
Pricing on Paths: A PTAS for the Highway Problem

Fabrizio Grandoni∗ Thomas Rothvoß†

Abstract

In the highway problem, we are given an n-edge line graph
(the highway), and a set of paths (the drivers), each one
with its own budget. For a given assignment of edge weights
(the tolls), the highway owner collects from each driver the
weight of the associated path, when it does not exceed
the budget of the driver, and zero otherwise. The goal is
choosing weights so as to maximize the profit. A lot of re-
search has been devoted to this apparently simple problem.
The highway problem was shown to be strongly NP-hard
only recently [Elbassioni,Raman,Ray,Sitters-’09]. The best-
known approximation is O(log n/ log log n) [Gamzu,Segev-
’10], which improves on the previous-best O(log n) ap-
proximation [Balcan,Blum-’06]. Better approximations are
known for a number of special cases. Finding a constant (or
better!) approximation algorithm for the general case is a
challenging open problem.

In this paper we present a PTAS for the highway prob-
lem, hence closing the complexity status of the problem. Our
result is based on a novel randomized dissection approach,
which has some points in common with Arora’s quadtree dis-
section for Euclidean network design [Arora-’98]. The basic
idea is enclosing the highway in a bounding path, such that
both the size of the bounding path and the position of the
highway in it are random variables. Then we consider a
recursive O(1)-ary dissection of the bounding path, in sub-
paths of uniform optimal weight. Since the optimal weights
are unknown, we construct the dissection in a bottom-up
fashion via dynamic programming, while computing the ap-
proximate solution at the same time. Our algorithm can be
easily derandomized.

The same basic approach provides PTASs also for two
generalizations of the problem: the tollbooth problem with
a constant number of leaves and the maximum-feasibility
subsystem problem on interval matrices. In both cases
the previous best approximation factors are polylogarithmic
[Gamzu,Segev-’10,Elbassioni,Raman,Ray,Sitters-’09].

1 Introduction

Consider the following setting. We are given a single-
road highway, which is partitioned into segments by
tollbooths. The highway owner fixes a toll for each
segment. A driver traveling between two tollbooths pays
the total toll of the corresponding segments. However,
if the total toll exceeds the budget of the driver, she
will not use the highway (e.g., she will take a plane).
Our goal is maximizing the profit of the highway owner.
To that aim, we need to compromise between very low

∗Computer Science Department, University of Rome Tor Ver-

gata, Roma, Italy, grandoni@disp.uniroma2.it. Developed while

visiting EPFL. Partially supported by MIUR under project AL-

GODEEP.
†Institute of Mathematics, EPFL, Lausanne, Switzerland,

thomas.rothvoss@epfl.ch

tolls (in which case all the drivers take the highway,
but providing a small profit) and very high tolls (in
which case no driver takes the highway, and the profit is
zero). It is not hard to imagine other applications with
a similar nature. For example, the highway segments
might be replaced by the links of a (high-bandwidth)
telecommunication network. Alternatively, one might
interpret the highway as a period of time (e.g., one
day), and the segments as time slots (e.g., one slot per
minute): now drivers are clients who need a service (e.g.,
an Internet connection) for a given interval of time.

The highway problem formalizes the scenarios
above. We are given an n-edge line graph G = (V,E)
(the highway), and a set D = {D1, . . . , Dm} of m paths
in G (the drivers), each one characterized by a value
bj ∈ Q≥0 (the budgets). For a given weight func-
tion w : E → Q≥0 (the tolls) and a driver D, let
w(D) :=

∑

e∈D w(e) be the weight of D1. Our goal is
choosing w so as to maximize the following profit func-
tion:

∑

j:w(Dj)≤bj

w(Dj).

Despite the simplicity of its formulation and its
clear relation to applications, there is a huge gap be-
tween known approximation and inapproximability re-
sults for the highway problem. The problem was shown
to be strongly NP-hard very recently [10]. The best-
known approximation factor is O(log n/ log logn) [14]
(see also [2]). A quasi-polynomial-time approximation
scheme (QPTAS) is given in [12]. This is a strong evi-
dence of the existence of a PTAS for the problem. How-
ever, even finding a constant approximation is a non-
trivial open problem, as witnessed by the number of
results on special cases [2, 5, 15, 18].

1.1 Our Results and Techniques. In this paper we
present a deterministic polynomial-time approximation
scheme (PTAS) for the highway problem, hence closing
the complexity status of the problem. To achieve our
goal, we exploit a novel randomized dissection approach
in combination with dynamic programming.

1Throughout this paper we confuse graphs with their set of

edges: the meaning will be clear from the context.

The basic idea is as follows. Let ε > 0 be a small
constant. Via simple reductions (see Section 1.3), we
can restrict ourselves to the case that optimal weights
w∗(e) are in {0, 1}, and that the sum W ∗ of the optimal
weights along the highway is polynomially bounded in
the number n of edges. This introduces a 1−Θ(ε) factor
in the approximation.

The dynamic program is based on the following
strategy. We consider all the subpaths P of the highway,
and guess the value W ∈ {0, 1, . . . ,W ∗} of the sum of
the optimal weights along P . Note that the number of
pairs (P,W) is polynomially bounded in n, due to the
reductions above.

We next restrict our attention to the drivers
D(P) := {D ∈ D : D ⊆ P} which are entirely con-
tained in P , with the goal of approximating the corre-
sponding optimal profit: The table entry for (P,W) =
(G,W ∗) will eventually give the desired approximate
solution.

If W ≤ W̃ , for a fixed constant W̃ , we simply guess
the W edges where the optimum solution puts a weight
of one. This provides the optimal profit for drivers in
D(P). Assume now that W > W̃ . In this case, by
considering all the possible partitions P = {P1, . . . , Pγ}
of P in γ subpaths, we can guess the partition where
each Pi takes a 1/γ fraction of the weight of P . Here
γ ≥ 2 is a sufficiently large constant, depending on
ε. Observe that the set Pγ(P) of such partitions
has polynomial cardinality. Given P , for the drivers
included into some Pi (i.e., in D(Pi)), we account for the
(previously computed) profit of table entry (Pi,W/γ).

It remains to consider the profit of drivers D(P) =
D(P) − ∪γ

i=1D(Pi) which are contained in P , but not
in any Pi. This is also the crux of our method.
Each driver D ∈ D(P) consists of a (possibly empty)
subset of consecutive subpaths P`, P`+1, . . . , Pr, plus
two (possibly empty) subpaths Pleft and Pright, with
Pleft ⊂ P`−1 and Pright ⊂ Pr+1. Observe that, if
the budget of D is not exceeded, then each middle
subpath Pi, i ∈ {`, . . . , r}, contributes with an additive
term W/γ to the profit of D. In particular, this is
independent from the way the weightW/γ is distributed
along Pi.

The situation is radically different for the boundary
subpaths Pleft and Pright: for them the profit can range
from 0 to W/γ, depending on the distribution of the
weights along P`−1 and Pr+1, respectively. In order to
implement efficiently the dynamic programming step,
we simply neglect the boundary subpaths. In other
terms, we replace D with the shortened driver Ds =
D − (Pleft ∪ Pright). At this point, we simply account
(r− `+ 1)W/γ for the profit of D, if this quantity does
not exceed its budget, and zero otherwise. This way we

obtain the overall profit for drivers in D(P), and hence
in D(P).

This approach has two opposite drawbacks:

1. The profit computed might be too pessimistic. This
is because we do not consider the profit coming
from Pleft ∪ Pright (in particular, it might be D =
Pleft ∪ Pright, and hence Ds = ∅).

2. The profit computed might be too optimistic. In
fact, it might happen that the weight along Ds is
below the budget of D, while the weight along D
exceeds it (due to the weight on Pleft ∪ Pright). In
that case we account for a positive profit, while the
actual profit is zero.

We solve the second problem by restricting our attention
to good drivers D ∈ D(P), i.e. drivers which contain
Ω(1/ε) many subpaths Pi. It is then sufficient to scale
down all the weights at the end of the process by a factor
1−O(ε) to ensure that the budget of good paths is not
exceeded.

Observe that this does not solve the first problem:
indeed, it makes it even worse (since we consider
less drivers, besides shortening them). At this point,
randomization comes into play. We initially enclose
the highway in a bounding path. Both the length (i.e.,
the number of edges) of the bounding path and the
position of the highway in it are random variables. To
this instance we apply the approach above. Consider a
driver D which contributes to the optimal profit. For a
proper choice of the random variables, with probability
1−O(ε), D is considered in the dynamic program for a
path P of weight W such that the profit of D is much
larger than W/γ. Hence D is good with probability
close to one. This introduces a factor 1 − O(ε) in the
approximation ratio.

As we will see, the domain of the random variables
has polynomial size. Hence, the algorithm above can
be easily derandomized by considering all the possible
realizations.

We believe that our technique will find other appli-
cations, and hence it might be of independent interest.
In order to motivate that, we show how to apply it to
two related problems (see Section 4):

• The tollbooth problem is the generalization of the
highway problem where the input graph G is a
tree (rather than a line). This problem is APX-
hard, and the best-known approximation for it
O(log n/ log logn) [14]. Here we present a PTAS
for the practically-relevant special case that G has
a constant number of leaves.

• In the maximum-feasibility subsystem problem we
are given a set of vectors a1, . . . , am ∈ Qn and

a set of m pairs (`j, uj), with 0 ≤ `j ≤ uj and
j = 1, . . . ,m. The goal is computing a vector
w ∈ Qn

≥0 such that the constraint `j ≤ aTj w ≤ uj is
satisfied by the largest possible number of indexes
j. Intuitively, the vectors aTj can be interpreted
as the rows of a matrix A: the product Aw ∈
Qm is what we wish to upper and lower bound.
In this paper we restrict to the case that the
vectors aj have entries in {0, 1}, and the 1’s appear
consecutively (i.e., A is an interval matrix).

Elbassioni, Raman, Ray, and Sitters [11] show that
this problem is APX-hard. Moreover, if we allow
a violation of the lower and upper bounds by a
factor (1 + ε), then there is a polylogarithmic
approximation algorithm running in polynomial
time, and an exact algorithm running in quasi-
polynomial time2. Here we show how to obtain
a (1 + ε) approximation in polynomial time in the
same framework.

1.2 Related Work. The highway problem was even
not known to be NP-hard until recently. For example,
this is posed as an open problem by Guruswami et al.
[15]. Weak NP-hardness was shown via a reduction
from partition by Briest and Krysta [5]. Very recently,
Elbassioni, Raman, Ray, and Sitters [10] proved strong
NP-hardness via a reduction from max-2-SAT. Balcan
and Blum [2] give a O(log n) approximation for the
problem. Their algorithm partitions the paths in groups
of different length. Then it applies a constant factor
approximation algorithm in [15] for the rooted version
of the problem, where all drivers contain a given node,
to each group separately. The approximation was very
recently improved to O(log n/ log log n) by Gamzu and
Segev [14]. Their algorithm, which also works for the
more general tollbooth problem, combines the notion of
tree separators with a generalization of the algorithm
for the rooted case mentioned before. The QPTAS by
Elbassioni, Sitters, and Zhang [12] exploits the profiling
technique introduced by Bansal et al. [3]. The basic idea
is guessing the approximate shape of the cumulative
weights to the left and right of a given edge. This allows
one to partition the problem into two sub-problems,
which can be solved recursively.

There are better approximation results, all based on
dynamic programming, for a number of special cases. In
[2] a constant approximation is given for the case that all
the paths have roughly the same length. An FPTAS is
described by Hartline and Koltun [18] for the case that

2The latter result is not a contradiction, since we compare to

the optimum solution, which may not even slightly violate the

inequalities

the highway has constant length (i.e., n = O(1)). This
was generalized to the case of constant-length paths in
[15]. In [15] the authors also present an FPTAS for
the case that budgets are upper bounded by a constant.
An FPTAS is also known [2, 5] for the case that paths
induce a laminar family3.

The tollbooth problem is the generalization of
the highway problem where G is a tree. A
O(log n) approximation was developed in [10]. As al-
ready mentioned, this was very recently improved to
O(log n/ log logn) [14]. The tollbooth problem isAPX-
hard [15], and for general graphs it is APX-hard even
when the graph has bounded degree, the paths have
constant length and each edge belongs to a constant
number of paths [5].

The highway and tollbooth problems belong to
the family of pricing problems with single-minded cus-
tomers and unlimited supply. Here we are given a set
of customers: Each customer wants to buy a subset of
items (bundle), if its total prize does not exceed her
budget. In the highway terminology, each driver is a
subset of edges (rather than a path). For this problem
a O(log n+ logm) approximation is given in [15]. This
bound was refined in [5] to O(logL + logB), where L
denotes the maximum number of items in a bundle and
B the maximum number of bundles containing a given
item. A O(L) approximation is given in [2]. On the neg-
ative side, Demaine et al. [9] show that this problem is
hard to approximate within logd n, for some d > 0, as-
suming that NP 6⊆ BPTIME(2n

ε

) for some ε > 0.
The highway problem has some aspects in common

with the well-studied unsplittable flow problem on line
graphs. In this problem we are given a line graph G =
(V,E), with edge capacities and a set of paths Dj, each
one characterized by a demand and a profit. The goal is
selecting a maximum profit subset of paths such that the
sum of the demands of selected paths on each edge does
not exceed the corresponding capacity. For the special
case of uniform edge capacities, a (2+ε) approximation
is given by Calinescu et al. [6], improving on [4,
19]. Under the no-bottleneck assumption, the same
approximation guarantee is achieved for the general
case by Chekuri, Mydlarz, and Shepherd [8], improving
on an earlier constant approximation under the same
assumption [7]. Eventually, a QPTAS is given in [3].
The QPTAS for the highway problem in [12] exploits
the same basic technique as in [3]. Our hope is that,
in turn, our PTAS for the highway problem will inspire
a PTAS for the line-graph unsplittable flow problem.
However, this seems to require some new ideas and we

3In a laminar family of paths, two paths which intersect are

contained one in the other.

leave it as a challenging open problem.
For general 0/1-matrices, the maximum-feasible

subsystem problem (with no violation) is not approx-
imable within Ω(n1/3−ε) for any ε > 0 even for `j = uj ,
unless ZPP = NP [11]. If each row of A contains 3
non-zero arbitrary coefficients, then even n1−ε approx-
imations are not possible in polynomial time [16] (see
also the previous hardness result [13]). The best-known
O(n/ logn) approximation for this problem is due to
Halldórsson [17].

The technique behind our PTAS resembles Arora’s
quadtree dissection for Euclidean network design [1].
The basic idea there is enclosing the set of input
points into a bounding box, then recursively partition
it in a constant number of boxes. This dissection
is then randomly shifted. On the resulting random
dissection, one applies dynamic programming. We
similarly enclose the highway in a bounding path, and
partition the latter. Like in Arora’s approach, the
dissection is randomly shifted. Differently from that
case and crucially for our analysis, the size of the
bounding path is a random variable as well. Another
major difference is that the dissection is not uniform
with respect to input properties, but with respect to
the optimal weights: for this reason the dissection
is constructed in a bottom-up, rather than top-down,
fashion via dynamic programming (while computing the
approximate solution in parallel).

1.3 Preliminaries. Let OPT = (w∗,D∗) be the
optimum solution, where w∗ is the optimal weight
function and D∗ is the set of drivers Dj such that
w∗(Dj) ≤ bj. By opt we denote the optimal profit.
Our PTAS starts with a sequence of rounding steps to
transform the input (and the optimum solution) in a
convenient form, while losing only a factor 1− 2ε in the
approximation. Since these steps are rather standard,
we discuss them here, while in Section 2 we will focus
on the novel techniques introduced in this paper.

W.l.o.g. we assume 1/(2ε) ∈ N and ε ≤ 1/2.
Let bmax be the largest budget. After scaling all
budgets, one has bmax = m/ε2. Observe that trivially
opt ≥ bmax. First, we discard all drivers with a budget
smaller than 1/ε. Next, we round down the budgets
to the nearest integer. Any solution to the rounded
instance gives a feasible solution of the same value for
the original instance. Moreover, the optimal solution
to the rounded instance is a good approximation of the
original optimum. In fact, (w,D) with D := {Dj ∈ D∗ |

bj ≥ 1/ε} and w(e) := w∗(e)
1+ε is a feasible solution to the

new instance since

w(Dj) =
∑

e∈Dj

w∗(e)

1 + ε
≤

bj
1 + ε

≤ bbjc

for any Dj ∈ D∗ with bj ≥ 1/ε. The profit of this
solution is

∑

Dj∈D

w(Dj) ≥
∑

Dj∈D∗:bj≥1/ε

w∗(Dj)

1 + ε

≥
opt

1 + ε
−

m

ε
≥ (1− 2ε)opt.

The optimal weights for this instance can be assumed
to be integral (see, e.g., [7]). In fact, given the optimal
drivers D∗, the corresponding optimal weights w∗ can
be computed by solving an ILP whose 0-1 constraint
matrix is totally unimodular. Since the largest weight
in w∗ is trivially not larger than the largest budget (i.e.
m/ε2 after rounding), we can conclude that w∗ : E →
{0, 1, . . . ,m/ε2}. By replacing each edge with a path of
length m/ε2, we can further assume w∗ : E → {0, 1}.
Let W ∗ =

∑

e∈E w∗(e) be the total weight of the

solution, and γ = (1/ε)1/ε. By adding W ∗γ dummy
edges (not crossed by any driver), say, to the right of
the highway, we can assume that W ∗ = γ` for some
integer ` (in fact, the weight assigned to dummy edges
is irrelevant). Observe that W ∗ ≤ nmγ/ε2: hence we
can guess the value of W ∗ in polynomial-time.

We call an instance of the highway problem with
the properties above well-rounded. The discussion above
implies the following lemma.

Lemma 1.1. For any ε > 0, there is a polynomial re-
duction from the highway problem to the same prob-
lem on well-rounded instances which is approximation-
preserving modulo a factor (1 + ε).

2 A PTAS for the Highway Problem

From the discussion in Section 1.3, we assume that the
input instance is well-rounded. Let ε > 0 be a constant
parameter, δ = 1/(2ε) ∈ N and γ = (1/ε)1/ε. Our
PTAS hptas for the highway problem is described in
Figure 1.

In the Bounding Phase (B), we first guess the total
optimal weight W ∗ (Step B1). By guessing, we mean
that we run the rest of the algorithm for every feasible
choice ofW ∗ (which is a polynomially bounded integer).
Then, we enclose the highway in a bounding path (Step
B2). Both the length of the bounding path and the
position of the highway are proper functions of two
random variables x and y. All the probabilities and
expectations in this paper are with respect to the choice
of those two variables.

Input: Well-rounded highway instance G = (V,E) and
(Pj , bj), j = 1, 2, . . . ,m.
Output: Edge weights w : E → Q≥0

Algorithm:

(B) Bounding Phase:

(B1) Guess the value of the total weight W ∗ = γ`,
` ∈ N.

(B2) Choose integers x ∈ {1, 2, . . . ,W ∗} and y ∈
{1, 2, . . . , 1/ε} uniformly at random. Attach a
path of length W ∗ · ((1/ε)y − 1) − x (resp., x) to
the right (resp., left) of G. Let G0 be the resulting
line graph, and W ′ = W ∗ · (1/ε)y.

(D) Dynamic Programming Phase:

(D1) For every path P ⊆ G0,

φ(P, (1/ε)y) = max
w:P→{0,1}
w(P)=(1/ε)y

∑

Dj⊆P,

w(Dj)≤bj

w(Dj).

(D2) For every path P ⊆ G0, and for W = W ′/γq,
q = `− 1, `− 2, . . . , 0,

φ(P,W) = max
P∈Pγ(P)

{

γ
∑

i=1

φ (Pi,W/γ) +
∑

Dj⊆P,

nj :=|{i:Pi⊆Dj}|≥δ,

W/γ·nj≤bj

W/γ · nj

}

.

(S) Scaling Phase:

(S1) Derive w′ : G0 → {0, 1} determining the value of
φ(G0,W

′).

(S2) Output w : E → Q≥0, where w(e) = w′(e) · δ
δ+2

.

Figure 1: PTAS for the highway problem. Here δ :=
1/(2ε) ∈ N and γ = (1/ε)1/ε.

In the Dynamic Programming Phase (D), we com-
pute the almost optimal profit φ(P,W) which can be
obtained from the drivers in P by placing W -many 1’s
along P . In the initialization step (Step D1), we com-
pute profits φ(P, (1/ε)y) by brute force, considering all

the
(|P |
(1/ε)y

)

-many possible ways to place (1/ε)y = O(1)-

many 1’s on the edges of P . In the dynamic program-
ming step (Step D2), we consider the best partition
P = {P1, . . . , Pγ} of P into γ subpaths. The set of
candidate partitions is denoted by Pγ(P). We first add
to φ(P,W) the profits φ(Pi,W/γ) for each i. Then we
consider the good drivers Dj, i.e. the drivers in P which
contain nj ≥ δ subpaths Pi. For each such driver, we
increase φ(P,W) by the profit associated to the short-
ened driver Ds

j = ∪Pi⊆Dj
Pi, i.e. W/γ · nj , unless this

quantity exceeds the budget bj.
In the final Scaling Phase (S), we derive from the

dynamic programming table the weights w′ determining
the value of φ(G0,W

′) (Step S1). Then we restrict our
attention to the edges of the (original) highway, and
scale the corresponding weights down by δ

δ+2 (Step S2).

3 Analysis

To avoid any confusion, let n and n̄ denote the number
of edges in the original and well-rounded instance,
respectively. Recall that, for any constant ε, n̄ is
polynomially bounded in n and m.

Lemma 3.1. Algorithm hptas runs in polynomial time.

Proof. Since W ∗ is an integer bounded by nmγ/ε2, its
value can be guessed by trying a polynomial number
of values. For all the O(n̄2) choices of P in Step D1,
the number of candidate functions w to be considered
is O(n̄(1/ε)y). In Step D2, for all the O(n̄2) choices of
P , there are O(n̄γ−1) possible choices for the Pi’s. The
claim follows.

In the rest of the analysis we consider only the run of
the algorithm where W ∗ is guessed correctly. The next
lemma shows that the profit apx of the finally returned
solution, essentially coincides with the value apxD =
φ(G0,W

′), that we obtain by dynamic programming.
Here we crucially exploit the fact that we only consider
(good) drivers Dj with large nj .

Lemma 3.2. apx ≥ 1
1+4εapxD.

Proof. Let w′ and D′ be the weights and the set of
drivers determining apxD. Consider the corresponding
dissection, and let nj = |{i : Pi ⊆ Dj}| and Ds

j =
⋃

Pi⊆Dj
Pi be defined with respect to that dissection for

each Dj .
For any Dj ∈ D′, nj ≥ δ = 1/(2ε) and w′(Ds

j) =
W/γ · nj ≤ bj. The difference in weight between Dj

and Ds
j only lies in the two sub-intervals owning the

endings ofDj , and hence w′(Ds
j) ≤ w′(Dj) ≤

W
γ (nj+2).

It follows that w(Dj) = δ
δ+2w

′(Dj) ≤ nj

nj+2w
′(Dj) ≤

nj
W
γ ≤ bj . Hence, Dj contributes to apx with a profit

w(Dj) ≥
δ

δ+2w
′(Ds

j) =
1

1+4εw
′(Ds

j). The claim follows

since apx ≥
∑

Dj∈D′ w(Dj) ≥ 1
1+4ε

∑

Dj∈D′ w′(Ds
j) =

1
1+4εapxD.

It remains to lower bound apxD in terms of opt.
In order to simplify the analysis, suppose that we are
given an oracle which, for a given P ⊆ G0 with
w∗(P) = W = W ′/γq, q < `, produces a partition

P
∗
= {P ∗

1 , . . . , P
∗
γ } such that w∗(P ∗

i) = W/γ. Also
assume that we remove all the drivers but the ones D∗

in the optimal solution. Consider the variant of Step

D where we apply recursively the following Bellman
equation

φ′(P,W) =

γ
∑

i=1

φ′ (P ∗
i ,W/γ) +

∑

D∗3Dj⊆P,
nj :=|{i:P∗

i ⊆Dj}|≥δ,
W/γ·nj≤bj

W/γ · nj ,

until W = (1/ε)y, in which case we use brute force to
compute the optimal weights like in Step D1. It is not
hard to see that apxO := φ′(G0,W

′) is a lower bound
on apxD.

Corollary 3.1. apxD ≥ apxO.

Hence it is sufficient to lower bound apxO. The value
apxO is associated to a unique optimal dissection. With
the same notation as in the proof of Lemma 3.2, we let,
for a given driver Dj , nj and Ds

j be defined with respect
to the optimal dissection. We next say that a subpath
in the optimal dissection is at level q ∈ {0, 1, . . . , `} if
its optimal weight is W ′/γq. Similarly, we say that a
driver Dj is at level q in the optimal dissection if it is
contained in a subpath of level q, but not q + 1.

Let αq = W ′/γq. Consider any driver Dj ∈ D∗,
with αq+1 < w∗(Dj) ≤ αq. We call Dj good if it is at
level ` in the dissection, or it is at level q < ` and it
contains at least δ subpaths of level q +1 (i.e., nj ≥ δ).

Observe that good drivers Dj contribute to the
value of apxO with a profit w∗(Ds

j) ≥ w∗(Dj) ·
δ

δ+2 =
1

1+4ε ·w
∗(Dj). Hence, it is sufficient to show that a given

driver in D∗ is good with probability close to one.

Lemma 3.3. Each driver Dj ∈ D∗ is good with proba-
bility at least 1− 3ε.

Proof. Let us upper bound the probability that a driver
Dj is bad (i.e., not good). We say that driverDj is risky
if

∃q : ε αq < w∗(Dj) <
1

ε
αq.

Consider a log-scale axis and term tick the distance that
corresponds to a factor of 1/ε. Then consecutive αq’s
have a distance of 1/ε ticks to each other (see Figure 2).
The region of risky weights w.r.t. a specific αq is the
interval]ε · αq, αq/ε[, hence on the log-scaled axis it is
an (open) interval of 2 ticks length. The random choice
of y yields that all αq’s are simultaneously shifted by
y ∈ {1, . . . , 1/ε} ticks to the right. Hence for each value
of w∗(Dj) at most 2 out of 1/ε choices of y cause that
Dj is risky:

Pr[Dj is risky] ≤ 2ε.

Next condition on the event that Dj is not risky.
Suppose Dj is not at level `, otherwise there is nothing

αq+1 αq αq−1 W ∗ α0 = W ′

1 tick1/ε ticks y ticks

.

Figure 2: Log-scale axis. The regions of risky weights
are grayshaded.

to show. Observe that there is a q with

1

ε
αq ≤ w∗(Dj) ≤ ε αq−1.

Then deterministically Dj contains at least 1/ε − 1 ≥
1/(2ε) = δ many level q subpaths. Since the random
shift x is chosen uniformly at random from {1, . . . ,W ∗}
and W ∗ is a multiple of αq−1

4 we furthermore have

Pr[Dj is at level < q] ≤
w∗(Dj)

αq−1
≤ ε.

Applying the union bound, we obtain that driver Dj is
bad with probability at most 3ε.

Corollary 3.2. E[apxO] ≥
1−3ε
1+4εopt.

Proof. By linearity of expectation

E[apxO] ≥ E
[

∑

Dj∈D∗,
Dj good

w∗(Ds
j)
]

≥
1

1 + 4ε
E
[

∑

Dj∈D∗,
Dj good

w∗(Dj)
]

≥
1− 3ε

1 + 4ε

∑

Dj∈D∗

w∗(Dj) =
1− 3ε

1 + 4ε
opt.

Now we have all the ingredients to prove the main result
of this paper.

Theorem 3.1. There is a randomized PTAS for the
highway problem.

Proof. Consider the randomized algorithm which first
transforms the input in a well-rounded instance as
described in Section 1.3, and then applies algorithm
hptas. From Lemmas 1.1 and 3.1, this algorithm takes
polynomial time. By Lemma 1.1, Lemma 3.2, Lemma
3.1, and Corollary 3.2, the approximation ratio of the

algorithm is (1+4ε)2(1+ε)
1−3ε .

4Except of the case when αq−1 = W
′, but then deterministi-

cally the driver Dj cannot cross the boundary.

The PTAS in Theorem 3.1 can be derandomized by
considering all the (polynomially many) choices of x and
y in Step B2.

Corollary 3.3. There is a deterministic PTAS for
the highway problem.

4 Extensions

In this section we extend our approach to two variants
of the highway problem.

4.1 Tollbooth with a Constant Number of

Leaves. We next sketch a PTAS for the tollbooth prob-
lem, when the input graph G is a tree with a constant
number θ = O(1) of leaves: details are given in Ap-
pendix A. Recall that the problem is APX-hard when
the number of leaves is arbitrary.

By the same arguments as in the highway case, we
assume that optimal weights w∗ are 0/1-valued, and
that their sum W ∗ is bounded by a polynomial in n. We
choose an arbitrary leaf s(G) of G as a source, and call
the other leaves sinks. Analogously, given any subtree
T of G, we call the leaf s(T) of T which is closest to
s(G), the source of T . The other leaves of T are called
sinks of T . By appending a path of length W ∗γ to s(G),
we can assume that the total weight along each source-
sink pair is W̃ := γ` for some integer `. The resulting
instance is well-rounded.

Imagine to split G at any node whose w∗-distance
from s(G) is an integer multiple of W̃/γ. In such a
way we obtain a forest T = {T1, . . . , Tq} of subtrees
with the following property: any source-sink path in Ti

has weight W̃/γ. We iterate this process until the total
weight which has to be installed on the subtree reaches
a constant value. We call this dissection optimal.

Consider a driver Dj and let T be the smallest
subtree in the optimal dissection that fully contains Dj .

Suppose W = W̃/γq is the weight that w∗ installs on
any source-sink path of T . Let T = {T1, . . . , Tq} be
the partition of T in the optimal dissection. We say
that Dj crosses Ti if it contains exactly one source-
sink path of Ti. We say that driver Dj is good if the
number nj of crossed subtrees is at least a large constant
δ := 1

2ε . Also in this case, we can define a shortened
driver Ds

j =
⋃

Ti crossed by Dj
(Ti ∩ Dj). However note

that in this case Ds
j might consist of two disjoint paths.

(In particular, this might happen ifDj does not lie along
a source-sink path of G).

Analogously to the highway case, it is sufficient to
show that the profit coming from shortened drivers is
large with respect to the optimal dissection. Then for
subtrees T of the instance and weights W , we compute
table entries φ(T,W) giving the optimum profit that can

be obtained from the shortened paths of good drivers
Dj ⊆ T , in such a way that on each path from s(T) to
any other leaf of T one installs a total weight of W .

Theorem 4.1. There is a deterministic PTAS for the
tollbooth problem with a constant number of leaves.

4.2 Maximum-Feasible Subsystem for Interval

Matrices. In this section we sketch a multi-criteria
PTAS for the maximum-feasible subsystem problem on
interval matrices (MaxFS). More precisely, we show
the following slightly more general statement.

Theorem 4.2. Given a matrix A ∈ {0, 1}m×n with
rows a1, . . . , am having consecutive ones, weights
v1, . . . , vm ∈ Q≥0 and integer bounds 0 ≤ `j ≤ uj,
j = 1, . . . ,m. Let opt = maxw≥0{

∑

j:`j≤aT
j
w≤uj

vj}.

Then for every fixed ε > 0 one can compute determin-
istically in polynomial time in n, m and logmax{`j}, a
weight function w ≥ 0 and a set J ⊆ {1, . . . ,m} such
that

∑

j∈J vj ≥ (1− ε)opt and `j ≤ aTj w ≤ (1+ ε)uj for
all j ∈ J .

By standard arguments, one can round the profits vj
such that they become integers between 0 and m/ε.
Then each constraint j can be replaced by vj many
constraints with unit profit. Choosing ε accordingly
smaller and scaling the weight function by 1 + O(ε), it
suffices to find a solution w that satisfies opt/(1+O(ε))
many constraints approximately, i.e. `j/(1 + O(ε)) ≤
aTj w ≤ uj(1 +O(ε)).

It is maybe easier to think ofMaxFS as a variant of
the highway problem where: (1) the consecutive 1’s in
each row j define a driverDj in a line graph G = (V,E),
(2) each driverDj, besides having a budget bj = uj, also
has a minimum amount of money `j that she wants to
spend, and (3) the goal now is maximizing the number
of satisfied drivers who take the highway (rather than
maximizing the profit). Here w can be interpreted as a
vector of weights.

Let OPT = (w∗,D∗) be the optimal solution
and define W ∗ :=

∑

e∈E w∗(e). Abbreviate `max :=
max{`j | j = 1, . . . ,m}. Observe that w.l.o.g. w∗(e) ≤
`max on all edges. Hence, W ∗ ≤ n · `max. Since
interval matrices are totally unimodular, we can also
assume that w∗(e) ∈ Z≥0 for all e ∈ E. By adding a
dummy edge to the left of the line graph (i.e., a zero
column to the left of the matrix), we can assume that
W ∗ = (1/ε)`/ε for some ` ∈ N. We also attach a dummy
edge to the right of the graph. Furthermore recall
that for the highway PTAS we duplicate edges in order
to obtain 0/1 weights. The goal is guaranteeing that
we can partition the total optimal weight in γi pieces,
i = 1, . . . , `, without splitting any edge. This is not

possible here due to the fact that optimal edge weights
are not necessarily polynomially bounded. However, it
is sufficient to duplicate each edge γ · ` · m times to
achieve the same goal5 (see Appendix B for a proof).
Altogether, we obtain a well-rounded instance G0 with
the following properties: (1) between any two nodes
that are starting point or end point of some driver, one
has at least γ · ` ·m edges; (2) the weight of the optimal
solution is a power of (1/ε)1/ε; (3) at both endings of
the highway we have γ · ` ·m many edges that are not
used by any driver.

Our algorithm applies for such well-rounded in-
stances and begins by guessingW ∗. SinceW ∗ is a power
of (1/ε)1/ε, there are at most a polynomial number of
candidate values. Recall that the randomization in the
algorithms before was used to create a new probabilistic
optimal solution. The careful reader might have noticed
that the random choice of x can also be moved to the
analysis. To simplify a later derandomization, in the
algorithm we only choose y ∈ {1, . . . , 1/ε} uniformly at
random and approximate a solution that installs a total
weight of W ′ = (1/ε)y ·W ∗ on the edges. For any sub-
path P ⊆ G0, we compute table entries φ(P,W) over all
weight assignments w : P → Z≥0, with w(P) = W , and
over all possible dissections of P , with the goal of max-
imizing the number of drivers Dj such that: (1) Dj is
fully contained in P , (2) Dj is good in the same sense as
in the highway case, and (3) `j/(1 + 4ε) ≤ w(Ds

j) ≤ uj

(the shortened driver is approximately satisfied). The
number of such table entries is bounded by a polyno-
mial in n,m and log `max, since we only consider values
W , which are of the form W ′/γi. Eventually we output
the solution (w,D′) that attains the value φ(G0,W

′).
Using the arguments in Lemma 3.3 and Lemma 3.2, one
can show that E[φ(G0,W

′)] ≥ (1 − 3ε)opt. Similar to
Lemma 3.2, one has `j/(1 + 4ε) ≤ w(Dj) ≤ uj(1 + 4ε)
for any Dj ∈ D′. Theorem 4.2 then follows (see Ap-
pendix B for more details).

References

[1] S. Arora. Polynomial time approximation schemes
for euclidean traveling salesman and other geometric
problems. Journal of the ACM, 45(5):753–782, 1998.

[2] M.-F. Balcan and A. Blum. Approximation algorithms
and online mechanisms for item pricing. In EC, pages
29–35, 2006.

[3] N. Bansal, A. Chakrabarti, A. Epstein, and
B. Schieber. A quasi-PTAS for unsplittable flow on
line graphs. In STOC, pages 721–729, 2006.

5The same approach can be used in the highway problem as

well, though it is not crucial to obtain a polynomial running time

in that case.

[4] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, and
B. Schieber. A unified approach to approximating
resource allocation and scheduling. Journal of the

ACM, 48(5):1069–1090, 2001.
[5] P. Briest and P. Krysta. Single-minded unlimited

supply pricing on sparse instances. In SODA, pages
1093–1102, 2006.

[6] G. Calinescu, A. Chakrabarti, H. J. Karloff, and
Y. Rabani. Improved approximation algorithms for
resource allocation. In IPCO, pages 401–414, 2002.

[7] A. Chakrabarti, C. Chekuri, A. Gupta, and A. Kumar.
Approximation algorithms for the unsplittable flow
problem. Algorithmica, 47(1):53–78, 2007.

[8] C. Chekuri, M. Mydlarz, and F. B. Shepherd. Mul-
ticommodity demand flow in a tree and packing inte-
ger programs. ACM Transactions on Algorithms, 3(3),
2007.

[9] E. D. Demaine, U. Feige, M. Hajiaghayi, and M. R.
Salavatipour. Combination can be hard: approxima-
bility of the unique coverage problem. In SODA, pages
162–171, 2006.

[10] K. M. Elbassioni, R. Raman, S. Ray, and R. Sitters.
On profit-maximizing pricing for the highway and
tollbooth problems. In SAGT, pages 275–286, 2009.

[11] K. M. Elbassioni, R. Raman, S. Ray, and R. Sitters.
On the approximability of the maximum feasible sub-
system problem with 0/1-coefficients. In SODA, pages
1210–1219, 2009.

[12] K. M. Elbassioni, R. Sitters, and Y. Zhang. A quasi-
PTAS for profit-maximizing pricing on line graphs. In
ESA, pages 451–462, 2007.

[13] U. Feige and D. Reichman. On the hardness of
approximating max-satisfy. Information Processing

Letters, 97(1):31 – 35, 2006.
[14] I. Gamzu and D. Segev. A sublogarithmic approxi-

mation for highway and tollbooth pricing. In ICALP,
2010. To appear.

[15] V. Guruswami, J. D. Hartline, A. R. Karlin, D. Kempe,
C. Kenyon, and F. McSherry. On profit-maximizing
envy-free pricing. In SODA, pages 1164–1173, 2005.

[16] V. Guruswami and P. Raghavendra. A 3-query PCP
over integers. In STOC, pages 198–206, New York,
2007.

[17] M. M. Halldorsson. Approximations of weighted inde-
pendent set and hereditary subset problems. Journal

of Graph Algorithms and Applications, 4:2000, 2000.
[18] J. D. Hartline and V. Koltun. Near-optimal pricing in

near-linear time. In WADS, pages 422–431, 2005.
[19] C. A. Phillips, R. N. Uma, and J. Wein. Off-line

admission control for general scheduling problems. In
SODA, pages 879–888, 2000.

A Tollbooth with a Constant Number of

Leaves

A detailed description of the algorithm is given in Figure
3. By Pγ(T) we denote the set of potential dissections
of subtree T into a forest T = {T1, . . . , Tq(T)}. Observe

that each source-sink path of T can contain at most
γ − 1 break-points. Consequently, the number q(T) of
subtrees in each candidate forest is at most γ · θ. It
follows that the cardinality of Pγ(T) is polynomially
bounded when the number θ of leaves of G is constant.

Input: Well-rounded tollbooth instance G = (V,E) and
(Dj , bj), j = 1, 2, . . . , m.
Output: Edge weights w : E → Q≥0.
Algorithm:

(B) Bounding Phase:

(B1) Guess the value of the weight W̃ = γ`, ` ∈ N.

(B2) Choose integers x ∈ {1, 2, . . . , W̃} and y ∈
{1, 2, . . . , 1/ε} uniformly at random. Attach a
path of length W̃ · ((1/ε)y − 1)−x to each sink of
G, and a path of length x to the source of G. Let
G0 be the resulting tree, and W ′ = W̃ · (1/ε)y .

(D) Dynamic Programming Phase:

(D1) For every subtree T ⊆ G0,

φ(T, (1/ε)y) = max
w:T→{0,1}
w(T)=(1/ε)y

∑

Dj⊆T,

w(Dj)≤bj

w(Dj).

(D2) For every subtree T ⊆ G0, W = W ′/γq , and
q = `− 1, `− 2, . . . , 0,

φ(T,W) = max
T∈Pγ(T)

{

q(T)
∑

i=1

φ (Ti,W/γ) +
∑

Dj⊆T

nj :=|{i: Dj crosses Ti}|≥δ

W/γ·nj≤bj

W/γ · nj

}

.

(S) Scaling Phase:

(S1) Derive w′ : G0 → {0, 1} determining the value of
φ(G0,W

′).

(S2) Output w : E → Q≥0, where w(e) = w′(e) · δ
δ+4

.

Figure 3: PTAS for the tollbooth problem for a constant
number of leaves. Here δ := 1/(2ε) ∈ N and γ =
(1/ε)1/ε.

Proof. (Theorem 4.1) Consider the randomized algo-
rithm described in Figure 3: this algorithm can be de-
randomized by considering all the possible values of ran-
dom variables x and y. Assume 0 < ε ≤ 1

8 without loss
of generality.

Like in the highway case, let us restrict our at-
tention to the dissection corresponding to the optimal
weights, and let us discard drivers which do not provide
any profit in the optimal solution.

We start by showing that any residual driver Dj is
good with probability at least 1−3ε. Let us call a driver

Dj straight if it lays along a source-sink path of G, and
bent otherwise. By exactly the same argument as in the
highway case, a straight path is good with probability at
least (1− 3ε). Hence consider a bent driver Dj , and let
D′

j and D′′
j be the two straight subpaths which partition

Dj. Paths D
′
j and D′′

j have a common endpoint, which
is the node of Dj which is closest to the sink of G.
Without loss of generality, w∗(D′

j) ≥ w∗(D′′
j). With the

same notation as in the highway case, and by a similar
argument, with probability at least 1 − 2ε, there is a q
such that 1

εαq ≤ w∗(D′
j) ≤ εαq−1. When this happens,

D′
j is at level q in the dissection with probability at least

1− ε. Conditioning on the latter event, by the way the
dissection is constructed and being w∗(D′′

j) ≤ w∗(D′
j),

D′′
j is at level not smaller than q in the dissection. This

implies that Dj is at level q as well. We can conclude
that Dj crosses at least 1

ε − 4 ≥ 1
2ε = δ many level q

subtrees. The −4 here comes from the fact that the
portion of Dj not crossing any subtree consists of at
most 4 source-sink subpaths (2 for D′

j and 2 for D′′
j , if

Dj is bent). Altogether, Dj is good with probability at
least 1− 3ε.

Given that Dj is good, the portion of Dj crossing
subtrees at level q + 1 has weight at least δ

δ+4w
∗(Dj).

This is by the same argument as above. Furthermore,
the budget of Dj in the dynamic program is violated at
most by a factor δ+4

δ : hence scaling the weights by δ
δ+4

in Step (S2) guarantees that good paths contribute to
the actual profit. Considering that the initial rounding
introduces a factor 1+ε in the approximation, altogether
the solution produced by the algorithm gives profit at
least (δ

δ+4)
2 · 1−3ε

1+ε opt =
1−3ε

(1+8ε)2(1+ε)opt in expectation.

B Maximum-Feasible Subsystem for Interval

Matrices

Recall that a driver Dj belongs to a path P in a
dissection, if P is the maximal path with Dj ⊆ P .
Suppose the driver Dj indeed belongs to P and the
dissection splits P into P = {P1, . . . , Pγ}. Then Dj

is termed good if the number of Pi’s with Pi ⊆ Dj is at
least δ = 1

2ε .
The algorithm in Figure 4 computes table entries

φ(P,W) representing the maximum number of good
drivers Dj ⊆ P that can be approximately satisfied
under the constraint w(P) = W . The main difference to
the previous algorithms is that, if we reach a path P not
containing any driver Dj , then we define φ(P,W) = 0.
First note that the number of table entries is bounded
by a polynomial in n and log `max. Hence, the table
entries can be computed in time poly(n,m, log `max).

Next, we argue why the value of the computed table
entry is not much worse in expectation than the optimal
number of satisfiable drivers.

Input: Well-rounded MaxFS instance G0 = (V,E) and
(Pj , `j , uj), j = 1, 2, . . . ,m.
Output: Edge weights w : E → Z≥0, drivers D

′ ⊆ D.
Algorithm:

(B) Bounding Phase:

(B1) Guess the value of the total weight W ∗ = γ`,
` ∈ N.

(B2) Choose y ∈ {1, . . . , 1/ε} uniformly at random.
Define W ′ = W ∗ · (1/ε)y .

(D) Dynamic Programming Phase:

(D1) For every path P ⊆ G0,

φ(P, (1/ε)y) =max
w:P→Z≥0

w(P)=(1/ε)y

∣

∣

{

Dj ⊆ P | `j/(1+4ε) ≤ w(Dj) ≤ uj

}∣

∣.

For every path P with no Dj ⊆ P , define
φ(P,W) = 0 for any W = W ′/γq , q = 0, . . . , `−1.

(D2) For every path P ⊆ G0, and for W = W ′/γq,
q = `− 1, `− 2, . . . , 0,

φ(P,W) = max
P∈Pγ(P)

{

γ
∑

i=1

φ (Pi,W/γ)

+
∣

∣

∣

{

Dj ⊆ P |
nj :=|{i:Pi⊆Dj}|≥δ,

`j/(1+4ε)≤W
γ

·nj≤uj

}∣

∣

∣

}

.

(O) Output Phase:

(O1) Derive w : E → Z≥0 and D′ ⊆ D determining the
value of φ(G0,W

′).

(O2) Output (w,D′).

Figure 4: PTAS with 1+O(ε)-violation for the MaxFS

problem. Here δ := 1/(2ε) ∈ N and γ = (1/ε)1/ε.

Lemma B.1. The final table entry satisfies
E[φ(G0,W

′)] ≥ (1 − 3ε)opt.

Proof. Let w∗ : E → Z≥0 be the optimal weight
function of total weight W ∗. Recall that we have
inserted dummy edges to the left and to the right,
not contained in any driver Dj. We choose an integer
x ∈ {1, 2, . . . ,W ∗} uniformly at random. Then increase
the total weight on the dummy edges to the right by
W ∗ ·((1/ε)y−1)−x and the weight on the dummy edges
to the left by x. The total weight of w∗ is now indeed
W ′ = W ∗ · (1/ε)y. It now suffices to show the promised
bound on E[φ(G0,W

′)] over the random choices of y
and x.

Recall that for MaxFS we could not assume that
all edges carry just unit weight. Hence we need to
argue, why there still is a proper dissection induced
by w∗, when each edge is replaced by just γ · ` · m

many edge segments. To see this, imagine the line
graph G∗, which indeed emerges from replacing any
edge e by w∗(e) many edges. As in previous sections,
there is a proper dissection induced by w∗ — potentially
with an exponential number of leaves. We think of
this dissection to be constructed in a top-down fashion,
where the dynamic program truncates the dissection at
empty paths, that do not contain any driver. How many
paths (or nodes in the dissection tree) can this truncated
dissection have? Any of the m drivers is fully contained
in not more than `many paths (which is the depth of the
dissection tree). And any remaining empty path must
have a father that is non-empty. Hence the number of
paths P in the truncated dissection tree is bounded by
γ ·` ·m. Since we replaced any edge in the original graph
by that many edge segments, this truncated dissection
also exists in G0.

Again, by Lemma 3.3, if we consider the (truncated)
dissection of G0 which is induced by the optimal solu-
tion, any driver Dj is good with probability at least
1 − 3ε. Suppose that Dj is good and satisfied in the
optimal solution, i.e. `j ≤ w∗(Dj) ≤ uj . Then

w∗(Ds
j) ≥

δ

δ + 2
w∗(Dj) ≥ `j/(1 + 4ε)

and of course w∗(Ds
j) ≤ w∗(Dj) ≤ uj . In other words,

Dj would be included by the dynamic program. The
claim follows again by linearity of expectation.

Finally we argue that the returned drivers are ap-
proximately satisfied by the computed weight function.

Lemma B.2. Let (w,D′) be the returned solution. For
every driver Dj ∈ D′, one has `j/(1 + 4ε) ≤ w(Pj) ≤
uj(1 + 4ε).

Proof. Again let Ds
j be the shortened driver of Dj w.r.t.

the dissection induced by the computed weight function
w. First of all w(Dj) ≥ w(Ds

j) ≥ `j/(1+ 4ε). Next, the
driver Dj is good, hence

w(Dj) ≤
δ + 2

δ
w(Ds

j) = (1 + 4ε)w(Ds
j) ≤ (1 + 4ε) · uj .

We observe that the above algorithm can be easily
derandomized by trying out all 1/ε many choices of y.
In total Theorem 4.2 follows.

