defined c1 is independent of system size N . On the
other hand, for the monomolecular reaction, the probability c′2h+ o(h) of a given S3

molecule reacting during (t, t+ h] is independent of system size N . In general, when
|ν′′j | number of molecules come together to react, the term c′j will depend on system
size N as

c′j = cj/N
|ν′′

j |−1. (1.19)

See [10] for more details. It must be noted that it is often useful to model “pure
production” reactions, represented by an abstract chemical equation as ∅ → S, and
the stochastic chemical models in literature often utilize such reactions. In this case,
the stochastic mass action form of intensity function is a constant c′ and it is natural
to take its dependence on N to be proportional: c′ = cN , still satisfying the formula
c′j = cj/N

|ν′′

j |−1.

Thus the intensity functions aNj depend on N and x in a specific manner, referred
to as density dependence (see Chapter 11 of [9]). This density dependence leads
to a deterministic limiting behavior in the large system size (N → ∞), when the
initial conditions are also scaled by N so that the initial species counts per volume
(concentration) is held constant. The relevant theorem from [9] will be restated in
the next section.

The parameters c′j and cj: We note that the parameters c′j (which depend
on N) are sometimes referred to as the stochastic parameters while cj are referred
to as the deterministic parameters. In practice, one works with c′j, and hence the
sensitivities with respect to c′j will be relevant. The sensitivities with respect to cj
are related to those with respect to c′j via

Sj(t, c) =
∂

∂cj
E(f(X(t))) =

∂

∂c′j
E(f(X(t)))N1−|ν′′

j | = S
′
j(t, c)N

1−|ν′′

j |. (1.20)

Moreover, if S is a sensitivity estimator for the sensitivity with respect to the deter-
ministic parameter cj, then S′ = SN |ν′′

j |−1 is a sensitivity estimator for the sensitivity
with respect to the stochastic parameter c′j . While the variances and biases of the
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stochastic and deterministic sensitivity estimators scale differently with system size
N , the relative quantities RE, RSD and RB, will scale the same way. Therefore,
without loss of generality, in the rest of the paper, we shall only concern ourselves
with sensitivities with respect to the deterministic parameters cj .

Finally, we like to note that in the stochastic mass action form of intensity func-
tions, there is precisely one (deterministic) parameter cj for each intensity function

aj and the parameters enter multiplicatively. Hence
∂aj

∂cj
/aj = 1/cj. This leads to the

simple form for the weight process Z(t, c) for the sensitivity with respect to cj

Z(t, c) =
1

cj

(

Rj(t, c)−
∫ t

0

aj(X(s, c))ds

)

. (1.21)

1.4. An illustrative example. To investigate the estimator variance for the
GT, CGT and FD methods, we consider the analytically tractable birth death model
from population dynamics, which also appears in gene regulatory networks where
mRNA is produced at a constant probabilistic rate and decays at a rate proportional
to the number of mRNA. The model is described by

∅ c1−→ S, S
c2−→ ∅. (1.22)

The intensity functions are aN1 (x, c) = Nc1 and aN2 (x, c) = c2x. We consider the
output function f(x) = x. Denoting byXN the system size dependence of the process,
it can be shown that

E(XN (t, c)) = Nx0e
−c2t +

Nc1
c2

(1− e−c2t), (1.23)

where we have chosen a deterministic initial conditionXN(0) = Nx0. The sensitivities
with respect to c1 and c2 are given by

∂

∂c1
E(XN (t, c)) =

N

c2
(1− e−c2t),

∂

∂c2
E(XN (t, c)) = −Nx0te

−c2t − Nc1
c22

(1− e−c2t) +
Nc1
c2

te−c2t.

We observe that the both sensitivities are O(N) as N → ∞. Also, in terms of t both
sensitivities are O(1) as t → ∞.

To study the variance of the GT and CGT estimators, first we consider the
sensitivity ∂

∂c1
E(XN (t, c)). The population process XN(t, c) and the weight process

ZN (t, c) in this case can be written as

XN (t, c) = Nx0 −
∫

(0,t]

dRN
1 (s, c) +

∫

(0,t]

dRN
2 (s, c),

ZN (t, c) =

∫

(0,t]

1

c1
dRN

1 (s, c)−N

∫ t

0

ds,

(1.24)

where RN
j and ZN show dependence on N . One can use the Ito formula for processes

driven by finite variation processes (see [25]) to write down the stochastic equations
for (XN )α(t, c)(ZN )β(t, c), for the integer powers 0 ≤ α, β ≤ 2, and then take ex-
pectations to obtain a coupled system of linear ODEs for E((XN )α(t, c)(ZN )β(t, c)).
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Then the variance of GT and CGT estimators can be computed by the relations (1.17)
with f(x) = x.

After lengthy calculations with the aid of Maple symbolic software one can show
that

Var(SGT) =
Ne−2 c2 t

c1c22
(e2 c2 tN2c21t+Nc1 tc2 e

2 c2 t + 2 ec2 tN2c1 c2 tx0 + ec2 tc22tNx0

+ c22tN
2x2

0 − 2 ec2 tN2c21t− ec2 tNc1 c2 t− 2N2c1 tc2 x0

−Nx0 tc
2
2 + 3Nc1 e

2 c2 t + e2 c2 tc2 + 2Nx0 e
c2 tc2

+N2c21t− 6 ec2 tNc1 − ec2 tc2 − 2Nx0 c2 + 3Nc1),

(1.25)

and

Var(SCGT) =
Ne−2 c2 t

c1c22
(Nc1 tc2 e

2 c2 t + ec2 tc22tNx0 − ec2 tNc1 c2 t−Nx0 tc
2
2 +Nc1 e

2 c2 t

+ e2 c2 tc2 − 2 ec2 tNc1 − ec2 tc2 +Nc1).

(1.26)

We observe that the variance of the GT estimator is O(N3) while that of the CGT
estimator is O(N2), as N → ∞. On the other hand, both estimators have O(t)
variance as t → ∞. Hence, in the N → ∞ limit, the RSD of the GT estimator is
O(N1/2) and the RSD of the CGT estimator is O(1). We can also conclude that in
the t → ∞ limit, the RSD is O(

√
t) for both methods.

Secondly we consider the sensitivity ∂
∂c2

E(XN (t, c)). The weight process ZN (t, c)
in this case can be written as

ZN (t, c) =

∫

(0,t]

1

c2
dRN

2 (s, c)−
∫ t

0

XN(s, c)ds, (1.27)

and the analysis, while possible is more complicated. For simplicity, we choose c1 = 0,
so the process now corresponds to a pure death process. In this case, the variances of
GT and CGT estimators can be shown to be

Var(SGT) =
1

c22
(e−2c2tN3x3

0 − 4e−2c2tN2x2
0 + 3e−2c2tNx0 + 3e−2c2tN2x2

0t
2c22

− 2e−3c2tNx0 + 3e−3c2tN2x2
0 + e−c2tN2x2

0 − e−c2tNx0

+ e−c2tNx0t
2c22 − 4e−2c2tt2c22Nx0 − e−3c2tN2x3

0),

(1.28)

and

Var(SCGT) =
1

c22
(−2e−2c2tN2x2

0 + 3e−2c2tNx0 + e−2c2tN2x2
0t

2c22

− 2e−3c2tNx0 + e−3c2tN2x2
0 + e−c2tN2x2

0

− e−c2tNx0 + e−c2tNx0t
2c22 − 4e−2c2tNx0t

2c22).

(1.29)

When dependence on system size N is concerned, the variance of GT estimator is
O(N3) while that of CGT estimator is only O(N2). As in the case of the parameter
c1, we again obtain that the RSD of the GT method is O(N1/2) while that of CGT
is O(1), as N → ∞. Finally, we note that large t behavior is uninteresting as the
system enters the absorbing state 0 eventually.
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Now we consider any FD estimator, and we can bound its variance as

Var(SFD) = h−2Var(XN (t, c+ h)−XN(t, c))

≤ 2h−2
{

Var(XN(t, c+ h)) + Var(XN (t, c))
}

.
(1.30)

We also note that [23]

Var(XN (t, c)) = Nx0(1− e−c2t)e−c2t +
Nc1
c2

(1 − e−c2t). (1.31)

In our analysis we shall treat the finite difference perturbation h of the parameter as
independent of system size N so that we consider the variance and bias of the FD
estimator as a function of the two variables h and N . From the above equation, we
see that for any fixed h, the variance of an FD estimator is O(N) and hence the RSD
of the FD estimator is O(N−1/2) as N → ∞. Finally, we note that for fixed N , as
t → ∞, the variance of the FD estimator is O(1).

We note here that the above upper bound for Var(SFD) is exactly twice the vari-
ance of the independent random number (IRN) FD method. If a common random
number (CRN) FD method is used, the variance is in general much smaller. Never-
theless, our numerical results show that the asymptotic order in N is sharp even for
CRN.

From the expression for E(XN (t, c)) in (1.23) it can easily be shown that the
relative bias (RB) defined by (1.8), of any FD method is O(1) as N → ∞ (with h
fixed) when sensitivity of E(XN(t, c)) with respect to c1 or c2 is considered.

To summarize, we note that when computing the sensitivity of E(XN (t, c)) in this
example, with respect to either of the parameters c1 or c2, we observe that the RSDs
of the GT, CGT and FD estimators scale with system size N as O(N1/2),O(1) and
O(N−1/2) respectively. If N is modestly large (say 10 − 100), a significant amount
of reduction in the RSD can be expected using CGT over GT. On the other hand
FD methods will have even lower variance when compared to both GT and CGT
as system size increases. However, the FD methods are biased, and for fixed h the
relative bias (RB) remains O(1) as N → ∞.

1.5. Contributions of this paper. Our analysis will show that the observa-
tions made about the relative standard deviation (RSD) and the relative bias (RB)
of the GT, CGT and FD estimators in the context of the particular example of the
previous subsection generalize to a large class of stochastic reaction networks. These
general results are provided in Section 4. While our analysis does not apply to the
RPD method, our numerical simulations show that RPD has system size dependence
similar to the FD methods. While our RSD analysis in the cases of CGT and CRN
FD estimators is not proven to be sharp, the numerical simulations show that the
estimates in terms of large system size N are sharp.

Our analysis thus provides theoretical evidence that centering (to obtain the CGT
method) significantly improves the efficiency of the GT methods. Since the FD meth-
ods are biased while the GT and CGT methods are not, efficiency comparison must
be based on variance and bias. In the case of the FD estimators which depend on
system size N as well as the perturbation parameter h, our analysis in Section 4 treats
h and N as independent variables and provides the large N behavior for fixed h. The
small h behavior of the FD methods (for fixed N) is well known [5]. In Section 6, we
combine our large N results with the existing small h results for the FD methods in
order to decide the optimal choice of h as a function of N , and provide an estimate
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of efficiency (as measured by the number Ns of trajectories needed to achieve a given
value δ for the relative error (RE)) of the GT, CGT and FD methods.

2. General setup and running assumptions. As mentioned in the previous
section, the system size shall be the key to our analytical explanation for the larger
variance of the GT estimator. In this section we set the stage for the system size
analysis and state some assumptions that shall be carried throughout the rest of the
paper. We shall use the notation |x| for the norm of a vector (any norm in R

n would
do) and ‖ν‖ for the corresponding induced norm of a matrix.

Remark 2.1. Our analysis will focus on processes X, R and Z corresponding
to different system sizes N , however, the deterministic parameter value c is fixed at
a specific value at which the sensitivity is sought. For notational ease and readability,
we shall not show the dependence of these processes and intensity functions on c, and
only display c when it explicitly appears outside these.

We will study the family of processes XN indexed by N ≥ 1 corresponding to the
family of intensity functions aNj that are represented on the same sample space via
the stochastic equation

XN (t) = Nx0 +

m
∑

j=1

Yj

(∫ t

0

aNj (XN(s)) ds

)

νj , N ≥ 1, (2.1)

where Yj are independent unit rate Poisson processes and we have takenXN(0) = Nx0

where x0 ∈ R
n
+ is fixed (deterministic). We also define the corresponding family of

vector reaction count processes RN (t) whose jth component RN
j (t) counts the number

of reaction events of type j that occurred during (0, t]. Thus

RN
j (t) = Yj

(∫ t

0

aNj (XN (s)) ds

)

, N ≥ 1, j = 1, . . . ,m.

We also define the centered processes MN (t) = (MN
1 (t), . . . ,MN

m (t)) by

MN
j (t) = RN

j (t)−
∫ t

0

aNj (XN(s))ds, N ≥ 1, j = 1, . . . ,m.

We shall state five running assumptions under which the rest of the analysis in
this paper is carried out. We note that the Assumptions 1-3 are assumptions on
the intensity functions and their dependence on parameters and system size. These
assumptions are satisfied by the stochastic mass action form of intensity functions
and are intended to generalize certain key properties of the stochastic mass action
form of intensity functions. Not all stochastic models of intensity functions in the
literature follow the stochastic mass action form. In such cases, our analysis will still
apply provided these assumptions are met.

Assumption 1. We assume the following form of parameter dependence on the
intensity function. For each j = 1, · · · ,m and N ≥ 1,

aNj (x, c) = cjb
N
j (x), (2.2)

where bNj : Rn → R are such that bNj restricted to Z
N
+ are nonnegative. This also

implies that there are precisely m parameters, one for each reaction j.
For the analysis in this paper we need not assume the stochastic mass action

form, but merely the density dependence which is stated by our Assumption 2.
Assumption 2. We suppose that for each j = 1, · · · ,m, and each x ∈ R

n
+, the

limit limN→∞ aNj (Nx)/N = aj(x) exists and moreover, for each compact K ⊂ R
n
+,
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the collection of functions aNj (Nx) − Naj(x) is uniformly bounded for x ∈ K and
N ≥ 1. We note that this implies that for each compact set K ⊂ R

n
+ there exists a

constant BK > 0 such that
∣

∣

∣

∣

∣

aNj (Nx)

N
− aj(x)

∣

∣

∣

∣

∣

≤ BK

N
, x ∈ K, j = 1, . . . ,m, N ≥ 1. (2.3)

Defining XN (t) = N−1XN (t), we note that XN can be interpreted as the con-
centration of molecules at time t for system size N . We note that XN are coupled via
the following stochastic equations.

XN (t) = x0 +

m
∑

j=1

N−1Yj

(∫ t

0

aNj (NXN (s)) ds

)

νj . (2.4)

We state the following theorem regarding the limiting behavior of XN (see [9] for
details). The deterministic limit X of XN is also referred to as the fluid limit.

Theorem 2.1. (Theorem 2.1 of Chapter 11 in [9]) Suppose that Assumption 2
holds. Moreover, assume that for each compact K ⊂ R

n,

m
∑

j=1

|νj | sup
x∈K

aj(x) < ∞,

and that F (x) =
∑m

j=1 νjaj(x) is Lipschitz on K, that is, for each x, y ∈ K, there
exists some constant MK such that

|F (x) − F (y)| ≤ MK |x− y|.
Suppose t > 0 is in the forward maximal interval of existence of solution X for the
ODE initial value problem

X(t) = x0 +

∫ t

0

F (X(s))ds.

Then

lim
N

sup
s≤t

|XN (s)−X(s)| = 0 a.s.,

where the deterministic limit X satisfies the ODE above.
Remark 2.2. We note that with fixed initial condition XN (0) = x0 we want

XN(0) = Nx0 to belong to Z
n
+, which may not hold for all N ≥ 1 but we assume that

it holds for a sequence of N values tending to ∞. For instance if x0 is rational this
is true. This is adequate for our purposes.

In order to satisfy the conditions stated in Theorem 2.1 we shall assume the
following.

Assumption 3. For each j = 1, . . . ,m, the functions aj(x) : R
n → R are contin-

uously differentiable. This automatically implies the Lipschitz condition in Theorem
2.1.

The following assumption is used to facilitate the analysis in this paper. Several,
but not all examples in applications satisfy this assumption.

Assumption 4. We assume that the sequence of concentration processes XN is
uniformly bounded, that is, there exists a constant Γ such that for all t ≥ 0,

|XN (t)| ≤ Γ a.s. (2.5)
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for all N ≥ 1.

We note that if there exists a strictly positive vector γ ∈ R
m
+ so that γT νj ≤ 0

for each j then this assumption is satisfied. We note that a form of converse of this
statement is also true [22].

Now we turn our attention to the sensitivity. Given f : Rn → R, we are interested
in computing the sensitivity

∂

∂c
E(f(XN (t))),

where c ∈ (0,∞) is a parameter. In view of Assumption 1, without loss of gen-
erality, we shall take c = c1. Then we note that the GT sensitivity estimator is
f(XN(t))ZN (t) and the CGT estimator is [f(XN(t))−E(f(XN(t))]ZN (t), where we
note that ZN (t) = MN

1 (t)/c1 in this case.
As we are concerned with families of processes indexed by N , it makes sense to

consider a corresponding family of functions fN : Rn → R instead of one function f
and make reasonable assumptions on fN and f .

To motivate the assumption we make on fN and f , we note that we shall be
concerned with fN(XN (t)) = fN(NXN (t)) which we wish to compare with f(X(t)).
When fN (x) = xi, one of the components of x, we have

fN (NXN (t))/N = XNi(t) → Xi(t) = f(X(t)),

with f(x) = xi. Alternatively, if f
N(x) = xα

i for some α > 0 we have

fN(NXN (t))/Nα = (XNi(t))
α → (Xi(t))

α = f(X(t)),

with f(x) = xα
i . If however f

N(x) = x2
i + xi then we have

fN(NXN (t))/N2 = (XNi(t))
2 +XNi(t)/N → (Xi(t))

2 = f(X(t)),

where f(x) = x2
i . In this case we note that fN(Nx)/N2 − f(x) = xi/N which tends

to 0 as 1/N , uniformly for x in a compact set. Motivated by this, we impose the
following assumption.

Assumption 5. We assume that there exist a function f and a constant α > 0
such that for each compact set K ⊂ R

n
+,

∣

∣fN(Nx)/Nα − f(x)
∣

∣ ≤ LK√
N

, x ∈ K, N ≥ 1, (2.6)

for some constant LK > 0.
We remark that the O(1/

√
N) behavior is adequate for our proofs.

We note that the running assumptions 1-5 will be assumed throughout the rest
of the paper.

3. Large N behavior. In this section we derive results concerning the N → ∞
limit for the various relevant processes. Throughout the rest of the paper X(t) will
denote the solution of the equation

X(t) = x0 +

m
∑

j=1

νj

∫ t

0

aj(X(s))ds, (3.1)
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where x0 ∈ R
n
+ is fixed.

Lemma 3.1. For each j = 1, · · · ,m, there exists Aj > 0 such that, for all t > 0

aNj (NXN (t))

N
≤ Aj a.s.

for all N ≥ 1.
Proof. By Assumption 4, the processes XN are contained in a compact set of Rn,

say K, therefore, for each j we have the estimation

sup
t≥0

aNj (NXN (t))

N
≤ sup

x∈K

aNj (Nx)

N
.

Since N−1aNj (Nx) converges uniformly to aj(x) for x ∈ K by (2.3) in Assumption

2, it is apparent that supx∈K N−1aNj (Nx) is bounded by continuity of aj . Hence

supt≥0 N
−1aNj (NXN (t)) is bounded by a constant Aj .

Lemma 3.2. For each j = 1, · · · ,m, and t > 0, we have

sup
s≤t

∣

∣

∣

∣

∣

aNj (NXN (s))

N
− aj(X(s))

∣

∣

∣

∣

∣

→ 0, a.s.

as N → ∞.
Proof. We may write

∣

∣

∣

∣

∣

aNj (NXN (s))

N
− aj(X(s))

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

aNj (NXN (s))

N
− aj(XN (s))

∣

∣

∣

∣

∣

+ |aj(XN (s))− aj(X(s))| .

The first part on the right hand side converges to zero uniformly for s in [0, t] because
of Assumption 2 and Assumption 4. To see that the second part on the right hand
side converges uniformly to 0 on [0, t], note that by Assumption 3 and Assumption 4,
aj is Lipschitz continuous on the compact set K (which contains XN and X), hence
the result follows by Theorem 2.1.

We define a family of scaled reaction count processes RN (t) by RN (t) = RN (t)/N .
Lemma 3.3. For each j = 1, 2, · · · ,m and t > 0,

sup
s≤t

∣

∣

∣

∣

RNj(s)−
∫ s

0

aj(X(u))du

∣

∣

∣

∣

→ 0 a.s.

as N → ∞.
Proof. Recall that RN

j (t) = Yj

(

∫ t

0
aNj (NXN (s))ds

)

. For each j = 1, · · · ,m,

sup
s≤t

∣

∣

∣

∣

1

N
Yj

(∫ s

0

aNj (NXN (u))du

)

−
∫ s

0

aj(X(u))du

∣

∣

∣

∣

≤ sup
s≤t

∣

∣

∣

∣

1

N
Yj

(∫ s

0

aNj (NXN (u))du

)

− 1

N

∫ s

0

aNj (NXN (u))du

∣

∣

∣

∣

+

∫ t

0

∣

∣

∣

∣

1

N
aNj (NXN (u))− aj(X(u))

∣

∣

∣

∣

du.
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The second term on the right hand side converges to zero by Lemma 3.2. Setting
Ỹ (t) = Y (t)− t, the first term on the right can be written and then bounded as

sup
s≤t

∣

∣

∣

∣

1

N
Ỹj

(∫ s

0

aNj (NXN (u))du

)∣

∣

∣

∣

≤ sup
s≤t

∣

∣

∣

∣

1

N
Ỹj (NAjs)

∣

∣

∣

∣

a.s.,

where the last term converges to zero by the law of large numbers for Poisson processes
(see Theorem 1.2 in [3] ).

Lemma 3.4. For a given t > 0, suppose that f is continuous at X(t). Then

lim
N→∞

|fN (NXN (t))/Nα − f(X(t))| = 0, a.s. (3.2)

Proof. Write

∣

∣fN (NXN (t))/Nα − f(X(t))
∣

∣ ≤
∣

∣fN(NXN (t))/Nα − f(XN (t))
∣

∣

+ |f(XN(t)) − f(X(t))| .

The first term converges to zero almost surely by Assumption 4 and (2.6) in Assump-
tion 5. The second term converges to zero by the continuity assumption on f since
XN (t) converges to X(t) almost surely.

Recall the definition of MN ,

MN (t) = RN (t)−
∫ t

0

aN (NXN (s))ds.

Note that in general, MN (t) is an m-dimensional local martingale (see [21, 16] for
definition) for eachN , but by Lemma 3.1 it follows that E[RN

j (t)] ≤ NAjt for all t > 0

which makes MN (t) a martingale. We define the scaled processes MN = N−1MN

and ZN = N−1ZN . We note that ZN(t) = MN
1 (t)/c1 and ZN (t) = MN 1(t)/c1.

Let us denote by Dm[0,∞) the space of càdlàg functions mapping from [0,∞)
into R

m, endowed with the Skorohod topology (see [7] for definitions). We provide a
lemma on the weak convergence of MN .

Lemma 3.5. Let C(t) = (cij(t)) be the m×m matrix-valued function, where

cij(t) =

{
∫ t

0 aj(X(s))ds i = j
0 i 6= j.

(3.3)

Then
√
NMN ⇒ M̄ on Dm[0,∞), where M̄(t) is an m-dimensional Gaussian process

with independent increments, having mean vector and covariance matrix

E[M̄(t)] = (0, · · · , 0), E[M̄(t)M̄(t)T ] = C(t). (3.4)

In particular, the scaled Girsanov sensitivity (or weight) process
√
NZN ⇒ U on

D[0,∞), where

U(t) =
1

c1
M̄1(t). (3.5)

Also since U has continuous sample paths, for each t > 0, we have

√
NZN(t) ⇒ U(t).
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Proof. The proof relies on the martingale functional central limit theorem (FCLT)
proved in [29]. Note that each jump of

√
NMN has size 1/

√
N , therefore,

lim
N→∞

E

[

sup
s≤t

∣

∣

∣

√
NMN (s)−

√
NMN(s−)

∣

∣

∣

]

= 0.

Also, for each pair (i, j) with i, j = 1, · · · ,m, and each t > 0, since the jump size
for MNj is always N−1 and there are no simultaneous jumps, we have the following
quadratic covariation

[√
NMNi,

√
NMNj

]

(t) =

{

RNj i = j
0 i 6= j.

(3.6)

By Lemma 3.3, RNj(t) converges almost surely to cjj(t) =
∫ t

0 aj(X(s))ds. Then, for
each pair (i, j),

[√
NMNi,

√
NMNj

]

(t) → cij(t)

almost surely and hence in probability. Thus, the weak convergence of MN follows
from the martingale FCLT.

Lemma 3.6. For each p ≥ 1, there exists a constant β(p) such that for all t > 0

lim sup
N

E

(

sup
s≤t

∣

∣

∣

√
NMN(s)

∣

∣

∣

)p

≤ β(p)tp/2. (3.7)

Proof. Observe that the quadratic variation (see [21] for definition) of
√
NMN is

[√
NMN ,

√
NMN

]

(t) = N−1
m
∑

j=1

Yj

(∫ t

0

aNj (NXN (s))ds

)

.

By the Burkholder-Davis-Gundy inequality (see [21]), there exists a constant C(p)
(depends on p) such that

E

(

sup
s≤t

∣

∣

∣

√
NMN (s)

∣

∣

∣

)p

≤C(p)E





1

N

m
∑

j=1

Yj

(∫ t

0

aNj (NXN(s))ds

)





p/2

≤C(p)E





1

N

m
∑

j=1

Yj (NAjt)





p/2

≤C(p)N−p/2



E





m
∑

j=1

Yj(NAjt)





p



1/2

,

where we have used Lemma 3.1.
Hence,

lim sup
N

E

(

sup
s≤t

∣

∣

∣

√
NMN(s)

∣

∣

∣

)p

≤ lim sup
N

C(p)N−p/2



E





m
∑

j=1

Yj(NAjt)





p



1/2

.
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First we observe that for j = 1, · · · ,m, the pth moment of the Poisson random
variable Yj(NAjt) is a polynomial of degree p in NAjt. Also, noting that Yj are
independent, we obtain that the right hand side is bounded by a term β(p)tp/2, where
β(p) is a constant.

Since ZN (t) = c1
−1MN

1 (t), we immediately have the following property regarding
the process ZN .

Lemma 3.7. For each p ≥ 1, there exists a constant γ(p) such that for all t > 0,

lim sup
N

E

(

sup
s≤t

√
N |ZN (s)|

)p

≤ γ(p)tp/2. (3.8)

Define the process VN (t) =
√
N(XN (t) −X(t)). Let us consider the moment of

this process on a compact time interval.
Lemma 3.8. For each p ≥ 1, there exist constants β̄(p),K(p) such that for all

t > 0

lim sup
N

sup
s≤t

E (|VN (s)|p) ≤ β̄(p)tp/2eK(p)tp .

Proof. Recall that

XN(s) = x0 + νRN (s)

and

X(s) = x0 +

∫ s

0

νa(X(u))du,

where ν is the n by m dimensional stoichiometric matrix. One can write VN as

VN (s) =
√
NνRN (s)−

√
N

∫ s

0

νa(X(u))du

=
√
Nν

(

RN (s)−
∫ s

0

aN (NXN(u))

N
du

)

+
√
Nν

(
∫ s

0

aN (NXN (u))

N
− a(X(u))du

)

.

Note that we denote MN (s) = RN (s)−
∫ s

0 N−1aN (NXN (u))du, and hence

|VN (s)| ≤‖ν‖
∣

∣

∣

√
NMN(s)

∣

∣

∣+ ‖ν‖
∫ s

0

√
N

∣

∣

∣

∣

aN (NXN (u))

N
− a(X(u))

∣

∣

∣

∣

du.

To estimate the second term on the right hand side of the last inequality, we note
that

√
N

∣

∣

∣

∣

aN (NXN (u))

N
− a(X(u))

∣

∣

∣

∣

≤
√
N

∣

∣

∣

∣

aN(NXN (u))

N
− a(XN (u))

∣

∣

∣

∣

+
√
N |a(XN (u))− a(X(u))| .

Since XN lies in a compact set K according to Assumption 4, we have for all u > 0,
∣

∣

∣

∣

aN (NXN(u))

N
− a(XN (u))

∣

∣

∣

∣

≤ B̃K

N
,
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where we have used Assumption 2 and B̃K is related to BK from (2.3).
On the other hand, for each j = 1, · · · ,m, by Assumption 3, aj is continuously

differentiable and hence it is Lipschitz continuous on the compact set K. Hence, there
exists a Lipschitz constant Cj such that for all u > 0,

|aj(XN (u))− aj(X(u))| ≤ Cj |XN (u)−X(u)| .
It follows that there exists a constant C such that

|a(XN (u))− a(X(u))| ≤ C |XN (u)−X(u)| ,

where ||̇ can be norm on R
m. Therefore,

|VN (s)| ≤‖ν‖
(

∣

∣

∣

√
NMN (s)

∣

∣

∣+N−1/2B̃Ks+ C

∫ s

0

√
N |XN (u)−X(u)| du

)

=‖ν‖
(

∣

∣

∣

√
NMN (s)

∣

∣

∣+N−1/2B̃Ks+ C

∫ s

0

|VN (u)| du
)

.

In virtue of the inequality (a+b+c)p ≤ 3p(ap+bp+cp) and the Holder’s inequality,
we obtain

|VN (s)|p ≤(3‖ν‖)p
(

∣

∣

∣

√
NMN (s)

∣

∣

∣

p

+N−p/2(B̃Ks)p + Cpsp−1

∫ s

0

|VN (u)|pdu
)

.

Taking expected value of both sides, for s ∈ [0, t],

E|VN (s)|p ≤(3‖ν‖)p
(

E

∣

∣

∣

√
NMN(s)

∣

∣

∣

p

+N−p/2(B̃K t)p
)

+ (3‖ν‖)pCpsp−1

(∫ s

0

E|VN (u)|pdu
)

.

To estimate the first term of the right hand side, recall that in the proof of Lemma
3.6,

E

(

sup
s≤t

∣

∣

∣

√
NMN(s)

∣

∣

∣

)p

≤ C(p)N−p/2



E





m
∑

j=1

Yj(NAjt)





p



1/2

.

For convenience, let us denote

ΦN (t) = C(p)N−p/2



E





m
∑

j=1

Yj(NAjt)





p



1/2

.

Therefore,

E|VN (s)|p ≤(3‖ν‖)p
(

ΦN (t) +N−p/2(B̃Kt)p + Cpsp−1

(∫ s

0

E|VN (u)|pdu
))

.

We note that E|VN (s)|p is continuous in s and applying the Gronwall inequality, we
obtain that, for s ≤ t,

E|VN (s)|p ≤ (3‖ν‖)p
(

ΦN (t) +N−p/2(B̃Kt)p
)

e(3‖ν‖)
pCptp .

Taking supremum over s ∈ [0, t] and then taking lim supN , the result follows from
same considerations as in the proof of Lemma 3.6.
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4. Scaling of sensitivity, estimator bias and estimator variance. In this
section, we study the system size dependence of the sensitivity

S
N =

∂

∂c
E(fN (XN(t))),

and the biases as well as the variances of the GT, CGT and FD estimators. In the
case of the FD estimators, the parameter perturbation h is fixed when N → ∞. As
mentioned earlier, the difference between the sensitivity with respect to the stochastic
parameter and with respect to the deterministic parameter is merely a scaling factor
N |ν′′

j |−1 and hence the RSD, RB and RE are unchanged regardless of whether one
considers the sensitivity with respect to the stochastic parameter or the deterministic
parameter. From an analytical point of view, it is convenient to study the sensitivity
with respect to the deterministic parameter.

Recall that the sensitivity estimator of the Girsanov transformation method is

fN(XN (t, c))ZN (t, c)

where fN : Rn → R. We remind the reader that fN satisfies the Assumption 5, that
is, there exist a function f and a constant α such that

∣

∣

∣

∣

fN (Nx)

Nα
− f(x)

∣

∣

∣

∣

≤ LK√
N

.

Theorem 4.1. In addition to our running assumptions, we assume that f in
(2.6) is continuously differentiable. Then for each t ≥ 0

sup
s≤t

E(fN (XN (s))ZN (s)) = O(Nα).

That is, the true sensitivity is asymptotically O(Nα) uniformly on [0, t].
Proof. It is sufficient to show that sups≤t E(f

N (XN(s))ZN (s))/Nα is bounded

in N . Instead of working with E(fN (XN(s))ZN (s))/Nα, we use

E

(

fN (XN(s))

Nα
ZN (s)− f(X(s))ZN(s)

)

because they are equal but the latter is easier to work with.
Note that f is continuously differentiable hence Lipschitz on the compact set K

corresponding to Assumption 4. Denote by CK the Lipschitz constant for f . Using
the assumptions on fN and f and writing XN in terms of VN as

XN(s) = NX(s) +
√
NVN (s),

which leads to
∣

∣

∣

∣

∣

fN (NX(s) +
√
NVN (s))

Nα
− f(X(s))

∣

∣

∣

∣

∣

|ZN (s)|

≤
∣

∣

∣

∣

∣

fN (NX(s) +
√
NVN (s))

Nα
− f

(

X(s) +
VN (s)√

N
)

)

∣

∣

∣

∣

∣

|ZN (s)|

+

∣

∣

∣

∣

f

(

X(s) +
VN (s)√

N

)

− f(X(s))

∣

∣

∣

∣

|ZN(s)|

≤ LK√
N

|ZN (s)|+ CK |VN (s)| |Z
N (s)|√
N

≤LK

√
N |ZN (s)|+ 1

2
CK

(

|VN (s)|2 +N |ZN(s)|2
)

,
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where LK is as defined in Assumption 5. Taking expectation on both sides, the result
follows from Lemmas 3.7 and 3.8.

Remark 4.1. While the proof above does not show that the order O(Nα) is
sharp, it can be shown to be sharp, if under the Nα scaling, the sensitivity of the
stochastic process is shown to limit to the sensitivity of the deterministic limit f(X(t))
as N → ∞. In fact, under additional assumptions, this limit can be shown [13]. Our
numerical results in Section 5 also show O(Nα) behavior.

Recall that the FD estimator is defined in (1.10) as

SN
FD(t, c) = h−1[fN (XN(t, c+ h))− fN(XN (t, c))].

Based on the last theorem, with a little more effort we conclude the following corollary
regarding the bias of FD estimator.

Corollary 4.2. In addition to the running assumptions, if we assume that f is
continuously differentiable, then for each t > 0, we have

E(SN
FD

(t)− S
N (t)) = O(Nα),

where S
N (t) represents the true sensitivity at t. That is, the bias of FD estimator is

asymptotically O(Nα).
Proof. Since we have shown that the true sensitivity scales like O(Nα), it suffices

to show that E(fN (XN(t, c))) is asymptotically of order O(Nα) for any c. In fact,
by Lemma 3.4, fN(XN (t))/Nα converges almost surely to f(X(t)). To apply the
dominate convergence theorem, note that the Assumption 5 implies

|fN (XN(t))|
Nα

≤ |f(XN (t))|+ LK√
N

.

By virtue of the Assumption 4, the right hand side of the above equality is bounded
in N and hence it is integrable. Finally, the dominate convergence theorem gives the
result.

Next, we investigate the variance of the GT estimator in terms of the system
size N . The following lemma concerning the weak convergence of joint distribution is
crucial for the proof of Theorem 4.4.

Lemma 4.3. Let Xn and Yn be R
m valued and R

k valued sequences of random
variables, respectively. Suppose Xn converges to X in probability (where X is deter-
ministic) and Yn ⇒ Y . Then (Xn, Yn) ⇒ (X,Y ) in R

m+k.
Proof. Let x ∈ R

m be such that X = x almost surely. First we show that
(X,Yn) ⇒ (X,Y ). If f : Rm+k → R is bounded and continuous then so is g : Rk → R

defined by g(y) = f(x, y). Since Yn ⇒ Y we have that

E(f(X,Yn)) = E(g(Yn)) → E(g(Y )) = E(f(X,Y )).

Now ‖(Xn, Yn)−(X,Yn)‖ = ‖Xn−X‖ and since Xn → X in probability, ‖Xn−X‖ →
0 in probability (implies convergence in distribution). Thus by Theorem 3.1 in [7] we
have that (Xn, Yn) ⇒ (X,Y ).

Theorem 4.4. In addition to our running assumptions, we assume that f in
(2.6) is bounded on every compact set and for a given t > 0, f is continuous at X(t).
Then we have,

N−1−2α
E
{

(fN (XN (t)))2(ZN (t))2
}

→ (f(X(t)))2
1

c1

∫ t

0

a1(X(s))ds (4.1)
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as N → ∞. Furthermore, for each t > 0,

sup
s≤t

E
(

(fN (XN (s)))ZN (s)
)2

= O(N2α+1).

Proof. Lemma 3.7 implies the uniformly integrability of N−1(ZN (t))2. By As-
sumption 4 and (2.6) we have that (fN (XN (t)))2/N2α is a uniformly bounded se-
quence. Thus N−1−2α(fN (XN(t)))2(ZN (t))2 is uniformly integrable.

By Lemma 3.4 we have that N−2α(fN (XN(t)))2 converges to (f(X(t)))2 almost
surely. We also have that N−1ZN (t) converge weakly to U(t). Thus by Lemma 4.3
and the continuous mapping theorem we have that

N−1−2α(fN (XN (t)))2(ZN (t))2 ⇒ (f(X(t)))2U2(t).

By Theorem 3.5 from [7], we note that if a uniformly integrable sequence converges
weakly then it converges in the mean, hence the result (4.1) follows.

Also, recall that (fN (XN(t)))2/N2α is uniformly bounded, hence

N−2α−1 sup
s≤t

E
(

(fN (XN (s)))ZN (s)
)2 ≤ C̃E(sup

s≤t

√
N |ZN(s)|)2.

Taking lim supN and applying Lemma 3.7 yields the second result.
Note that the above theorem does not assume f is continuously differentiable.

However, to state the result regarding the estimator variance for GT method, we still
need to assume continuous differentiability on f so that we can use Theorem 4.1.

Corollary 4.5. In addition to our running assumptions, we assume that f in
(2.6) is continuously differentiable. Then for given t > 0, the estimator variance of
GT method is asymptotically O(N2α+1) uniformly on [0, t].

Next, we will explore the variance of the centered Girsanov transformation ap-
proach.

Theorem 4.6. In addition to our running assumptions, we assume that f in
(2.6) is continuously differentiable. Then for each t > 0,

sup
s≤t

E
[

(fN (XN (s))− E[fN (XN(s))])ZN (s)
]2

= O(N2α).

Proof. Write

E

(

∣

∣

∣

∣

fN (XN(s))

Nα
− E

(

fN(XN (s))

Nα

)∣

∣

∣

∣

2

(ZN (s))2

)

≤2E

(

∣

∣

∣

∣

fN(XN (s))

Nα
− f(X(s))

∣

∣

∣

∣

2

(ZN(s))2

)

+ 2E

(

∣

∣

∣

∣

f(X(s))− E

(

fN(XN (s))

Nα

)∣

∣

∣

∣

2

(ZN(s))2

)

≤2E

(

∣

∣

∣

∣

fN(XN (s))

Nα
− f(X(s))

∣

∣

∣

∣

2

(ZN(s))2

)

+ 2E

(

∣

∣

∣

∣

fN (XN(s))

Nα
− f(X(s))

∣

∣

∣

∣

2
)

E(ZN (s))2,
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where the last inequality is true due to the fact that f(X(s)) is deterministic. Using
similar argument as in the proof of Theorem 4.1, the first term on the right-hand side
can be bounded by

4L2
KE

(

|
√
NZN (s)|

)2

+ 4C2
KE

(

|VN (s)|
√
N |ZN (s)|

)2

.

Similarly, the second term on the right hand side can be bounded by

4L2
KE

(√
N |ZN (s)|

)2

+ 4C2
KE|VN (s)|2E

(√
N |ZN(s)|

)2

.

Both of the above terms are bounded in N uniformly on [0, t] by Lemma 3.7 and 3.8.

Combining this result with Theorem 4.1, the following corollary is immediate.
Corollary 4.7. For any given t > 0, the estimator variance of CGT method is

asymptotically O(N2α) uniformly on [0, t].
Theorem 4.8. In addition to our running assumptions, we assume that f in

(2.6) is continuously differentiable. Then for each t > 0 and h > 0,

sup
s≤t

Var
(

fN (XN(s, c+ h))− fN(XN (s, c))
)

= O(N2α−1).

That is, the estimator variance of FD method is asymptotically O(N2α−1).
Proof. Note that

Var
(

fN(XN (s, c+ h))− fN (XN(s, c))
)

≤2Var
(

fN (XN(s, c+ h))
)

+ 2Var
(

fN(XN (s, c))
)

.

Hence it is sufficient to show that Var
(

fN (XN(t, c))
)

= O(N2α−1) for any c. We
write

1

N2α−1
Var

(

fN (XN (s, c))
)

= NE

(

∣

∣

∣

∣

fN (XN(s, c))

Nα
− E

(

fN(XN (s, c))

Nα

)∣

∣

∣

∣

2
)

.

One can estimate the right hand side by using the same argument as is in Theorem 4.6
to obtain an upper bound 8L2

K + 8C2
KE (|VN (s)|)2, which is bounded in N uniformly

on [0, t] by Lemma 3.8.
Remark 4.2. Based on Theorem 4.1, Corollary 4.5, Corollary 4.7 and Theorem

4.8, we may expect the RSDs of the GT, CGT and FD methods to scale as O(N1/2),
O(1) and O(N−1/2), respectively. Since in Theorem 4.1, we do not have an exact
limit for the sensitivity itself, this conclusion is not rigorously proven. As mentioned in
Remark 4.1, under additional assumptions, this conclusion will be true. Our numerical
results in the next section also support this statement. Moreover, we note that the
O(N2α+1) estimates in Theorem 4.4 and Corollary 4.5 are sharp.

5. Numerical examples. We illustrate the dependence of RSD of various sen-
sitivity estimators (with respect to the deterministic parameter) on the system size
N via numerical examples. When comparing the GT or CGT methods with FD or
RPD methods, we must bear in mind that while GT and CGT do not have method
parameters, the FD method has a perturbation parameter h and the RPD method has
a window size parameter w, making the comparison not straightforward. Moreover,
the FD and the RPD methods are biased. A proper practical comparison involves



24 Ting Wang AND Muruhan Rathinam

choosing parameters h and w to obtain an acceptable bias. We do not pursue such a
detailed comparison here as we are focused solely on the dependence on system size
N . In the case of FD or RPD methods, we fix h or w respectively, and vary N . We
also use the CRN FD method instead of the IRN FD, as that is the more commonly
used approach. Moreover, since our variance estimates for FD methods were derived
based on an upper bound which is twice that of the IRN FD method, it is important
to compare the performance of CRN FD to see if the order estimate O(N−1/2) for
the RSD is sharp.

We note that in the very large system size limit, the stochastic system behaves
nearly deterministically and hence none of these stochastic sensitivity methods are
needed; traditional ODE sensitivity methods would do. However, when the system
size N is modestly large, say N = 100, the system may not be approximated by the
ODE and our asymptotic analysis may be relevant in this regime. Our numerical
results below show this.

5.1. Numerical example 1. The reversible isomerization model consists of two
species S1 and S2 and involves the following two reactions:

S1
c1−→ S2, S2

c2−→ S1. (5.1)

In the model with system size N , the intensity functions for processes RN
1 and RN

2

are

aN1 (XN(t), c) = c1X
N
1 (t),

aN2 (XN(t), c) = c2X
N
2 (t),

respectively. The stoichiometric vectors are ν1 = [−1, 1]T and ν2 = [1,−1]T .
In this example, the expectation of the population of species at a fixed time t can

be computed analytically:

E[XN
1 (t)] = XN

1 (0) +
1− e−(c1+c2)t

c1 + c2
(c2X

N
2 (0)− c1X

N
1 (0)), (5.2)

E[XN
2 (t)] = XN

2 (0)− 1− e−(c1+c2)t

c1 + c2
(c2X

N
2 (0)− c1X

N
1 (0)), (5.3)

where XN
1 (0) and XN

2 (0) are assumed to be deterministic. One can compute the
exact sensitivities by differentiating (5.2) and (5.3) with respect to parameters. In
the numerical tests considered here, we choose parameters c1 = 0.3 and c2 = 0.2
and the initial population XN

1 (0) = N and XN
2 (0) = N , where N is the system

size parameter. We set the terminal time T = 10 and compute the sensitivity for
N = 1, 2, 5, 10, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900 and 1000. We use four dif-
ferent methods here, namely GT, CGT, CRN FD and RPD. We note that by CRN
FD, we mean the common random number and one-sided finite difference method in
conjunction with Gillespie’s SSA [24]. The perturbation parameter for the CRN FD
method is h = 0.01 for parameter c1 and the window size parameter w = 1.0 for
RPD method for terminal time T = 10. The number of trajectories for simulation is
Ns = 106 for each system size N . We consider sensitivities with respect to c1 of the
expected values of four different output functions.
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The first output function we consider here is fN(x) = x1 for all N , that is,
we compute the sensitivity of E(XN

1 (T )) with respect to parameter c1. Obviously,
conditions in Assumption 5 are satisfied with α = 1 and f(x) = x1. We examine
the growth of sensitivity of E(XN

1 (T )) with respect to c1 in terms of N using 106

independent trajectories. The computed sensitivity and the error in the sensitivity
estimate are shown in Figure 5.1(a), and Figure 5.1(b) shows the loglog plot of RSD
of all four methods.
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Fig. 5.1. Estimated sensitivity (left) and error in the sensitivity estimate (inset) of E(XN
1
(T ))

with respect to c1, and RSD (right) at terminal time T = 10 for reversible isomerization model.
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Fig. 5.2. Estimated sensitivity (left) and error in the sensitivity estimate (inset) of E(XN
1
(T ))2

with respect to c1 and RSD (right) at terminal time T = 10 for reversible isomerization model.

The second output function we use for testing is fN(x) = x2
1 for all N . By (2.6),

f(x) = x2
1 and α = 2 in Assumption 5. Similar to the case of output function fN(x) =

x1, the exact sensitivity in this case can be calculated and hence we show the error
in the sensitivity estimate as an inset plot. See Figure 5.2 for sensitivity and RSD.
The third output function we consider is fN(x) = sin(x1/N) and so f(x) = sinx1. It
can be seen that for this case, α = 0 in Assumption 5. Plot for the numerical result
is shown in Figure 5.3.

The last output function we consider here is the indicator function fN(x) =
1{x1≤x2}(x), which does not satisfy the conditions in our theorems since f = 1{x1≤x2}
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Fig. 5.3. Estimated sensitivity of E(sin(XN
1
(T )/N)) with respect to c1 (left) and RSD (right)

at terminal time T = 10 for reversible isomerization model.

is not continuously differentiable. However, numerical tests still show similar behavior
as indicated by our theorems. Note that the sensitivity approaches to zero as N
increases to ∞ and hence RSD is not well defined for large N . Instead, we plot the
estimator variance against N in Figure 5.4(b).
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Fig. 5.4. Estimated sensitivity of P(XN
1
(T ) ≤ XN

2
(T )) with respect to c1 (left) and variance

(right) at terminal time T = 10 for reversible isomerization model.

Additionally, Table 5.1 summarizes the rate of growth (as a power of N) of the
numerically estimated RSD for the different estimators considered above. The results
are in agreement with the theory.

5.2. Numerical example 2. As a second numerical example, let us consider
the decaying-dimerizing model [11]

S1
c1−→ ∅, 2S1

c2−→ S2, S2
c3−→ 2S1, S2

c4−→ S3. (5.4)

The stoichiometric vectors are ν1 = [−1, 0, 0]T , ν2 = [−2, 1, 0]T , ν3 = [2,−1, 0]T

and ν4 = [0,−1, 1]T . We set the initial population to be XN
1 (0) = 10N,XN

2 (0) =
0, XN

3 (0) = 0. Using the stochastic mass action form (1.18), the intensity for processes
RN

1 , RN
2 , RN

3 and RN
4 are

aN1 (XN(t), c) = c1X
N
1 (t),
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Table 5.1

Observed slopes (via regression for large N) for the loglog plots of RSD for reversible isomer-
ization model, that is, R1, R2 and R3 are the observed asymptotic order of the estimator RSD (as
a power of N) for E(XN

1
(T )), E(XN

1
(T ))2 and E(sin(XN

1
(T )/N)), respectively.

R1 R2 R3

GT 0.4992 0.4895 0.5724
CGT -0.0004 -0.0008 0.0009

CRN FD -0.5156 -0.5160 -0.5162
RPD -0.5005 -0.5000 -0.5000

aN2 (XN(t), c) =
c2
2N

XN
1 (t)(XN

1 (t)− 1),

aN3 (XN(t), c) = c3X
N
2 (t),

aN4 (XN(t), c) = c4X
N
2 (t).

We set the parameters as follows, c1 = 1.0, c2 = 0.002, c3 = 0.5 and c4 = 0.04. Note
that the intensity for the second reaction is not linear, hence an analytical formula for
the sensitivity is not attainable. We test the sensitivity and RSD for E[fN (XN

1 )] with
respect to c1. For the CRN FD method, we use one-sided finite difference scheme
and perturb the parameter c1 by h = 0.01. Note that RPD is not applicable for this
example since the firing of the first reaction will prevent the second reaction to happen
when the population of S1 is 1 (see [26]). Therefore, we only examine the RSDs of
GT, CGT and CRN FD here. For each system size N , the number of trajectories we
use for simulation is Ns = 106. Plots of the sensitivity and RSD are shown in Figure
5.5, 5.6 and 5.7 for E(XN

1 (T )), E(XN
1 (T ))2 and E(sin(XN

1 (T )/N)), respectively. The
rate of growth (as a power of N) of the numerically estimated RSD are summarized
in Table 5.2.
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Fig. 5.5. Estimated sensitivity of E[XN
1
(T )] with respect to c1 and RSD at terminal time T = 5

for decaying-dimerizing model.

5.3. Numerical example 3. In this numerical example, we revisit the reversible
isomerization network to illustrate the asymptotic behavior of various estimators in
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Fig. 5.6. Estimated sensitivity of E(XN
1
(T ))2 with respect to c1 and RSD at terminal time

T = 5 for decaying-dimerizing model.
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Fig. 5.7. Estimated sensitivity of E(sin(XN
1
(T )/N)) with respect to c1 and RSD at terminal

time T = 5 for decaying-dimerizing model.

Table 5.2

Observed slopes (via regression) for the loglog plots for RSD for decaying-dimerizing model,
that is, R1, R2 and R3 are the observed asymptotic order of the estimator RSD (as a power of N)
for E(XN

1
(T )), E(XN

1
(T ))2 and E(sin(XN

1
(T )/N)), respectively.

R1 R2 R2

GT 0.4689 0.4100 0.4737
CGT -0.0040 -0.0257 -0.0008

CRN FD -0.6022 -0.6068 -0.6009

terms of the terminal time T . Note that in this example, the deterministic parameters
cj and the stochastic parameters c′j are the same. For ease of notation, we suppress N
because we fix N = 10 and only let T change in this simulation. The initial population
is X1(0) = 10 and X2(0) = 10. Parameters are taken to be c1 = 0.3 and c2 = 0.2 as
before. In this case, the exact sensitivity can be obtained by taking derivative with
respect to c1 for (5.2). Figure 5.8(a) shows the sensitivities estimated by GT, CGT
and CRN FD against the true sensitivity as a function of T . The Figure 5.8(b) shows
the estimator variances as a function of T . It can be seen that all three estimators
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show a variance that grows linearly in T for the range of values of T considered here.
In fact, this observation can be justified for the GT and CGT methods as follows.

Recall the definition of the centered processes Mj(t) = Rj(t) −
∫ t

0 aj(X(s))ds, j =
1, · · · ,m. Since Xj(t) are bounded in this network, one can show that

EM2
j (t) = E([Mj ,Mj ](t)) = ERj(t) = cj

∫ t

0

EXj(s)ds = O(t),

where the first equality holds since Mj(t), j = 1, 2 is a L2-bounded martingale (see
[21]). Therefore, we conclude that EZ2(t) = O(t) because in this case Z(t) =
c−1
1 M1(t) and hence the variances of both GT and CGT are of O(t).

As for the variance of the FD estimator, the observed growth is approximately
linear in t in the range of 10 to 20. However, from the upper bound used in the
proof of Theorem 4.8, it is easy to see that the estimator variance remains bounded
as t → ∞.
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Fig. 5.8. Estimated and true sensitivities (left) of EX1(t) with respect to c1 and the estimator
variances (right) for the reversible isomerization model. The terminal time T (x-axis) ranges from
1 to 20.

6. Discussion and concluding remarks. Our primary goal in this paper was
to provide an analytical explanation of the phenomenon of larger estimator variance
of the GT method compared to the FD (as well as RPD in the context of chemical
kinetics) methods reported frequently in the literature [5, 20, 24, 26]. This was ac-
complished by our analysis in terms of system size N . The system size N was taken to
be proportional to system volume in the context of stochastic chemical kinetics. Our
analysis showed that the relative standard deviation (RSD) (see (1.7) for definition)
of the GT, CGT and FD sensitivity estimators are O(N1/2), O(1) and O(N−1/2),
respectively, as N → ∞. The numerical examples provided also illustrate this point.
Additionally, our numerical examples also suggested that the RSD of the RPD method
also scales as O(N−1/2). We also showed that the relative bias (RB) (see (1.8) for
definition) of any FD method was asymptotically O(1) as N → ∞. We note that,
in our analysis of the FD methods, we kept h fixed and considered N → ∞ limit.
Now we discuss, at least in theory, how h may be chosen in terms of system size N
to obtain the best performance for the FD methods.

Number of simulations required to achieve a given relative error (RE):
Since the FD methods are biased while the GT and CGT methods are not, we shall use
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the relative error (RE) to compare the efficiencies of the GT, CGT and FD estimators.
More precisely, we shall estimate the number of trajectory simulations Ns, required
to achieve a given tolerance δ for the relative error (RE) in the mean square sense
which includes RB and RSD (see (1.6) for the exact definition).

Our analysis for the FD methods was carried out so that large N behavior for
fixed h was obtained. We may combine our large N analysis with small h behavior
of the FD methods already studied in the literature [5]. In general, the bias of the
one-sided FD estimator is O(h) as h → 0, so we may expect the relative bias of an
FD estimator to be given by RB ≈ C2h for small h and large N , where C2 does not
depend on N or h. If higher order FD is used, then one expects RB ≈ C2h

γ1 , where
γ1 ≥ 1 in general. For instance, for the two-sided FD estimator we have that γ1 = 2.

Moreover, when using the independent random number (IRN) FD method, the
variance is O(1/h2) as h → 0, which is similar to behavior of the upper bound used
in our proof of Theorem 4.8. However, when using common random number (CRN)
FD methods, one may typically expect O(1/h) dependence [5, 24]. This is because,
Cov(f(X(t, c + h)), f(X(t, c))) is typically O(h) as h → 0. Hence we may write
RSD2 ≈ C1/(Nhγ2) for small h and large N , where typically γ2 = 1 or 2 depending
on whether CRN or IRN is used, and C1 is independent of h and N . Combining the
bias and the variance, and using (1.9), we expect that, for an FD method

RE2 =
RSD2

Ns
+RB2 ≈ C1

NsNhγ2
+ C2

2h
2γ1 . (6.1)

At this point, we must remark that in order for the above approximation to hold
rigorously, one must establish the joint limit as (N, h) → (∞, 0). We believe that this
could be done under additional regularity assumptions, but we shall not pursue this
in this paper.

Extending the idea in [5] to include system size N , we look for the optimal choice
of h (the one that minimizes RE), for a given system size N and number of simulations
Ns. With some effort, one can see that the optimal h is given by

h ∝ N
−1

2γ1+γ2 N
−1

2γ1+γ2
s ,

and hence the minimal square RE for an FD method has the proportionality

RE2 ∝ N
−2γ1

2γ1+γ2 N
−2γ1

2γ1+γ2
s . (6.2)

On the other hand, for the CGT method, RE2 = RSD2/Ns = C3/Ns for large
N where C3 is independent of N and Ns. Likewise, for the GT method, RE2 =
RSD2/Ns = C4N/Ns, for large N , where C4 is independent of N and Ns. Hence, for
a specified value of δ for RE and a given system size N , the number of simulations
required for the different methods are given by

NFD
s ∝ δ

−2−
γ2
γ1 N−1, NCGT

s ∝ δ−2, NGT
s ∝ Nδ−2. (6.3)

We note that, as observed in [5], the optimal dependence of Ns on δ, is δ−2, which is
achieved for an unbiased method. The biased FD methods have suboptimal depen-
dence on δ, unless γ2 = 0, which is typically not the case in the context of discrete
state systems, as γ2 = 0 implies the validity of the (unregularized) pathwise derivative
method [5]. However, when N is much larger than δ−γ2/γ1 , we expect the FD method
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to be more efficient than the CGT or GT. For instance, for δ = 0.01, if N ≫ 10,
say N = 50 for instance, we may expect the two-sided CRN FD (γ1 = 2, γ2 = 1) to
be more efficient than CGT which will be more efficient than GT. If one-sided CRN
FD is used (γ1 = γ2 = 1) or two-sided IRN FD is used (γ1 = γ2 = 2), we expect
FD to be more efficient when N ≫ 100, say N = 500. If one-sided IRN FD is used
(γ1 = 1, γ2 = 2) we expect FD to be more efficient than CGT only for N ≫ 104.

Since the constants of proportionality that appear in the above discussion are not
known in practice and typically harder to estimate than the sensitivity itself, one may
not expect to choose h in a straightforward manner based on the above discussion.
Nevertheless, the above discussion provides some idea of the optimal efficiency that
could be expected.

We also note that the comparison of an unbiased estimator with a biased one is
more nuanced and qualitative. This is because, while one can estimate the variance
of an estimator from the simulation, its bias cannot be estimated reliably unless one
knows the exact quantity to be estimated! As a consequence, an unbiased estimator
is preferable to a biased one, unless the unbiased estimator has exceedingly larger
variance compared to the biased one. In this context, we like to mention that Multi-
level Monte Carlo approaches (see [2] for instance) may be used to combine a biased
low variance estimator with an unbiased high variance estimator to obtain an efficient
and unbiased estimator.

Factors other than system size that affect the RSD: We note that factors
other than system size also affect the RSD of an estimator. One factor to study will
be the dependence on t as t → ∞. Our numerical simulations showed linear growth in
t behavior for GT, CGT and even for FD methods for a practical range of t values (up
to a few multiples of the time to stationarity). However, from a simple upper bound
for the variance of the FD methods, we expect this growth to reach a finite maximum,
for systems that are ergodic. The O(t) behavior (as t → ∞) for the variance of the GT
and CGT methods can be justified theoretically, as explained in Section 5.3. Thus,
dependence on time does not explain the greater variance of GT compared to CGT.

Extension of the variance analysis: Our analysis made special use of the de-
terministic limit in the large system size under what is known as the classical scaling
which was used by Kurtz [9]. In other words, after suitable scaling, fN (XN (t)) con-
verges to the deterministic limit f(X(t)) almost surely. However, the scaled weight
processes ZN (t)/

√
N converge weakly to a Gaussian process U(t). Our analysis com-

bined the two limits to obtain the desired results. Our results were proven under
Assumptions 1-5 stated in Section 2. The first assumption assumes that the param-
eters enter multiplicatively : aj(x, c) = cjbj(x). This is satisfied by the stochastic
mass action form of intensities. In some literature on chemical kinetics, there are
some other forms of intensity functions that are used. Relaxing Assumption 1 to a
general form will make the weight process ZN more complicated, and it will be given
by a stochastic integral where both the integrand and the integrator are stochastic
processes indexed by N . To obtain convergence of N−1−2α

E[(fN (XN (t)))2(ZN (t))2]
one may need the result from [18] which analyzes the limit of a sequence of stochas-
tic integrals. We speculate that Assumption 4 may be relaxed using stopping time
arguments and sufficient integrability assumptions on the process.

In many practical systems some species are present in small numbers while others
are present in large numbers, and some reaction parameters are much larger than the
others making the system “stiff”. The classical scaling studied here does not capture
this. The more general scaling proposed in [6, 17] (again by Kurtz and collaborators)
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involve introducing a parameter N which appears with different exponents both in
the stochastic parameters c′j as well as the scaling of species and time itself. These

analyses often provide stochastic limits to the scaled processes XN . One could extend
our current analysis along these lines to explore more subtle dependencies of the
estimator variances. A related earlier work which scales all “species” by the same
factor ǫ, and scales time differently ǫ−α, in the context of processes driven by Levy
measure can be found in [27].
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[27] M. Tomisaki, Homogenization of càdlàg processes, J. Math. Soc. Japan, 44 (1992), pp. 281–305.
[28] P. B. Warren and R. J. Allen, Steady-state parameter sensitivity in stochastic modeling via

trajectory reweighting, J. Chem. Phys., 136 (2012), p. 104106.
[29] W. Whitt, Proofs of the martingale FCLT, Probab. Surv., 4 (2007), pp. 268–302.


