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Abstract

We consider a kind of stochastic exit time optimal control problems, in which the cost
function is defined through a nonlinear backward stochastic differential equation. We
study the regularity of the value function for such a control problem. Then extending
Peng’s backward semigroup method, we show the dynamic programming principle. More-
over, we prove that the value function is a viscosity solution to the following generalized
Hamilton-Jacobi-Bellman equation with Dirichlet boundary:





inf
v∈V

{L(x, v)u(x) + f(x, u(x),∇u(x)σ(x, v), v)} = 0, x ∈ D,

u(x) = g(x), x ∈ ∂D,

where D is a bounded set in R
d, V is a compact metric space in R

k, and for u ∈ C2(D)
and (x, v) ∈ D × V ,

L(x, v)u(x) :=
1

2

d∑

i,j=1

(σσ∗)i,j(x, v)
∂2u

∂xi∂xj

(x) +
d∑

i=1

bi(x, v)
∂u

∂xi

(x).
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1 Introduction

Crandall and Lions introduced the notion of viscosity solution for first order partial differential
equations (PDEs) in [8], and then it was extended to second order PDEs by Lions [23]. In
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the later work [7] Crandall et al. gave a systematic investigation of this notion. Viscosity
solution provides a powerful tool to study second order PDEs and related problems.

It is by now well known that the classical Hamilton-Jacobi-Bellman (HJB) equation is
connected to stochastic optimal control problem, see, e.g. [13, 19]. The reader is referred to
[37] for a systematic theory of HJB equations and stochastic control. For generalized HJB
equations as





∂u
∂t + inf

v∈V
{L(x, v)u+ f(x, u,∇uσ(x, v), v)} = 0, (t, x) ∈ (0, T )× R

d,

u(T, x) = g(x),

Peng [34] was the first to give a stochastic interpretation of the solution to above HJB
equation; he did it by investigating a certain optimal control problem in which the cost
function is described by a nonlinear backward stochastic differential equation (BSDE) based
on the pioneering work of Pardoux and Peng [31]. Moreover, Peng [34] established the
dynamic programming principle for the control problem and proved that the value function
is a viscosity solution to above generalized HJB equation. The results were extended by Peng
[35] with the help of the notion of backward semigroup. The reader is referred to [2, 6, 27,
28, 29, 32] for further research. Recently, Dumitrescu et al. [10] studied combined optimal
stopping and stochastic control problems with Ef -expectations defined through BSDEs with
jumps, and they investigated their connection with an obstacle problem for an HJB equation.
Let us point out that the approach in [10] is different from Peng’s method and allows the
authors to prove, in the case when the reward terminal function is only Borelian, a weak
dynamic programming principle.

Motivated by [34, 35], we study the following HJB equation with Dirichlet boundary:




inf
v∈V

{L(x, v)u(x) + f(x, u(x),∇u(x)σ(x, v), v)} = 0, x ∈ D,

u(x) = g(x), x ∈ ∂D,
(1)

where D is a bounded set in R
d. In particular, if f = f(x, v), equation (1) reduces to the

Dirichlet problem for the HJB equation studied, for example, by Lions and Menaldi [24]. In
[24], it was shown that the optimal cost of a control problem belongs to W 1,∞(D) and it is
the maximum solution of the HJB equation with Dirichlet boundary. For further research,
the reader is referred to [12, 21, 22].

In this paper, we extend the results of [24] to give a stochastic representation for the
viscosity solution of the HJB equation (1). To do this, we investigate the following stochastic
exit time optimal control problem: Consider the stochastic differential equation (SDE)

{
dX0,x,v

s = b(X0,x,v
s , vs)ds + σ(X0,x,v

s , vs)dBs, s ≥ 0,

X0,x,v
0 = x ∈ R

d,

where B is an R
m-valued Brownian motion, b and σ are given functions satisfying suitable

assumptions, and v = {vs} is an admissible control taking values in a compact metric space
V ∈ R

k. Let D be a bounded set of Rd and τx,v be the first exit time of X0,x,v from D. To
define our cost function, we introduce the nonlinear BSDE with random terminal time:

Y 0,x,v
t = g(X0,x,v

τx,v ) +

∫ τx,v

t∧τx,v

f(X0,x,v
s , Y 0,x,v

s , Z0,x,v
s , vs)ds−

∫ τx,v

t∧τx,v

Z0,x,v
s dBs,
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where f and g are given functions defined on R
d×R×R

m×V and R
d, respectively. The well-

posedness of above BSDE was established first by Peng [33] and later extended by Darling
and Pardoux [9]; see also [5, 30, 36]. Now we define the cost function J(x, v) := Y 0,x,v

0 and
the value function u(x) := inf

v
J(x, v) for our stochastic exit time optimal control problem.

Our objective is to prove that the value function u defined above is the viscosity solution of
the HJB equation (1). The first step is to show some regularity results for u. Let us first recall
the results for the case f = f(s, x, v). In general, when D is bounded, the continuity of u is
not always true, see [20] page 278-279. Fleming and Soner [14] found a sufficient conditions
such that u is continuous (see Theorem 2.1 [14]) and Bayraktar et al. [4] weakened the
assumptions of [14]. If f = f(x, v) and σ is non-degenerate, under some suitable assumptions
on D, the Lipschitz continuity of u was obtained by Lions and Menaldi [24]. They also
extended the results to the degenerate case in [25]. We mention that the results of [24] were
generalized by [1, 3, 16, 18] under weaker assumptions. In this paper, motivated by [24], we
prove for non-degenerate σ, that our value function u defined above is 1

2 -Hölder continuous.
Since our value function is defined through a nonlinear BSDE with random terminal time,
it is more general than that in [24]. To show the regularity, we need the stability property
of BSDE w.r.t. the perturbations, see the proof of our Theorem 10. Instead of the Lipschitz
continuity as in [24], we get in our framework the 1

2 -Hölder continuity of u.
In a second step we study the dynamic programming principle (DPP). As by now well

known, for f = f(s, x, v), the DPP holds, see e.g. [14] and [26]. For a cost function defined
by a BSDE with deterministic terminal time, the DPP was first shown by Peng [34]. Then
it was proven again by Peng [35] using the method of backward semigroup. We emphasise
that we cannot just follow the procedure of [35] to prove the DPP for our value function u,
because the terminal time of our BSDE (see (4)) is the stochastic exit time of SDE (2). This
stochastic exit time depends not only on the initial date x but also on the control process
v ∈ V. We have to establish the following relation (see Lemma 13)

u(x) = inf
v∈V

Y 0,x,v
0 = essinfv∈VY

Θ,x,v
Θ ,

which is not obviously at all. To prove this, we introduce the time-shift operator and make a
subtle analysis. For more details, see Section 4. With the help of above relation and Peng’s
backward semigroup method, we can show that the DPP is also satisfied, see Theorem 12.

In Section 5, using the regularity property of the value function u and the dynamic
programming principle, we can show that u is the viscosity solution of the HJB equation (1).
We emphasise that the random terminal time makes the application of the procedure of Peng
[35] more complicate, and so we need a special subtle approach, see e.g. Lemma 21.

The paper is organised as follows: In Section 2 we formulate the problem. We introduce
our assumptions and recall existing essential results on BSDE with random terminal time.
Section 3 is devoted to the study of the value function, and in particular, its regularity. In
Section 4 the dynamic programming principle is established. Section 5 is devoted to the
proof that the function u is a viscosity solution of the HJB equation (1) and we also have the
uniqueness of the viscosity solution for such HJB equation.
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2 Formulation of the problem

Let (Ω,F ,P) be the classical Wiener space: Ω := C0(R+;R
m) is the set of all continuous

functions from R+ to R
m starting from 0, F is the Borel σ-algebra over Ω, completed by the

Wiener measure P. In this probability space, the coordinate process Bs(ω) = ω(s), s ≥ 0,
ω ∈ Ω, is an R

m-valued Brownian motion. We denote by F := {Ft, t ≥ 0} the filtration
generated by the Brownian motion B and augmented by NP (the class of P-null sets of F).

Through the paper, for d,m ≥ 1, we use the notations |x|2 :=
d∑

i=1
x2i , for x ∈ R

d, and

|A|2 :=
d∑

i=1

m∑
j=1

a2ij, for A ∈ R
d×m.

For x ∈ R
d, we consider the following SDE with control:

{
dX0,x,v

s = b(X0,x,v
s , vs)ds+ σ(X0,x,v

s , vs)dBs, s ≥ 0,

X0,x,v
0 = x ∈ R

d,
(2)

where v = {vs} is an {Fs}-adapted process taking its values in a compact set V ⊂ R
k. The

coefficients b : Rd × V → R
d and σ : Rd × V → R

d×m are supposed to be continuous and to
satisfy the following assumptions:

(H1) There exists a positive constant L such that for all x, x1, x2 ∈ R
d, v ∈ V ,

(i) |b(x1, v)− b(x2, v)| + |σ(x1, v)− σ(x2, v)| ≤ L|x1 − x2|,

(ii) |b(x, v)| + |σ(x, v)| ≤ L(1 + |x|).

We denote by V the set of admissible control processes composed of all V -valued {Fs}-
progressively measurable processes. Then we know that under assumption (H1), equation
(2) has a unique strong solution for each given v ∈ V.

Let D ⊂ R
d be a bounded domain. For each (x, v) ∈ D × V, we define the first exit time

τx,v of X0,x,v from the bounded domain D:

τx,v := inf{t ≥ 0 : X0,x,v
t /∈ D}. (3)

From the right continuity of {Fs}, we know that τx,v is a stopping time w.r.t. {Fs}, see, e.g.
Dyknin [11].

Given (x, v) ∈ R
d × V, let us consider the nonlinear BSDE with random terminal time :

Y 0,x,v
t = g(X0,x,v

τx,v ) +

∫ τx,v

t∧τx,v

f(X0,x,v
s , Y 0,x,v

s , Z0,x,v
s , vs)ds−

∫ τx,v

t∧τx,v

Z0,x,v
s dBs, (4)

where f and g are given functions satisfying the following assumptions:

(H2) The function g : Rd → R is continuous.

(H3) f : Rd×R×R
m×V → R is a continuous function which restriction on D×R×R

m×V
is such that, for some constants L ≥ 0, β ≥ 0 and α (positive or negative), such that,

4



for all x, x1, x2 ∈ D, y, y1, y2 ∈ R, z, z1.z2 ∈ R
1×m, v ∈ V ,

(i) |f(x, y, z, v)| ≤ |f(x, 0, z, v)| + L(1 + |y|),

(ii) |f(x1, y, z1, v)− f(x2, y, z2, v)| ≤ β(|x1 − x2|+ |z1 − z2|),

(iii) (y1 − y2)(f(x, y1, z, v) − f(x, y2, z, v)) ≤ −α|y1 − y2|
2.

Remark 1 From (H1)-(H3) it follows easily that the functions b, σ, g and f(·, 0, 0, ·) are
bounded in D × V .

In addition to (H1)-(H3) we need some technical assumptions:

(H ′
4) For each v ∈ V, the set of regular points Γ := {x ∈ ∂D : P(τx,v > 0) = 0} is closed.

Moreover, there exists some µ ∈ R, such that sup
x∈D,v∈V

E[exp(µτx,v)] < ∞.

(H5) For µ introduced in (H ′
4), we assume that µ > γ := β2 − 2α.

In our paper, we focus on the case that σ is non-degenerate and D satisfies a uniform
exterior sphere condition, which means

(H4) (1) (Non-degeneracy) There exists a real number λ > 0, s.t.

d∑

i,j=1

(σσ∗(x, v))ij aiaj ≥ λ|a|2, for all a ∈ R
d, x ∈ D and v ∈ V.

(2)(Uniform exterior sphere condition) There exists a constant ρ > 0, such that

for all y ∈ ∂D, there exists ỹ ∈ R
d \D, s.t. D ∩ {z ∈ R

d : |ỹ − z| ≤ ρ} = {y}.

Remark 2 Using the results of Khasminskii [17] or Lions and Menaldi [24], we know that
(H4) is stronger than (H ′

4). Indeed, (H4) implies the existence of a positive µ such that (H ′
4)

holds. For the readers’ convenience, we give details in next section.

Now we apply the results of Darling and Pardoux; see Theorem 3.4 [9], or Lemma 4 below (For
the readers’ convenience, we recall some results of [9] at the end of this section). Considering
Remark 1, we have

Theorem 3 Suppose (H1)-(H5) (i.e. also (H4)). Then, for each x ∈ D and v ∈ V, BSDE
(4) has a unique solution (Y 0,x,v, Z0,x,v) ∈ M2

γ (0, τx,v;R) × M2
γ (0, τx,v;R

m). Moreover, the

solution belongs to M2
µ(0, τx,v;R) × M2

µ(0, τx,v;R
m) and E[ sup

0≤s≤τx,v

eµs|Y 0,x,v
s |2] < ∞. Here,

for any real number θ, any stopping time τ , and any Euclidean space U , M2
θ (0, τ ;U) denotes

the Hilbert space of progressively measurable processes {η(s)} s.t.

‖η‖2θ = E

[∫ τ

0
eθs|η(s)|2ds

]
< ∞.
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Now let us introduce the cost function of our stochastic exit time control problem. Mo-
tivated by Peng [33, 34], we define our recursive cost functional on R

d × V as

J(x, v) := Y 0,x,v
0 = E

[
g(X0,x,v

τx,v ) +

∫ τx,v

0
f(X0,x,v

s , Y 0,x,v
s , Z0,x,v

s , vs)ds

]
, (x, v) ∈ R

d × V,

where (Y 0,x,v, Z0,x,v) is the unique solution of BSDE (4), and we introduce the value function
as

u(x) := inf
v∈V

J(x, v) = inf
v∈V

Y 0,x,v
0 , x ∈ R

d. (5)

One of our main objectives is to show that the value function u defined above is a vis-
cosity solution of the following generalised Hamilton-Jacobi-Bellman equation with Dirichlet
boundary:





inf
v∈V

{L(x, v)u(x) + f(x, u(x),∇u(x)σ(x, v)), v} = 0, x ∈ D,

u(x) = g(x), x ∈ ∂D,

where, for u ∈ C2(D) and (x, v) ∈ D × V ,

L(x, v)u(x) :=
1

2

d∑

i,j=1

(σσ∗)i,j(x, v)
∂2u

∂xi∂xj
(x) +

d∑

i=1

bi(x, v)
∂u

∂xi
(x).

For this end, we will first investigate the regularity of u; see Section 3.
Finally, at the end of this section, we recall some essential results of [9]. Let us first recall

the following well-posedness results for BSDEs with random terminal time; see Theorem 3.4
[9]:

Lemma 4 Let τ be an {Fs}-stopping time and ξ be an Fτ -measurable random variable in
R
n. Let h : Ω× R+ × R

n × R
n×m → R

n be a function satisfying the following assumptions:

(A1) The map y 7→ h(s, y, z) is continuous. There exist constants L ≥ 0, β ≥ 0, α (positive
or negative) s.t., for all y, y1, y2 ∈ R, z, z1.z2 ∈ R

n×m, a.s.,

(i) |h(s, y, z)| ≤ |h(s, 0, z)| + L(1 + |y|),

(ii) |h(s, y, z1)− h(s, y, z2)| ≤ β|z1 − z2|,

(iii) 〈y1 − y2, h(s, y1, z)− h(s, y2, z)〉 ≤ −α|y1 − y2|
2.

We also assume that, for some µ > γ = β2 − 2α,

E

[
eµτ (|ξ|2 + 1) +

∫ τ

0
eµs|h(s, 0, 0)|2ds

]
< ∞.

Then there exists a unique solution (Y,Z) ∈ M2
γ (0, τ ;R

n)×M2
γ (0, τ ;R

n×m) of the BSDE:

Yt = ξ +

∫ τ

t∧τ
h(s, Ys, Zs)ds−

∫ τ

t∧τ
ZsdBs, t ≥ 0. (6)

Moreover, this solution belongs to M2
µ(0, τ ;R

n)×M2
µ(0, τ ;R

n×m), and E[ sup
0≤s≤τ

eµs|Ys|
2] < ∞.
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Let us also recall the stability w.r.t. perturbations and the comparison theorem for BSDEs
with random terminal time; see Proposition 4.4 and Corollary 4.4.2 [9]. Here we adopt the
convention that Ys = Yτ = ξ, Zs = 0 and f(s, y, z) = 0 on {s > τ}.

Lemma 5 Suppose the triples (τ, ξ, h) and (τ ′, ξ′, h′) satisfy the conditions in Lemma 4 with
the same α, β and µ > β2 − 2α. Then, for all β2 − 2α < θ ≤ µ, for the unique solution
(Y,Z) ∈ M2

µ(0, τ ;R
n)×M2

µ(0, τ ;R
n×m) (resp., (Y ′, Z ′) ∈ M2

µ(0, τ
′;Rn)×M2

µ(0, τ
′;Rn×m)) of

BSDE (6) related to (τ, ξ, h) (resp., (τ ′, ξ′, h′)), if we denote ∆Y = Y −Y ′ and ∆Z = Z−Z ′,
we have that

|∆Y (0)|2 +C1E

[∫ τ∨τ ′

0
eθs

(
|∆Y (s)|2 + |∆Z(s)|2

)
ds

]

≤ E

[∣∣∣ξeθτ/2 − ξ′eθτ
′/2

∣∣∣
2
]
+ C−1

2 E

[∫ τ∨τ ′

0
eθs

∣∣h(s, Y (s), Z(s))− h′(s, Y (s), Z(s))
∣∣2 ds

]
.

Here C1, C2 > 0 are constant depending on the constants introduced in assumption (A1).

Lemma 6 Under the assumptions of Lemma 5, for the case n = 1, τ = τ ′, h ≤ h′ and
ξ ≤ ξ′, we have Y (t) ≤ Y ′(t), a.s.

3 Regularity of value function

We begin with the following lemma; see Lions and Menaldi [24]. For the convenience of the
reader, considering the importance of the lemma, we give its proof here.

Lemma 7 Under assumption (H1), if we have (H4), then there exists a positive constant µ
such that (H ′

4) holds.

Proof. First, from Corollary 3.3 [17] or Lemma 2.4 [24] we know that under the assumptions
(H1) and (H4), there exists a constant µ > 0 such that supx∈D,v∈V Eeµτx,v < ∞.

To prove (H ′
4), we also have to show that Γ := {x ∈ ∂D : P(τx,v > 0) = 0} is closed. We

claim that we even have Γ = ∂D. Indeed, for any fixed y ∈ ∂D, due to (H4), there exists
ỹ ∈ R

d/D, s.t. D ∩ {z : |ỹ − z| ≤ ρ} = {y}. Now we introduce the function w(x, y) :=
e−kρ2 − e−k|x−ỹ|2 , x ∈ D, for some k > 0. It’s not hard to check that, for 1 ≤ i, j ≤ d,

∂w

∂xi
(x, y) := 2k(xi−ỹi)e

−k|x−ỹ|2 ,
∂2w

∂xi∂xj
(x, y) := 2ke−k|x−ỹ|2δi,j−4k2(xi−ỹi)(xj−ỹj)e

−k|x−ỹ|2 ,

and
L(x, v)w(x, y) = e−k|x−ỹ|2

(
− 2k2

∑d
i,j=1(σσ

∗)i,j(x, v)(xi − ỹi)(xj − ỹj)

+k
∑d

i=1(σσ
∗)i,i(x, v) + 2k

∑d
i=1 bi(x, v)(xi − ỹi)

)
.

From the assumptions (H1) and (H4), the boundedness of D and |x − ỹ| ≥ ρ > 0, x ∈ D, it
follows that, for k large enough, there exists a strictly positive constant µ̃, s.t.

−L(x, v)w(x, y) ≥ µ̃, for all x ∈ D.

7



Applying Itô’s formula to w(X0,y,v
s , y) and taking the expectation, we obtain

0 ≤ E
[
w(X0,y,v

t∧τy,v , y)
]
≤ w(y, y) − E

[∫ t∧τy,v

0
µ̃ds

]

and, thus, E[µ̃(t ∧ τy,v)] ≤ w(y, y) = 0. Hence, from Fatou’s lemma we have E[µ̃τy,v] = 0.
Therefore, P(τy,v = 0) = 1 and y ∈ Γ.

Let us recall the definition of the value function

u(x) := inf
v∈V

J(x, v) = inf
v∈V

Y 0,x,v
0 = inf

v∈V
E

[
g(X0,x,v

τx,v ) +

∫ τx,v

0
f(X0,x,v

s , Y 0,x,v
s , Z0,x,v

s , vs)ds

]
.

In the following part of this section, we will show that u is 1/2-Hölder continuous. Before
doing this, we present two auxiliary lemmas.

Lemma 8 Under the assumptions (H1) and (H4), for any real-valued stopping time θ̃, we
have

E
[
|X0,x,v

θ̃
−X0,x′,v

θ̃
|2e−2δθ̃

]
≤ |x− x′|2, x, x′ ∈ R

d, v ∈ V,

where

δ := sup
x,x′∈Rd,v∈V

{
1

2
Tr

(σ(x, v) − σ(x′, v))(σ(x, v) − σ(x′, v))∗

|x− x′|2
+

(x− x′) · (b(x, v) − b(x′, v))

|x− x′|2

}
.

Proof. We apply Itô’s formula to |X0,x,v
s −X0,x′,v

s |2e−2δs between 0 and θ̃∧ t. It follows that

E
[
|X0,x,v

θ̃∧t
−X0,x′,v

θ̃∧t
|2e−2δ(θ̃∧t)

]

= |x− x′|2 + E
[ ∫ θ̃∧t

0

{
Tr(σ(X0,x,v

r , v)− σ(X0,x′,v
r , v))(σ(X0,x,v

r , v)− σ(X0,x′,v
r , v))∗

+2(X0,x,v
r −X0,x′,v

r ) · (b(X0,x,v
r , v)− b(X0,x′,v

r , v)) − 2δ|X0,x,v
r −X0,x′,v

r |2
}
e−2δrdr

]
.

Thus, from the definition of δ, we have E
[
|X0,x,v

θ̃∧t
−X0,x′,v

θ̃∧t
|2e−2δ(θ̃∧t)

]
≤ |x−x′|2, and letting

t → ∞, we obtain from Fatou’s lemma and the continuity of X0,x,v
r in r that

E
[
|X0,x,v

θ̃
−X0,x′,v

θ̃
|2e−2δθ̃

]
≤ |x− x′|2.

The proof is complete.
Now we consider the function w introduced in the proof of Lemma 7. Given y ∈ ∂D, we

let ỹ ∈ R
d\D be the element for which D ∩ {z ∈ R

d : |ỹ − z| ≤ ρ} = {y} (see (H4)). For
x ∈ D and k > 0 we define as before w(x, y) := e−kρ2−e−k|x−ỹ|2 . Let w(x) := infy∈∂D w(x, y),
x ∈ D. Then w ∈ W 1,∞(D), w ≥ 0 and w = 0 on ∂D. In particular, we have the following
lemma,

Lemma 9 We suppose (H1)-(H5). We also assume that there exists a constant θ such that
β2 − 2α < θ ≤ µ and θ ≤ −2[δ]+. Then there exists a constant µ0 > 0, such that

E[eθ(τx′,v∧τx,v)/2 − eθτx,v/2] ≤
|θ|

2µ0
‖∇w‖∞|x− x′|, x, x′ ∈ D.
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Proof. We observe that for θ = 0, the lemma holds obviously. Now it is sufficient to consider
the case that θ ≤ −2[δ]+ and θ < 0. Recall that w(x, y) := e−kρ2 − e−k|x−ỹ|2 , x ∈ D, k > 0,
where ỹ associated with y by (H4). Similarly to the proof of Lemma 7, for any fixed θ, we
know that for k large enough, there exists a constant µ0 > 0, s.t.

−L(x, v)w(x, y) −
θ

2
w(x, y) ≥ µ0, for all x ∈ D.

We apply Itô’s formula to w(X0,x,v
s∧τx,v , y)e

θ(s∧τx,v)/2 and take the conditional expectation. Then

E[µ0

∫ t∧τx,v

0
eθr/2dr + w(X0,x,v

t∧τx,v , y)e
θ(t∧τx,v)/2|Fs∧τx,v ]

= µ0

∫ s∧τx,v

0
eθr/2dr + w(X0,x,v

s∧τx,v , y)e
θ(s∧τx,v)/2

+E[

∫ t∧τx,v

s∧τx,v

(L(Xx,v
r , vr)w(X

0,x,v
r , y) +

θ

2
w(X0,x,v

r , y) + µ0)e
θr/2dr|Fs∧τx,v ]

≤ µ0

∫ s∧τx,v

0
eθr/2dr + w(X0,x,v

s∧τx,v , y)e
θ(s∧τx,v)/2, t ≥ s.

(7)
This means that µ0

∫ t∧τx,v
0 eθr/2dr + w(X0,x,v

t∧τx,v , y)e
θ(t∧τx,v)/2, t ≥ 0, is a supermartingale,

continuous and bounded on bounded time interval.
Recall that w(x) := infy∈∂D w(x, y), x ∈ D. Obviously, there is some Fs∧τx,v -measurable

random variable ξ, such that w(X0,x,v
s∧τx,v ) = w(X0,x,v

s∧τx,v , ξ). Then from (7) it follows

µ0

∫ s∧τx,v

0
eθr/2dr + w(X0,x,v

s∧τx,v )e
θ(s∧τx,v)/2

≥ E[µ0

∫ t∧τx,v

0
eθr/2dr + w(X0,x,v

t∧τx,v , ξ)e
θ(t∧τx,v)/2|Fs∧τx,v ]

≥ E[µ0

∫ t∧τx,v

0
eθr/2dr + w(X0,x,v

t∧τx,v )e
θ(t∧τx,v)/2|Fs∧τx,v ], P− a.s.

This shows that also µ0

∫ t∧τx,v
0 eθr/2dr +w(X0,x,v

t∧τx,v )e
θ(t∧τx,v)/2, t ≥ 0, is a supermartingale; it

is also continuous and bounded on bounded time interval. Therefore, from Doob’s optional
stopping theorem, it follows that, for x, x′ ∈ D

E

[
µ0

∫ t∧τx,v

0
eθr/2dr + w(X0,x,v

t∧τx,v )e
θ(t∧τx,v)/2

∣∣Ft∧τx′,v∧τx,v

]

≤ µ0

∫ t∧τx′,v∧τx,v

0
eθr/2dr + w(X0,x,v

t∧τx′ ,v∧τx,v
)eθ(τx′ ,v∧τx,v)/2, P− a.s., t ≥ 0.

Taking the expectation on both sides and the limit as t → ∞ (Recall that τx′,v and τx,v are
finite, P-a.s.), we get from the monotone convergence theorem

E[µ0

∫ τx,v

τx′,v∧τx,v

eθr/2dr] ≤ E[w(X0,x,v
τx′ ,v∧τx,v

)eθ(τx′,v∧τx,v)/2 −w(X0,x,v
τx,v )eθτx,v/2].

9



Using the definition of τx,v, we have w(X0,x,v
τx,v ) = w(X0,x′,v

τx′,v ) = 0 ≤ w(X0,x′,v
τx′,v∧τx,v

). Thus,

E[µ0

∫ τx,v

τx′,v∧τx,v

eθr/2dr] ≤ E[w(X0,x,v
τx′ ,v∧τx,v

)eθ(τx′ ,v∧τx,v)/2 − w(X0,x,v
τx,v )eθτx,v/2]

= E[(w(X0,x,v
τx′ ,v∧τx,v

)− w(X0,x′,v
τx′ ,v ))eθ(τx′ ,v∧τx,v)/2]

= E[1{τx′ ,v≥τx,v}(w(X
0,x,v
τx′ ,v∧τx,v

)− w(X0,x′,v
τx′,v )eθ(τx′ ,v∧τx,v)/2]

+E[1{τx′,v<τx,v}(w(X
0,x,v
τx′ ,v∧τx,v

)− w(X0,x′,v
τx′ ,v ))eθ(τx′ ,v∧τx,v)/2]

= E[1{τx′ ,v<τx,v}(w(X
0,x,v
τx′ ,v∧τx,v

)− w(X0,x′,v
τx′,v∧τx,v

))eθ(τx′,v∧τx,v)/2]

≤ E[|w(X0,x,v
τx′ ,v∧τx,v

)− w(X0,x′,v
τx′ ,v∧τx,v

)|eθ(τx′ ,v∧τx,v)/2]

≤ ‖∇w‖∞E[|X0,x,v
τx′,v∧τx,v

−X0,x′,v
τx′,v∧τx,v

|eθ(τx′,v∧τx,v)/2],

where ‖ · ‖∞ := ‖ · ‖L∞ denotes the L∞-norm over D. From Lemma 8 and θ ≤ −2[δ]+ we
have

E[|X0,x,v
τx′,v∧τx,v

−X0,x′,v
τx′,v∧τx,v

|eθ(τx′,v∧τx,v)/2]

≤
{
E[|X0,x,v

τx′ ,v∧τx,v
−X0,x′,v

τx′,v∧τx,v
|2eθ(τx′,v∧τx,v)]

}1/2
≤ |x− x′|.

Consequently, as θ < 0, it follows 2µ0

|θ|E[eθ(τx′ ,v∧τx,v)/2−eθτx,v/2] ≤ ‖∇w‖∞|x−x′|, from which
we obtain

E[eθ(τx′,v∧τx,v)/2 − eθτx,v/2] ≤
|θ|

2µ0
‖∇w‖∞|x− x′|.

Now we can give the following theorem to characterise the regularity of value function u(x).

Theorem 10 We suppose that the assumptions (H1)-(H5) are satisfied. We also assume
that g ∈ W 2,∞(D) and there exists a constant θ such that β2 − 2α < θ ≤ µ and θ < −2[δ]+.
Then there exists a constant C, such that for all x, x′ ∈ D, we have

|u(x)− u(x′)| ≤ sup
v∈V

|Y 0,x,v
0 − Y 0,x′,v

0 | ≤ C|x− x′|1/2.

Proof. Applying Lemma 5 and recalling (5), we have

|u(x)− u(x′)|2 ≤ sup
v∈V

|Y 0,x,v
0 − Y 0,x′,v

0 |2 ≤ I1 + I2,

where, for β2 − 2α < θ ≤ µ, I1 := supv∈V E
[
|e

θ
2
τx,vg(X0,x,v

τx,v )− e
θ
2
τx′,vg(X0,x′,v

τx′ ,v )|2
]
and

I2 := sup
v∈V

C−1
2 E[

∫ τx,v∨τx′,v

0
eθr|f(X0,x,v

r , Y 0,x,v
r , Z0,x,v

r , vr)− f(X0,x′,v
r , Y 0,x,v

r , Z0,x,v
r , vr)|

2dr].

Since g ∈ W 2,∞(D), using Itô’s formula for Sobolev spaces (See, e.g. Chapter 2, Section 10
in Krylov [19]), it follows that (Notice that θ 6= 0, since θ < −2[δ]+)
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I1 = supv∈V E
[
|e

θ
2
τx,vg(X0,x,v

τx,v )− e
θ
2
τx′,vg(X0,x′,v

τx′ ,v )|2
]

≤ supv∈V

{
3E

[
|e

θ
2
τx,vg(X0,x,v

τx,v )− e
θ
2
(τx,v∧τx′,v)g(X0,x,v

τx,v∧τx′,v
)|2

]

+3E
[
|e

θ
2
τx′,vg(X0,x′,v

τx′ ,v )− e
θ
2
(τx,v∧τx′,v)g(X0,x′,v

τx,v∧τx′,v
)|2

]

+3E
[
eθ(τx,v∧τx′,v)|g(X0,x,v

τx,v∧τx′,v
)− g(X0,x′,v

τx,v∧τx′,v
)|2

]}

≤ 2 supv∈V

{
12
|θ|2

E
[
|e

θ
2
τx,v − e

θ
2
(τx,v∧τx′,v)|2

]
supv∈V

(
‖L(·, v)g(·) + θ

2g(·)‖
2
∞

)

+ 3
|θ|E

[
|eθτx,v − eθ(τx,v∧τx′,v)|

]
supv∈V

(
‖∇g(·)σ(·, v)‖2∞

)

+ 12
|θ|2

E
[
|e

θ
2
τx′,v − e

θ
2
(τx,v∧τx′,v)|2

]
supv∈V

(
‖L(·, v)g(·) + θ

2g(·)‖
2
∞

)

+ 3
|θ|E

[
|eθτx′,v − eθ(τx,v∧τx′,v)|

]
supv∈V

(
‖∇g(·)σ(·, v)‖2∞

)

+3E
[
eθ(τx,v∧τx′,v)|X0,x,v

τx,v∧τx′,v
−X0,x′,v

τx,v∧τx′,v
|2
]
‖∇g‖2∞

}
.

Recall that from Lemma 8 we have

Eeθ(τx,v∧τx′,v)|X0,x,v
τx,v∧τx′,v

−X0,x′,v
τx,v∧τx′,v

|2 ≤ |x− x′|2.

Now we are going to estimate E|e
θ
2
τx,v − e

θ
2
(τx,v∧τx′,v)|2 and E|eθτx,v − eθ(τx,v∧τx′,v)|. Using

Lemma 9, it’s not hard to obtain that there exist constants C > 0, independent of x, x′, v,
such that

E
[
|e

θ
2
τx,v − e

θ
2
(τx,v∧τx′,v)|2

]
≤ 2E

[
|e

θ
2
τx,v − e

θ
2
(τx,v∧τx′,v)|

]
≤ C|x− x′|,

and

E
[
|eθτx,v − eθ(τx,v∧τx′,v)|

]
= E

[
|e

θ
2
τx,v + e

θ
2
(τx,v∧τx′,v)||e

θ
2
τx,v − e

θ
2
(τx,v∧τx′,v)|

]

≤ 2E|e
θ
2
τx,v − e

θ
2
(τx,v∧τx′,v)| ≤ C|x− x′|.

Finally, let us compute I2. For θ < −2[δ]+, we denote c0 := −2[δ]+ − θ > 0. Then, using
Lemma 8 it follows

I2 = sup
v∈V

C−1
2 E[

∫ τx,v∨τx′,v

0
eθr|f(X0,x,v

r , Y 0,x,v
r , Z0,x,v

r , vr)− f(X0,x′,v
r , Y 0,x,v

r , Z0,x,v
r , vr)|

2dr]

≤ supv∈V C−1
2 β2E[

∫ τx,v∨τx′,v

0
eθr|X0,x,v

r −X0,x′,v
r |2dr]

≤ supv∈V C−1
2 β2E[

∫ ∞

0
e−c0re−2[δ]+(r∧(τx,v∨τx′,v))|X0,x,v

r∧(τx,v∨τx′,v)
−X0,x′,v

r∧(τx,v∨τx′,v)
|2dr]

≤ |x− x′|2C−1
2 β2

∫ ∞

0
e−c0rdr ≤

β2

C2c0
|x− x′|2.
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Therefore, there exists a constant C > 0 such that, for all x, x′ ∈ D,

|u(x)− u(x′)| ≤ C|x− x′|1/2.

Remark 11 Let us point out that we can follow the approach of [24] to show the regularity of
u. However, the method of [24] needs the boundedness of f , and translating this method to our
framework, we cannot show that u is Lipschitz continuous, but only 1/2-Hölder continuous.

4 Dynamic programming principle

In this section, we will establish the dynamic programming principle (DPP) for our stochastic
exit time optimal control problem. The main idea is to extend the stochastic backward
semigroup introduced by Peng [35] to BSDEs with random terminal time.

For (x, v) ∈ R
d × V, we recall SDE (2) and the definition of the exit time τx,v (see (3)).

Then, for a given stopping time Θ and a real valued Fτx,v∧Θ-measurable random variable η
satisfying E[eµτx,v |η|2] < +∞, we know from Lemma 4 that the following BSDE

Ỹ 0,x,v
t = η +

∫ τx,v∧Θ

t∧τx,v∧Θ
f(s,X0,x,v

s , Ỹ 0,x,v
s , Z̃0,x,v

s , vs)ds−

∫ τx,v∧Θ

t∧τx,v∧Θ
Z̃0,x,v
s dBs, t ≥ 0,

has a unique solution (Ỹ 0,x,v, Z̃0,x,v) ∈ M2
γ (0, τx,v ∧ Θ;R) ×M2

γ (0, τx,v ∧ Θ;Rm). Moreover,
this solution belongs to M2

µ(0, τx,v ∧Θ;R)×M2
µ(0, τx,v ∧Θ;Rm) and we also have

E[ sup
0≤s≤τx,v∧Θ

eµs|Ỹ 0,x,v
s |2] < ∞.

We define the backward semigroup by setting G0,x,v
s,τx,v∧Θ

[η] := Ỹ 0,x,v
s∧τx,v , and for simplicity we

denote G0,x,v
τx,v∧Θ

[η] := Ỹ 0,x,v
0 . Then obviously, for the solution (Y 0,x,v, Z0,x,v) of BSDE (4), we

have
Y 0,x,v
0 = G0,x,v

τx,v [g(X0,x,v
τx,v )] = G0,x,v

τx,v∧Θ
[Y 0,x,v

τx,v∧Θ
] = G0,x,v

τx,v∧Θ
[Y 0,x,v

Θ ], (8)

since Y 0,x,v
τx,v∧Θ

= Y 0,x,v
Θ . Now we give the main result of this section.

Theorem 12 We suppose (H1)-(H5) are satisfied. We also assume that g ∈ W 2,∞(D) and
the existence of a constant θ such that β2 − 2α < θ ≤ µ and θ < −2[δ]+. Then, for any
stopping time Θ such that EeµΘ < ∞, we have

u(x) = inf
v∈V

G0,x,v
τx,v∧Θ

[u(X0,x,v
τx,v∧Θ

)].

(Recall that u(x) := inf
v∈V

Y 0,x,v
0 ; see (5)).

Proof. The theorem can be obtained directly from the following Lemmas 15 and 16.

To state the Lemmas 15 and 16, we have first to establish two results. For this end, for
a given stopping time Θ, we define the time-shift operator πΘ : Ω → Ω,

πΘ(ω)s := ω(Θ(ω) + s)− ω(Θ(ω)), ω ∈ Ω

12



(Recall that Ω = C0(R+;R
m)). We also introduce the filtration FΘ

s := σ{BΘ
r := BΘ+r −

BΘ, 0 ≤ r ≤ s} ∨ NP, s ≥ 0, and we denote by VΘ := L0
FΘ(0,+∞;V ) the set of all V -valued

{FΘ
s }-progressively measurable processes. Then we have, with the identification of drdP-a.e.

coinciding processes,
VΘ = V(πΘ) := {v(πΘ), v ∈ V} . (9)

Indeed, on the one hand, for any v ∈ VΘ, there exists a non-anticipating measurable function
ṽ : R+×C0(R+;R

m) → V , such that vr = ṽ(r,BΘ), drdP-a.e. Let v̂r := ṽ(r,B), r ≥ 0. Then
v̂ ∈ V and v̂(πΘ) = ṽ(·, BΘ) = v, drdP-a.e. Thus, with the identification of control processes
which coincides drdP-a.e., we have VΘ ⊆ V(πΘ). On the other hand, for all v ∈ V, there exists
a non-anticipating measurable function ṽ : R+ × C0(R+;R

m) → V , such that vr = ṽ(r,B),
drdP-a.e., and v(πΘ) = ṽ(·, BΘ) ∈ VΘ. This means that VΘ ⊇ V(πΘ). Therefore, (9) is
proved.

Lemma 13 Under the assumptions (H1)-(H5), for a given stopping time Θ such that EeµΘ <
∞ and for any ξ ∈ L2(FΘ,D) and v ∈ V, we consider

XΘ,ξ,v
t = ξ +

∫ t

Θ
b(XΘ,ξ,v

s , vs)ds +

∫ t

Θ
σ(XΘ,ξ,v

s , vs)dBs, t ≥ Θ, (10)

and we define τΘ,ξ,v = inf{t ≥ Θ : XΘ,ξ,v
t /∈ D}. Then we have, for ξ = x ∈ D,

u(x) = inf
v∈V

Y 0,x,v
0 = essinfv∈VY

Θ,x,v
Θ , P-a.s., x ∈ D,

where (Y Θ,ξ,v, ZΘ,ξ,v) is the solution of the following BSDE, for t ≥ Θ,

Y Θ,ξ,v
t = g(XΘ,ξ,v

τΘ,ξ,v
) +

∫ τΘ,ξ,v

t∧τΘ,ξ,v

f(XΘ,ξ,v
s , Y Θ,ξ,v

s , ZΘ,ξ,v
s , vs)ds −

∫ τΘ,ξ,v

t∧τΘ,ξ,v

ZΘ,ξ,v
s dBs. (11)

We will cite (10) and (11) as SDE and BSDE with initial data (Θ, ξ), respectively.

Proof. Applying an argument similar to that for Lemma 7 and using EeµΘ < ∞, one can
show that EeµτΘ,x,v < ∞. Then following the proof of Theorem 3, we can show that Y Θ,x,v

s

is well defined.
Step 1: Let us first show that, for v ∈ V,

(X0,x,v
t , Y 0,x,v

t , Z0,x,v
t )(πΘ) = (X

(Θ),x,vΘ

t , Y
(Θ),x,vΘ

t , Z
(Θ),x,vΘ

t ), t ≥ 0, (12)

where (X
(Θ),x,vΘ

t , Y
(Θ),x,vΘ

t , Z
(Θ),x,vΘ

t ) is the unique solution of SDE (2) and BSDE (4) driven
by BΘ with control vΘ = v(πΘ), i.e.





X
(Θ),x,vΘ

t = x+

∫ t

0
b(X(Θ),x,vΘ

s , vΘs )ds +

∫ t

0
σ(X(Θ),x,vΘ

s , vΘs )dB
Θ
s ,

Y
(Θ),x,vΘ

t = g(X
(Θ),x,vΘ
τ(Θ),x,v

) +

∫ τ(Θ),x,v

t∧τ(Θ),x,v

f(X(Θ),x,vΘ

s , Y (Θ),x,vΘ

s , Z(Θ),x,vΘ

s , vΘs )ds

−

∫ τ(Θ),x,v

t∧τ(Θ),x,v

Z(Θ),x,vΘ

s dBΘ
s , t ≥ 0,
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where τ(Θ),x,vΘ = inf{t ≥ 0 : X
(Θ),x,vΘ

t /∈ D}. Indeed, as aforementioned, for any given
v ∈ V, there exists a non-anticipating measurable function ṽ : R+ × C0(R+;R

m) → V
such that v = ṽ(·, B), ds × dP-a.e. Then comparing both (X0,x,v

t , Y 0,x,v
t , Z0,x,v

t )(πΘ) and

(X
(Θ),x,vΘ

t , Y
(Θ),x,vΘ

t , Z
(Θ),x,vΘ

t ), we obtain (12) easily from the uniqueness of the solution to
above system of equations. Related with, we get

τ(Θ),x,vΘ = (τx,v)(πΘ). (13)

Step 2: We recall that we work on the classical Wiener space (Ω,F ,P), where Ω :=
C0(R+;R

m), P is Wiener measure and F := B(Ω)∨NP. Then a given stopping time Θ : Ω →
R+ defines the following canonical decomposition:

(Ω,F ,P) ≡ (Ω′,F ′,P′)⊗ (Ω′′,F ′′,P′′),

where Ω′ = Ω′′ = Ω, P
′ := PB∧Θ

(B∧Θ denotes the stopped Brownian motion Bt∧Θ =
ω(t ∧ Θ(ω)), ω ∈ Ω), P

′′ := PBΘ = P, F ′ = B(Ω) ∨ NP′ and F ′′ = B(Ω) ∨ NP′′ . For
ω ∈ Ω, we have ω ≡ (ω′, ω′′) ∈ Ω′ ⊗ Ω′′, where ω′(s) = ω∧Θ(s) := ω(s ∧ Θ(ω)) and ω′′(s) =
ω(Θ(ω) + s) − ω(Θ(ω)), s ≥ 0. This leads for (ω′, ω′′) ∈ Ω′ ⊗ Ω′′ to the identification
ω(s) ≡ ω′(s) + ω′′((s −Θ(ω′)+), s ≥ 0.

Recalling now that v = ṽ(·, B), we set

v̂ω
′

(s, ω′′) := ṽ(s+Θ(ω′), ω′, ω′′), ω = (ω′, ω′′).

We observe that, for all ω′ ∈ Ω′, v̂ω
′

is a measurable, non-anticipating function over R+×Ω′′.
This has, in particular, as consequence that v̂ω

′

(·, B) ∈ V.
We claim that for P′-almost all ω′ ∈ Ω′, P-a.s.

XΘ,x,v
Θ+t (ω′, ·) = X

(Θ),x,v̂ω
′

(·,BΘ)
t = (X

0,x,v̂ω
′

(·,B)
t )(πΘ(ω′)), t ≥ 0. (14)

Indeed, recall that

XΘ,x,v
Θ+t = x+

∫ Θ+t

Θ
b(XΘ,x,v

s , vs)ds +

∫ Θ+t

Θ
σ(XΘ,x,v

s , vs)dBs.

Then using v̂ω
′

(s,BΘ(ω)) = ṽ(s+Θ(ω′), ω′, BΘ(ω)), we have for P′-almost all ω′ ∈ Ω′, P-a.s.,

XΘ,x,v
Θ+t (ω′, ·) = x+

(∫ Θ+t

Θ
b(XΘ,x,v

s , ṽ(s,B))ds

)
(ω′, ·) +

(∫ Θ+t

Θ
σ(XΘ,x,v

s , ṽ(s,B))dBs

)
(ω′, ·),

= x+

∫ t

0
b(XΘ,x,v

Θ+s (ω′, ·), v̂ω
′

(s,BΘ))ds +

∫ t

0
σ(XΘ,x,v

Θ+s (ω′, ·), v̂ω
′

(s,BΘ))dBΘ
s ,

t ≥ 0. From the uniqueness of the solution we get

XΘ,x,v
Θ+t (ω′, ·) = X

(Θ),x,v̂ω
′

(·,BΘ)
t t ≥ 0 P-a.s., P

′(dω′)-a.s.

Then (14) is obtained by combining the above equation with (12).

14



We emphasise that, from above discussion, we know that for any stopping time τ , it
follows that

XΘ,x,v
Θ+τ (ω′, ·) = X(Θ),x,v̂ω

′

(·,BΘ)
τ P-a.s., P

′(dω′)-a.s. (15)

Moreover, for P′-almost all ω′ ∈ Ω′, P-a.s.

τΘ,x,v(ω
′, ·) = (τx,v̂ω′(·,B))(πΘ(ω′)) + Θ(ω′) = τ(Θ),x,v̂ω′ (·,BΘ) +Θ(ω′). (16)

Indeed

τΘ,x,v(ω
′, ·) = inf{t ≥ Θ : XΘ,x,v

t /∈ D}(ω′, ·) = inf{t ≥ 0 : XΘ,x,v
Θ+t (ω′, ·) /∈ D}+Θ(ω′),

and using (13) and (14), we obtain P
′(dω′)-a.s., P-a.s.,

τΘ,x,v(ω
′, ·) = inf{t ≥ 0 : X

0,x,v̂ω
′

(·,B)
t /∈ D}(πΘ(ω′)) + Θ(ω′)

= (τx,v̂ω′ (·,B))(πΘ(ω′)) + Θ(ω′)

= τ(Θ),x,v̂ω′ (·,BΘ) +Θ(ω′).

Step 3: In this step we prove that P′(dω′)-a.s., P-a.s.,

Y Θ,x,v
Θ+t (ω′, ·) = Y

(Θ),x,v̂ω
′

(·,BΘ)
t = (Y

0,x,v̂ω
′

(·,B)
t )(πΘ(ω′)), t ≥ 0.

Using(15) and (16), the equation

Y Θ,x,v
Θ+t =

∫ τΘ,x,v

(Θ+t)∧τΘ,x,v

f(XΘ,x,v
s , Y Θ,x,v

s , ZΘ,x,v
s , vs)ds −

∫ τΘ,x,v

(Θ+t)∧τΘ,x,v

ZΘ,x,v
s dBs + g(XΘ,x,v

τΘ,x,v
),

t ≥ 0, takes the form

Y Θ,x,v
Θ+t (ω′, ·) =

∫ τ
(Θ),x,v̂ω

′
(·,BΘ)

t∧τ
(Θ),x,v̂ω

′
(·,BΘ)

f(X(Θ),x,v̂ω
′

(·,BΘ)
s , Y Θ,x,v

Θ+s (ω′, ·), ZΘ,x,v
Θ+s (ω′, ·), v̂ω

′

(s,BΘ))ds

−

∫ τ
(Θ),x,v̂ω

′
(·,BΘ)

t∧τ
(Θ),x,v̂ω

′
(·,BΘ)

ZΘ,x,v
Θ+s (ω′, ·)dBΘ

s + g(X(Θ),x,v̂ω
′

(·,BΘ)
τ
(Θ),x,v̂ω

′
(·,BΘ)

), t ≥ 0,

P-a.s., P′(dω′)-a.s., and the uniqueness of the solution yields that

Y Θ,x,v
Θ+t (ω′, ·) = Y

(Θ),x,v̂ω
′

(·,BΘ)
t , P-a.s., P

′(dω′)-a.s.

Finally, (12) allows to conclude. Remark that in particular, for t = 0, we have

Y Θ,x,v
Θ (ω′) = Y

(Θ),x,v̂ω
′

(·,BΘ)
0 = (Y

0,x,v̂ω
′

(·,B)
0 )(πΘ(ω′)), P

′(dω′)-a.s. (17)

(Recall that Y Θ,x,v
Θ is FΘ-measurable).

Step 4: Finally, we have

u(x) = inf
v̄∈V

Y 0,x,v̄
0 = essinfv∈VY

Θ,x,v
Θ , P-a.s.
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Indeed, let v ∈ V. Then due to (17), Y Θ,x,v
Θ (ω′) = Y

0,x,v̂ω
′

(·,B)
0 (πΘ(ω′)), P

′(dω′)-a.s. Recalling

that v̂ω
′

(·, B) ∈ V, ω′ ∈ Ω′, and u(x) as well as Y 0,x,v̄
0 , v̄ ∈ V, are deterministic, it follows

that
Y Θ,x,v
Θ (ω) = Y Θ,x,v

Θ (ω′) ≥ essinfv̄∈V(Y
0,x,v̄
0 )(πΘ(ω′)) = u(x), P(dω)-a.s.

i.e., for the essential infimum under the probability P,

essinfv∈VY
Θ,x,v
Θ ≥ u(x), P-a.s. (18)

On the other hand, let ε > 0 and v ∈ V be such that Y 0,x,v
0 ≤ u(x)+ ε (Recall that Y 0,x,v

0

is deterministic). Then, for ṽ which is a measurable, non-anticipating function on R+ × Ω
such that v = ṽ(·, B), drdP-a.e., using (17) we have

u(x) + ε ≥ Y 0,x,v
0 = (Y

0,x,ṽ(·,B)
0 )(πΘ(ω′)) = Y Θ,x,v̄

Θ (ω′), P
′(dω′)-a.s.

and hence, for ω = (ω′, ω′′), P(dω)-a.s. Here, v̄ ∈ V is defined as follows: for some arbitrarily
fixed v0 ∈ V , for ω = (ω′, ω′′),

v̄(s, ω) = v̄(s, ω′, ω′′) =

{
v0, s ∈ [0,Θ(ω′)],

ṽ(s−Θ(ω′), ω′′) = ṽ(s −Θ(ω′), BΘ(ω′)(ω)), s ∈ [Θ(ω′),∞).

Consequently, with respect to the essinf under P,

u(x) + ε ≥ essinfv∈VY
Θ,x,v
Θ , P-a.s.,

and taking into account the arbitrariness of ε > 0, we obtain

u(x) ≥ essinfv∈VY
Θ,x,v
Θ , P-a.s.

Combined with (18), this yields the relation we had to show.

Lemma 14 Under the assumptions of Theorem 12, let Θ be a stopping time with EeµΘ < ∞
and ξ ∈ L2(FΘ;R

d). Then, for all v ∈ V, we have

u(ξ) ≤ Y Θ,ξ,v
Θ , P-a.s. (19)

Conversely, for all ε > 0, there exists vε ∈ V, such that

u(ξ) + ε ≥ Y Θ,ξ,vε

Θ , P-a.s. (20)

Proof. Let ξ, ξ′ ∈ L2(FΘ;R
d). Then with the notations introduced in the proof of Theorem

13, we have ξ(ω) = ξ(ω′) and ξ′(ω) = ξ′(ω′), for ω ≡ (ω′, ω′′) ∈ Ω′⊗Ω′′. Therefore, for Y Θ,ξ,v

and Y Θ,ξ′,v defined in Lemma 13, similarly to (17) we see that

Y Θ,ξ,v
Θ (ω′) = Y

(Θ),ξ(ω′),v̂ω
′

(·,BΘ)
0 = Y

0,ξ(ω′),v̂ω
′

(·,B)
0 (πΘ(ω′)), P

′(dω′)-a.s.,

and

Y Θ,ξ′,v
Θ (ω′) = Y

(Θ),ξ′(ω′),v̂ω
′

(·,BΘ)
0 = Y

0,ξ′(ω′),v̂ω
′

(·,B
0 (πΘ(ω′)), P

′(dω′)-a.s.
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Then, for all v ∈ V, P′(dω′)-a.s.,

∣∣∣Y Θ,ξ,v
Θ (ω′)− Y Θ,ξ′,v

Θ (ω′)
∣∣∣ =

∣∣∣∣
(
Y

0,ξ(ω′),v̂ω
′

(·,B)
0 − Y

0,ξ′(ω′),v̂ω
′

(·,B)
0

)
(πΘ(ω′))

∣∣∣∣

=

∣∣∣∣Y
0,ξ(ω′),v̂ω

′

(·,B)
0 − Y

0,ξ′(ω′),v̂ω
′

(·,B)
0

∣∣∣∣

where we used the fact that for fixed ω′ ∈ Ω′, Y
0,ξ(ω′),v̂ω

′

(·,B)
0 and Y

0,ξ′(ω′),v̂ω
′

(·,B)
0 are deter-

ministic. On the other hand, from Theorem 10 it follows
∣∣∣∣Y

0,ξ(ω′),v̂ω
′

(·,B)
0 − Y

0,ξ′(ω′),v̂ω
′

(·,B)
0

∣∣∣∣ ≤ C|ξ(ω′)− ξ′(ω′)|1/2,

for a constant C independent of ω′ ∈ Ω′. Consequently, for all ξ, ξ′ ∈ L2(FΘ;R
d) and v ∈ V,

∣∣∣Y Θ,ξ,v
Θ − Y Θ,ξ′,v

Θ

∣∣∣ ≤ C|ξ − ξ′|1/2, P-a.s.

Thus, in order to prove (19), we only need to show that u(ξ) ≤ Y Θ,ξ,v
Θ , P-a.s., for all ξ

taking the form ξ =
∑∞

i=1 1Ai
xi, where {Ai}

∞
i=1 is a partition of (Ω,FΘ) and xi ∈ R

d, i ≥ 1.
Following the argument of Peng [35], the uniqueness of the solution of SDE and BSDE with
initial data (Θ, ξ) yields

Y Θ,ξ,v
Θ =

∞∑

i=1

1Ai
Y Θ,xi,v
Θ .

From Lemma 13 we know u(x) = essinfv∈VY
Θ,x,v
Θ , x ∈ R

d. Hence,

u(ξ) = u(

∞∑

i=1

1Ai
xi) =

∞∑

i=1

1Ai
u(xi) ≤

∞∑

i=1

1Ai
Y Θ,xi,v
Θ = Y Θ,ξ,v

Θ , P-a.s.

We have proved (19). Now let us show (20). For ξ ∈ L2(FΘ;R
d) we construct the random

variable η :=
∑∞

i=1 1Ai
xi ∈ L2(FΘ;R

d), where {Ai}
∞
i=1 is a partition of (Ω,FΘ) and xi ∈ R

d,
i ≥ 1 s.t.

|η − ξ| ≤
1

C2

(ε
3

)2
,

where C is the constant as in Theorem 10. Then, from the 1/2-Hölder continuity of u(x) and
Y Θ,x,v
Θ w.r.t. x we have

|u(ξ)− u(η)| ≤
ε

3
, |Y Θ,ξ,v

Θ − Y Θ,η,v
Θ | ≤

ε

3
, a.s. (21)

From Lemma 13 we know u(x) = essinfv∈VY
Θ,x,v
Θ , P-a.s. Thus, for every i ≥ 1, there

exist a sequence {vi,j}j≥1 ⊂ V such that u(xi) = infj≥1 Y
Θ,xi,vi,j

Θ , P-a.s. We define Γ̃i,j :=

{u(xi) +
ε
3 ≥ Y Θ,xi,v

i,j

Θ } ∈ FΘ, j ≥ 1. Then Γi,1 := Γ̃i,1, Γi,j := Γ̃i,j \ ∪j−1
l=1 Γ̃i,l, j ≥ 2, is a

partition of (Ω,FΘ). Let vi,ε :=
∑

j≥1 1Γi,j
vi,j ∈ V. Then, following again Peng’s argument

[35], we have Y Θ,xi,vi,ε

Θ =
∑

j≥1 1Γi,j
Y Θ,xi,vi,j

Θ . Thus

Y Θ,xi,vi,ε

Θ =
∑

j≥1

1Γi,j
Y Θ,xi,vi,j

Θ ≤
∑

j≥1

1Γi,j
u(xi) +

ε

3
= u(xi) +

ε

3
, P-a.s.
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Consequently, if we put vε :=
∑

i≥1 1Ai
vi,ε =

∑
i≥1

∑
j≥1 1Ai∩Γi,j

vi,j ∈ V, then we have
∑∞

i=1 1Ai
Y Θ,xi,vi,ε

Θ = Y Θ,η,vε

Θ (see, e.g. [35]), and from above inequality combined with (21)
it follows

u(ξ) ≥ u(η)− ε
3 = u(

∑∞
i=1 1Ai

xi)−
ε
3 =

∑∞
i=1 1Ai

u(xi)−
ε
3

≥
∑∞

i=1 1Ai
(Y Θ,xi,v

i,ε

Θ − ε
3)−

ε
3 =

∑∞
i=1 1Ai

Y Θ,xi,v
i,ε

Θ − 2ε
3

= Y Θ,η,vε

Θ − 2ε
3 ≥ Y Θ,ξ,vε

Θ − ε
3 − 2ε

3 = Y Θ,ξ,vε

Θ − ε, P-a.s.

Therefore, we have found a vε ∈ V, such that (20) holds.

Under the assumption of Theorem 12 we have the following both lemmas concerning the
sub- and super-dynamic programming principle.

Lemma 15 Let Θ be a stopping time with EeµΘ < ∞. Then, u(x) ≥ inf
v∈V

G0,x,v
τx,v∧Θ

[u(X0,x,v
τx,v∧Θ

)].

Proof. Recalling the definition of our value function and that of the backward semigroup
(see (5) and (8)), we obtain

u(x) = inf
v∈V

Y 0,x,v
0 = inf

v∈V
G0,x,v

τx,v [g(X0,x,v
τx,v )] = inf

v∈V
G0,x,v

τx,v∧Θ
[Y 0,x,v

τx,v∧Θ
].

From the uniqueness of the solution of the SDE and the BSDE with initial data (τx,v ∧

Θ,X0,x,v
τx,v∧Θ

) combined with Lemma 14 (19) we get

Y 0,x,v
τx,v∧Θ

= Y
τx,v∧Θ,X0,x,v

τx,v∧Θ,v

τx,v∧Θ
≥ u(X0,x,v

τx,v∧Θ
), P-a.s.

Finally, the comparison theorem for BSDEs (see Lemma 6) yields

u(x) = inf
v∈V

G0,x,v
τx,v∧Θ

[Y
τx,v∧Θ,X0,x,v

τx,v∧Θ,v

τx,v∧Θ
] ≥ inf

v∈V
G0,x,v

τx,v∧Θ
[u(X0,x,v

τx,v∧Θ
)].

Lemma 16 Under the same assumption as in Lemma 15 we have

u(x) ≤ inf
v∈V

G0,x,v
τx,v∧Θ

[u(X0,x,v
τx,v∧Θ

)].

Proof. From Lemma 14 (20), we know that, for arbitrary ε > 0, there exists vε ∈ V such
that

u(X0,x,v
τx,v∧Θ

) ≥ Y
τx,v∧Θ,X0,x,v

τx,v∧Θ,vε

τx,v∧Θ
− ε.

Then from the comparison theorem for BSDEs it follows that

inf
v∈V

G0,x,v
τx,v∧Θ

[u(X0,x,v
τx,v∧Θ

)] ≥ inf
v∈V

G0,x,v
τx,v∧Θ

[Y
τx,v∧Θ,X0,x,v

τx,v∧Θ,vε

τx,v∧Θ
− ε].

With the help of Lemma 5 and the definition of backward semigroup we deduce that there
exists a constant C independent of ε s.t.

inf
v∈V

G0,x,v
τx,v∧Θ

[Y
τx,v∧Θ,X0,x,v

τx,v∧Θ,vε

τx,v∧Θ
− ε] ≥ inf

v∈V
G0,x,v

τx,v∧Θ
[Y

τx,v∧Θ,X0,x,v
τx,v∧Θ,vε

τx,v∧Θ
]− Cε.
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One the other hand, as already indicated in the proof of Lemma 15,

u(x) = inf
v∈V

G0,x,v
τx,v∧Θ

[Y 0,x,v
τx,v∧Θ

] = inf
v∈V

G0,x,v
τx,v∧Θ

[Y
τx,v∧Θ,X0,x,v

τx,v∧Θ,v

τx,v∧Θ
],

so we have that, by combining the above estimates,

inf
v∈V

G0,x,v
τx,v∧Θ

[u(X0,x,v
τx,v∧Θ

)] ≥ inf
v∈V

G0,x,v
τx,v∧Θ

[Y
τx,v∧Θ,X0,x,v

τx,v∧Θ,vε

τx,v∧Θ
]−Cε ≥ u(x)− Cε.

Finally, since ε is arbitrary, the proof is completed.

Remark that the Lemmas 15 and 16 just prove Theorem 12.

5 Generalized HJB equation with Dirichlet boundary

In this section we consider the following generalized Hamilton-Jacobi-Bellman equation with
Dirichlet boundary:





inf
v∈V

{L(x, v)u(x) + f(x, u(x),∇u(x)σ(x, v), v)} = 0, x ∈ D,

u(x) = g(x), x ∈ ∂D,
(22)

where D is the bounded domain in R
d, and V is the compact metric space in R

k, introduced
in Section 2. For u ∈ C2(D) and (x, v) ∈ D × V , we have put

L(x, v)u(x) :=
1

2

d∑

i,j=1

(σσ∗)i,j(x, v)
∂2u

∂xi∂xj
(x) +

d∑

i=1

bi(x, v)
∂u

∂xi
(x),

and we suppose that the coefficients b, σ and f satisfy the assumptions (H1)-(H5) and that
g ∈ C(D).

First, let us recall the definition of a viscosity solution of (22); see Crandall, Ishii and
Lions [7] for more details.

Definition 17 (i) A continuous function u : D → R is called a viscosity subsolution of (22),
if u(x) ≤ g(x), for all x ∈ ∂D, and if, for any ϕ ∈ C2(D) and any local maximum point x of
u− ϕ, it holds that

inf
v∈V

{L(x, v)ϕ(x) + f(x, u(x),∇ϕ(x)σ(x, v), v)} ≥ 0, x ∈ D \ ∂D.

(ii) The function u is called a viscosity supersolution of (22), if u(x) ≥ g(x), for all x ∈ ∂D,
and if, for any ϕ ∈ C2(D) and any local minimum point x of u− ϕ, we have

inf
v∈V

{L(x, v)ϕ(x) + f(x, u(x),∇ϕ(x)σ(x, v), v)} ≤ 0, x ∈ D \ ∂D.

(iii) The function u is said to be a viscosity solution of (22), if it is both a viscosity subsolution
and a viscosity supersolution of (22).
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Remark 18 Standard arguments show that it is sufficient to consider test functions in Def-
inition 17 which belong to C3(D), see for instance [23] Remark I.9 or [15] Proposition 2.2.3.

In this section we assume that

(H6) f(x, y, z, v) is Lipschitz continuous w.r.t. y, uniformly on (x, z, v), i.e. there exists a
constants L̃ ≥ 0, such that, for all (x, z, v) ∈ D × R

m × V , y1, y2 ∈ R,

|f(x, y1, z, v) − f(x, y2, z, v)| ≤ L̃|y1 − y2|.

We would like to show that the value function u(x) (see (5)) of our stochastic exit time
optimal control problem introduced in Section 2 is the viscosity solution of (22). Motivated
by the BSDE approach of Peng [35], we first give several auxiliary lemmas. First, for arbitrary
but fixed ϕ ∈ C3(D), we set

F (x, y, z, v) := L(x, v)ϕ(x) + f(x, y + ϕ(x), z +∇ϕ(x)σ(x, v), v),

(x, y, z, v) ∈ R
d × R × R

m × V . Recalling that X0,x,v is the solution of SDE (2) and the
stochastic exit time τx,v is defined in (3), we consider the following BSDE with random
terminal time τx,v ∧ ε, for an arbitrary but fixed 0 < ε ≤ 1:

{
−dY 1;0,x,v;ε

s = F (X0,x,v
s , Y 1;0,x,v;ε

s , Z1;0,x,v;ε
s , vs)ds − Z1;0,x,v;ε

s dBs, 0 ≤ s ≤ τx,v ∧ ε,

Y 1;0,x,v;ε
τx,v∧ε = 0.

(23)

Lemma 19 Under the assumptions (H1)-(H6), BSDE (23) has a unique solution (Y 1;0,x,v;ε,
Z1;0,x,v;ε) ∈ M2

γ (0, τx,v ∧ ε;R)×M2
γ (0, τx,v ∧ ε;Rm). The solution also belongs to M2

µ(0, τx,v ∧

ε;R)×M2
µ(0, τx,v ∧ ε;Rm) and satisfies E[ sup

0≤s≤τx,v∧ε
eµs|Y 1;0,x,v;ε

s |2] < ∞. Moreover, we have

Y 1;0,x,v;ε
s∧τx,v∧ε = G0,x,v

s,τx,v∧ε[ϕ(X
0,x,v
τx,v∧ε)]− ϕ(X0,x,v

s∧τx,v∧ε), s ≥ 0, P-a.s. (24)

Proof. It is direct to verify that F (X0,x,v
s , y, z, v) and τx,v∧ε satisfy the conditions of Lemma

4. So we know that BSDE (23) has a unique solution (Y 1;0,x,v;ε, Z1;0,x,v;ε) ∈ M2
γ (0, τx,v∧ε;R)×

M2
γ (0, τx,v ∧ ε;Rm). Moreover, the solution belongs to M2

µ(0, τx,v ∧ ε;R)×M2
µ(0, τx,v ∧ ε;Rm)

and satisfies E[ sup
0≤s≤τx,v∧ε

eµs|Y 1;0,x,v;ε
s |2] < ∞.

It remains to show (24). We recall that G0,x,v
s,τx,v∧ε[ϕ(X

0,x,v
τx,v∧ε)] := Y ϕ;0,x,v;ε

s∧τx,v , where (Y ϕ;0,x,v;ε,

Zϕ;0,x,v;ε) is the solution of the following BSDE

{
−dY ϕ;0,x,v;ε

s = f(X0,x,v
s , Y ϕ;0,x,v;ε

s , Zϕ;0,x,v;ε
s , vs)ds − Zϕ;0,x,v;ε

s dBs, 0 ≤ s ≤ τx,v ∧ ε,

Y ϕ;0,x,v;ε
τx,v∧ε = ϕ(X0,x,v

τx,v∧ε).

Therefore, we only need to show that Y ϕ;0,x,v;ε
s∧τx,v∧ε −ϕ(X0,x,v

s∧τx,v∧ε) = Y 1;0,x,v;ε;ε
s∧τx,v∧ε . But this relation

holds true, it can be verified easily by applying Itô’s formula to ϕ(X0,x,v
s ) and by considering

that at terminal time τx,v ∧ ε, Y ϕ;0,x,v;ε
τx,v∧ε − ϕ(X0,x,v

τx,v∧ε) = 0 = Y 1;0,x,v;ε
τx,v∧ε .
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Lemma 20 For the solution (Y 2;0,x,v;ε, Z2;0,x,v;ε) of the following simple BSDE

{
−dY 2;0,x,v;ε

s = F (x, Y 2;0,x,v;ε
s , Z2;0,x,v;ε

s , vs)ds− Z2;0,x,v;ε
s dBs, 0 ≤ s ≤ τx,v ∧ ε,

Y 2;0,x,v;ε
τx,v∧ε = 0,

(25)

there exists a constant C independent of v, ε and x ∈ D, such that

|Y 1;0,x,v;ε
0 − Y 2;0,x,v;ε

0 | ≤ Cε
3
2 , (26)

and

E

[∫ τx,v∧ε

0

(
|Y 2;0,x,v;ε

s |+ |Z2;0,x,v;ε
s |

)
ds

]
≤ Cε

3
2 . (27)

Proof. Let us first show (26). As b and σ are bounded over D × V , we have for all ε > 0,
v ∈ V, x ∈ D and p ≥ 2,

E

[
sup
t∈[0,ε]

|X0,x,v
t − x|p

]
≤ 2p−1E

[
sup
t∈[0,ε]

∣∣∣∣
∫ t

0
b(X0,x,v

s , vs)ds

∣∣∣∣
p
]

+2p−1E

[
sup
t∈[0,ε]

∣∣∣∣
∫ t

0
σ(X0,x,v

s , vs)dBs

∣∣∣∣
p
]

≤ Cpε
p/2.

(28)

Now, we apply Lemma 5 to the BSDEs (23) and (25). Then for all θ ∈ (β2 − 2α, µ] and for
some constant C independent of v and ε,

E

[∫ τx,v∧ε

0
eθs

(
|Y 1;0,x,v;ε

s − Y 2;0,x,v;ε
s |2 + |Z1;0,x,v;ε

s − Z2;0,x,v;ε
s |2

)
ds

]

≤ CE

[∫ τx,v∧ε

0
eθs|F (X0,x,v

s , Y 2;0,x,v;ε
s , Z2;0,x,v;ε

s , vs)− F (x, Y 2;0,x,v;ε
s , Z2;0,x,v;ε

s , vs)|
2ds

]
.

As we know from Lemma 7 that there is a positive µ > 0, we can take a positive θ in above
inequality. Moreover, from the assumptions (H1), (H3) and (H6), we have

|F (X0,x,v
s , Y 2;0,x,v;ε

s , Z2;0,x,v;ε
s , vs)− F (x, Y 2;0,x,v;ε

s , Z2;0,x,v;ε
s , vs)|

≤ C(1 + |x|2)(|X0,x,v
s − x|+ |X0,x,v

s − x|2)

≤ C(|X0,x,v
s − x|+ |X0,x,v

s − x|2), 0 ≤ s ≤ τx,v.

(Recall that D is bounded). Therefore,

E

[∫ τx,v∧ε

0

(
|Y 1;0,x,v;ε

s − Y 2;0,x,v;ε
s |2 + |Z1;0,x,v;ε

s − Z2;0,x,v;ε
s |2

)
ds

]

≤ CεeµεE

[
sup
t∈[0,ε]

(|X0,x,v
t − x|2 + |X0,x,v

t − x|4)

]
≤ Cεeµε(ε+ ε2).
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Consequently, recalling that both Y 1;0,x,v;ε
0 and Y 2;0,x,v;ε

0 are deterministic, we have

|Y 1;0,x,v;ε
0 − Y 2;0,x,v;ε

0 | =
∣∣∣E

[
Y 1;0,x,v;ε
0 − Y 2;0,x,v;ε

0

]∣∣∣

=

∣∣∣∣E
[∫ τx,v∧ε

0
(F (X0,x,v

s , Y 1;0,x,v;ε
s , Z1;0,x,v;ε

s , vs)− F (x, Y 2;0,x,v;ε
s , Z2;0,x,v;ε

s , vs))ds

]∣∣∣∣

≤ CE

[∫ τx,v∧ε

0

(
|X0,x,v

s − x|+ |X0,x,v
s − x|2

)
ds

]

+CE

[∫ τx,v∧ε

0

(
|Y 1;0,x,v;ε

s − Y 2;0,x,v;ε
s |+ |Z1;0,x,v;ε

s − Z2;0,x,v;ε
s |

)
ds

]

≤ Cε(ε
1
2 + ε) + Cε

1
2

{
E

[∫ τx,v∧ε

0

(
|Y 1;0,x,v;ε

s − Y 2;0,x,v;ε
s |2 + |Z1;0,x,v;ε

s − Z2;0,x,v;ε
s |2

)
ds

]} 1
2

≤ Cε
3
2 .

Now we are going to prove (27). For this end, we apply Itô’s formula to |Y 2;0,x,v;ε
s |2. Recalling

that F (x, ·, ·, v) has a linear growth in (y, z), uniformly in (x, v) ∈ D × V , we obtain

E

[
|Y 2;0,x,v;ε

τx,v∧s |2 +

∫ τx,v∧ε

τx,v∧s
|Z2;0,x,v;ε

r |2dr

]

= 2E

[∫ τx,v∧ε

τx,v∧s
Y 2;0,x,v;ε
r F (x, Y 2;0,x,v;ε

r , Z2;0,x,v;ε
r , vs)dr

]

≤ 2CE

[∫ τx,v∧ε

τx,v∧s
|Y 2;0,x,v;ε

r |
(
1 + |Y 2;0,x,v;ε

r |+ |Z2;0,x,v;ε
r |

)
dr

]

≤ CE[τx,v ∧ (ε− s)] + CE

[∫ τx,v∧ε

τx,v∧s
|Y 2;0,x,v;ε

r |2dr

]
+ 1

2E

[∫ τx,v∧ε

τx,v∧s
|Z2;0,x,v;ε

r |2dr

]

≤ Cε+ CE

[∫ τx,v∧ε

τx,v∧s
|Y 2;0,x,v;ε

r |2dr +
1

2

∫ τx,v∧ε

τx,v∧s
|Z2;0,x,v;ε

r |2dr

]
.

Thus, there exists a constant C independent of ε, such that for all s ∈ [0, ε],

E

[
|Y 2;0,x,v;ε

τx,v∧s |2 +

∫ τx,v∧ε

τx,v∧s
|Z2;0,x,v;ε

r |2dr

]

≤ Cε+ CE

[∫ τx,v∧ε

τx,v∧s
|Y 2;0,x,v;ε

r |2dr

]
≤ Cε+ CE

[∫ ε

s
|Y 2;0,x,v;ε

τx,v∧r |2dr

]
,

and the Gronwall inequality yields

E

[
|Y 2;0,x,v;ε

τx,v∧s |2 +

∫ τx,v∧ε

τx,v∧s
|Z2;0,x,v;ε

r |2dr

]
≤ Cε.
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Then, from (25)

E
[∣∣∣Y 2;0,x,v;ε

τx,v∧s

∣∣∣
]

≤ E

[∫ τx,v∧ε

τx,v∧s
|F (x, Y 2;0,x,v;ε

r , Z2;0,x,v;ε
r , vr)|dr

]

≤ CE

[∫ τx,v∧ε

τx,v∧s

(
1 + |Y 2;0,x,v;ε

r |+ |Z2;0,x,v;ε
r |

)
dr

]
≤ Cε, s ∈ [0, ε].

On the other hand, we obtain from the latter estimates

E

[∫ τx,v∧ε

0
|Z2;0,x,v;ε

r |2dr

]
= E

[∣∣∣∣
∫ τx,v∧ε

0
Z2;0,x,v;ε
r dBr

∣∣∣∣
2
]

≤ 2εE

[∫ τx,v∧ε

0

∣∣F (x, Y 2;0,x,v;ε
r , Z2;0,x,v;ε

r , vr)
∣∣2 dr

]
+ 2|Y 2;0,x,v;ε

0 |2

≤ CεE

[∫ τx,v∧ε

0

(
1 + |Y 2;0,x,v;ε

r |+ |Z2;0,x,v;ε
r |

)2
dr

]
+ 2Cε2 ≤ Cε2.

Therefore,

E

∫ τx,v∧ε

0

(
|Y 2;0,x,v;ε

s |+ |Z2;0,x,v;ε
s |

)
ds ≤ Cε2 + ε

1
2

{
E

[∫ τx,v∧ε

0
|Z2;0,x,v;ε

r |2dr

]} 1
2

≤ Cε
3
2 .

Now we define
F0(x, y, z) := inf

v∈V
F (x, y, z, v).

With (H1)-(H6) we can check that F (x, y, z, v) is Lipschitz continuous in x, y, z, uniformly
w.r.t. v (we denote the Lipschitz constant by L0). Moreover, for arbitrary v ∈ V ,

F (x, y, z, v) ≥ F (x, 0, 0, v) − L0|y| − L0|z|

≥ inf
v∈V

F (x, 0, 0, v) − L0|y| − L0|z|

= F0(x, 0, 0) − L0|y| − L0|z|.

Let us consider the following BSDE




−dY 3;0,x,v
s =

(
F0(x, 0, 0) − L0|Y

3;0,x,v
s | − L0|Z

3;0,x,v
s |

)
ds− Z3;0,x,v

s dBs, 0 ≤ s ≤ τx,v ∧ ε,

Y 3;0,x,v
τx,v∧ε = 0.

(29)
By setting Y 3;0,x,v

s = 0, Z3;0,x,v
s = 0, for s ∈ [τx,v ∧ ε, ε], we have that (29) is equivalent to the

following BSDE




−dY 3;0,x,v
s = 1{s≤τx,v∧ε}

(
F0(x, 0, 0) − L0|Y

3;0,x,v
s | − L0|Z

3;0,x,v
s |

)
ds− Z3;0,x,v

s dBs, s ∈ [0, ε],

Y 3;0,x,v
ε = 0.

(30)
We need the following lemma
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Lemma 21 Under the assumptions (H1)-(H6) we have

Y 3;0,x,v
s ≤ Y 2;0,x,v;ε

s , for all s ∈ [0, τx,v ∧ ε], v ∈ V, P-a.s. (31)

Moreover, for x ∈ D \ ∂D, there exists a constant C independent of ε and v such that

|Y 3;0,x,v
0 − Y 4;0,x

0 | ≤ Cε
3
2 , (32)

where Y 4;0,x
s is the solution of the following ordinary differential equation





−dY 4;0,x
s =

(
F0(x, 0, 0) − L0|Y

4;0,x
s |

)
ds, s ∈ [0, ε],

Y 4;0,x
ε = 0.

(33)

Proof. Comparing (25) and (29) and using F0(x, 0, 0) − L0|y| − L0|z| ≤ F (x, y, z, v), for all
v ∈ V , Lemma 6 yields (31). To complete the proof, it remains to show (32).

First, one can check that the solution of (33) is given by

Y 4;0,x
s =

{ 1
L0

F0(x, 0, 0)(1 − e−L0(ε−s)), F0(x, 0, 0) ≥ 0, s ∈ [0, ε],

1
L0

F0(x, 0, 0)(e
L0(ε−s) − 1), F0(x, 0, 0) < 0, s ∈ [0, ε].

(34)

Obviously, |Y 4;0,x
s | ≤ C(ε− s) ≤ Cε, s ∈ [0, ε], and

∣∣F0(x, 0, 0) − L0|Y
4;0,x
s |

∣∣ =
∣∣∣F0(x, 0, 0)e

L0(ε−s)
∣∣∣ ≤ CeL0(ε−s) ≤ C, s ∈ [0, ε]. (35)

By applying Itô’s formula to |Y 3;0,x,v
s − Y 4;0,x

s |2, we deduce from (30) and (33), that

E

[
|Y 3;0,x,v

s − Y 4;0,x
s |2 +

∫ ε

s
|Z3;0,x,v

r |2dr|Fs

]

= −2L0E

[∫ τx,v∧ε

s
(Y 3;0,x,v

r − Y 4;0,x
r )(|Y 3;0,x,v

r | − |Y 4;0,x
r |+ |Z3;0,x,v

r |)dr|Fs

]

+2E

[∫ ε

τx,v∧ε
Y 4;0,x
r (F0(x, 0, 0) − L0|Y

4;0,x
r |)dr|Fs

]

≤ 2(L0 + L2
0)E

[∫ ε

s
|Y 3;0,x,v

r − Y 4;0,x
r |2dr|Fs

]
+ 1

2E

[∫ ε

s
|Z3;0,x,v

r |2dr|Fs

]
+ 2C2ε2.

Thus, there exists a constant C independent of ε and v, such that

E
[
|Y 3;0,x,v

s − Y 4;0,x
s |2|Fs

]
+ 1

2E

[∫ ε

s
|Z3;0,x,v

r |2dr|Fs

]

≤ 2(L0 + L2
0)E

[∫ ε

s
|Y 3;0,x,v

r − Y 4;0,x
r |2dr|Fs

]
+Cε2,

and the Gronwall inequality yields

E

[
|Y 3;0,x,v

s − Y 4;0,x
s |2 +

∫ ε

s
|Z3;0,x,v

r |2dr|Fs

]
≤ Cε2, s ∈ [0, ε].
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Consequently, |Y 3;0,x,v
s − Y 4;0,x

s | ≤ Cε, s ∈ [0, ε], and

E

[∫ ε

0
|Z3;0,x,v

r |2dr

]
≤ Cε2.

Using the equations (30) and (33) again, and recalling (35), we have

|Y 3;0,x,v
0 − Y 4;0,x

0 | = E
[
|Y 3;0,x,v

0 − Y 4;0,x
0 |

]

≤ L0E

[∫ τx,v∧ε

0
(|Y 3;0,x,v

r − Y 4;0,x
r |+ |Z3;0,x,v

r |)dr

]
+E

[∫ ε

τx,v∧ε
|F0(x, 0, 0) − L0|Y

4;0,x
r ||dr

]

≤ CεE

[
sup

s∈[0,ε]
|Y 3;0,x,v

s − Y 4;0,x
s |

]
+ Cε

1
2

{
E

[∫ ε

0
|Z3;0,x,v

r |2dr

]}1/2

+ CE[ε− ε ∧ τx,v]

≤ Cε
3
2 + CεE[1{τx,v≤ε}].

Noticing that for x ∈ D\∂D we can assume that there exist a δ0 > 0, such that dist(x, ∂D) ≥
δ0 > 0, then from (28), we have, uniformly in v ∈ V,

E[1{τx,v≤ε}] = P(τx,v ≤ ε) ≤ P( sup
s∈[0,ε]

|X0,x,v
s − x| ≥ δ0) ≤

1

|δ0|4
E sup

s∈[0,ε]
|X0,x,v

s − x|4 ≤ Cε2.

Consequently, |Y 3;0,x,v
0 − Y 4;0,x

0 | ≤ Cε
3
2 .

Remark 22 For x ∈ ∂D, we don’t have (32). Indeed, as proved in Lemma 7, under assump-
tion (H4),

∂D = Γ := {x ∈ ∂D : P(τx,v > 0) = 0} , for all v ∈ V.

Consequently, τx,v = 0, (Y 3;0,x,v, Z3;0,x,v) = (0, 0), s ∈ [0, ε], while Y 4;0,x
s = 1

L0
F0(x, 0, 0)(1 −

e−L0(ε−s)), if F0(x, 0, 0) ≥ 0 and Y 4;0,x
s = 1

L0
F0(x, 0, 0)(e

L0(ε−s) − 1), if F0(x, 0, 0) < 0,
s ∈ [0, ε] (see (34)).

Now we can give one of the main results of this section.

Theorem 23 We suppose that the assumptions (H1)-(H6) are satisfied. We also assume
that g ∈ W 2,∞(D) and there exists a constant θ such that β2 − 2α < θ ≤ µ and θ < −2[δ]+.
Then the value function defined by (5) is a viscosity supersolution of (22).

Proof. Let us first check that u(x) ≥ g(x), for x ∈ ∂D. Indeed, we have u(x) = g(x). This
is because for x ∈ ∂D, from above remark, we have τx,υ = 0, for all v ∈ V. Then, from the
definition of the value function and the solution of the BSDE (4), we have u(x) = g(x).

Now we suppose that ϕ ∈ C3(D) and u − ϕ achieves a local minimum (w.l.o.g. we can
assume it to be a global one) at x ∈ D \ ∂D. Then we have τx,v > 0, a.s. We may also
suppose that u(x) = ϕ(x), and hence u(x̄) ≥ ϕ(x̄), for all x̄ ∈ D. Then, given an arbitrary
ε > 0, by the dynamic programming principle (see Theorem 12) it holds

ϕ(x) = u(x) = inf
v∈V

G0,x,v
τx,v∧ε[u(X

0,x,v
τx,v∧ε)],
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and from the comparison theorem for BSDEs (see Lemma 6) and u ≥ ϕ on D we have

inf
v∈V

(
G0,x,v

τx,v∧ε[ϕ(X
0,x,v
τx,v∧ε)]− ϕ(x)

)
≤ inf

v∈V
G0,x,v

τx,v∧ε[u(X
0,x,v
τx,v∧ε)]− ϕ(x) = 0.

Hence, from Lemma 19, it follows that inf
v∈V

Y 1;0,x,v;ε
0 ≤ 0, and we can find ṽ(·) ∈ V depending

on ε such that Y 1;0,x,ṽ;ε
0 ≤ ε

3
2 . Thus, from the Lemmas 20 and 21 (31) we obtain

Y 3;0,x,ṽ
0 ≤ Y 2;0,x,ṽ;ε

0 ≤ Cε
3
2 ,

and Lemma 21 (32) yields that Y 4;0,x
0 ≤ 2Cε

3
2 . Using the explicit expression (34) for Y 4;0,x

0 ,
we obtain

1

L0
F0(x, 0, 0)(1 − e−L0ε) ≤ Cε

3
2 , if F0(x, 0, 0) ≥ 0,

and
1

L0
F0(x, 0, 0)(e

L0ε − 1) ≤ Cε
3
2 , if F0(x, 0, 0) < 0.

Consequently, dividing both sides by ε, and taking the limit ε ց 0, we get always

F0(x, 0, 0) = inf
v∈V

F (x, 0, 0, v) ≤ 0.

Recalling the definition of F , we see that the latter relation is nothing else than

inf
v∈V

{L(x, v)ϕ(x) + f(x, u(x),∇ϕ(x)σ(x, v), v)} ≤ 0, x ∈ D \ ∂D.

We complete the proof.
Now we are going to show that u is a viscosity subsolution.

Theorem 24 Under the assumptions of Theorem 23, the value function defined by (5) is a
viscosity subsolution of (22).

Proof. For x ∈ ∂D, we have u(x) = g(x). We suppose that ϕ ∈ C3(D) and u− ϕ achieves
a global maximum at x ∈ D \ ∂D. Then we have τx,v > 0, a.s. As before, we may also
suppose that u(x) = ϕ(x). Hence u(x̄) ≤ ϕ(x̄), for all x̄ ∈ D. We have to prove that
inf
v∈V

F (x, 0, 0, v) ≥ 0. Let us suppose that it’s not true, i.e. there exists some constant m0 s.t.

inf
v∈V

F (x, 0, 0, v) ≤ −m0 < 0. (36)

The dynamic programming principle (see Theorem 12) implies that

ϕ(x) = u(x) = inf
v∈V

G0,x,v
τx,v∧ε[u(X

0,x,v
τx,v∧ε)].

Then, from the comparison theorem for BSDEs (see Lemma 6) and u ≤ ϕ it follows that

inf
v∈V

(
G0,x,v

τx,v∧ε[ϕ(X
0,x,v
τx,v∧ε)]− ϕ(x)

)
≥ inf

v∈V
G0,x,v

τx,v∧ε[u(X
0,x,v
τx,v∧ε)]− ϕ(x) = 0,
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and from Lemma 19 we have Y 1;0,x,v̄;ε
0 ≥ inf

v∈V
Y 1;0,x,v;ε
0 ≥ 0, where v̄ ∈ V is such that

F (x, 0, 0, v̄) = F0(x, 0, 0) = inf
v∈V

F (x, 0, 0, v). From Lemma 20 (26), we obtain

Y 2;0,x,v̄;ε
0 ≥ −Cε

3
2 . (37)

Taking into account that

Y 2;0,x,v̄;ε
0 = E

[∫ τx,v̄∧ε

0
F (x, Y 2;0,x,v̄;ε

s , Z2;0,x,v̄;ε
s , v̄)ds

]
,

we get from the Lipschitz continuity of F in (y, z), (36) as well as Lemma 20 (27)

Y 2;0,x,v̄;ε
0 ≤ E

[∫ τx,v̄∧ε

0

(
F (x, 0, 0, v̄) + C|Y 2;0,x,v̄;ε

s |+ C|Z2;0,x,v̄;ε
s |

)
ds

]

≤ −m0E [τx,v̄ ∧ ε] + Cε
3
2 ≤ −m0εP(τx,v̄ > ε) + Cε

3
2 .

(38)

Comparing (37) and (38), we have −Cε
3
2 ≤ −m0εP(τx,v̄ > ε) + Cε

3
2 , which implies that

−2Cε
1
2 ≤ −m0P(τx,v̄ > ε). Taking the limit as ε ց 0, we have 0 ≤ −m0P(τx,v̄ > 0) = −m0

(Recall that x ∈ D \ ∂D). But this means m0 ≤ 0, which is in contradiction to (36).

Combining Theorems 23 and 24 we have

Theorem 25 We suppose that the assumptions (H1)-(H6) are satisfied. We also assume
that g ∈ W 2,∞(D) and there exists a constant θ such that β2 − 2α < θ ≤ µ and θ < −2[δ]+.
Then the value function defined by (5) is a viscosity solution of (22).

Finally, we also have the uniqueness of the viscosity solution of HJB equation (22) in the
class of 1/2-Hölder continuous functions on D.

Theorem 26 We suppose that the assumptions (H1)-(H6) are satisfied. Then HJB equation
(22) has at most one viscosity solution in the class of 1/2-Hölder continuous functions on D.

Proof. To prove the theorem, it is sufficient to show that if u1 (resp. u2) is a 1/2-Hölder
continuous subsolution (resp. supersulotion), then u1 ≤ u2 for all x ∈ D. One can check
easily that under assumptions (H1)-(H6),

F := − inf
v∈V

{L(x, v)u(x) + f(x, u(x),∇u(x)σ(x, v), v)}

satisfies the assumptions of Theorem 3.3 [7]. The proof is complete.
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