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MATRIX ARITHMETIC-GEOMETRIC MEAN
AND THE COMPUTATION OF THE LOGARITHM∗

JOÃO R. CARDOSO† AND RUI RALHA‡

Abstract. We investigate the stability of the matrix arithmetic-geometric mean (AGM)
iteration. We show that the classical formulation of this iteration may be not stable (a necessary and
sufficient condition for its stability is given) and investigate the numerical properties of alternative
formulations. It turns out that the so-called Legendre form is the right choice for matrices. Due to
its fast convergence and good numerical properties, our AGM formulation has the potential to play
an important role in the computation of matrix functions. In fact, we developed an algorithm, whose
main block is an optimized AGM scheme, for the computation of the logarithm of a matrix, which is
shown to be competitive, in terms of accuracy, with the state-of-the-art methods. Methods that do
not require an initial reduction to the Schur form are potentially more efficient on parallel comput-
ers. For this reason, our current implementation does not include such reduction and operates with
full matrices till the end. As compared to the state-of-the-art reduction free algorithm, our method
relies more heavily on matrix multiplications, which are highly suited to modern architectures, and
requires a smaller number of multiple right-hand-side linear systems, making it competitive also in
terms of computational efficiency. Our claims are supported with analysis and also with numerical
results produced with a MATLAB code.
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1. Introduction. The arithmetic-geometric mean (AGM) of two positive real
numbers, or two complex numbers with positive real parts, first appeared in a paper
by Lagrange but it was Gauss who studied it in depth and discovered many of its
important properties as well as interesting connections with elliptic integrals. One
of the reasons for their interest in the AGM was the need for accurately calculating
the perimeter of an ellipse and in turn the elliptical orbit of planets. In modern
times, it has been used successfully in fast and high precision computations of many
elementary functions such as log x, ex, cosx, and sinx. For details on theoretical and
computational issues on this iteration we refer the reader to [7, 6, 8, 9, 13] and the
references therein.

The algorithm for the scalar case generalizes in a straightforward way to matrices.
Given a square matrix A with eigenvalues having positive real parts, the matrix AGM
iteration is defined by

Ak+1 =
Ak +Bk

2
, A0 = I,

(1.1)

Bk+1 = (Ak Bk)1/2, B0 = A,
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where k = 0, 1, 2, . . ., and X1/2 denotes the principal matrix square root. It was
shown in [32] that sequences (Ak) and (Bk) have a common limit, which is denoted
by AGM(A), and that the sequence defined by Ck := Ak−Bk converges quadratically
to the zero matrix.

The iteration (1.1) is the “natural” procedure for computing the AGM of two
commuting matrices with eigenvalues having positive real parts and it has been used
by Stickel [32] in the computation of the matrix logarithm. However, Stickel did not
investigate the stability of the procedure (1.1) and, as far as we know, we have been
the first to deal with the stability issue. There is also a variant of the method of [32]
proposed by the same author in [33] but apparently it offers no advantage. It is based
on a modified AGM iteration, with convergence of fourth order, but each iterative
step is much more expensive than a step of the standard AGM. Moreover, it involves
fourth roots instead of square roots.

To investigate the stability of a given matrix iterative scheme, we proceed as
in [19, sect. 5] (see also [11, 20]), where the analysis is carried out by means of the
Fréchet derivative. In this work, we characterize the spectrum of the Fréchet derivative
operator associated with iteration (1.1) and derive a necessary and sufficient condition
for such iteration to be stable, using the eigenvalues of AGM(A). It is shown in
particular that (1.1) may be not stable for some matrices with nonreal eigenvalues.
To overcome this drawback, we propose stable versions and discuss their convergence
and efficient computation. It comes out that the so-called Legendre iterative formula
for AGM has many attractive features that make it a good candidate for an efficient
computation of the AGM. Furthermore, it allows the formulation of the AGM for any
matrix with no eigenvalues on R−0 .

Other extensions of the scalar AGM iteration to matrices and operators can be
found in the literature. Commutativity is not assumed in general, but it is required
that the matrices involved are symmetric positive definite; in the case of operators, the
request is that they are positive definite, linear self-adjoint, and bounded in Hilbert
spaces (see, for instance, [12, 29, 3]). It is also worth mentioning that theoretical
and numerical aspects of geometric means of positive definite matrices have been an
important focus of research in recent years (see, for instance, [5] and the references
therein).

The organization of the paper is as follows. In section 2 we recall some basic facts
concerning the scalar AGM iteration, including some of its connections with elliptic
integrals and logarithms. The theoretical convergence of the standard matrix AGM
iteration is addressed in section 3 and its stability analysis is carried out in section 4 (a
necessary and sufficient condition upon the eigenvalues of the limit matrix is given).
In section 5 new AGM formulations are presented and shown to be stable; a new
result on global convergence of AGM is also presented in this section. In section 6 we
explain why the Legendre form is the right choice for the matrix AGM. In section 7 we
discuss implementation issues; in particular we manage to replace the last iterations of
the AGM with the computation of a few terms of a Taylor expansion, a key point for
the efficiency of our algorithm. In section 8 we present the algorithm that computes
the logarithm of A from AGM(εA), for a carefully chosen small ε; a comparison
of this algorithm with the state-of-the-art methods appears in section 8.1 for the
computational efficiency and in section 8.2 for the numerical accuracy. Finally, in
section 9 some conclusions are drawn.

Notation. ‖.‖ denotes a consistent matrix or operator norm; ‖.‖F and ‖.‖2 stand
for the Frobenius norm and the 2-norm, respectively.
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2. Revisiting the scalar AGM iteration. An interesting historical account
of the deep work of Gauss in the scalar AGM, in particular the relation of AGM
with other fields of mathematics, may be found in [13]. Most of the material of this
section was taken from [7, Chap. 1], [9, sect. 4.8] and we omit proofs and other
technical details. See also [28, 32]. Let a1/2 denote the principal square root of a
complex number a and let Re(a) denote its real part. Assume that z and w are
complex numbers with positive real parts. Then the sequences (ak) and (bk) defined
recursively by

ak+1 =
ak + bk

2
, a0 = z,

(2.1)

bk+1 = (ak bk)1/2, b0= w,

with k = 0, 1, 2, . . ., converge to a common limit called the AGM of z and w which is
denoted by AGM(z, w), that is, AGM(z, w) = limk→∞ ak = limk→∞ bk. Note that the
restrictions Re(z) > 0 and Re(w) > 0 ensure that akbk belongs to the domain of ana-
lyticity of the principal square root C\]−∞, 0]. The convergence of (2.1) is quadratic
in the sense that the sequence (ck) defined by ck := ak − bk converges quadratically
to zero. The iteration is homogeneous, that is, AGM(λz, λw) = λ AGM(z, w), where
Re(λ) > 0, and, consequently, AGM(z, w) = z AGM(1, z−1w). Thus, in most cases,
we can regard AGM as a function depending on a single variable. We will write simply
AGM(z) instead of AGM(1, z) as meaning the complex valued function that assigns,
to each z such that Re(z) > 0, the limit given by (2.1) for a0 = 1 and b0 = z. An
alternative way to express the AGM is

(2.2) AGM(1, z) =

∞∏
n=0

1

2
(1 + κn) ,

where κ0 = z and

(2.3) κn+1 =
2
√
κn

1 + κn
.

This is the so-called Legendre form of the AGM (see, for instance, [7, p. 3]) and will
play an important role in our work.

One important property of AGM(z) is that it is analytic in the open right half
plane. Figure 1 gives an illustration of the values of |AGM(z)| on a rectangle.

We now recall some interesting connections between the AGM and complete el-
liptic integrals of the first kind. The standard notation for these integrals is:

K(z) :=

∫ π/2

0

dθ√
1− z2 sin2 θ

and K ′(z) :=

∫ π/2

0

dθ√
1− (1− z2) sin2 θ

.

Here one assumes that |z| < 1. The variable z is known as the modulus and z′ :=√
1− z2 as the complementary modulus. Note that here the “prime” notation does

not stand for derivatives. It is easy to observe that K(z′) = K ′(z). The identity

(2.4)
1

AGM(z)
=

2

π
K ′(z),
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Fig. 1. Absolute values of the AGM (left) and contours (right) for complex numbers in the
rectangle 0 ≤ x ≤ 3, −3 ≤ y ≤ 3.

which was discovered by Gauss, allows the computation of the elliptic integral K ′(z)
by the AGM iteration. These elliptic integrals are related with the logarithm by

K ′(z) =
2

π
log

(
4

z

)
K(z)

−2

[(
1

2

)2(
1

1× 2

)
z2 +

(
1× 3

2× 4

)2(
1

1× 2
+

1

3× 4

)
z4(2.5)

+

(
1× 3× 5

2× 4× 6

)2(
1

1× 2
+

1

3× 4
+

1

5× 6

)
z6 + · · ·

]

(see [7, (1.3.10)]), which in turn allows a connection between the AGM and the loga-
rithm:

π

2 AGM(z)
= log

(
4

z

)(
1 +O(z2)

)
.

The representation (2.5) of K ′(z) combined with (2.4) has been used to derive algo-
rithms for the computation of the logarithm by the AGM iteration. Since K(z) can
be represented in terms of a hypergeometric series [7, (1.3.6)]

K(z) =
π

2
F

(
1

2
,

1

2
; 1; z2

)
=
π

2

∞∑
i=0

((
1
2

)
i

i!

)2

z2i,

where |z| < 1 and the symbol (a)i denotes the Pochhammer symbol (or rising facto-
rial), which is defined by (a)0 = 1 and (a)i := a(a + 1) . . . (a + i − 1) for any integer
i ≥ 1, from (2.5) some calculation leads to the series expansion

(2.6) K ′(z) = log

(
4

z

)
+

∞∑
i=1

((
1
2

)
i

i!

)2
log

(
4

z

)
−

i−1∑
j=0

2

(2j + 1)(2j + 2)

 z2i.

3. Convergence of the matrix AGM iteration. Let A ∈ Rn×n have eigen-
values on the open right half plane, that is, Re(λ) > 0, for all λ ∈ σ(A); σ(A)
stands for the spectrum of A. Let (Ak) and (Bk) be the sequences of matrices defined
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in (1.1). It is easy to show by induction that for each k = 1, 2, . . ., Ak and Bk com-
mute. This property is very important to guarantee that the recurrence (1.1) is well
defined. In particular, it ensures that σ(AkBk) ⊂ {λµ : λ ∈ σ(Ak), µ ∈ σ(Bk)},
which allows one to conclude that the eigenvalues of AkBk do not lie on the closed
negative real axis and that the principal square root (AkBk)1/2 is well defined. Be-
sides, the eigenvalues of Ak and Bk have positive real parts. Arguments based on
the uniform convergence of (2.1) and the analyticity of AGM(z) are used in [32]
to show that (Ak) and (Bk) always converge to a common limit AGM(A), that is,
AGM(A) := limk→∞Ak = limk→∞Bk . In section 5 we give our own proof of this
global convergence. Note that all the iterates Ak and Bk are functions of A in the
usual sense (see [20, Chap. 1]) and the same holds for their limit AGM(A). Therefore,
the eigenvalues of AGM(A) are of the form AGM(λ), where λ ∈ σ(A), and can be com-
puted by means of the scalar AGM iteration. Moreover, since A is assumed to have
eigenvalues with positive real parts, the same holds for the eigenvalues of AGM(A).

Another issue discussed in [32] is the quadratic convergence of the sequence de-
fined by Ck = Ak − Bk to the zero matrix. Theorem 3.1 below provides a different
approach for understanding the behavior of (1.1) and also proves the quadratic con-
vergence.

Theorem 3.1. Assume that (Ak) and (Bk) are the sequences defined in (1.1) and
that Ck = Ak −Bk. Then, for any consistent matrix norm,

lim
k→∞

‖Ck+1‖
‖Ck‖2

= α,

where α ≤ 1
8

∥∥M−1
∥∥ with M := AGM(A).

Proof. For any k ≥ 1, we have, on one hand,

Ck+1 = Ak+1 −Bk+1 =
Ak +Bk

2
− (AkBk)

1/2
=

1

2

(
A

1/2
k −B1/2

k

)2

,

and, on the other hand, Ck = Ak − Bk = (A
1/2
k − B1/2

k )(A
1/2
k + B

1/2
k ). This gives

C2
k(A

1/2
k +B

1/2
k )−2 = 2Ck+1 and

(3.1) ‖Ck+1‖ ≤
1

2
‖Ck‖2

∥∥∥∥(A1/2
k +B

1/2
k

)−2
∥∥∥∥ .

Since Ak and Bk converge both to M , the result follows (we should point out
that the same result follows from the relation (3) in [26]).

Looking at the bound given by α ≤ 1
8

∥∥M−1
∥∥, one may fear that convergence is

dramatically slowed down when M = AGM(A) is close to being singular. Fortunately,
the eigenvalues of M will not get too small, even when A has tiny eigenvalues (all with
positive real part). Let λ be such a tiny eigenvalue of A. We note that to produce
AGM(1, λ), one single scalar iteration of (2.1) with a0 = 1 and b0 = λ will produce a1

close to 1/2, whereas b1 = λ1/2; in the following steps, the growth of bk will be much
faster than the decrease of ak, until they become of the same order of magnitude.
This is why AGM(1, λ) is not too small even for very small λ. For instance, we have
AGM(1, 1e − 15) ≈ 4.3724e − 2. To illustrate better this nice behavior of the AGM
iteration, we present the following.

Example 3.2. The so-called Hilbert matrix, A = (aij) with aij = 1/(i+ j − 1), is
positive definite but very close to singularity even for moderate sizes n. Therefore, it
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provides a good case to test the convergence of the AGM iteration. For n = 11 (the
smallest eigenvalue of A is 3.3631e − 015) we get the results presented in Table 1.
Starting with ‖(I +A1/2)−2‖2 ≈ 1, there is only a very moderate increase, with k, of

the values ‖(A1/2
k−1 + B

1/2
k−1)−2‖2 in the third column of the table. As a result of this,

the error ‖Ak −Bk‖2 converges to zero in a clear quadratic regimen. We finish the
example with the observation that the equality holds in (3.1), in the 2-norm, for a
normal matrix A with eigenvalues on the open right half plane.

Table 1
The convergence of iteration (1.1) for A = hilb(11).

k ‖Ak −Bk‖2

∥∥∥∥(A1/2
k−1 +B

1/2
k−1

)−2
∥∥∥∥
2

1 5.0000e-001 1.0000e+000
2 2.4983e-001 1.9986e+000
3 1.1856e-001 3.7990e+000
4 3.7231e-002 5.2976e+000
5 3.8268e-003 5.5215e+000
6 4.0447e-005 5.5239e+000
7 4.5185e-009 5.5239e+000
8 1.9627e-015 5.5239e+000

The use of ‖Ak −Bk‖ as a measure for the convergence is well justified by the
fact that, for Ak and Bk close enough, i.e., for

∥∥I −AkB−1
k

∥∥ < 1/2, it is

‖AGM(A)−Ak‖ ≤
1

2
‖Ak −Bk‖

(
1 +

1

8
+ · · ·+ 1

82k−1
+ · · ·

)
,

which gives ‖AGM(A)−Ak‖ ≤ ‖Ak −Bk‖ (this is Corollary of Lemma 5 in [26]) and
is easily improved to

‖AGM(A)−Ak‖ ≤
1

2
‖Ak −Bk‖

(
1 +

1/8

1− 1/82

)
≈ 0.5635 ‖Ak −Bk‖ .

4. Stability analysis of matrix AGM iteration. It is well known that the
stability of a matrix iteration is crucial for its success [20, sect. 4.9], [19]. In finite
precision arithmetic a loss of commutativity and rounding errors amplification are
frequent so that unstable matrix iterations can fail to converge. An important tool
to assess the stability of a matrix iteration is the Fréchet derivative. Given a map
f : Rm×n → Rm×n, the Fréchet derivative of f at X ∈ Rm×n in the direction
of E ∈ Rm×n is a linear operator Lf (X) that maps the “direction matrix” E to
Lf (X,E) such that

lim
E→0

‖f(X + E)− f(X)− Lf (X,E)‖
‖E‖

= 0.

The Fréchet derivative of the matrix function f may not exist at X, but if it does
it is unique and coincides with the directional (or Gâteaux) derivative of f at X in
the direction E. Hence the existence of the Fréchet derivative guarantees that for any
E ∈ Rm×n,

Lf (X,E) = lim
t→0

f(X + tE)− f(X)

t
.

Any consistent matrix norm ‖.‖ on Rm×n induces the operator norm ‖Lf (X)‖ :=
max‖E‖=1 ‖Lf (X,E)‖. Note that X and E above are not necessarily square. Here
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one uses the same notation to denote both the matrix norm and the induced operator
norm. For more information on the Fréchet derivative and its properties see, for
instance, [4, Chap. X] and [20, Chap. 3].

Now we recall a necessary and sufficient condition for a matrix iteration to be
stable (this should not be confused with the more usual “numerical stability”). See
[20, p. 97] and also Problem 4.6 and its solution on p. 357 of [20].

Lemma 4.1. Consider the matrix iteration Xk+1 = f(Xk) with a fixed point M
and assume that f is Fréchet differentiable at M . Then the iteration is stable in a
neighborhood of M if and only if the Fréchet derivative Lf (M) has bounded powers,
i.e., if and only if ρ (Lf (M)) ≤ 1, where ρ(.) denotes the spectral radius, and any
eigenvalue λ of Lf (M) such that |λ| = 1 is semisimple, that is, λ appears only in
Jordan blocks of size 1× 1.

To investigate the stability of (1.1), consider the iteration function

f(X,Y ) =

 X+Y
2

(XY )1/2

 ,
where X, Y ∈ Rn×n are square matrices such that XY has no eigenvalues on the
closed negative real axis. Some calculation gives the following expression for the
Fréchet derivative of f at (X,Y ) in the direction of (E,F ):

Lf (X,Y ;E,F ) =

 E+F
2

L

 ,
where L is the unique solution of the Sylvester equation (XY )1/2L + L(XY )1/2 =
EY +XF. If Z ∈ Rn×n has eigenvalues with positive real parts, any pair of the form
(Z,Z) is a fixed point of f . However, since both sequences (Ak) and (Bk) converge
to AGM(A), the fixed point that matters in our analysis is (AGM(A),AGM(A)) for
some matrix A ∈ Rn×n with eigenvalues on the open right half plane. At the fixed
point (M,M) (we recall that M = AGM(A)) the Fréchet derivative simplifies to

Lf (M,M ;E,F ) =

[
E+F

2
L

]
,

where L is the unique solution of the Sylvester equation

(4.1) ML+ LM = EM +MF.

According to Lemma 4.1, one needs to find the eigenvalues of the linear operator
Lf (M,M) : R2n×n −→ R2n×n. We fix a basis in R2n×n and then find the correspond-
ing matrixM which has size 2n2× 2n2. To simplify, one uses the canonical basis. As
we shall see below in Lemma 4.2, the spectral radius ρ(M) always satisfies ρ(M) ≥ 1.
If ρ(M) > 1, then Lf (M,M) is not power bounded, but if ρ(M) = 1, then Lf (M,M)
is power bounded if and only if any eigenvalue λ ∈ σ(M) with |λ| = 1 is semisimple
(see Lemma 4.1). Until the end of this section, we shall determine the matrixM and
investigate its eigenstructure.

Let λ be an eigenvalue of Lf (M,M). Then there exists a pair of not simultane-
ously zero matrices (E,F ) such that

(4.2) Lf (M,M ;E,F ) = λ

[
E
F

]
.
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Equation (4.2) can be written as [
E+F

2
L

] = λ[EF ], which in turn is equivalent to

(4.3)

[
vec
(
E+F

2

)
vec(L)

]
= λ

[
vec(E)
vec(F )

]
,

where vec(.) is the linear operator that stacks the columns of a matrix into a long
vector. For basic details on the vec(.) operator and Kronecker products see [16] and
[20, App. B.13]. Applying the vec(.) operator to (4.1), we find

vec(L) = N−1
(
M> ⊗ In

)
vec(E) +N−1 (In ⊗M) vec(F ),

where N := M>⊗In+In⊗M , with ⊗ standing for the Kronecker product and In for
the identity matrix of order n. Replacing vec(L) in (4.3), a little calculation shows
that (4.3) is equivalent to

(4.4)

 1
2In2

1
2In2

N−1
(
M> ⊗ In

)
N−1 (In ⊗M)

 vec(E)

vec(F )

 = λ

 vec(E)

vec(F )

 .
This shows that the matrix of the linear operator Lf (M,M) with respect to the
canonical basis is the 2n2 × 2n2 matrix

(4.5) M :=

 1
2In2

1
2In2

N−1
(
M> ⊗ In

)
N−1 (In ⊗M)

 .
Let N1 := N−1

(
M> ⊗ In

)
and N2 := N−1 (In ⊗M). An interesting feature of the

matrices N1 and N2 is that

(4.6) N1 +N2 = In2 .

From now on, we will use I without the subscript to denote the identity matrix.
The size is clear from the context.

Lemma 4.2. With the notation above, the characteristic polynomial of the matrix
M defined in (4.5) is given by p(λ) = (1− λ)n

2

det
((
N2 − 1

2I
)
− λI

)
.

Proof. Using standard properties of the determinant and formulae for the deter-
minant of (2× 2)-block matrices (see, for instance, [27, sect. 6.2]) and (4.6),

p(λ) = det(M− λI)

= det

[ (
1
2 − λ

)
I 1

2I
N1 N2 − λI

]
= det

[
(1− λ)I 1

2I
(1− λ)I N2 − λI

]
= (1− λ)n

2

det

((
N2 −

1

2
I

)
− λI

)
.

Because λ = 1 is a semisimple eigenvalue of M (it admits n2 linear independent
eigenvectors, as many as its algebraic multiplicity), Lemma 4.2 shows that a sufficient
condition for our operator to be power bounded is the spectral radius of N2 − 1

2I to
be smaller than unity. We have the following.
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Theorem 4.3. For a given n × n matrix A with eigenvalues on the open right
half plane, if λi, i = 1 · · ·n, are the eigenvalues of AGM(A), then the operator defined
in (4.2) is power bounded if and only if, for every pair (i, j), i, j = 1, . . . , n,

(4.7)

∣∣∣∣ λi
λi + λj

− 1

2

∣∣∣∣ ≤ 1,

where λi and λj are semisimple eigenvalues when the equality in (4.7) holds.

Proof. Assume as before that M = AGM(A), N = MT ⊗ In + In ⊗ M , and
N2 = N−1 (In ⊗M). Because N is the Kronecker sum M ⊕MT , its eigenvalues are
λi + λj , i, j = 1, . . . , n. In fact (see Theorem 13.16 in [25]) if (xi, λi) and (zj , λj) are
eigenpairs of M and MT , respectively, then we have

[
(In ⊗M) +

(
MT ⊗ In

)]
(zj ⊗

xi) = (λi + λj)(zj ⊗ xi).
Now, from the block diagonal structure of In ⊗M , with blocks equal to M , it

follows that (In ⊗M) (zj⊗xi) = λi(zj⊗xi) and, according to Theorem 4.3.17 in [23],
a Jordan block of size larger than one is associated with an eigenvalue λi of In ⊗M
if and only if the same is true for λi as an eigenvalue of M . Finally, we have

(4.8)
[
(In ⊗M) +

(
MT ⊗ In

)]−1
(In ⊗M) (zj ⊗ xi) =

λi
λi + λj

(zj ⊗ xi).

Therefore, the matrix M, as given in (4.5), has, in addition to the semisimple eigen-
value λ = 1 (of multiplicity n2), the n2 eigenvalues λi

λi+λj
− 1

2 , i, j = 1, . . . , n. Because

of what we said about the eigenvectors (zj ⊗ xi), we conclude that λi

λi+λj
− 1

2 is

semisimple if and only if λi and λj are both semisimple.

There are many possible values for λp and λq (p, q = 1, . . . , n) such that

(4.9)

∣∣∣∣ λp
λp + λq

− 1

2

∣∣∣∣ = 1.

With λp = a+ bi and λq = c+di, (a, b, c, d) ∈ R4, (4.9) gives place to 3(a2 + b2 + c2 +
d2) + 10(ac + bd) = 0, and this second-degree polynomial in the four variables has,
of course, many zeros in R4 with a and c positive. For instance, if we fix a = c = 1

2
and b = 1, we get d = −1 and d = − 7

3 , so that λp = 1
2 + i satisfies (4.9) both with

λq = 1
2 − i and λq = 1

2 −
7
3 i.

Theorem 4.3 gives a necessary and sufficient condition to find if, for a given matrix
A with eigenvalues with positive real parts, the AGM iteration is stable or not. Instead
of using the spectrum of the Fréchet derivative operator as in Lemma 4.1, Theorem 4.3
enables one to verify the stability of (1.1), in an easier way, by means of the spectrum
of AGM(A). Note that this spectrum can be determined by the scalar AGM iteration.

Remark 4.4. In the particular case of A having real positive eigenvalues only, the
same is true for M = AGM(A) and it is easy to conclude that the inequality in (4.7)
holds. This means that in this particular case (1.1) is stable and it explains the good
results obtained in Example 3.2.

The following example gives a matrix A for which the condition (4.7) is not
satisfied, to illustrate that iteration (1.1) may be not stable.

Example 4.5. Let

A = 10 ∗


48 −35 357 137

−157 122 222 169
−185 −10 −128 −5
−57 −45 279 212


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andM = AGM(A). The eigenvalues of A are nonreal and are located on the open right
half plane. Some of them do not satisfy (4.7), which means that (1.1) is not stable. All
the computations were performed in MATLAB, with unit roundoff u ≈ 1.1 × 10−16.
Till k = 6, the values ‖Ck‖ = ‖Ak−Bk‖ approach zero (it is ‖C6‖ ≈ 10−11) but then
the errors become dominant and make ‖Ck‖ to increase.

5. Stable iterations for the matrix AGM. To avoid the possible instability
of the classical AGM formulation, we provide two stable variants of (1.1). The first
modification proposed for (1.1) is

Mk+1 =
Mk +Nk

2
, M0 = I,

(5.1)

Nk+1 =
(MkNk)1/2 + (NkMk)1/2

2
, N0 = A,

and the second one is

Pk+1 =2P
1/2
k (I + Pk)

−1
, P0 = A,(5.2)

Qk+1 =
Qk
2

(I + Pk+1) , Q0 =
I +A

2
.(5.3)

In exact arithmetic, the recursive formulae (1.1) and (5.1) are equivalent, that is, for
any k, Ak = Mk and Bk = Nk. However, in finite precision arithmetic they produce
quite different results (we shall see that the symmetry of the expression defining Nk
changes the stability behavior, as (Mk) and (Nk) always converge both to AGM(A)).
The iteration (5.2)–(5.3) was obtained from (1.1) by setting Pk := A−1

k Bk and its
connection with the scalar Legendre form in (2.2)–(2.3) is clear. Since Q0 = A1, a
simple induction in (5.3) allows us to conclude that Qk = Ak+1 for k ≥ 0. Therefore,
if convergence occurs (and this will always be the case, as we prove later), (Qk) tends
to AGM(A) as (Pk) converges to the identity matrix. In an alternative to (5.2)–(5.3)
we may write, with Rk := B−1

k Ak (i.e., Rk = P−1
k ),

Rk+1 =
1

2

(
R

1/2
k +R

−1/2
k

)
, R0 = A,(5.4)

Qk+1 =
Qk
2

(
I +R−1

k+1

)
, Q0 =

I +A

2
,(5.5)

but this formulation should be avoided whenever A1/2 is ill-conditioned for inversion.1

Because, as observed before, in exact arithmetic, it is Ak+1 = Mk+1 = Qk, the
theoretical convergence properties are the same for all our AGM iterations (note that
Qk in (5.5) is the same as in (5.3)). It is therefore enough to give a full proof of the
convergence behavior of one of those iterations, disregarding the stability issue for the
moment.

Theorem 5.1. Let A have eigenvalues on the open right half plane. The sequence
(Rk) defined in (5.4) always converges to I and

(5.6) lim
k→∞

‖Rk+1 − I‖
‖Rk − I‖2

≤ 1

8
‖I‖2,

i.e., convergence is ultimately quadratic.

1For instance, for A = hilb(11), the difference between matrices Q1 obtained with (5.5) and (5.3)
has norm O

(
10−11

)
.
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Proof. To prove that Rk always converge to I, we start by showing that its eigen-
values converge to unity. From (5.4), we have for each eigenvalue of Rk+1

(5.7) λ(Rk+1) =
1

2

(
λ(Rk)1/2 + λ(Rk)−1/2

)
=

1 + λ(Rk)

2
√
λ(Rk)

.

The argument of each one of the complex eigenvalues tends to zero because

(5.8) |θk+1| <
1

2
|θk| ,

where θk+1 and θk denote the arguments of λ(Rk+1) and λ(Rk), respectively. Let us
prove (5.8). From (5.7), we may write θk+1 = θk− θk/2, where θk is the argument of
1+λ(Rk). For θk ∈ [0, π[, it is 0 ≤ θk < θk and then −θk/2 < θk+1 < θk/2. Similarly,
if θk ∈] − π, 0], it is θk < θk ≤ 0 and θk/2 < θk+1 < −θk/2. Since the argument of
the eigenvalues of R0 = A is assumed to be in ]− π/2, π/2[, from (5.8) we may write

(5.9) |θk| <
π

2

(
1

2

)k
.

To show that the modulus ρk of each eigenvalue λ(Rk) tends to unity, we start

with the observation that ρk+1 = 1
2 (ρ

1/2
k + ρ

−1/2
k ) ≥ 1 because the arithmetic mean

of a positive number x and its inverse is not smaller than unity (and attains this
minimum at x = 1). Now, the iteration function Φ(ρ) := 1

2

(
ρ1/2 + ρ−1/2

)
has the

unique fixed point ρ = 1, because the equation ρ = Φ(ρ) has the unique root ρ = 1.
From the theory of fixed point iterations (see, for instance, Theorem 2.4 in [10]),
we know that |ρk+1 − 1| ≤ |Φ′(γ)| |ρk − 1| , where γ is a point between ρk and 1.
Therefore, it is γ > 1 and

|Φ′(γ)| = 1

4
γ−1/2

∣∣1− γ−1
∣∣ ≤ 1

4

1√
3

(
1− 1

3

)
≈ 0.0962

(note that Φ′′(ρ) = 0 for ρ = 3). This shows that fast convergence of ρk always
occurs (and convergence gets asymptotically faster because Φ′(γ) tends to zero as ρk
approaches the limit 1). At this point, we may conclude that the fixed point of (5.4)
is similar to an upper triangular matrix T with units in the main diagonal. It follows
that T = 1

2

(
T 1/2 + T−1/2

)
and, since T 1/2 is also upper triangular with units in the

main diagonal, the entries in the diagonal above the main one, diag(T−1/2, 1), of its
inverse, are the reciprocals of the corresponding entries in T 1/2. So, diag(T, 1) has
null entries. Because T 1/2 inherits such structure, simple calculations with Gauss–
Jordan elimination show that the entries in diag(T−1/2, 2) and diag(T−1/2, 3) are
the reciprocals of the corresponding ones in T 1/2. Repeating the reasoning for the
remaining diagonals, one concludes that T = I. Finally, we prove the quadratic
convergence by writing Rk+1 − I = 1

4 (Rk − I)2R−1
k (Rk+1 + I)−1 and

‖Rk+1 − I‖
‖Rk − I‖2

≤ 1

4
‖R−1

k ‖ · ‖(Rk+1 + I)−1‖,

which implies (5.6).

The convergence of (Qk) follows from (5.5) and from the convergence of (Rk)
to I. This implies that (Ak) and (Mk) also converge, in exact arithmetic, and their
convergence is ultimately quadratic.
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Now, we address the stability of our alternative AGM computations. It is im-
portant to stress that, unlike (Ak, Bk) and (Mk, Nk), the iterations Pk and Qk are
decoupled (the same is true for Rk and Qk), i.e., one may iterate with (5.2) alone
until Ps, for some s, is sufficiently close to the identity, and then compute Qs with s
matrix multiplications in (5.3), but, of course, it is preferable to carry out the update
of Qk, for k ≤ s, immediately after computing Pk. Therefore, for the sake of the
stability of the iterations, (5.3) and (5.5) may be left out.

As already pointed out, the stability of the iterations we are tackling here is not
the numerical stability in the usual sense. Later, we will look at the numerical errors
in the finite process of computing Qs.

Theorem 5.2. Let A have eigenvalues on the open right half plane. Then the
iterative formulae (5.1), (5.2), and (5.4) are stable.

Proof. Let

g(X,Y ) =

 X+Y
2

(XY )1/2+(Y X)1/2

2


be the iteration function associated to (5.1). Given matrices X and Y with eigenvalues
on the open right half plane, a little calculation shows that the Fréchet derivative of
g at (X,Y ) in the direction of (E,F ) is given by

Lg(X,Y ;E,F ) =

[
E+F

2

L1+L2

2

]
,

where L1 is the unique solution of the Sylvester equation (XY )1/2L1 +L1(XY )1/2 =
EY +XF and L2 is the unique solution of (Y X)1/2L2 + L1(Y X)1/2 = FX + Y E.
At the fixed point (M,M), with M = AGM(A), the Fréchet derivative is

Lg(M,M ;E,F ) =

[
E+F

2

L1+L2

2

]
,

where L1 and L2 are, respectively, the solutions of the following Sylvester equations

ML1 + L1M = EM +MF,(5.10)

ML2 + L2M = FM +ME.(5.11)

Consider now the Sylvester equation

(5.12) ML+ LM = (E + F )M +M(E + F ),

which has a unique solution. It is obvious that L = E + F is a solution of (5.12). It
turns out, however, that, by (5.10) and (5.11), L = L1 + L2 is another solution of
(5.12). Thus E + F = L1 + L2. Hence

L2
g(M,M ;E,F ) = Lg (M,M ;Lg(M,M ;E,F ))

= Lg(M,M ;E,F ),

that is, Lg(M,M) is idempotent and so the iteration (5.1) is stable.
Let h(X) = 2X1/2(I+X)−1 be the iteration function associated to (5.2). Given

X with eigenvalues on the open right half plane, the Fréchet derivative of h at X in
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Fig. 2. Convergence of ‖Ak+1−Ak‖2/‖Ak+1‖2 to zero in iterations I, II, and III which refers,
respectively, to (1.1), (5.1), and (5.2)–(5.3).

the direction of E is Lh(X,E) = 2L(I +X)−1− 2X1/2(I +X)−1E(I +X)−1, where
L is the unique solution of the Sylvester equation X1/2L+LX1/2 = E. h has a fixed
point at I, where the Fréchet derivative is zero, that is, Lh(I, E) = 0. Therefore (5.2)
is stable.

Let Φ(X) =
(
X1/2 +X−1/2

)
/2 be the iteration function associated to (5.4).

Given X with eigenvalues on the open right half plane, the Fréchet derivative of Φ
at X in the direction of E is LΦ(X,E) =

(
L−X−1/2LX−1/2

)
/2, where L is the

unique solution of the Sylvester equation X1/2L + LX1/2 = E. Φ has a fixed point
at I, where the Fréchet derivative is zero, that is, Lh(I, E) = 0. Therefore (5.4) is
also stable.

To illustrate the stability behavior of iterations (1.1), (5.1), and (5.2)–(5.3), we
consider again the matrix A of Example 4.5. In Figure 2 we plot (in a logarithmic
scale) the values ‖Ak+1 − Ak‖2/‖Ak+1‖2. For a fair comparison, here we have not
used ‖Ak − Bk‖2 because no Bk is computed in (5.2)–(5.3). Since ‖Ak+1 − Ak‖ =
‖Ak −Bk‖/2 this is also a good measure for convergence. As already seen, iterations
produced with (1.1) fail to converge. In contrast, the other two iterative formulae
perform well.

6. Removing the restriction on the real part of the eigenvalues of A.
Until now, and following Stickel [32], we have restricted the computation of AGM(A)
to the case when the eigenvalues of A have positive real parts. The reason for this
restriction is to avoid the possibility of AkBk, for some k, to have some real nega-
tive eigenvalues, in which case the principal square root of AkBk is not defined. If
some eigenvalues of A have negative real parts, such problem may indeed occur when
using (1.1) and (5.1) (in the latter case, for the eigenvalues of MkNk and NkMk).
Even if the eigenvalues of such products do not fall down on R−0 , and thus their
principal square roots do exist, important errors are expected if there are eigenval-
ues close to the closed negative real axis. This is because of the ill-conditioning of
the square roots computation in this case [20, p. 134]. Fortunately, such problem
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does not exist in our Legendre variant (5.2), as a result of (5.8). This also holds for
the eigenvalues of Pk (it is the inverse of Rk). To illustrate this important differ-
ence in our AGM variants, in MATLAB, we define z = (1 + sqrt(2)/2) ∗ (−1 + i);
A = compan(poly([1 + i, 1− i, z, conj(z)])), that is, A is the (real) companion ma-
trix of the polynomial with the given roots (z̄ is the complex conjugate of z). For

k = 2 in (1.1) we get B2 = (A1B1)
1/2

, with A1B1 = (I +A)A1/2/2, and

z1/2 (1 + z) /2 = z̄1/2 (1 + z̄) /2 = −1

2

(
4
√

8

4
+

√
3 +

17

8

√
2

)

is in fact real negative. As a consequence, iterations (5.1) deliver complex M2 and N2

and fail to produce a real matrix for AGM(A). This is not the case of (5.2), which
converges to a real matrix even when the eigenvalues of A have negative real parts
(but not lying in the closed negative real axis). For this reason, it is more practical
to consider the limit of (Qk) in (5.3) as being AGM(A). This does not disagree with
the standard definition of the AGM (see [13, sect. 2]) and produces a correct result
for the logarithm of A in our algorithm to be presented in section 8.

7. Efficient computation of the Legendre matrix AGM. From now on,
we are interested only in the variant expressed in (5.2)–(5.3) because, as we have seen
in the previous two sections, it is the one with the best numerical properties. It is
therefore the basis for our code for the AGM computation.

For the sake of efficiency, the computation of a function of a matrix, f(A), for
complex A, usually starts with the Schur reductionQ∗AQ = T , whereQ is unitary (for
stability reasons) and T is triangular (usually upper). For real A, complex arithmetic
may be avoided by using real orthogonal transformations that produce a quasi-upper
triangular T . In both cases, the computation of f(T ) is then carried out and finally
one computes f(A) = Qf(T )Q∗. There is, however, also an interest in algorithms that
work on the original matrix A without the use of a Schur decomposition. For instance,
in [11, 1] transformation free algorithms are proposed for the computation of matrix
logarithms. These algorithms require only matrix multiplications and the solution
of multiple right-hand-side linear systems (MRHSLS). The authors have observed
that they are potentially more efficient on a parallel computer and they may also be
attractive for higher precision computation.

The AGM, being a function of matrices in the usual sense, may be computed with
or without the initial Schur reduction and this initial choice influences the decision on
which methods to use for computing the required square roots. An efficient algorithm
for the square roots of a matrix in the Schur form is given in [14]. However, because we
are aiming at an algorithm tailored for parallel implementation, we will concentrate
on a reduction free algorithm.

The standard Newton method for computing the principal square root of a matrix
P having no eigenvalues on the closed negative real axis may be defined by the iterative
formula

(7.1) Xp+1 =
1

2

(
Xp +X−1

p P
)

with p = 0, 1, 2, . . . . Starting at X0 = P , the sequence (Xk) converges quadratically
to P 1/2.

It is well known that the Newton iteration (7.1) is unstable, unless the eigenvalues
λi of P are very closely clustered, in the sense that (λi/λj) lies in a ball of radius 2
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about z = 1 in the complex plane, for all i and j (see [20, p. 147]). Stable variants of
the Newton method obtained from (7.1) by a suitable change of variables are studied
in [20, pp. 139–148], being the product form of the Denman and Beavers iteration
(DB-iteration) one of the most popular (see also [15, 11]). An effective implementation
of the product form DB-iteration requires the multiplication of each iteration by a
scaling parameter µp. A widely used version of the scaled product form DB-iteration is

µp = |det(Yp)|−1/(2n)
,

Yp+1 =
1

2

(
I +

µ2
pYp + µ−2

p Y −1
p

2

)
,(7.2)

Zp+1 =
1

2
µpZp

(
I + µ−2

p Y −1
p

)
,

with p = 0, 1, 2, . . .. If P has no negative eigenvalues and Y0 = Z0 = P , it is known
that limp→∞ Yk = I and limp→∞ Zk = P 1/2.

The computation of det(Yp), for the scaling factor µp in (7.2), does not involve a
significant extra cost if the inverse Y −1

p is computed from the LU decomposition of
Yp. However, underflow or overflow may occur in the computation of the determinant.
Overflow causes the failure of function sqrtm dbp,2 for example, for the matrices
P = gallery(′invhess′, n) with n > 150, since det(P ) is equal to the product of the
first n odd numbers. In section 8 we will need to compute square roots of matrices
scaled by very small numbers and, in this context, underflow in the computation of
det(Yp) is likely to occur. Because of this, if U = [uij ]i,j=1,...,n, we will compute
|det(Yp)|−1/(2n) = |u11|−1/(2n) · · · |unn|−1/(2n).

For the computation of P
1/2
k in (5.2) we use sqrtm dbp with the modification just

described and Y0 = Z0 = Pk. As soon as the norm of ∆k := I − Pk becomes small
enough (we discuss this later), one may switch to using

(7.3) P
1/2
k = I − ∆k

2
− ∆2

k

8
− ∆3

k

16
− 5

128
∆4
k −

7

256
∆5
k −

21

1024
∆6
k −

33

2048
∆7
k − · · ·

and

(I + Pk)
−1

= [2I − (I − Pk)]
−1

(7.4)

=
I

2
+

∆k

4
+

∆2
k

8
+

∆3
k

16
+

∆4
k

32
+

∆5
k

64
+

∆6
k

128
+

∆7
k

256
+ · · · .

These series converge for ‖I − Pk‖ < 1 and ‖I − Pk‖ < 2, respectively. Performing
the product of the power series expansions (7.3) and (7.4), we get

(7.5) Pk+1 = I −∆k+1

with

(7.6) ∆k+1 =
∆2
k

8
+

∆3
k

8
+

13

128
∆4
k +

5

64
∆5
k +

61

1024
∆6
k +

47

1024
∆7
k + · · · .

If ‖∆k‖ = ‖I −Pk‖ < 1, the series (7.6) converges and its expression puts in evidence
the quadratic convergence of ∆k to the zero matrix and of Pk to the identity. The

2This is an implementation of (7.2) from the the Matrix Function Toolbox [21], which computes
det(Yp).
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analytical expression for the coefficient dm of ∆m
k , for m ≥ 2, can be derived by the

Cauchy product formula and is given by dm = − 1
2m

∑m
`=0

2`

`!

(
− 1

2

)
`
, where (a)` is the

rising factorial, already mentioned in section 2. These coefficients are easily computed
from dm+1 = dm/2 + rm+1, where rm+1 = rm × (m − 1.5)/m, and starting values
d2 = 1/8 and r2 = 1/8. This also shows that limm→∞ dm = 0.

Therefore, in the last iterations of (5.2)–(5.3), the computation of a square root
and an inverse will be replaced by a few matrix products in the implementation of
(7.5). There is no need to explicitly form Pk+1 because from (5.3) we may write

(7.7) Qk+1 = Qk

(
I − ∆k+1

2

)
and a convenient stopping criterium follows from

(7.8)
‖Qk+1 −Qk‖
‖Qk‖

≤ ‖∆k+1‖
2

.

A practical use of (7.7) requires the approximation of ∆k+1 in (7.6) by a suitable

Taylor polynomial ∆
(p)
k+1 of degree p, with p ≥ 2. The choice of a convenient p depends

on ‖∆k‖, of course. There is no point in computing ∆k+1 to high relative accuracy
because such accuracy will be wasted in (7.7). In fact, in the computation of the

diagonal entries of I − ∆k+1

2 errors of the size of the arithmetic precision will be
produced and these diagonal entries dominate the computation. More precisely, with

Q̃k+1 := Qk(I −∆
(p)
k+1/2), we have

(7.9) Qk+1 − Q̃k+1 = Qk ·
∆k+1 −∆

(p)
k+1

2

and

(7.10)
‖Qk+1 − Q̃k+1‖
‖Qk+1‖

≤ ‖Qk‖
‖Qk+1‖

·
‖∆k+1 −∆

(p)
k+1‖

2
,

which shows that absolute errors of the size of the arithmetic precision in the approxi-

mation ∆k+1 ≈ ∆
(p)
k+1 provide good relative accuracy in Q̃k+1 (note that ‖Qk‖/‖Qk+1‖

is close to unity).
Important savings in the number of matrix multiplications may be achieved if the

polynomials in (7.6) are expressed in a convenient manner. For instance, the seventh
order polynomial may be computed with just four matrix multiplications in the form

∆2
k

8
+

13

128
∆4
k +

61

1024
∆6
k + ∆k

(
∆2
k

8
+

5

64
∆4
k +

47

1024
∆6
k

)
.

As compared to the Horner method, there is a saving of two matrix multiplications
at the cost of storing ∆2

k, ∆4
k, and ∆6

k. For larger values of p the savings are more
significant [20, pp. 244–245]. A slight improvement on this technique for computing
the matrix polynomial has been recently proposed in [31, sect. 3.2].

The first two rows of Table 2 give the highest degree p of the polynomial to
approximate ∆k+1 in (7.6) that may be evaluated with πp matrix multiplications,
with πp = 1, . . . , 8 (see Table 10.3 in [20]).
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Table 2
Order of polynomials and number of matrix multiplications for different values ‖∆k‖.

p 2 3 5 7 9 13 17 21

πp 1 2 3 4 5 6 7 8

‖∆k‖ 1.2e-5 2.0e-4 3.7e-3 1.6e-2 3.8e-2 0.10 0.17 0.24

Since the sequence of coefficients dm is monotonic decreasing, we may write

(7.11) ‖∆k+1 −∆
(p)
k+1‖ ≤ dp+1

‖∆k‖p+1

1− ‖∆k‖

and from this we have computed, for each p, an upper bound ‖∆k‖ that guarantees
a truncation error not larger than ε = 2−52. These bounds are given in the third row
of Table 2.

To illustrate the efficient computation of AGM(A) by a combination of the itera-
tions (5.2)–(5.3) with (7.7), we consider again the matrix A = gallery(′invhess′, 50)
and use the Frobenius norm. Starting at P0 = A and ‖∆0‖ = ‖P0 − I‖ = 1.04e+ 03,
with (5.2), we get Pk, k = 1, . . . , 7, with ‖I − Pk‖ as given in the second row of
Table 3. On the other hand, switching to the Taylor approximations after the third

iteration with (5.2), we compute ∆
(17)
4 ,∆

(5)
5 ,∆

(2)
6 with norms as given in the third

row of Table 3.

Table 3
Sequence of (approximated) values ‖∆k‖ obtained only with (5.2) and from (5.2) combined with

(7.6) for the matrix A = gallery(′invhess′, 50).

k 1 2 3 4 5 6 7
‖I − Pk‖ (5.2) 4.95 1.55 0.11 7.2e-04 4.2e-08 1.35e-15 1.11e-16

‖∆(p)
k ‖ (7.6) 7.2e-04 4.2e-08 1.54e-16

Thus, in our approach that uses (7.6), only the first three iterations involve the
computation of matrix square roots; the remaining iterations are computed essentially

by matrix products. It is interesting to observe that (7.6) computes ∆
(2)
6 such that

‖∆(2)
6 ‖F < ε = 2−52 but for P6, computed with (5.2), we do not have ‖I−P6‖F < 2−52

and an extra step is required. This is due to subtractive cancellation in I −P6 which,
of course, does not occur in our alternative formulation. Each step in (5.2) requires
the computation of a square root and the solution of an MRHSLS.3 The computation
of the square root in each one of the last four steps in (5.2) requires 4, 3, 1, and
1 iterations with (7.2) and each one of these essentially involves the computation of
one matrix inverse and the product of two square matrices. This gives a total of
4 MRHSLS, 9 matrix inversions, and 9 matrix products and this is what we avoid
by using (7.6) with a much lower cost of 11 matrix products (since we have used
polynomials of degree 17, 5, and 2).

The following observation is relevant for the algorithm to be presented in the next
section: when ‖A‖ ≤ 2−26, the computation of P1 = 2A1/2(I +A)−1 in (5.2) may be
replaced with P1 = 2A1/2(I −A), since, for norms such that ‖I‖ = 1, we have

‖ (I +A)
−1 − (I −A) ‖ ≤ ‖A‖2 + ‖A‖3 + · · · = ‖A‖2

1− ‖A‖
.

This saves an MRHSLS at the cost of a matrix multiplication.

3In our MATLAB code, to compute X = ZW−1 we used X = Z/W (right matrix divide) which

is given by X =
(
WT \ZT

)T
.
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8. The AGM iteration and the matrix logarithm. Given a nonsingular
matrix A ∈ Rn×n, any solution of the matrix equation eX = A, where eX denotes
the exponential of the matrix X, is called a logarithm of A. In general, a nonsingular
real matrix may have an infinite number of real and complex logarithms. However, if
A has no eigenvalues on the closed negative real axis, then there exists a unique real
logarithm of A whose eigenvalues lie on the open strip {z ∈ C : −π < Im z < π} of
the complex plane. This unique logarithm is called the principal logarithm of A and
will be denoted by log(A). For background on matrix logarithms and general matrix
functions see [20, 23].

With convenient restrictions on the spectrum of a matrix A and appropriated
modifications, some of the results recalled in section 2 can be extended to matrices.
For instance, if ‖A‖ < 1 we can set

K(A) :=

∫ π/2

0

(
I −A2 sin2 θ

)−1/2
dθ and

K ′(A) :=

∫ π/2

0

(
I − (I −A2) sin2 θ

)−1/2
dθ,

where the integrals are defined componentwise. The following identity also holds:

(8.1) K ′(A) =
π

2
[AGM(A)]

−1
.

Now we revisit two results connecting the matrix AGM with the matrix logarithm
that were originally stated by Stickel in [32, sect. 3]. We provide different statements
and proofs that in our view are more clear and concise. See also [26].

Theorem 8.1. Let A have no eigenvalues on the closed negative real axis and
assume in addition that ‖A‖ < 1. Then

(8.2)
∥∥∥log(A)−

(
log(4)I − π

2
[AGM(A)]−1

)∥∥∥ ≤ ‖A‖2

1− ‖A‖2
(3.4 + ‖ logA‖) .

Proof. Assume that A satisfies the conditions of the theorem and consider the
extension of (2.6) to matrices:

(8.3) K ′(A)−log
(
4A−1

)
=

∞∑
i=1

((
1
2

)
i

i!

)2
log

(
4A−1

)
−

i−1∑
j=0

2

(2j + 1)(2j + 2)

A2i.

A little calculation shows that for any integer i ≥ 0,
((

1
2

)
i
/i!
)2 ≤ 1, and, for any

integer i ≥ 1,
∑i−1
j=0

2
(2j+1)(2j+2) ≤ 2. Applying norms in (8.3) yields

∥∥K ′(A)− log
(
4A−1

)∥∥ ≤ ∥∥log
(
4A−1

)∥∥ ∞∑
i=1

‖A‖2i + 2

∞∑
i=1

‖A‖2i

≤
(∥∥log

(
4A−1

)∥∥+ 2
) ‖A‖2

1− ‖A‖2
.

Attending to (8.1) and log
(
4A−1

)
= (log 4)I − logA, the result follows.

Obviously, for (8.2) to be of practical value for the computation of logA using
AGM(A), it needs to be applied to matrices with very small norm. A simple scaling,
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which is a standard procedure for computing logarithms, makes the approximation in
(8.2) of general use, independently of ‖A‖.

Corollary 8.2. Let A have no negative real eigenvalues and let ε be a sufficiently
small positive number such that ‖A‖ < 1/ε. Then
(8.4)∥∥∥log(A)−

(
log(4/ε)I − π

2
[AGM(εA)]−1

)∥∥∥ ≤ ε2‖A‖2

1− ε2‖A‖2
(3.4 + | log ε|+ ‖ logA‖) ,

Proof. Replace A by εA in (8.2) and use properties of the logarithm.

By taking ε sufficiently small we may get the error in our approximation for logA
as small as required. For the relative error of the approximation of log(A) obtained
from AGM(εA) we have

(8.5)

∥∥log(A)−
(
log(4/ε)I − π

2 [AGM(εA)]−1
)∥∥

‖ log(A)‖
≤ ε2‖A‖2

1− ε2‖A‖2

(
1 +

3.4 + | log ε|
‖ log(A)‖

)
,

which, for practical purposes, may be simply taken as ε2‖A‖2
1−ε2‖A‖2 . Of course, the bound

in the right side of (8.5) grows without limit as A approaches the identity matrix
(whose logarithm is the null matrix) but this is an intrinsic problem of the logarithm,
not an issue raised by our approximation (8.4).

What makes our method a serious candidate for computing log(A) is that a very
small ε has only a moderate impact in the number of iterations required to compute
AGM(εA). For A = gallery(′invhess′, 50), the convergence of the iterations (5.2)–
(7.7) for AGM(εA), with ε = 1, ε = 10−8, ε = 2−26/‖A‖F , and ε = 10−16, may
be observed in Table 4 (in brackets we list those values ‖∆k‖F = ‖I − Pk‖F which
correspond to iterations carried out with (5.2); the rest of them do correspond to
iterations with (7.7)).

Table 4
The convergence to zero of ‖I − Pk‖F in the computation of AGM(εA).

k ε = 1 ε = 10−8 ε = 2−26/‖A‖F ε = 10−16

1 (4.9530) (7.0622) (7.0707) (7.0711)
2 (1.5489) (6.5742) (6.9738) (7.0661)
3 (1.1104e-01) (3.6160) (5.4475) (6.6965)
4 7.2434e-04 (4.6234e-01) (1.5898) (3.9907)
5 4.2029e-08 (5.1101e-03) (6.1127e-02) (5.7805e-01)
6 1.5496e-16 9.8080e-07 8.5775e-05 (6.7611e-03)
7 7.2727e-14 2.9873e-10 9.8948e-07
8 5.0857e-28 7.1832e-21 3.5730e-14
9 9.7042e-29

For the computation of log(A), the adequate choice is

(8.6) ε = 2−26/‖A‖

since such εmakes the bound in (8.5) close to 2−52 provided that ‖ log(A)‖ is not small.
In this framework, we are to compute AGM(P0), with ‖P0‖ = 2−26, and the inverse

(I + P0)
−1

will be well approximated by the polynomial I − P0, as explained at the
end of the previous section. In the next step, ‖P1‖ is typically O

(
10−4

)
and, in the

computation of P2, in (5.2), (I + P1)
−1

may be replaced with I−P1+P 2
1−P 3

1 +P 4
1 . But
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this corresponds to trading an MRHSLS for four matrix multiplications (depending
upon the computing platform it may still pay off).

The complete algorithm is as follows.

Algorithm 8.3. Given A with no real negative eigenvalues (matrix square roots
are computed with sqrtm dbp modified to avoid underflow):

ε = 2−26/‖A‖F
P0 = ε ·A
P1 = 2P

1/2
0 (I − P0)

Q1 = (I + P0)(I + P1)/4
k = 1
while ‖I − Pk‖F > 0.24

Pk+1 = 2P
1/2
k (I + Pk)−1 (solve MRHSLS)

Qk+1 = Qk(I + Pk+1)/2
k = k + 1

end while
∆k = I − Pk
while ‖∆k‖F > 2−52

Use values in Table 2 to find degree of polynomial in (7.6) and compute ∆k+1

Qk+1 = Qk · (I −∆k+1/2)
k = k + 1

end while
log(A) = log(4/ε)I − π

2Q
−1
k

8.1. logm agm versus the state-of-the-art methods. The best existing codes
for computing the logarithm of a matrix are based upon inverse scaling and squaring
(iss). In simple terms, with or without an initial reduction to triangular form, a
number of square roots are carried out until A1/2s

is sufficiently close to identity so
that a Padé approximant will produce an accurate approximation for log

(
A1/2s)

=

log (I +Xs), where Xs = A1/2s − I. Because of the linear convergence of A1/2s

,
the success of the iss approach is a careful balance between the number of initial
square roots and the degree of the Padé approximant. The state-of-the-art iss codes
are those presented in [1] and [2], which improve significantly in speed and accu-
racy on those of Higham [20, Algor. 11.9, 11.10], which in turn are refinements of
those of Cheng et al. [11] and Kenney and Laub [24]. Algorithms 4.1 and 5.2 from
[1] are implemented in MATLAB codes logm new and logm iss full [22], respec-
tively. The first one reduces the given matrix to complex triangular form, whereas
the second one does not include this initial reduction. The algorithms presented in
[2] are implemented in MATLAB codes available from [30]. For real matrices, the
MATLAB function logm frechet real reduces the matrix to Schur form, avoiding
complex arithmetic (in [2] this is shown to be twice as fast as the complex arithmetic
code). Furthermore, with the codes in [30] it is also possible to compute the Fréchet
derivative of log(A) in any direction E and an estimate of the condition number of
the logarithm, to give some idea of the accuracy. In the next section we will deal with
some numerical issues and will compare the accuracy of log(A), for real A, produced
with logm frechet real, logm iss full and our own code, logm agm, that computes
the logarithm of A from AGM(εA).

We devote the rest of this section to computational efficiency and, on this respect,
we restrict the comparison of our code with logm iss full because, for the reasons
expounded at the beginning of section 7, we are interested in reduction free algorithms.
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For a matrix of order n, the number of flops involved in logm iss full is essentially
given by [1, p. 162]

(8.7)

 s∑
j=1

itj

 4n3 + 8mn3/3 + 2(s− 2/3)n3,

where s is the number of square roots, itj is the number of iterations (7.2) in the
jth square root, and m is the degree of the Padé approximant. Each iteration (7.2)
involves one matrix multiplication and one matrix inversion, each one of these oper-
ations requiring 2n3 flops [20, p. 336]. The m degree Padé approximant needs the
solution of m MRHSLS and each one of these takes 8n3/3 flops. Finally, the last term
in (8.7) accounts for the implementation of Algorithm 5.1 in [1] that avoids the direct
computation of Xs = A1/2s−I, where subtractive cancellation in the diagonal entries
of A1/2s

(which tends to I) may be severe. This costs s − 2 matrix multiplications
and one MRHSLS.

We ran logm iss full and logm agm for matrices A = expm(L) (this guarantees
that A has no real negative eigenvalues), where L = rand(n), for different values of
n. For instance, for n = 20, logm iss full required five square roots with (by this
order) 11, 8, 6, 5, and 5 iterations (7.2) and m = 9. On its turn, logm agm used 5 steps
(5.2)–(5.3) and the number of iterations (7.2) was 11, 8, 6, 5, and 4; on top of this,
for the total cost of those 5 steps, there are 4 MRHSLS and 6 matrix multiplications
(in the first step we trade an MRHSLS for a matrix multiplication). Then, for the
updates (7.7), logm agm used polynomials of degrees 21, 5, and 2, which require,
according to Table 2, a total of 12 matrix multiplications. Finally, there is the inverse
computation [AGM(εA)]−1. In Table 5 we give the number of matrix multiplications
(MM), inverses (Inv), and MRHSLS required by the two codes for some values of n
(the results presented may vary slightly from run to run since we are using random
matrices).

Table 5
Major operations required by the two codes: logm iss full (logm agm) for full matrices

A = expm(rand(n)). Number of flops: MM (2n3), Inv (2n3), MRHSLS (8/3n3).

n 10 15 20 25 30

MM 25 (42) 29 (47) 38 (52) 42 (55) 51 (59)
Inv 23 (28) 27 (32) 35 (35) 39 (44) 47 (47)

MRHSLS 10 (4) 10 (4) 10 (4) 11 (5) 14 (5)

In this sample of tests, the number s of square roots carried out by logm iss full

is equal to the number t of AGM steps (5.2)–(5.3) only for the sizes n = 20 (s = t = 5)
and n = 30 (s = t = 6). For the remaining cases, it is t = s + 1 with four iterations
(7.2) for the computation of the square root in the last of those AGM steps. The
number of inverses is larger in logm agm when t > s. In every case, the number of
MRHSLS is smaller in logm agm (t−1) than in logm iss full (m+ 1). On the other
hand, logm agm takes a larger number of matrix multiplications. The decision on the
fastest method will depend in many cases on the computing platform; in the case
n = 30 the winner is certainly logm agm.

8.2. Accuracy issues. In this section we consider certain aspects of the nu-
merical stability (in the usual sense) of our algorithm which uses AGM(εA) for the
computation of log(A). With ε given in (8.6), half of the significant figures of the
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diagonal entries of A are lost in the computation of Q0 = (I + εA)/2 and, at first
glance, one might fear that this will ruin the accuracy of the final result. Fortunately
this is not the case, as we will now show. We have Qk =

(
I+εA

2

)∏k
i=1

(
I+Pi

2

)
and

the following lemma is a direct application of the error bound given in [17, Lem. 3.6]
to our particular case.

Lemma 8.4. Assume that Pk is the matrix defined in (5.2) and set X0 := (I +
εA)/2, Xj := (I + Pj) /2, j = 1, . . . , k. Let ∆Xj ∈ Rn×n and δj > 0 be such that

‖∆Xj‖ ≤ δj‖Xj‖. If Qk :=
∏k
j=0(Xj + ∆Xj), then

∥∥Qk −Qk∥∥ ≤
 k∏
j=0

(1 + δj)− 1

 k∏
j=0

‖Xj‖.

It is straightforward to conclude that, in double format IEEE arithmetic, it is ‖∆X0‖ ≤
2−53‖X0‖ (the division by 2 is exact, of course) and the first term of the sequence
converging to AGM(εA) has a tiny relative error. The computation of P1, in the next
step, involves the square root of P0 = εA and the full representation of every entry
of A will be considered. Because of the excellent properties of the iteration (7.2)
(see [20, p. 146]), it will be ‖∆X1‖ ≤ δ1‖X1‖ with a small δ1, provided that the
problem of computing A1/2 is well-conditioned (this has been discussed in section 6).
For the rest of the computation, some growth of δj is to be expected but since we
are using standard operations on well-conditioned problems, such growth will be very
moderate. In fact, big errors in solving linear systems or inverting a matrix (these
operations are in (5.2) and (7.2)) are usually associated with ill-conditioning of the
matrix. Fortunately, we are in a good position in respect to this. For our initial ma-
trix P0 = εA, the condition number of I + P0 is very close to one, and then it grows
moderately before decreasing toward one as Pk converges to I. For example, in the
computation AGM(εA) with A = gallery(′invhess′, 50), the sequence of condition
numbers of I + Pk is

1.0001, 1.0204, 1.2409, 2.2446, 6.2542, 1.0000, 1.0000, 1.0000.

So, we claim that our computation of AGM(εA) is stable. The final computation in

(8.8) log(A) ≈ logm agm(A) := log(4/ε)I − π

2
[AGM(εA)]−1

raises the issue of subtractive cancellation in the computation of the diagonal entries of
logm agm(A) when the magnitude of these entries is significantly smaller than | log(4/ε)|.
The impact of this in the global error

(8.9)
‖ log(A)− logm agm(A)‖

‖ log(A)‖

depends upon how much decrease in the norm of π
2 [AGM(εA)]−1 occurs in the sub-

traction in (8.8). Such decrease will be dramatic when π
2 [AGM(εA)]−1 is close to the

diagonal matrix log(4/ε)I which gives log(A) close to the null matrix. But this is
just how our method expresses the ill-conditioning of log(A) in such case. If log(A)
is well-conditioned, the error (8.9) will not be large, even if severe cancellation occurs
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in the diagonal entries. To illustrate this, we have tested our code with the matrix4

A =

(
cos(λ) − sin(λ)
sin(λ) cos(λ)

)
for which, with λ = 1, we have

log(A) =

(
0 −1
1 0

)
.

Our code produces

π

2
[AGM(εA)]−1 =

(
19.754694645958452 1.000000000000000
−1.000000000000000 19.754694645958445

)
and log(4/ε) = 19.754694645958441. We recall that ε = 2−26/‖A‖F . The cancel-
lation in the diagonal entries makes the relative error (8.9) grow proportionally to
the decrease in norm of the resulting matrix logm agm(A) giving an error equal to
7.14e − 15, whereas the errors of logm iss full(A) and logm frechet real(A) are
equal to 7.90e− 16 and 0, respectively.

Similarly, a moderate relative error due to such cancellation in the diagonal entries
also occurs with A = gallery(′invhess′, 100). In fact, we have ‖π2 [AGM(εA)]−1‖F ≈
235 and ‖logm frechet real(A)‖F ≈ 46. To compute the error (8.9) we take for
log(A) the result of evaluating the logarithm at 100-decimal digit precision using the
Symbolic Math Toolbox and rounding the result to double precision (in doing this,
we follow the approach used in [1, sect. 6]). In this way, we have computed the errors
of the approximations given by logm agm, logm iss full, and logm frechet real,
which are, respectively, 7.73e− 15, 1.54e− 15, and 5.05e− 15.

In Figure 3 we give a plot of the normwise relative errors in the approximations
given by the three codes for A = expm(rand(n)) and n = 10, 15, 20, 25. We obtained
the “exact” log(A) in the way described before. Solid lines stand for κlog(A) ·u, where
κlog(A) is the estimate for the condition number given by logm frechet real and u
is the unit roundoff. We plot the results obtained in a set of 20 runs for each size n.

In these tests, we found that, for the larger values of n, sqrtm db5 produces
errors about one order of magnitude smaller than the product form sqrtm dbp. A
version of logm agm incorporating sqrtm db instead of sqrtm dbp produces slightly
more accurate results than the other two codes but it does not compensate for the cost
of the extra inverse computations (the product form has the advantage in efficiency
over DB that it trades one of the matrix inversions for a matrix multiplication [20,
p. 142]).

9. Conclusions and further work. We have shown that the extension of the
standard scalar AGM iteration to matrices may be not stable for some matrices with
nonreal eigenvalues. We proved several results that made it clear that the so-called
Legendre formulation not only is stable for any matrix with no eigenvalues on R−0
but also has excellent numerical properties. Furthermore, we found ways to optimize
its computation. Because of all this, our algorithm that uses AGM(εA) (for a con-
veniently chosen small ε) to compute log(A) appears to be very promising. The best

4This is used in [1] to show the numerical instability of a straightforward implementation of
Briggs formula log(A) ≈ 2s log(A1/2s ).

5sqrtm db implements the standard formulation of the DB-iteration; see [21] and [15].
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Fig. 3. Relative errors with logm iss full (squares), logm frechet real (circles), and
logm agm (+) for A = expm(rand(n)), with n = 10 (top left), n = 15 (top right), n = 20 (bottom
left), and n = 25 (bottom right). Solid lines are used for κlog(A) ∗ u.

known methods, all based on inverse scaling and squaring, have had many improve-
ments since they first appeared in 1989. It is therefore a very promising fact that our
algorithm already produces comparable results, in terms of numerical accuracy, with
the best ones. On grounds of efficiency, our reduction-free algorithm, heavily relying
upon matrix multiplications (well suited to parallel architectures), is very competitive
with logm iss full for full matrices. Our study has convinced us that the matrix
AGM has been unfairly overlooked as a useful tool for matrix computations. We are
very much interested in studying the application of our Legendre AGM algorithm to
the computation of other matrix functions.

REFERENCES

[1] A. H. Al-Mohy and N. J. Higham, Improved inverse scaling and squaring for the matrix
logarithm, SIAM J. Sci. Comput., 34 (2012), pp. 153–169.

[2] A. H. Al-Mohy, N. J. Higham, and S. D. Relton, Computing the Fréchet derivative of the
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