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Abstract

We consider the problem of minimizing the sum of a smooth function h with a bounded

Hessian, and a nonsmooth function. We assume that the latter function is a composition of

a proper closed function P and a surjective linear map M, with the proximal mappings of

τP , τ > 0, simple to compute. This problem is nonconvex in general and encompasses many

important applications in engineering and machine learning. In this paper, we examined two

types of splitting methods for solving this nonconvex optimization problem: alternating direc-

tion method of multipliers and proximal gradient algorithm. For the direct adaptation of the

alternating direction method of multipliers, we show that, if the penalty parameter is chosen

sufficiently large and the sequence generated has a cluster point, then it gives a stationary

point of the nonconvex problem. We also establish convergence of the whole sequence under

an additional assumption that the functions h and P are semi-algebraic. Furthermore, we

give simple sufficient conditions to guarantee boundedness of the sequence generated. These

conditions can be satisfied for a wide range of applications including the least squares problem

with the ℓ1/2 regularization. Finally, when M is the identity so that the proximal gradient al-

gorithm can be efficiently applied, we show that any cluster point is stationary under a slightly

more flexible constant step-size rule than what is known in the literature for a nonconvex h.

1 Introduction

In this paper, we consider the following optimization problem:

min
x

h(x) + P (Mx), (1)

where M is a linear map from IRn to IRm, P is a proper closed function on IRm and h is twice

continuously differentiable on IRn with a bounded Hessian. We also assume that the proximal

(set-valued) mappings

u 7→ Arg min
y

{
τP (y) +

1

2
‖y − u‖2

}

are well-defined and are simple to compute for all u and for any τ > 0. Here, Arg min denotes the

set of minimizers, and the simplicity is understood in the sense that at least one element of the set

of minimizers can be obtained efficiently. Concrete examples of such P that arise in applications
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include functions listed in [21, Table 1], the ℓ1/2 regularization [37], the ℓ0 regularization, and the

indicator functions of the set of vectors with cardinality at most s [6], matrices with rank at most

r and s-sparse vectors in simplex [25], etc. Moreover, for a large class of nonconvex functions, a

general algorithm has been proposed recently in [22] for computing the proximal mapping.

The model problem (1) with h and P satisfying the above assumptions encompasses many

important applications in engineering and machine learning; see, for example, [6, 13, 14, 21, 27]. In

particular, many sparse learning problems are in the form of (1) with h being a loss function, M
being the identity map and P being a regularizer; see, for example, [6] for the use of the ℓ0 norm

as a regularizer, [14] for the use of the ℓ1 norm, [13] for the use of the nuclear norm, and [21] and

the references therein for the use of various continuous difference-of-convex functions with simple

proximal mappings. For the case when M is not the identity map, an application in stochastic

realization where h is a least squares loss function, P is the rank function and M is the linear map

that takes the variable x into a block Hankel matrix was discussed in [27, Section II].

When M is the identity map, the proximal gradient algorithm [18, 19, 31] (also known as

forward-backward splitting algorithm) can be applied whose subproblem involves a computation

of the proximal mapping of τP for some τ > 0. It is known that when h and P are convex, the

sequence generated from this algorithm is convergent to a globally optimal solution if the step-size

is chosen from (0, 2
L), where L is any number larger than the Lipschitz continuity modulus of ∇h.

For nonconvex h and P , the step-size can be chosen from (0, 1
L) so that any cluster point of the

sequence generated is stationary [9, Proposition 2.3] (see Section 2 for the definition of stationary

points), and convergence of the whole sequence is guaranteed if the sequence generated is bounded

and h + P satisfies the Kurdyka- Lojasiewicz (KL) property [3, Theorem 5.1, Remark 5.2(a)].

On the other hand, when M is a general linear map so that the computation of the proximal

mapping of τP ◦M, τ > 0, is not necessarily simple, the proximal gradient algorithm cannot be

applied efficiently. In the case when h and P are both convex, one feasible approach is to apply

the alternating direction method of multipliers (ADMM) [16, 17, 20]. This has been widely used

recently; see, for example [10, 11, 33, 34, 36]. While it is tempting to directly apply the ADMM

to the nonconvex problem (1), convergence has only been shown under specific assumptions. In

particular, in [35], the authors studied an application that can be modeled as (1) with h = 0,

P being some risk measures and M typically being an injective linear map coming from data.

They showed that any cluster point gives a stationary point, assuming square summability of the

successive changes in the dual iterates. More recently, in [1], the authors considered the case when

h is a nonconvex quadratic and P is the sum of the ℓ1 norm and the indicator function of the

Euclidean norm ball. They showed that if the penalty parameter is chosen sufficiently large (with

an explicit lower bound) and the dual iterates satisfy a particular assumption, then any cluster

point gives a stationary point. In particular, their assumption is satisfied if M is surjective.

Motivated by the findings in [1], in this paper, we focus on the case when M is surjective and

consider both the ADMM (for a general surjective M) and the proximal gradient algorithm (for

M being the identity). The contributions of this paper are as follows:

• First, we characterize cluster points of the sequence generated from the ADMM. In particular,

we show that if the (fixed) penalty parameter in the ADMM is chosen sufficiently large (with

a computable lower bound), and a cluster point of the sequence generated exists, then it

gives a stationary point of problem (1).

Moreover, our analysis allows replacing h in the ADMM subproblems by its local quadratic

approximations so that in each iteration of this variant, the subproblems only involve com-

puting the proximal mapping of τP for some τ > 0 and solving an unconstrained convex

quadratic minimization problem. Furthermore, we also give simple sufficient conditions to

guarantee the boundedness of the sequence generated. These conditions are satisfied in a
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wide range of applications; see Examples 4, 5 and 6.

• Second, under the additional assumption that h and P are semi-algebraic functions, we

show that if a cluster point of the sequence generated from the ADMM exists, it is actually

convergent. Our assumption on semi-algebraicity not only can be easily verified or recognized,

but also covers a broad class of optimization problems such as problems involving quadratic

functions, polyhedral norms and the cardinality function.

• Third, we give a concrete 2-dimensional counterexample in Example 7 showing that the

ADMM can be divergent when M is assumed to be injective (instead of surjective).

• Finally, for the particular case when M equals the identity map, we show that the proximal

gradient algorithm can be applied with a slightly more flexible step-size rule when h is

nonconvex (see Theorem 4 for the precise statement).

The rest of the paper is organized as follows. We discuss notation and preliminary materials in

the next section. Convergence of the ADMM is analyzed in Section 3, and Section 4 is devoted to

the analysis of the proximal gradient algorithm. Some numerical results are presented in Section 5

to illustrate the algorithms. We give concluding remarks and discuss future research directions in

Section 6.

2 Notation and preliminaries

We denote the n-dimensional Euclidean space as IRn, and use 〈·, ·〉 to denote the inner product

and ‖ · ‖ to denote the norm induced from the inner product. Linear maps are denoted by scripted

letters. The identity map is denoted by I. For a linear map M, M∗ denotes the adjoint linear map

with respect to the inner product and ‖M‖ is the induced operator norm of M. A linear self-map

T is called symmetric if T = T ∗. For a symmetric linear self-map T , we use ‖ · ‖2T to denote its

induced quadratic form given by ‖x‖2T = 〈x, T x〉 for all x, and use λmax (resp., λmin) to denote

the maximum (resp., minimum) eigenvalue of T . A symmetric linear self-map T is called positive

semidefinite, denoted by T � 0 (resp., positive definite, T ≻ 0) if ‖x‖2T ≥ 0 (resp., ‖x‖2T > 0) for

all nonzero x. For two symmetric linear self-maps T1 and T2, we use T1 � T2 (resp., T1 ≻ T2) to

denote T1 − T2 � 0 (resp., T1 − T2 ≻ 0).

An extended-real-valued function f is called proper if it is finite somewhere and never equals

−∞. Such a function is called closed if it is lower semicontinuous. Given a proper function

f : IRn → IR := (−∞,∞], we use the symbol z
f→ x to indicate z → x and f(z) → f(x). The

domain of f is denoted by domf and is defined as domf = {x ∈ IRn : f(x) < +∞}. Our basic

subdifferential of f at x ∈ dom f (known also as the limiting subdifferential) is defined by (see, for

example, [29, Definition 8.3])

∂f(x) :=

{
v ∈ IRn : ∃xt f→ x, vt → v with lim inf

z→xt

f(z) − f(xt) − 〈vt, z − xt〉
‖z − xt‖ ≥ 0 for each t

}
.

(2)

It follows immediately from the above definition that this subdifferential has the following robust-

ness property: {
v ∈ IRn : ∃xt f→ x, vt → v , vt ∈ ∂f(xt)

}
⊆ ∂f(x). (3)

For a convex function f the subdifferential (2) reduces to the classical subdifferential in convex

analysis (see, for example, [28, Theorem 1.93])

∂f(x) = {v ∈ IRn : 〈v, z − x〉 ≤ f(z) − f(x) ∀ z ∈ IRn} .

3



Moreover, for a continuously differentiable function f , the subdifferential (2) reduces to the deriva-

tive of f denoted by ∇f . For a function f with more than one group of variables, we use ∂xf

(resp., ∇xf) to denote the subdifferential (resp., derivative) of f with respect to the variable x.

Furthermore, we write dom∂f = {x ∈ IRn : ∂f(x) 6= ∅}.

In general, the subdifferential set (2) can be nonconvex (e.g., for f(x) = −|x| at 0 ∈ IR) while

∂f enjoys comprehensive calculus rules based on variational/extremal principles of variational

analysis [29]. In particular, when M is a surjective linear map, using [29, Exercise 8.8(c)] and [29,

Exercise 10.7], we see that

∂(h + P ◦M)(x) = ∇h(x) + M∗∂P (Mx)

for any x ∈ dom(P ◦ M). Hence, at an optimal solution x̄, the following necessary optimality

condition always holds:

0 ∈ ∂(h + P ◦M)(x̄) = ∇h(x̄) + M∗∂P (Mx̄). (4)

Throughout this paper, we say that x̃ is a stationary point of (1) if x̃ satisfies (4) in place of x̄.

For a continuously differentiable function φ on IRn, the Bregman distance Dφ is defined as

Dφ(x1, x2) := φ(x1) − φ(x2) − 〈∇φ(x2), x1 − x2〉

for any x1, x2 ∈ IRn. If φ is twice continuously differentiable and there exists Q so that the Hessian

∇2φ satisfies [∇2φ(x)]2 � Q for all x, then for any x1 and x2 in IRn, we have

‖∇φ(x1) −∇φ(x2)‖2 =

∥∥∥∥
∫ 1

0

∇2φ(x2 + t(x1 − x2)) · [x1 − x2]dt

∥∥∥∥
2

≤
(∫ 1

0

∥∥∇2φ(x2 + t(x1 − x2)) · [x1 − x2]
∥∥ dt

)2

=

(∫ 1

0

√
〈x1 − x2, [∇2φ(x2 + t(x1 − x2))]2 · [x1 − x2]〉dt

)2

≤ ‖x1 − x2‖2Q.

(5)

On the other hand, if there exists Q so that ∇2φ(x) � Q for all x, then

Dφ(x1, x2) =

∫ 1

0

〈∇φ(x2 + t(x1 − x2)) −∇φ(x2), x1 − x2〉dt

=

∫ 1

0

∫ 1

0

t〈x1 − x2,∇2φ(x2 + st(x1 − x2)) · [x1 − x2]〉ds dt ≥ 1

2
‖x1 − x2‖2Q

(6)

for any x1 and x2 in IRn.

A semi-algebraic set S ⊆ IRn is a finite union of sets of the form

{x ∈ IRn : h1(x) = · · · = hk(x) = 0, g1(x) < 0, . . . , gl(x) < 0},

where h1, . . . , hk and g1, . . . , gl are polynomials with real coefficients in n variables. In other words,

S is a union of finitely many sets, each defined by finitely many polynomial equalities and strict

inequalities. A map F : IRn → IR is semi-algebraic if gphF ∈ IRn+1 is a semi-algebraic set. Semi-

algebraic sets and semi-algebraic mappings enjoy many nice structural properties. One important

property which we will use later on is the Kurdyka- Lojasiewicz (KL) property.

Definition 1. (KL property & KL function) A proper function f is said to have the Kurdyka-

 Lojasiewicz (KL) property at x̂ ∈ dom∂f if there exist η ∈ (0,∞], a neighborhood V of x̂ and a

continuous concave function ϕ : [0, η) → R+ such that:
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(i) ϕ(0) = 0 and ϕ is continuously differentiable on (0, η) with positive derivatives;

(ii) for all x ∈ V satisfying f(x̂) < f(x) < f(x̂) + η, it holds that

ϕ′(f(x) − f(x̂)) dist(0, ∂f(x)) ≥ 1.

A proper closed function f satisfying the KL property at all points in dom∂f is called a KL

function.

It is known that a proper closed semi-algebraic function is a KL function as such a function

satisfies the KL property for all points in dom ∂f with ϕ(s) = cs1−θ for some θ ∈ [0, 1) and

some c > 0 (for example, see [2, Section 4.3]; further discussion can be found in [8, Corollary 16]

and [7, Section 2]).

3 Alternating direction method of multipliers

In this section, we study the alternating direction method of multipliers for finding a stationary

point of (1). To describe the algorithm, we first reformulate (1) as

min
x,y

h(x) + P (y)

s.t. y = Mx,

to decouple the linear map and the nonsmooth part. Recall that the augmented Lagrangian

function for the above problem is defined, for each β > 0, as:

Lβ(x, y, z) := h(x) + P (y) − 〈z,Mx− y〉 +
β

2
‖Mx− y‖2.

Our algorithm is then presented as follows:

Proximal ADMM

Step 0. Input (x0, z0), β > 0 and a twice continuously differentiable convex function φ(x).

Step 1. Set 



yt+1 ∈ Arg min
y

Lβ(xt, y, zt),

xt+1 ∈ Arg min
x

{Lβ(x, yt+1, zt) + Dφ(x, xt)},

zt+1 = zt − β(Mxt+1 − yt+1).

(7)

Step 2. If a termination criterion is not met, go to Step 1.

Notice that the first subproblem is essentially computing the proximal mapping of τP for some

τ > 0. The above algorithm is called the proximal ADMM since, in the second subproblem, we

allow a proximal term Dφ and hence a choice of φ to simplify this subproblem. If φ = 0, then

this algorithm reduces to the usual ADMM described in, for example, [16]. For other popular

non-trivial choices of φ, see Remark 1 below.

We next study global convergence of the above algorithm under suitable assumptions. Specifi-

cally, we consider the following assumption.
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Assumption 1. (i) MM∗ � σI for some σ > 0; and there exist Q1, Q2 such that for all x,

Q1 � ∇2h(x) � Q2.

(ii) β > 0 and φ are chosen so that

• there exist T1 � T2 � 0 so that T 2
1 � [∇2φ(x)]2 � T 2

2 for all x;

• Q2 + βM∗M + T2 � δI for some δ > 0;

• with Q3 � [∇2h(x) + ∇2φ(x)]2 for all x, there exists γ ∈ (0, 1) so that

δI + T2 ≻ 2

σβ
Hγ , where Hγ :=

(
1

γ
Q3 +

1

1 − γ
T 2
1

)
.

Remark 1. (Comments on Assumption 1) Point (i) says M is surjective. The first and

second points in (ii) would be satisfied if φ(x) is chosen to be L
2 ‖x‖2 − h(x), where L is at least

as large as the Lipschitz continuity modulus of ∇h(x). In this case, one can pick T1 = 2LI and

T2 = 0. This choice is of particular interest since it simplifies the x-update in (7) to a convex

quadratic programming problem; see [32, Section 2.1]. Indeed, under this choice, we have

Dφ(x, xt) =
L

2
‖x− xt‖2 − h(x) + h(xt) + 〈∇h(xt), x− xt〉,

and hence the second subproblem becomes

min
x

L

2
‖x− xt‖2 + 〈∇h(xt) −M∗zt, x− xt〉 +

β

2
‖Mx− yt+1‖2.

Finally, point 3 in (ii) can always be enforced by picking β sufficiently large if φ, T1 and T2, are

chosen independently of β. In addition, in the case where T1 = 0 and hence T2 = 0, it is not

hard to show that the requirement that δI + T2 ≻ 2
σβHγ for some γ ∈ (0, 1) is indeed equivalent to

imposing δI ≻ 2
σβQ3.

Before stating our convergence results, we note first that from the optimality conditions, the

iterates generated satisfy

0 ∈ ∂P (yt+1) + zt − β(Mxt − yt+1),

0 = ∇h(xt+1) −M∗zt + βM∗(Mxt+1 − yt+1) + (∇φ(xt+1) −∇φ(xt)).
(8)

Hence, if

lim
t→∞

‖yt+1 − yt‖2 + ‖xt+1 − xt‖2 + ‖zt+1 − zt‖2 = 0, (9)

and if for a cluster point (x∗, y∗, z∗) of the sequence {(xt, yt, zt)}, we have

lim
i→∞

P (yti+1) = P (y∗) (10)

along a convergent subsequence {(xti , yti , zti)} that converges to (x∗, y∗, z∗), then x∗ is a stationary

point of (1). To see this, notice from (8) and the definition of zt+1 that





− zt+1 − βM(xt+1 − xt) ∈ ∂P (yt+1),

∇h(xt+1) −M∗zt+1 = −∇φ(xt+1) + ∇φ(xt),

Mxt+1 − yt+1 =
1

β
(zt − zt+1).

(11)

Passing to the limit in (11) along the subsequence {(xti , yti , zti)} and invoking (9), (10) and (3),

it follows that

∇h(x∗) = M∗z∗, −z∗ ∈ ∂P (y∗), y∗ = Mx∗. (12)
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In particular, x∗ is a stationary point of the model problem (1).

We now state our global convergence result. Our first conclusion establishes (9) under Assump-

tion 1, and so, any cluster point of the sequence generated from the proximal ADMM produces a

stationary point of our model problem (1) such that (12) holds. In the case where h is a noncon-

vex quadratic function with a negative semi-definite Hessian matrix and P is the sum of the ℓ1
norm and the indicator function of the Euclidean norm ball, the convergence of the ADMM (i.e.,

proximal ADMM with φ = 0) was established in [1]. Our convergence analysis below follows the

recent work in [1, Section 3.3] and [35]. Specifically, we follow the idea in [35] to study the behavior

of the augmented Lagrangian function along the sequence generated from the proximal ADMM;

we note that this was subsequently also used in [1, Section 3.3]. We then bound the changes in

{zt} by those of {xt}, following the brilliant observation in [1, Section 3.3] that the changes in

the dual iterates can be controlled by the changes in the primal iterates that correspond to the

quadratic in their objective. However, we would like to point out two major modifications: (i) The

proof in [1, Section 3.3] cannot be directly applied because our subproblem corresponding to the

y-update is not convex due to the possible nonconvexity of P . Our analysis is also complicated by

the introduction of the proximal term. (ii) Using the special structure of their problem, the au-

thors in [1, Section 3.3] established that the augmented Lagrangian for their problem is uniformly

bounded below along the sequence generated from their ADMM. In contrast, we assume existence

of cluster points in our convergence analysis below and will discuss sufficient conditions for such

an assumption in Theorem 2. On the other hand, we have to point out that although our sufficient

conditions for boundedness of sequence are general enough to cover a wide range of applications,

they do not cover the particular problem studied in [1].

Our second conclusion, which is new in the literature studying convergence of ADMM in the

nonconvex scenarios, states that if the algorithm is suitably initialized, we can get a strict im-

provement in the objective values. In particular, if suitably initialized, one will not end up with a

stationary point with a larger objective value.

Theorem 1. Suppose that Assumption 1 holds. Then we have the following results.

(i) (Global subsequential convergence) If the sequence {(xt, yt, zt)} generated from the prox-

imal ADMM has a cluster point (x∗, y∗, z∗), then (9) holds. Moreover, x∗ is a stationary point

of (1) such that (12) holds.

(ii) (Strict improvement in objective values) Suppose that the algorithm is initialized at a

non-stationary x0 with h(x0) + P (Mx0) < ∞, and z0 satisfying M∗z0 = ∇h(x0). Then for

any cluster point (x∗, y∗, z∗) of the sequence {(xt, yt, zt)}, if exists, we have

h(x∗) + P (Mx∗) < h(x0) + P (Mx0).

Remark 2. The proximal ADMM does not necessarily guarantee that the objective value of (1)

is decreasing along the sequence {xt} generated. However, under the assumptions in Theorem 1,

any cluster point of the sequence generated from the proximal ADMM improves the starting (non-

stationary) objective value.

We now describe one way of choosing the initialization as suggested in (ii) when P is nonconvex.

In this case, it is common to approximate P by a proper closed convex function P̃ and obtain a

relaxation to (1), i.e.,

min
x

h(x) + P̃ (Mx).

Then any stationary point x̃ of this relaxed problem, if exists, satisfies −∇h(x̃) ∈ M∗∂P̃ (Mx̃).

Thus, if P (Mx̃) < ∞, then one can initialize the proximal ADMM by taking x0 = x̃ and z0 ∈
−∂P̃ (Mx̃) with ∇h(x̃) = M∗z0, so that the conditions in (ii) are satisfied.

7



Proof. We start by showing that (9) holds. First, observe from the second relation in (11) that

M∗zt+1 = ∇h(xt+1) + ∇φ(xt+1) −∇φ(xt). (13)

Consequently, we have

M∗(zt+1 − zt) = ∇h(xt+1) −∇h(xt) + (∇φ(xt+1) −∇φ(xt)) − (∇φ(xt) −∇φ(xt−1)).

Taking norm on both sides, squaring and making use of (i) in Assumption 1, we obtain further

that

σ‖zt+1 − zt‖2 ≤ ‖M∗(zt+1 − zt)‖2

= ‖∇h(xt+1) −∇h(xt) + (∇φ(xt+1) −∇φ(xt)) − (∇φ(xt) −∇φ(xt−1))‖2

≤ 1

γ
‖∇h(xt+1) −∇h(xt) + ∇φ(xt+1) −∇φ(xt)‖2 +

1

1 − γ
‖∇φ(xt) −∇φ(xt−1)‖2

≤ 1

γ
‖xt+1 − xt‖2Q3

+
1

1 − γ
‖xt − xt−1‖2T 2

1
,

(14)

where γ ∈ (0, 1) is defined in point 3 in (ii) of Assumption 1, and we made use of the relation

‖a+ b‖2 ≤ 1
γ ‖a‖2 + 1

1−γ ‖b‖2 for the first inequality, while the last inequality follows from points 1

and 3 in (ii) of Assumption 1, and (5). On the other hand, from the definition of zt+1, we have

yt+1 = Mxt+1 +
1

β
(zt+1 − zt),

which implies

‖yt+1 − yt‖ ≤ ‖M(xt+1 − xt)‖ +
1

β
‖zt+1 − zt‖ +

1

β
‖zt − zt−1‖. (15)

In view of (14) and (15), to establish (9), it suffices to show that

lim
t→∞

‖xt+1 − xt‖ = 0. (16)

We now prove (16). We start by noting that

Lβ(xt+1, yt+1, zt+1) − Lβ(xt+1, yt+1, zt) = −(zt+1 − zt)T (Mxt+1 − yt+1)

=
1

β
‖zt+1 − zt‖2 ≤ 1

σβ
(‖xt+1 − xt‖21

γ
Q3

+ ‖xt − xt−1‖2 1
1−γ

T 2
1

).
(17)

Next, recall from [23, Page 553, Ex.17] that the operation of taking positive square root preserves

the positive semidefinite ordering. Thus, point 1 in (ii) of Assumption 1 implies that ∇2φ(x) � T2
for all x. From this and point 2 in (ii) of Assumption 1, we see further that the function x 7→
Lβ(x, yt+1, zt) +Dφ(x, xt) is strongly convex with modulus at least δ. Using this, the definition of

xt+1 (as a minimizer) and (6), we have

Lβ(xt+1, yt+1, zt) − Lβ(xt, yt+1, zt) ≤ − δ

2
‖xt+1 − xt‖2 − 1

2
‖xt+1 − xt‖2T2

. (18)

Moreover, using the definition of yt+1 as a minimizer, we have

Lβ(xt, yt+1, zt) − Lβ(xt, yt, zt) ≤ 0. (19)

Summing (17), (18) and (19), we obtain that

Lβ(xt+1, yt+1, zt+1) − Lβ(xt, yt, zt)

≤ 1

2
‖xt+1 − xt‖2 2

σβγ
Q3−δI−T2

+
1

2
‖xt − xt−1‖2 2

σβ(1−γ)T 2
1
.

(20)
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Summing the above relation from t = M, ..., N − 1 with M ≥ 1, we see that

Lβ(xN , yN , zN) − Lβ(xM , yM , zM)

≤ 1

2

N−1∑

t=M

‖xt+1 − xt‖2 2
σβγ

Q3−δI−T2
+

1

2

N−1∑

t=M

‖xt − xt−1‖2 2
σβ(1−γ)

T 2
1

=
1

2

N−1∑

t=M

‖xt+1 − xt‖2 2
σβγ

Q3−δI−T2
+

1

2

N−2∑

t=M−1

‖xt+1 − xt‖2 2
σβ(1−γ)

T 2
1

=
1

2

N−2∑

t=M

‖xt+1 − xt‖22
σβ

Hγ−δI−T2
+

1

2
‖xN − xN−1‖2 2

σβγ
Q3−δI−T2

+
1

2
‖xM − xM−1‖2 2

σβ(1−γ)
T 2
1

≤ −1

2

N−2∑

t=M

‖xt+1 − xt‖2R +
1

2
‖xM − xM−1‖2 2

σβ(1−γ)
T 2
1
,

(21)

where R := δI + T2 − 2
σβHγ ≻ 0 due to point 3 in (ii) of Assumption 1; and the last inequality

follows from δI + T2 − 2
σβγQ3 � R ≻ 0.

Now, suppose that (x∗, y∗, z∗) is a cluster point of the sequence {(xt, yt, zt)} and consider a

convergent subsequence, i.e.,

lim
i→∞

(xti , yti , zti) = (x∗, y∗, z∗). (22)

From lower semicontinuity of L, we see that

lim inf
i→∞

Lβ(xti , yti , zti) ≥ h(x∗) + P (y∗) − 〈z∗,Mx∗ − y∗〉 +
β

2
‖Mx∗ − y∗‖2 > −∞, (23)

where the last inequality follows from the properness assumption on P . On the other hand, putting

M = 1 and N = ti in (21), we see that

Lβ(xti , yti , zti) − Lβ(x1, y1, z1) ≤ −1

2

ti−2∑

t=1

‖xt+1 − xt‖2R +
1

2
‖x1 − x0‖2 2

σβ(1−γ)
T 2
1
. (24)

Passing to the limit in (24) and making use of (23) and (ii) in Assumption 1, we conclude that

0 ≥ −1

2

∞∑

t=1

‖xt+1 − xt‖2R > −∞

The desired relation (16) now follows from this and the fact that R ≻ 0. Consequently, (9) holds.

We next show that (10) holds along the convergent subsequence in (22). Indeed, from the

definition of yti (as a minimizer), we have

Lβ(xti , yti+1, zti) ≤ Lβ(xti , y∗, zti).

Taking limit and using (22), we see that

lim sup
i→∞

Lβ(xti , yti+1, zti) ≤ h(x∗) + P (y∗) − 〈z∗,Mx∗ − y∗〉 +
β

2
‖Mx∗ − y∗‖2.

On the other hand, from lower semicontinuity, (22) and (9), we have

lim inf
i→∞

Lβ(xti , yti+1, zti) ≥ h(x∗) + P (y∗) − 〈z∗,Mx∗ − y∗〉 +
β

2
‖Mx∗ − y∗‖2.
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The above two relations show that lim
i→∞

P (yti+1) = P (y∗). This together with (9) and the discus-

sions preceding this theorem shows that x∗ is a stationary point of (1) and that (12) holds. This

proves (i).

Next, we suppose that the algorithm is initialized at a non-stationary x0 with h(x0)+P (Mx0) <

∞ and z0 chosen with M∗z0 = ∇h(x0); we also write y0 = Mx0. We first show that x1 6= x0. To

this end, we notice that

M∗(z1 − z0) = ∇h(x1) + ∇φ(x1) −∇φ(x0) −M∗z0

= ∇h(x1) −∇h(x0) + ∇φ(x1) −∇φ(x0).

Proceeding as in (14), we have

σ‖z1 − z0‖2 ≤ 1

γ
‖x1 − x0‖2Q3

. (25)

On the other hand, combining the relations z1 = z0 − β(Mx1 − y1) and y0 = Mx0, we see that

y1 − y0 = M(x1 − x0) +
1

β
(z1 − z0). (26)

Consequently, if x1 = x0, then it follows from (25) and (26) that z1 = z0 and y1 = y0. This

together with (11) implies that

0 ∈ ∇h(x0) + M∗∂P (Mx0),

i.e., x0 is a stationary point. Since x0 is non-stationary by assumption, we must have x1 6= x0.

We now derive an upper bound on Lβ(xN , yN , zN)−Lβ(x0, y0, z0) for any N > 1. To this end,

using the definition of augmented Lagrangian function, the z-update and (25), we have

Lβ(x1, y1, z1) − Lβ(x1, y1, z0) =
1

β
‖z1 − z0‖2 ≤ 1

σβγ
‖x1 − x0‖2Q3

.

Combining this relation with (18) and (19), we obtain the following estimate

Lβ(x1, y1, z1) − Lβ(x0, y0, z0) ≤ 1

2
‖x1 − x0‖2 2

σβγ
Q3−δI−T2

. (27)

On the other hand, by specializing (21) to N > M = 1 and recalling that R ≻ 0, we see that

Lβ(xN , yN , zN) − Lβ(x1, y1, z1) ≤ −1

2

N−2∑

t=1

‖xt+1 − xt‖2R +
1

2
‖x1 − x0‖2 2

σβ(1−γ)
T 2
1

≤ 1

2
‖x1 − x0‖2 2

σβ(1−γ)
T 2
1
.

(28)

Combining (27), (28) and the definition of R, we obtain

Lβ(xN , yN , zN) − Lβ(x0, y0, z0) ≤ −1

2
‖x1 − x0‖2R < 0,

where the strictly inequality follows from the fact that x1 6= x0, and the fact that R ≻ 0. The

conclusion of the theorem now follows by taking limit in the above inequality along any convergent

subsequence, and noting that y0 = Mx0 by assumption, and that y∗ = Mx∗.

We illustrate in the following examples how the parameters can be chosen in special cases.
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Example 1. Suppose that M = I and that ∇h is Lipschitz continuous with modulus bounded by

L. Then one can take Q1 = LI and Q2 = −LI. Moreover, Assumption 1(i) holds with σ = 1.

Furthermore, one can take φ(x) = L
2 ‖x‖2 − h(x) so that T1 = 2LI, T2 = 0 and Q3 = L2I. For

the second and third points of Assumption 1(ii) to hold, one can choose γ = 1
2 and then β can be

chosen so that β − L = δ > 0 and that

δ >
4

β
L2 +

4

β
(2L)2 =

20

β
L2.

These can be achieved by picking β > 5L.

Example 2. Suppose again that M = I and h(x) = 1
2‖Ax − b‖2 for some linear map A and

vector b. Then one can take φ = 0 so that T1 = T2 = 0, and Q1 = LI, Q2 = 0, Q3 = L2I, where

L = λmax(A∗A). Observe that Assumption 1(i) holds with σ = 1. For the second and third points

of Assumption 1(ii) to hold, we only need to pick β so that β = δ > 2
βL

2, i.e., β >
√

2L, while γ

can be any number chosen from (
√
2L
β , 1).

Example 3. Suppose that M is a general surjective linear map and h is strongly convex. Specif-

ically, assume that h(x) = 1
2‖x − x̂‖2 for some x̂ so that Q1 = Q2 = I. Then we can take φ = 0

and hence T1 = T2 = 0, Q3 = I. Assumption 1(i) holds with σ = λmin(MM∗). The second point

of Assumption 1(ii) holds with δ = 1. For the third point to hold, it suffices to pick β > 2/σ, while

γ can be any number chosen from ( 2
σβ , 1).

We next give some sufficient conditions under which the sequence {(xt, yt, zt)} generated from

the proximal ADMM under Assumption 1 is bounded. This would guarantee the existence of

cluster point, which is the assumption required in Theorem 1.

Theorem 2. (Boundedness of sequence generated from the proximal ADMM) Suppose

that Assumption 1 holds, and β is further chosen so that there exists 0 < ζ < 2βγ with

inf
x

{
h(x) − 1

σζ
‖∇h(x)‖2

}
=: h0 > −∞. (29)

Suppose that either

(i) M is invertible and lim inf‖y‖→∞ P (y) = ∞; or

(ii) lim inf‖x‖→∞ h(x) = ∞ and infy P (y) > −∞.

Then the sequence {(xt, yt, zt)} generated from the proximal ADMM is bounded.

Proof. First, observe from (20) that

(
Lβ(xt+1, yt+1, zt+1) +

1

2
‖xt+1 − xt‖2 2

σβ(1−γ)
T 2
1

)
−
(
Lβ(xt, yt, zt) +

1

2
‖xt − xt−1‖2 2

σβ(1−γ)
T 2
1

)

≤ 1

2
‖xt+1 − xt‖22

σβ
Hγ−δI−T2

≤ 0,

where the last inequality follows from point 3 in (ii) of Assumption 1. In particular, the sequence

{Lβ(xt, yt, zt) + 1
2‖xt−xt−1‖2 2

σβ(1−γ)
T 2
1
} is decreasing and consequently, we have, for all t ≥ 1, that

Lβ(xt, yt, zt) +
1

2
‖xt − xt−1‖2 2

σβ(1−γ)
T 2
1
≤ Lβ(x1, y1, z1) +

1

2
‖x1 − x0‖2 2

σβ(1−γ)
T 2
1
. (30)
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Next, recall from (13) that

σ‖zt‖2 ≤ ‖M∗zt‖2 = ‖∇h(xt) + ∇φ(xt) −∇φ(xt−1)‖2

≤ 1

γ
‖∇h(xt)‖2 +

1

1 − γ
‖∇φ(xt) −∇φ(xt−1)‖2

≤ 1

γ
‖∇h(xt)‖2 +

1

1 − γ
‖xt − xt−1‖2T 2

1
.

(31)

Plugging this into (30), we see further that

Lβ(x1, y1, z1) +
1

2
‖x1 − x0‖2 2

σβ(1−γ)T 2
1
≥ Lβ(xt, yt, zt) +

1

2
‖xt − xt−1‖2 2

σβ(1−γ)T 2
1

= h(xt) + P (yt) +
β

2

∥∥∥∥Mxt − yt − zt

β

∥∥∥∥
2

− 1

2β
‖zt‖2 +

1

2
‖xt − xt−1‖2 2

σβ(1−γ)
T 2
1

≥ h(xt) + P (yt) +
β

2

∥∥∥∥Mxt − yt − zt

β

∥∥∥∥
2

− 1

2σβγ
‖∇h(xt)‖2 +

1

2
‖xt − xt−1‖2 1

σβ(1−γ)
T 2
1

= µh(xt) + (1 − µ)h(xt) + P (yt) +
β

2

∥∥∥∥Mxt − yt − zt

β

∥∥∥∥
2

− 1

2σβγ
‖∇h(xt)‖2 +

1

2
‖xt − xt−1‖2 1

σβ(1−γ)
T 2
1

≥ µh(xt) + (1 − µ)h0 +
c

σ
‖∇h(xt)‖2 + P (yt) +

β

2

∥∥∥∥Mxt − yt − zt

β

∥∥∥∥
2

+
1

2
‖xt − xt−1‖2 1

σβ(1−γ)
T 2
1
,

(32)

where c := 1−µ
ζ − 1

2βγ , and µ ∈ (0, 1) is chosen so that (1 − µ)β > ζ/(2γ), i.e., c > 0.

Now, suppose that the conditions in (i) hold. Note that lim inf‖y‖→∞ P (y) = ∞ implies

infy P (y) > −∞. This together with (32) and (1−µ)β > ζ/(2γ) implies that {yt}, {∇h(xt)}, and

{‖xt − xt−1‖T 2
1
} are bounded. Boundedness of {zt} follows from these and (31). Moreover, the

boundedness of {xt} follows from the boundedness of {yt}, {zt}, the invertibility of M and the

third relation in (7). Next, consider the conditions in (ii). Since P is bounded below, (32) and

the coerciveness of h(x) give the boundedness of {xt}. The boundedness of {zt} follows from this

and (31). Finally, the boundedness of {yt} follows from these and the third relation in (7). This

completes the proof.

Notice that in order to guarantee boundedness of the sequence generated from the proximal

ADMM, we have to choose β to satisfy both Assumption 1 and (29). We illustrate the conditions

in Theorem 2 in the next few examples. In particular, we shall see that such a choice of β does

exist in the following examples.

Example 4. Consider the problem in Example 1, and suppose in addition that h(x) = 1
2‖Ax− b‖2

for some linear map A and vector b, and that P is coercive, i.e., lim inf‖y‖→∞ P (y) = ∞. This

includes the model of ℓ 1
2

regularization considered in [37]. Since h(x) = 1
2‖Ax− b‖2, we have

h(x)− 1

2
√

2L
‖∇h(x)‖2 =

1

2
‖Ax−b‖2− 1

2
√

2L
‖A∗(Ax−b)‖2 ≥ 1

2

(
1 − 1√

2

)
‖Ax−b‖2 ≥ 0. (33)

where L = λmax(A∗A). Thus, (29) holds with σ = 1 and ζ = 2
√

2L < 5L < 2βγ, where γ = 1
2 .

Hence, the sequence generated from the proximal ADMM is bounded, according to Theorem 2 (i).

Example 5. Consider the problem in Example 2, and suppose in addition that P is coercive, i.e.,

lim inf‖y‖→∞ P (y) = ∞. This covers the model of ℓ 1
2

regularization considered in [37]. We show

that {(xt, yt, zt)} is bounded by verifying the conditions in Theorem 2. Indeed, we have from (33)

that (29) holds with σ = 1 and ζ = 2
√

2L < 2βγ; recall that L = λmax(A∗A) and γ can be chosen

from (
√
2L
β , 1) in this example. The conclusion now follows from Theorem 2 (i).
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Example 6. Consider the problem in Example 3, and assume in addition that infy P (y) > −∞.

We show that {(xt, yt, zt)} is bounded by showing that (29) holds for our choice of β. The conclu-

sion will then follow from Theorem 2 (ii).

To this end, note that h(x) = 1
2‖x− x̂‖2 and thus

h(x) − 1

4
‖∇h(x)‖2 =

1

4
‖x− x̂‖2 ≥ 0.

Thus, (29) holds with ζ = 4/σ < 2βγ; recall that γ can be chosen from ( 2
σβ , 1) in this example.

Remark 3. We further comment on the condition (29). In particular, we shall argue that for

a fairly large class of twice continuously differentiable function h with a bounded Hessian, there

exists ν > 0 so that

inf
x

{
h(x) − 1

2ν
‖∇h(x)‖2

}
> −∞.

Actually, let h be a twice continuously differentiable function with a bounded Hessian and inf
x
h(x) =:

α > −∞. Then it is well known that

inf
x

{
h(x) − 1

2L
‖∇h(x)‖2

}
> −∞,

where L is a Lipschitz continuity modulus of ∇h(x). We include a simple proof for the convenience

of the readers. Indeed,

α ≤ h

(
x− 1

L
∇h(x)

)
≤ h(x) +

〈
∇h(x),

(
x− 1

L
∇h(x)

)
− x

〉
+

L

2

∥∥∥∥
(
x− 1

L
∇h(x)

)
− x

∥∥∥∥
2

= h(x) − 1

2L
‖∇h(x)‖2,

where the first inequality follows from the fact that h is bounded from below by α, and the second

inequality follows from the fact that the gradient is Lipschitz continuous with modulus L. Conse-

quently, for a twice continuously differentiable function h with a bounded Hessian, the condition

(29) holds for some σζ > 0 if and only if h is bounded below.

We now study convergence of the whole sequence generated by the ADMM (i.e., proximal

ADMM with φ = 0) when the objective function is semi-algebraic. The proof of this theorem

relies heavily on the KL property. For recent applications of KL property to convergence analysis

of a broad class of optimization methods, see [3]. We would like to point out that our analysis is

adapted from [3], and we cannot directly apply the results there since some of their assumptions

are not satisfied in our settings. We will further comment on this in Remark 4.

Theorem 3. (Global convergence for the whole sequence) Suppose that Assumption 1 holds

with T1 = 0 (and hence φ = 0), and that h and P are semi-algebraic functions. Suppose further

that the sequence {(xt, yt, zt)} generated from the ADMM has a cluster point (x∗, y∗, z∗). Then

the sequence {(xt, yt, zt)} converges to (x∗, y∗, z∗) and x∗ is a stationary point of (1). Moreover,

∞∑

t=1

‖xt+1 − xt‖ < ∞. (34)

Proof. The conclusion that x∗ is a stationary point of (1) follows from Theorem 1. Moreover, (9)

holds. We now establish convergence.

First, consider the subdifferential of Lβ at (xt+1, yt+1, zt+1). Specifically, we have

∇xLβ(xt+1, yt+1, zt+1) = ∇h(xt+1) −M∗zt+1 + βM∗(Mxt+1 − yt+1)

= βM∗(Mxt+1 − yt+1) = −M∗(zt+1 − zt),
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where the last two equalities follow from the second and third relations in (11). Similarly,

∇zLβ(xt+1, yt+1, zt+1) = −(Mxt+1 − yt+1) =
1

β
(zt+1 − zt).

∂yLβ(xt+1, yt+1, zt+1) = ∂P (yt+1) + zt+1 − β(Mxt+1 − yt+1)

∋ zt+1 − zt − βM(xt+1 − xt),

since 0 ∈ ∂P (yt+1)+zt−β(Mxt−yt+1) from (8). The above relations together with the assumption

that T1 = 0 and (14) imply the existence of a constant C > 0 so that

dist(0, ∂Lβ(xt+1, yt+1, zt+1)) ≤ C‖xt+1 − xt‖. (35)

Moreover, from (20) and T1 = 0 (and hence T2 = 0), we see that

Lβ(xt, yt, zt) − Lβ(xt+1, yt+1, zt+1) ≥ −1

2
‖xt+1 − xt‖2 2

σβγ
Q3−δI ≥ D‖xt+1 − xt‖2 (36)

for some D > 0. In particular, {Lβ(xt, yt, zt)} is decreasing. Since Lβ is also bounded below along

the subsequence in (22), we conclude that lim
t→∞

Lβ(xt, yt, zt) exists.

We now show that lim
t→∞

Lβ(xt, yt, zt) = l∗; here, we write l∗ := Lβ(x∗, y∗, z∗) for notational

simplicity. To this end, notice from the definition of yt+1 as a minimizer that

Lβ(xt, yt+1, zt) ≤ Lβ(xt, y∗, zt).

Using this relation, (9) and the continuity of Lβ with respect to the x and z variables, we have

lim sup
j→∞

Lβ(xtj+1, ytj+1, ztj+1) ≤ Lβ(x∗, y∗, z∗), (37)

where {(xtj , ytj , ztj)} is a subsequence that converges to (x∗, y∗, z∗). On the other hand, from

(9), we see that {(xtj+1, ytj+1, ztj+1)} also converges to (x∗, y∗, z∗). This together with the lower

semicontinuity of Lβ imply

lim inf
j→∞

Lβ(xtj+1, ytj+1, ztj+1) ≥ Lβ(x∗, y∗, z∗). (38)

Combining (37), (38) and the existence of limLβ(xt, yt, zt), we conclude that

lim
t→∞

Lβ(xt, yt, zt) = l∗, (39)

as claimed. Furthermore, if Lβ(xt, yt, zt) = l∗ for some t ≥ 1, since the sequence is decreasing, we

must have Lβ(xt, yt, zt) = Lβ(xt+k, yt+k, zt+k) for all k ≥ 0. From (36), we see that xt = xt+k

and hence zt = zt+k from the fact that T1 = 0 and (14), for all k ≥ 0. Consequently, we conclude

from (15) that yt+1 = yt+k for all k ≥ 1, meaning that the algorithm terminates finitely. Since

the conclusion of this theorem holds trivially if the algorithm terminates finitely, from now on, we

only consider the case where Lβ(xt, yt, zt) > l∗ for all t ≥ 1.

Next, notice that the function (x, y, z) 7→ Lβ(x, y, z) is semi-algebraic due to the semi-algebraicity

of h and P . Thus, it is a KL function from [2, Section 4.3]. From the property of KL functions, there

exist η > 0, a neighborhood V of (x∗, y∗, z∗) and a continuous concave function ϕ : [0, η) → R+ as

described in Definition 1 so that for all (x, y, z) ∈ V satisfying l∗ < Lβ(x, y, z) < l∗ + η, we have

ϕ′(Lβ(x, y, z) − l∗) dist(0, ∂Lβ(x, y, z)) ≥ 1. (40)

Pick ρ > 0 so that

Bρ :=

{
(x, y, z) : ‖x− x∗‖ < ρ, ‖y − y∗‖ < (‖M‖ + 1)ρ, ‖z − z∗‖ <

√
λmax(Q3)

σ
ρ

}
⊆ V

14



and set Bρ := {x : ‖x− x∗‖ < ρ}. From the second relation in (11) and (12), we obtain for any

t ≥ 1 that

σ‖zt − z∗‖2 ≤ ‖M∗(zt − z∗)‖2 = ‖∇h(xt) −∇h(x∗)‖2 ≤ λmax(Q3)‖xt − x∗‖2.

Hence ‖zt− z∗‖ <
√

λmax(Q3)
σ ρ whenever xt ∈ Bρ and t ≥ 1. Moreover, from the definition of zt+1

and (12), we see that whenever t ≥ 1,

‖yt − y∗‖ =

∥∥∥∥M(xt − x∗) +
1

β
(zt − zt−1)

∥∥∥∥ ≤ ‖M‖‖xt − x∗‖ +
1

β
‖zt − zt−1‖.

Since there exists N0 ≥ 1 so that for all t ≥ N0, we have ‖zt − zt−1‖ < βρ (such an N0 exists

due to (9)), it follows that ‖yt − y∗‖ < (‖M‖ + 1)ρ whenever xt ∈ Bρ and t ≥ N0. Thus, if

xt ∈ Bρ and t ≥ N0, we have (xt, yt, zt) ∈ Bρ ⊆ V . Moreover, it is not hard to see that there

exists (xN , yN , zN) with N ≥ N0 such that

(i) xN ∈ Bρ;

(ii) l∗ < Lβ(xN , yN , zN ) < l∗ + η;

(iii) ‖xN − x∗‖ + 2

√
Lβ(xN ,yN ,zN )−l∗

D + C
Dϕ(Lβ(xN , yN , zN) − l∗) < ρ.

Indeed, these properties follow from the fact that (x∗, y∗, z∗) is a cluster point, (39) and that

Lβ(xt, yt, zt) > l∗ for all t ≥ 1.

We next show that, if xt ∈ Bρ and l∗ < Lβ(xt, yt, zt) < l∗ + η for some fixed t ≥ N0, then

‖xt+1 − xt‖ + (‖xt+1 − xt‖ − ‖xt − xt−1‖)

≤ C

D
[ϕ(Lβ(xt, yt, zt) − l∗) − ϕ(Lβ(xt+1, yt+1, zt+1) − l∗)].

(41)

To see this, notice that xt ∈ Bρ and t ≥ N0 implies (xt, yt, zt) ∈ Bρ ⊆ V . Hence, (40) holds for

(xt, yt, zt). Combining (35), (36), (40) and the concavity of φ, we conclude that for all such t

C‖xt − xt−1‖ · [ϕ(Lβ(xt, yt, zt) − l∗) − ϕ(Lβ(xt+1, yt+1, zt+1) − l∗)]

≥ dist(0, ∂Lβ(xt, yt, zt)) · [ϕ(Lβ(xt, yt, zt) − l∗) − ϕ(Lβ(xt+1, yt+1, zt+1) − l∗)]

≥ dist(0, ∂Lβ(xt, yt, zt)) · ϕ′(Lβ(xt, yt, zt) − l∗) · [Lβ(xt, yt, zt) − Lβ(xt+1, yt+1, zt+1)]

≥ D‖xt+1 − xt‖2.

Dividing both sides by D, taking square root, using the inequality 2
√
ab ≤ a + b as in the proof

of [3, Lemma 2.6], and rearranging terms, we conclude that (41) holds.

We now show that xt ∈ Bρ whenever t ≥ N . We establish this claim by induction, and our

proof is similar to the proof of [3, Lemma 2.6]. The claim is true for t = N by construction. For

t = N + 1, we have

‖xN+1 − x∗‖ ≤ ‖xN+1 − xN‖ + ‖xN − x∗‖

≤
√

Lβ(xN , yN , zN) − Lβ(xN+1, yN+1, zN+1)

D
+ ‖xN − x∗‖

≤
√

Lβ(xN , yN , zN) − l∗

D
+ ‖xN − x∗‖ < ρ,
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where the first inequality follows from (36). Now, suppose the claim is true for t = N, . . . , N +k−1

for some k > 1; i.e., xN , . . . , xN+k−1 ∈ Bρ. We now consider the case when t = N + k:

‖xN+k − x∗‖ ≤ ‖xN − x∗‖ + ‖xN − xN+1‖ +
k−1∑

j=1

‖xN+j+1 − xN+j‖

= ‖xN − x∗‖ + 2‖xN − xN+1‖ − ‖xN+k − xN+k−1‖

+
k−1∑

j=1

[‖xN+j+1 − xN+j‖ + (‖xN+j+1 − xN+j‖ − ‖xN+j − xN+j−1‖)]

≤ ‖xN − x∗‖ + 2‖xN − xN+1‖

+
C

D

k−1∑

j=1

[ϕ(Lβ(xN+j , yN+j , zN+j) − l∗) − ϕ(Lβ(xN+j+1, yN+j+1, zN+j+1) − l∗)]

≤ ‖xN − x∗‖ + 2‖xN − xN+1‖ +
C

D
ϕ(Lβ(xN+1, yN+1, zN+1) − l∗),

where the first inequality follows from (41), the monotonicity of {Lβ(xt, yt, zt)} from (36), and the

induction assumption that xN , . . . , xN+k−1 ∈ Bρ. Moreover, in view of (36) and the definition of

ρ, we see that the last expression above is less than ρ. Hence, ‖xN+k − x∗‖ < ρ as claimed, and

we have shown that xt ∈ Bρ for t ≥ N by induction.

Since xt ∈ Bρ for t ≥ N , we can sum (41) from t = N to M → ∞. Invoking (9), we arrive at

∞∑

t=N

‖xt+1 − xt‖ ≤ C

D
ϕ(Lβ(xN , yN , zN) − l∗) + ‖xN − xN−1‖,

which implies that (34) holds. Convergence of {xt} follows immediately from this. Convergence

of {yt} follows from the convergence of {xt}, the relation yt+1 = Mxt+1 + 1
β (zt+1 − zt) from

(7), and (9). Finally, the convergence of {zt} follows from the surjectivity of M, and the relation

M∗zt+1 = ∇h(xt+1) from (11). This completes the proof.

Remark 4. (Comments on Theorem 3)

(1) A close inspection of the above proof shows that the conclusion of Theorem 3 continues to

hold as long as the augmented Lagrangian Lβ is a KL-function. Here, we only state the

case where h and P are semi-algebraic because this simple sufficient condition can be easily

verified.

(2) Although a general convergence analysis framework was established in [3] for a broad class

of optimization problems, it is not clear to us whether their results can be applied directly

here. Indeed, to ensure convergence, three basic properties H1, H2 and H3 were imposed

in [3, Page 99]. In particular, their property H1 (sufficient descent property) in our case

reads:

Lβ(xt, yt, zt) − Lβ(xt+1, yt+1, zt+1) ≥ D(‖xt+1 − xt‖2 + ‖yt+1 − yt‖2 + ‖zt+1 − zt‖2),

for some D > 0. On the other hand, (36) in our proof only gives us that Lβ(xt, yt, zt) −
Lβ(xt+1, yt+1, zt+1) ≥ D‖xt+1 − xt‖2, which is not sufficient for property H1 to hold.

(3) In Theorem 3, we only discussed the case where φ = 0. This condition is used to ensure that

{Lβ(xt, yt, zt)} is a decreasing sequence that is at least as large as Lβ(x∗, y∗, z∗). It would be

interesting to see whether the analysis here can be further extended to the case where φ 6= 0.
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Before ending this section, we comment on the behavior of ADMM (7) in the case where M is

assumed to be injective (instead of surjective). As suggested by the numerical experiments in [15]

and our preliminary numerical tests, it is conceivable that the ADMM does not cluster at a sta-

tionary point in general when applied to solving problem (1) with an injective M. We hereby give

a concrete 2-dimensional example for non-convergence, motivated by the recent counterexample

in [4, Remark 6] for the convergence of Douglas-Rachford splitting method in a nonconvex setting.1

Example 7. (Divergence of ADMM (7) when M is injective) Fix η ∈ (0, 1] and set C =

{x ∈ IR2 : x2 = 0} and D = {(0, 0), (2, η), (2,−η)}. Then C ∩D 6= ∅. Consider the optimization

problem
min
x

0

s.t. x ∈ C, x ∈ D.

This problem corresponds to (1) with h(x) = 0, P (y) = δC(y1) + δD(y2) where y = (y1, y2), and

M is the linear map so that Mx = (x, x); the problem can be equivalently reformulated as

min
x,y

0

s.t. x− y1 = 0,

x− y2 = 0,

y1 ∈ C, y2 ∈ D,

and the ADMM can be applied. Let z1 and z2 denote the multipliers corresponding to the first and

second equality constraints, respectively. The iterates in (7) (with φ = 0) now take the form




yt+1
1 = PC

(
xt − zt1

β

)
, yt+1

2 ∈ PD

(
xt − zt2

β

)
,

xt+1 =
1

2

(
yt+1
1 +

zt1
β

+ yt+1
2 +

zt2
β

)
,

zt+1
1 = zt1 − β(xt+1 − yt+1

1 ),

zt+1
2 = zt2 − β(xt+1 − yt+1

2 ).

(42)

For concreteness, whenever ambiguity arises in updating yt+1
2 via the projection onto the nonconvex

(discrete) set D, we choose the element in D that is closest to the previous iterate yt2.

For each β > 0, consider the initializations x0 = (2, 0), z01 = (0,−βη) and z02 = (0, βη). Then

it is routine to show that the ADMM described in (42) will exhibit a discrete limit cycle of length

8. Specifically, (yt1, y
t
2, x

t, zt1, z
t
2) = (y8k+t

1 , y8k+t
2 , x8k+t, z8k+t

1 , z8k+t
2 ) for any 1 ≤ t ≤ 8 and k ≥ 0.

Moreover,

yt1 = (2, 0), 1 ≤ t ≤ 8, yt2 =

{
(2,−η) 1 ≤ t ≤ 4,

(2, η) 5 ≤ t ≤ 8,
xt =

{
(2,− η

2 ) 1 ≤ t ≤ 4,

(2, η2 ) 5 ≤ t ≤ 8,

zt1 =

(
0,

(2 − |t− 4|)βη
2

)
, 1 ≤ t ≤ 8, zt2 = −zt1.

In particular, the sequence {xt} is not convergent and the successive change of the z-update does

not converge to zero.

1Douglas-Rachford (DR) splitting method is a popular method for nonconvex feasibility problems and can be

suitably applied to solving (1) when M = I; see [26]. Moreover, it has been brought to our attention during the

revision process of this paper that the known equivalence between the ADMM and the DR splitting method in the

convex case (see, for example, [5, Remark 3.14]) can be passed through to the nonconvex cases. Thus, the global

convergence results in this paper concerning the ADMM can be specialized to obtain global convergence of the DR

splitting method in some nonconvex settings. We note that the global convergence of the DR splitting method in

the nonconvex settings has been studied in [26] based on a new specially constructed merit function.
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4 Proximal gradient algorithm when M = I
In this section, we look at the model problem (1) in the case where M = I. Since the objective

is the sum of a smooth and a possibly nonsmooth part with a simple proximal mapping, it is

natural to consider the proximal gradient algorithm (also known as the forward-backward splitting

algorithm). In this approach, one considers the update

xt+1 ∈ Arg min
x

{
〈∇h(xt), x− xt〉 +

1

2β
‖x− xt‖2 + P (x)

}
. (43)

From our assumption on P , the update can be performed efficiently via a computation of the

proximal mapping of βP . When β ∈ (0, 1
L), where L ≥ sup{‖∇2h(x)‖ : x ∈ IRn}, it is not hard to

show that any cluster point x∗ of the sequence generated above is a stationary point of (1); see, for

example, [9]. In what follows, we analyze the convergence under a slightly more flexible step-size

rule.

Theorem 4. Suppose that there exists a twice continuously differentiable convex function q and

ℓ > 0 such that for all x,

− ℓI � ∇2h(x) + ∇2q(x) � ℓI. (44)

Let {xt} be generated from (43) with β ∈ (0, 1
ℓ ). Then the algorithm is a descent algorithm.

Moreover, any cluster point x∗ of {xt}, if exists, is a stationary point.

Remark 5. For the algorithm to converge faster, intuitively, a larger step-size β should be chosen;

see also Table 3. Condition (44) indicates that the “concave” part of the smooth objective h does

not impose any restrictions on the choice of step-size. This could result in an ℓ smaller than the

Lipschitz continuity modulus of ∇h(x), and hence allow a choice of a larger β. On the other hand,

since the algorithm is a descent algorithm by Theorem 4, the sequence generated from (43) would

be bounded under standard coerciveness assumptions on the objective function.

Proof. Notice from assumption that ∇(h + q) is Lipschitz continuous with Lipschitz continuity

modulus at most ℓ. Hence

(h + q)(xt+1) ≤ (h + q)(xt) + 〈∇h(xt) + ∇q(xt), xt+1 − xt〉 +
ℓ

2
‖xt+1 − xt‖2. (45)

From this we see further that

h(xt+1) + P (xt+1) = (h + q)(xt+1) + P (xt+1) − q(xt+1)

≤ (h + q)(xt) + 〈∇h(xt) + ∇q(xt), xt+1 − xt〉 +
ℓ

2
‖xt+1 − xt‖2 + P (xt+1) − q(xt+1)

= h(xt) + 〈∇h(xt), xt+1 − xt〉 +
ℓ

2
‖xt+1 − xt‖2 + P (xt+1)

+ q(xt) + 〈∇q(xt), xt+1 − xt〉 − q(xt+1)

≤ h(xt) + P (xt) +

(
ℓ

2
− 1

2β

)
‖xt+1 − xt‖2,

(46)

where the first inequality follows from (45), the last inequality follows from the definition of xt+1

and the subdifferential inequality applied to the function q. Since β ∈ (0, 1ℓ ) implies 1
2β > ℓ

2 , (46)

shows that the algorithm is a descent algorithm.

Rearranging terms in (46) and summing from t = 0 to any N − 1 > 0, we see further that

(
1

2β
− ℓ

2

)N−1∑

t=0

‖xt+1 − xt‖2 ≤ h(x0) + P (x0) − h(xN ) − P (xN ).

18



Now, let x∗ be a cluster point and take any convergent subsequence {xti} that converges to x∗.

Taking limit on both sides of the above inequality along the convergent subsequence, one can see

that lim
t→∞

‖xt+1 −xt‖ = 0. Finally, we wish to show that lim
i→∞

P (xti+1) = P (x∗). To this end, note

first that since lim
t→∞

‖xt+1 − xt‖ = 0, we also have lim
i→∞

xti+1 = x∗. Then it follows from lower

semicontinuity of P that lim inf
i→∞

P (xti+1) ≥ P (x∗). On the other hand, from (43), we have

〈∇h(xti), xti+1−xti〉+
1

2β
‖xti+1−xti‖2 +P (xti+1) ≤ 〈∇h(xti ), x∗−xti〉+

1

2β
‖x∗−xti‖2 +P (x∗),

which gives lim sup
i→∞

P (xti+1) ≤ P (x∗). Hence, lim
i→∞

P (xti+1) = P (x∗). Now, using this, lim
t→∞

‖xt+1−
xt‖ = 0, (3) and taking limit along the convergent subsequence in the following relation obtained

from (43)

0 ∈ ∇h(xt) +
1

β
(xt+1 − xt) + ∂P (xt+1), (47)

we see that the conclusion concerning stationary point holds.

We illustrate the above theorem in the following examples.

Example 8. Suppose that h admits an explicit representation as a difference of two convex twice

continuously differentiable functions h = h1 − h2, and that h1 has a Lipschitz continuous gradient

with modulus at most L1. Then (44) holds with q = h2 and ℓ = L1. Hence, the step-size can be

chosen from (0, 1/L1).

A concrete example of this kind is given by h(x) = 1
2 〈x,Qx〉, where Q is a symmetric indefinite

matrix. Then (44) holds with q(x) = − 1
2 〈x,Q−x〉, where Q− is the projection of Q onto the cone

of nonpositive semidefinite matrices, and ℓ = λmax(Q) > 0. The step-size β can be chosen within

the open interval (0, 1/λmax(Q)).

In the case when h(x) is a concave quadratic, say, for example, h(x) = − 1
2‖Ax− b‖2 for some

linear map A, it is easy to see that (44) holds with q(x) = 1
2‖Ax‖2 for any positive number ℓ.

Thus, step-size can be chosen to be any positive number.

Example 9. Suppose that h has a Lipschitz continuous gradient and it is known that all the

eigenvalues of ∇2h(x), for any x, lie in the interval [−λ2, λ1] with −λ2 < 0 < λ1. If λ1 ≥ λ2, it

is clear that ∇h is Lipschitz continuous with modulus bounded by λ1, and hence the step-size for

the proximal gradient algorithm can be chosen from (0, 1/λ1). On the other hand, if λ1 < λ2, then

it is easy to see that (44) holds with q(x) = λ2−λ1

4 ‖x‖2 and ℓ = (λ2 + λ1)/2. Hence, the step-size

can be chosen from (0, 2/(λ1 + λ2)).

We next comment on the convergence of the whole sequence. We consider the conditions

H1 through H3 on [3, Page 99]. First, it is easy to see from (46) that H1 is satisfied with

a = 1
2β − ℓ

2 . Next, notice from (47) that if wt+1 := ∇h(xt+1) − ∇h(xt) − 1
β (xt+1 − xt), then

wt+1 ∈ ∇h(xt+1) + ∂P (xt+1). Moreover, from the definition of wt+1, we have

‖wt+1‖ ≤
(
L +

1

β

)
‖xt+1 − xt‖

for any L ≥ sup{‖∇2h(x)‖ : x ∈ IRn}. This shows that the condition H2 is satisfied with b = L+ 1
β .

Finally, [3, Remark 5.2] shows that H3 is satisfied. Thus, we conclude from [3, Theorem 2.9] that if

h+P is a KL-function and a cluster point x∗ of the sequence {xt} exists, then the whole sequence

converges to x∗.

A line-search strategy can also be incorporated to possibly speed up the above algorithm; see [21]

for the case when P is a continuous difference-of-convex function. The convergence analysis there

can be directly adapted. The result of Theorem 4 concerning the interval of viable step-sizes can

be used in designing the initial step-size for backtracking in the line-search procedure.
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5 Numerical simulations

In this section, we perform numerical experiments to illustrate our algorithms. All codes are

written in MATLAB. All experiments are performed on a 32-bit desktop machine with an Intelr

i7-3770 CPU (3.40 GHz) and a 4.00 GB RAM, equipped with MATLAB 7.13 (2011b).

5.1 ADMM

Minimizing constraints violation. We consider the problem of finding the closest point to a

given x̂ ∈ IRn that violates at most r out of m equations. The problem is presented as follows:

min
x

1
2‖x− x̂‖2

s.t. ‖Mx− b‖0 ≤ r,
(48)

where M ∈ IRm×n has full row rank, b ∈ IRm, n ≥ m ≥ r. This can be seen as a special case of (1)

by taking h(x) = 1
2‖x− x̂‖2 and P (y) to be the indicator function of the set {y : ‖y − b‖0 ≤ r},

which is a proper closed function; here, ‖y‖0 is the ℓ0 norm that counts the number of nonzero

entries in the vector y.

We apply the ADMM (i.e., proximal ADMM with φ = 0) with parameters specified as in

Example 3, and pick β = 1.01 · (2/σ) so that β > 2/σ. From Example 6, the sequence generated

from the ADMM is always bounded and hence convergence of the sequence is guaranteed by

Theorem 3. We compare our model against the standard convex model with the ℓ0 norm replaced

by the ℓ1 norm. This latter model is solved by SDPT3 (Version 4.0), called via CVX (Version

1.22), using default settings.

For the ADMM, we consider two initializations: setting all variables at the origin (0 init.), or

setting x0 to be the approximate solution x̃ obtained from solving the convex model, y0 = Mx0

and z0 = (MM∗)−1M(x0 − x̂) (ℓ1 init.). As discussed in Remark 2, when x̃ is feasible for (48),

this latter initialization satisfies the conditions in Theorem 1(ii). We terminate the ADMM when

the sum of successive changes is small, i.e., when

‖xt − xt−1‖ + ‖yt − yt−1‖ + ‖zt − zt−1‖
‖xt‖ + ‖yt‖ + ‖zt‖ + 1

< 10−8. (49)

In our experiments, we consider random instances. In particular, to guarantee that the problem

(48) is feasible for a fixed r, we generate the matrix M and the right hand side b using the following

MATLAB codes:

M = randn(m,n);

x_orig = randn(n,1);

J = randperm(m);

b = randn(m,1);

b(J(1:m-r)) = M(J(1:m-r),:)*x_orig; % subsystem has a solution

We then generate x̂ with i.i.d. standard Gaussian entries.

We consider n = 1000, 2000, 3000, 4000 and 5000, m = 500, r = 100, 200 and 300. We generate

one random instance for each (n,m, r) and solve (48) and the corresponding ℓ1 relaxation. The

computational results are shown in Table 1, where we report the number of violated constraints

(vio) by the approximate solution x obtained, defined as #{i : |(Mx − b)i| > 10−4}, and the

distance from x̂ (dist) defined as ‖x − x̂‖. We also report the number of iterations the ADMM

takes, as well as the CPU time of both the ADMM initialized at the origin and SDPT3 called

using CVX.2 We see that the model (48) allows an explicit control on the number of violated

2We include the preprocessing time by CVX in the CPU time.
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constraints. In addition, comparing with the ℓ1 model, the ℓ0 model solved using the ADMM

always gives a solution closer to x̂. Finally, the solution obtained from the ADMM initialized from

an approximate solution of the ℓ1 model can be slightly closer to x̂ than the solution obtained from

the zero initialization, depending on the particular problem instance.

Table 1: Computational results for perturbation with bounded number of violated equalities.

ℓ0-ADMM (0 init.) ℓ1-CVX ℓ0-ADMM (ℓ1 init.)

r n ‖xorig − x̂‖ iter CPU vio dist CPU vio dist iter vio dist

100 1000 4.70e+001 389 0.4 100 2.24e+001 10.1 13 3.25e+001 405 100 2.18e+001

100 2000 6.37e+001 158 0.4 100 2.05e+001 18.4 6 2.92e+001 150 100 1.89e+001

100 3000 7.72e+001 130 0.7 100 1.95e+001 27.7 8 2.97e+001 108 100 1.85e+001

100 4000 8.85e+001 101 0.8 100 2.01e+001 37.3 3 3.12e+001 95 100 1.89e+001

100 5000 1.00e+002 94 1.0 100 2.05e+001 49.7 3 2.96e+001 88 100 1.85e+001

200 1000 4.30e+001 518 0.4 200 1.50e+001 10.7 16 2.95e+001 577 200 1.38e+001

200 2000 6.35e+001 229 0.6 200 1.24e+001 21.1 12 2.91e+001 224 200 1.14e+001

200 3000 7.75e+001 146 0.8 200 1.22e+001 27.5 9 2.85e+001 136 200 1.21e+001

200 4000 9.14e+001 112 0.9 200 1.25e+001 37.2 5 2.78e+001 124 200 1.12e+001

200 5000 1.01e+002 113 1.2 200 1.17e+001 49.4 6 2.68e+001 97 200 1.06e+001

300 1000 4.65e+001 716 0.7 300 7.13e+000 9.2 22 2.81e+001 836 300 7.05e+000

300 2000 6.36e+001 219 0.6 300 5.95e+000 18.4 12 2.68e+001 232 300 6.33e+000

300 3000 7.88e+001 158 0.8 300 5.91e+000 29.3 12 2.58e+001 145 300 6.15e+000

300 4000 8.95e+001 142 1.1 300 5.61e+000 44.9 15 2.60e+001 140 300 6.27e+000

300 5000 1.01e+002 125 1.3 300 5.54e+000 49.4 7 2.73e+001 114 300 6.07e+000

Piecewise constant fitting. We consider the problem of fitting a noisy signal x̂ ∈ IRn using a

piecewise constant signal with r pieces (see [12, Example 9.16]):

min
x

1
2‖x− x̂‖2

s.t. ‖Dx‖0 ≤ r − 1,
(50)

where Dx is the n− 1 dimensional vector whose ith entry is xi+1 − xi. This is a special case of (1)

with h(x) = 1
2‖x− x̂‖2 and P (y) being the indicator function of the closed set {y : ‖y‖0 ≤ r− 1}.

It is well known that DD∗ � σI for σ = 2(1 + cos(π − π
n )) [24, Theorem 2.2], which is close to

zero when n is large. Thus, the β chosen as in the previous problem is large and can lead to slow

convergence. As a heuristic, similarly as in [30, Remark 2.1], we initialize β as 1
5nσ , and update

β as min{1.0001 · 2
σ , 2β} when β < 2

σ and either ‖xt‖ > 1010 or ‖xt − xt−1‖ > 1000
t . It is not

hard to see that the sequence generated from the ADMM under this heuristic will still cluster at

a stationary point of (50).

We initialize all variables at the origin and terminate when (49) occurs. As a benchmark, we

again look at the standard convex model with the ℓ0 norm replaced by the ℓ1 norm, solved by

SDPT3 (Version 4.0), called via CVX (Version 1.22) using default settings.

In our experiments, we first generate a random piecewise constant signal and then perturb it

with a Gaussian noise. Specifically, we use the following MATLAB codes:

J = randperm(n-2) + 1; % from 2 to n-1, candidate break-points

I = sort(J(1:r-1),’ascend’); % r-1 break-points

x_orig = zeros(n,1); x_orig(1:I(1)-1) = randn(1);

for i = 1:r-2

x_orig(I(i):I(i+1)-1) = randn(1);
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end

x_orig(I(r-1):end) = randn(1);

hatx = x_orig + tau*randn(n,1);

We consider n = 8000, 10000, r = 50, 100 and τ = 0, 2.5% and 5%. The computational results

are shown in Table 2, where we present the number of iterations for our ADMM, the CPU time

for both approaches in seconds,3 the cardinality (card) of Dx at the approximate solution x∗ for

both methods, defined as #{i : |(Dx)i| > 10−4}, and the recovery error
‖x−xorig‖
‖xorig‖ , where xorig is

the original noiseless piecewise constant signal. We see that the solution from our model always

has the correct number of pieces, and is always closer to the original noiseless signal.

Table 2: Computational results for perturbation with bounded number of violated equalities.

ℓ0-ADMM ℓ1-CVX

τ r n iter CPU card err CPU card err

0.000 50 8000 4944 5.8 49 1.9e-008 2.7 49 2.4e-003

0.000 50 10000 4728 6.8 49 1.1e-008 2.2 46 5.5e-002

0.000 100 8000 5961 7.1 99 7.3e-007 2.0 97 1.8e-002

0.000 100 10000 7385 10.9 99 7.5e-007 2.6 90 5.9e-002

0.025 50 8000 4962 6.4 49 6.3e-003 2.0 118 5.9e-002

0.025 50 10000 6136 9.8 49 5.6e-003 2.3 106 6.8e-002

0.025 100 8000 5155 6.7 99 1.6e-002 1.9 164 7.3e-002

0.025 100 10000 5685 9.1 99 1.5e-002 2.3 206 6.4e-002

0.050 50 8000 4008 5.1 49 2.4e-002 1.7 137 5.5e-002

0.050 50 10000 5219 8.3 49 1.2e-002 2.3 134 3.1e-002

0.050 100 8000 3869 5.1 99 2.0e-002 1.7 229 5.9e-002

0.050 100 10000 4911 7.9 99 1.3e-002 2.6 237 4.0e-002

Next, we present graphs to visualize the quality of the recovered signal via the above two

methods: our ADMM method (ℓ0-ADMM) and the convex relaxation method (ℓ1-CVX). To do

this, we first generate a piecewise constant signal with 20 pieces, and then perturb it with Gaussian

noises with noise level 5%. The effect on recovering the original signal with ℓ0-ADMM method

and the ℓ1-CVX method are shown in Figure 1.

Figure 1: Computational results piecewise constant fitting.
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3We include the preprocessing time by CVX in the CPU time.
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5.2 Proximal gradient algorithm

In this section, we consider the following concave minimization problem:

min
x

− 1
2‖Ax− b‖2

s.t. x ∈ C,
(51)

where C is a compact convex set whose projection is easy to compute, A ∈ IRm×n and b ∈ IRm. We

apply the proximal gradient algorithm and illustrate how the more flexible stepsize rule introduced

via Theorem 4 affects the solution quality and the computational time. Specifically, we apply the

proximal gradient algorithms with various step-size parameters β > 0. Since the objective in (51)

is concave and C is compact, we see from Theorem 4 that for any β > 0, the sequence generated

from the proximal gradient algorithm is bounded with cluster points being stationary points of

(51).

We initialize the algorithm at the origin and terminate when the change between successive

iterates is small, i.e., when
‖xt − xt−1‖
‖xt‖ + 1

< 10−8.

We consider random instances. Specifically, for m = 1000 and each n = 3000, 4000, 5000 and 6000,

we generate a random matrix A ∈ IRm×n with i.i.d. standard Gaussian entries. We also generate

b ∈ IRn with i.i.d. standard Gaussian entries.

The computational results are reported in Table 3, where we take C to be the unit ℓ1 norm ball

for the first 4 rows, and the unit ℓ∞ norm ball for the rest. We report the quantity λmax(A∗A) for

each of the random instances: the reciprocal of this quantity is typically used as an upper bound of

the allowable step-size β in the usual proximal gradient algorithm. We consider β = 1/λmax(A∗A),

2/λmax(A∗A), 10/λmax(A∗A) and 50/λmax(A∗A), and report the terminating function value and

number of iterations. We observe that the number of iterations is typically less when β is larger.

On the other hand, we can also observe that the terminating function values are not affected by

the choice of step-size β for the easier problems corresponding to the ℓ1 norm ball, but the solution

quality concerning the ℓ∞ norm ball does depend on the step-size β.

Table 3: Performance of the proximal gradient algorithm with varying β.

β = 1/λmax(A∗A) β = 2/λmax(A∗A) β = 10/λmax(A∗A) β = 50/λmax(A∗A)

n λmax(A∗A) iter fval iter fval iter fval iter fval

3000 7.41e+003 71 -1.108e+003 44 -1.108e+003 8 -1.189e+003 4 -1.189e+003

4000 8.97e+003 38 -1.205e+003 21 -1.205e+003 7 -1.205e+003 4 -1.205e+003

5000 1.04e+004 63 -1.102e+003 34 -1.102e+003 10 -1.102e+003 5 -1.102e+003

6000 1.19e+004 58 -1.135e+003 30 -1.135e+003 9 -1.135e+003 4 -1.135e+003

3000 7.44e+003 206 -7.259e+006 207 -7.180e+006 70 -7.005e+006 44 -6.829e+006

4000 8.96e+003 209 -1.154e+007 175 -1.148e+007 106 -1.136e+007 55 -1.122e+007

5000 1.05e+004 983 -1.722e+007 244 -1.709e+007 179 -1.713e+007 56 -1.694e+007

6000 1.18e+004 1068 -2.318e+007 377 -2.293e+007 166 -2.292e+007 43 -2.271e+007

6 Conclusion and future directions

In this paper, we study the proximal ADMM and the proximal gradient algorithm for solving

problem (1) with a general surjective M and M = I, respectively. We prove that any cluster

point of the sequence generated from the algorithms gives a stationary point by assuming merely
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a specific choice of parameters and the existence of a cluster point. We also show that if the

functions h and P are in addition semi-algebraic and the sequence generated by the ADMM (i.e.,

proximal ADMM with φ = 0) clusters, then the sequence is actually convergent. Furthermore, we

give simple sufficient conditions for the boundedness of the sequence generated from the proximal

ADMM.

One interesting future research direction would be to adapt other splitting methods for convex

problems to solve (1), especially in the case when M is injective, and study their convergence

properties.
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