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N. HYVÖNEN† AND M. LEINONEN†

Abstract. The objective of electrical impedance tomography is to deduce information about
the conductivity inside a physical body from electrode measurements of current and voltage at the
object boundary. In this work, the unknown conductivity is modeled as a random field parametrized
by its values at a set of pixels. The uncertainty in the pixel values is propagated to the electrode
measurements by numerically solving the forward problem of impedance tomography by a stochastic
Galerkin finite element method in the framework of the complete electrode model. For a given set of
electrode measurements, the stochastic forward solution is employed in approximately parametriz-
ing the posterior probability density of the conductivity and contact resistances. Subsequently, the
conductivity is reconstructed by computing the maximum a posteriori and conditional mean esti-
mates as well as the posterior covariance. The functionality of this approach is demonstrated with
experimental water tank data.
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1. Introduction. The aim of electrical impedance tomography (EIT) is to re-
trieve useful information about the conductivity inside an examined physical body
based on boundary measurements of current and voltage. In practice, the boundary
data are gathered with a finite number of contact electrodes; the most accurate model
for EIT is the complete electrode model (CEM) [7, 33], which takes into account the
electrode shapes and the contact resistances at the electrode-object interfaces. EIT
has potential applications in, e.g., medical imaging, monitoring of industrial processes,
and nondestructive testing of materials; see the review articles [1, 5, 6, 24, 35] and
the references therein for more information on EIT and related mathematics.

This work considers EIT from the standpoint of uncertainty quantification. The
to-be-reconstructed conductivity is modeled as a random field parametrized by uni-
formly distributed mutually independent random variables representing the conduc-
tivity levels at a set of pixels. The range of the pixel values is chosen based on prior
information, while the number of pixels is mainly dictated by computational restric-
tions. The contact conductances, i.e., the reciprocals of the contact resistances, are
also assigned uniform prior densities. For a given measurement configuration, the
uncertainty in the conductivity field and the contact resistances is propagated to the
electrode measurements by approximately solving the stochastic version of the CEM
forward problem by a stochastic Galerkin finite element method (sGFEM) [11, 29],
which in our case corresponds to discretizing the spatial domain by piecewise linear
FEM basis functions and the stochastic domain by a spectral Galerkin method with a
Legendre polynomial basis (cf. [38]). These steps can be carried out off-line, i.e., prior
to the actual measurements, assuming the measurement geometry as well as the ranges
for the conductivity and contact conductance values are known in advance.
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After the electrode potentials corresponding to a set of applied current patterns
have been measured, the stochastic forward solution can be used to explicitly write an
approximate parametrization for the posterior density of the conductivity, i.e., for the
posterior of the pixelwise conductivity levels. At this stage, it is also possible to ‘up-
date’ the prior in case one has more specific information on the particular conductivity
at hand. In this work, the information on the range of the pixelwise conductivity lev-
els assumed in the forward solver is complemented by a Gaussian smoothness prior,
but we want to emphasize that other forms of a priori information could as well
be incorporated in the inverse solver. The actual conductivity reconstructions are
obtained by computing maximum a posteriori (MAP) and conditional mean (CM) es-
timates, i.e., the maximum point and the expected value of the approximate posterior
density, respectively. In our setting, the computation of the former corresponds to
minimizing a high-dimensional positive-valued polynomial, whereas the latter deals
with high-dimensional integration with an explicitly known integrand. The recon-
structions of the conductivity are complemented with visualizations of the posterior
standard deviation.

The papers [23, 12] introduced a reconstruction method for two-dimensional EIT
by applying sGFEM to the CEM under the assumption that the conductivity is a
priori known to be a lognormal random field. To be more precise, the conductivity
was parametrized using its truncated exponential Karhunen–Loève expansion, and re-
constructions were computed by estimating the random coefficients in the truncated
expansion on the basis of (simulated) measurement data. Although the assumption of
lognormality can be considered natural [23], the major drawback of the approach in
[12] is that the spatial and stochastic components of the sGFEM solution cannot be
decoupled, which results in relatively full system matrices (cf. [12, Section 6.1]). This
can easily be a deal-breaker in practical EIT since the accurate enough solution of the
stochastic CEM forward model by sGFEM requires the use of a high number of de-
grees of freedom. The algorithm presented in this work can be considered a modified
version of the one in [12], aiming at better computational feasibility: The pixelwise
parametrization by uniformly distributed random variables results in a very sparse
sGFEM system and it also allows trivial control over the positivity of the conductivity.
Compared with [12], our new algorithm makes it possible to straightforwardly update
the prior information on the conductivity in the on-line solution phase and to con-
sider the estimation of a higher number of parameters from electrode measurements,
resulting in improved reconstructions.

Compared with previous Bayesian techniques for tackling the inverse problem of
practical EIT (see, e.g., [8, 16, 19, 21] and the references therein), the main advantage
of our approach is the following: Our method produces an (approximate) parametriza-
tion of the posterior density, i.e., of the idealized solution to the inverse problem in
the Bayesian sense, which makes it possible to analyze the posterior without referring
to the elliptic boundary value problem associated to the CEM. (In the ‘standard’
Bayesian approach to EIT, each evaluation of the posterior density requires solving
as many deterministic CEM forward problems as there are applied current patterns.)
In particular, if the sGFEM solution of the CEM has been computed prior to the
measurements, reconstructions and corresponding uncertainty estimates for the con-
ductivity can be produced without ever returning to the CEM forward problem itself.
This leads to obvious computational benefits because evaluating explicitly known
functions is typically cheaper than solving several elliptic boundary value problems.
The obvious disadvantage of the proposed method is the requirement of precomputing
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an accurate enough sGFEM forward solution for the CEM. However, the inevitable in-
crease in computational resources and further development of stochastic finite element
algorithms (see, e.g., [4]) may well facilitate a satisfactory solution to this problem in
the future.

The approach of this work is purely computational: based on experimental data
from water tank experiments, we demonstrate that the introduced algorithm produces
two-dimensional reconstructions that are arguably almost as good as the state-of-
the-art Bayesian reconstructions from experimental data under a smoothness prior
(cf., e.g., [8, 21]). For information on the convergence of the sGFEM-parametrized
posterior density in closely related settings, we refer to [27, 30] and the references
therein. However, we are not aware of proper convergence analysis of sGFEM-based
reconstruction algorithms for inverse elliptic boundary value problems. Moreover, to
the best of our knowledge, this is the first time that any stochastic finite element
method has been employed to compute EIT reconstructions from experimental data.
See [9, 10, 17, 26, 27, 31, 34] for related approaches to solving inverse problems.

The rest of this paper is organized as follows. The stochastic complete electrode
model (SCEM) is introduced in Section 2, and solving the SCEM forward problem
by sGFEM is considered in Section 3. We focus on the Bayesian inverse problem
of EIT in Section 4, and Section 5 discusses the two-phase implementation of our
reconstruction algorithm. The numerical examples are presented in Section 6. We
conclude with a few remarks in Section 7.

2. Stochastic complete electrode model. In this section, we introduce the
SCEM for modeling practical EIT measurements with a random conductivity and
contact resistances. For the traditional deterministic formulation together with its
physical and experimental justification, see [7, 33].

Let D ⊂ Rn, n = 2 or 3, be a bounded domain with a smooth enough boundary
and let (Ω,Σ, P ) be a probability space. We interpret the internal conductivity of D
as a random field σ(·, ·) : Ω × D → R which is assumed to be a uniformly strictly
positive element of L∞(Ω×D), i.e.,

P

(
ω ∈ Ω : σmin ≤ ess inf

x∈D
σ(ω,x) ≤ ess sup

x∈D
σ(ω,x) ≤ σmax

)
= 1

for some constants σmin, σmax > 0. The perfectly conducting electrodes E1, . . . , EM ,
M ∈ N \ {1}, attached to D are identified with the corresponding open, connected,
and mutually disjoint subsets of ∂D. We denote E = ∪mEm, I = [I1, . . . , IM ]T, and
U = [U1, . . . , UM ]T, where Im ∈ R and Um : Ω → R are the injected deterministic
net current and the measured random voltage, respectively, on the mth electrode.
The current pattern I belongs to the mean-free subspace RM� of RM by virtue of the
conservation of charge; the voltage vector U is interpreted as a (random) element of
RM� by choosing the ground level of potential appropriately. The contact resistances
representing the resistive layers between the electrodes and the domain D are modeled
by random variables zm : Ω→ R, m = 1, . . . ,M , which are assumed to be uniformly
strictly positive and bounded:

P (ω ∈ Ω : zmin ≤ zm(ω) ≤ zmax) = 1, m = 1, . . . ,M,

for some zmin, zmax > 0.
Denote H := H1(D)⊕ RM� and let us introduce the Bochner space

L2
P (Ω;H) :=

{
(u, U) : Ω→ H

∣∣ ∫
Ω

‖(u(ω), U(ω))‖2H dP (ω) <∞
}
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that allows the decomposition L2
P (Ω;H) ' L2

P (Ω) ⊗ H, where ⊗ denotes the ten-
sor product between Hilbert spaces (cf., e.g., [29]). The SCEM forward problem
is as follows. For a given deterministic electrode current pattern I ∈ RM� , find a
pair (u, U) ∈ L2

P (Ω;H) that satisfies the following boundary value problem P -almost
surely:

∇ · (σ∇u) = 0 in D,

∂u

∂ν
= 0 on ∂D \ E,

u+ zmσ
∂u

∂ν
= Um on Em, m = 1, . . . ,M,∫

Em

σ
∂u

∂ν
dS = Im, m = 1, . . . ,M,

where ν = ν(x) is the exterior unit normal of ∂D. The corresponding variational
formulation is to find (u, U) ∈ L2

P (Ω;H) such that

E
[
B
(
(u, U), (v, V )

)]
= I · E[V ] for all (v, V ) ∈ L2

P (Ω;H), (2.1)

where E[ · ] denotes the expectation and the bilinear form B : H×H → R is defined
via

B
(
(u, U), (v, V )

)
=

∫
D

σ∇u · ∇v dx +

M∑
m=1

1

zm

∫
Em

(Um − u)(Vm − v) dS.

The unique solvability of the SCEM forward problem can be proved by extending the
deterministic argumentation in [33].

2.1. Parametric deterministic SCEM. In the rest of this work, the conduc-
tivity is assumed to be parametrized by its random values at a finite set of open pixels
D1, . . . , DL, which constitute a partition of D, i.e., D = ∪Dl. More precisely,

σ(ω,x) = σ0 +

L∑
l=1

σl1Dl(x)Yl(ω), ω ∈ Ω, x ∈ D, (2.2)

where σ0 ∈ R+, σl ∈ R+ ∪ {0}, and σl < σ0 for l = 1, . . . , L. Moreover, 1Dl
is the indicator function of Dl, and each random variable Y1, . . . , YL is uniformly
distributed on the interval [−1, 1]. For every m = 1, . . . ,M , the contact resistance zm
is assumed to follow the inverse uniform distribution on the interval [b−1

m , a−1
m ], where

0 < am < bm. In consequence, the contact conductances ζ1 := z−1
1 , . . . , ζM := z−1

M

can be presented as

ζm(ω) =
1

2
(am + bm) +

1

2
(bm − am)YL+m(ω), m = 1, . . . ,M,

where each YL+1, . . . , YL+M obeys the uniform distribution on [−1, 1]. It is assumed
that Y1, . . . , YL+M are mutually independent.

To simplify the notation, we define

Yσ = (Y1, . . . , YL), Yζ = (YL+1, . . . , YL+M ),
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and denote Y = (Yσ,Yζ). In particular, Y : Ω→ RL+M has the probability density

ρ(y) =

{
2−(L+M) if y ∈ Γ,

0 otherwise,
(2.3)

where Γ = [−1, 1]L+M .
Substituting the above choices in (2.1), we arrive at our parametric deterministic

variational formulation of the SCEM forward problem: find (u, U) ∈ L2(Γ;H) such
that∫

Γ

[ ∫
D

σ(y,x)∇u · ∇v dx +

M∑
m=1

ζm(y)

∫
Em

(Um − u)(Vm − v) dS
]
dy = I ·

∫
Γ

V (y)dy

(2.4)

for all (v, V ) ∈ L2(Γ;H). Here, with a slight abuse of the notation,

σ(y,x) = σ0 +

L∑
l=1

σl1Dl(x) yl (2.5)

and

ζm(y) =
1

2
(am + bm) +

1

2
(bm − am)yL+m, m = 1, . . . ,M, (2.6)

i.e., we have interpreted the conductivity and the contact conductances as functions
of the parameter vector y = (yσ,yζ) ∈ Γ ⊂ RL+M .

Remark 2.1. As the probability density (2.3) is piecewise constant, we have
dropped the ‘weight’ ρ(y) from the integrals in (2.4) and refrained from introducing
weighted L2-spaces. In general, this is not recommendable; see, e.g., [29, 23].

3. Stochastic forward solution. To numerically solve (2.4), we need to dis-
cretize L2(Γ;H) ' L2(Γ) ⊗ (H1(D) ⊕ RM� ), which boils down to choosing finite-
dimensional bases for (certain subspaces of) L2(Γ), H1(D), and RM� . The spaces
H1(D) and RM� are handled as in standard FEM, whereas for L2(Γ) we use the
spectral Galerkin method with a multivariate Legendre polynomial basis. The latter
choice is reasonable as (2.4) includes no differentiation with respect to y.

For H1(D) we use the standard FEM with piecewise linear basis {ϕj}NDj=1 ⊂
H1(D), ND ∈ N, with respect to a suitable mesh. As the mean-free basis vectors for
RM� , we employ

vi = e1 − ei+1, i = 1, . . . ,M − 1, (3.1)

with ei denoting the ith Euclidean basis vector of RM . To introduce the discretization
of L2(Γ), we first recall the definitions of the univariate and multivariate Legendre
polynomials.

Definition 3.1 (Legendre polynomials). Let m ∈ N0 := N ∪ {0} = {0, 1, 2, . . .}.
The mth univariate Legendre polynomial is defined as

Lm(y) :=

√
2m+ 1

2m+1/2m!

dm

dym
[(y2 − 1)m],

where y ∈ R.
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Note that we have (nonstandardly) normalized the Legendre polynomials so that
they are orthonormal with respect to the L2 inner product over [−1, 1]:∫ 1

−1

Lk(y)Ll(y) dy = δk,l, k, l ∈ N0,

where δk,l is the Kronecker’s delta.

Definition 3.2 (Multivariate Legendre polynomials). Let P ∈ N and µ ∈ NP0
be a multi-index. The multivariate Legendre polynomial Lµ, also called chaos poly-
nomial, is defined as

Lµ(y) :=

P∏
k=1

Lµk(yk), y ∈ RP ,

where Lµk is the µkth univariate Legendre polynomial.

The set P := {Lµ | µ ∈ NL+M
0 } is an orthonormal basis of L2(Γ) (cf., e.g., [29]),

and thus any function f ∈ L2(Γ) admits a polynomial chaos representation,

f =
∑

µ∈NL+M
0

(
f, Lµ

)
L2(Γ)

Lµ (3.2)

in the topology of L2(Γ). In practical computations the number of multi-indices
considered in (3.2) must naturally be finite, and hence we must replace NL+M

0 with a
finite subset of multi-indices Λ ⊂ NL+M

0 .

The set Λ is ideally chosen so that

f ≈
∑
µ∈Λ

(
f, Lµ

)
L2(Γ)

Lµ

is as accurate as possible for the considered f under a given constraint on the cardi-
nality #Λ. When solving (2.4), one would like to get good representations (for the
FEM approximations) of f = u( · , x), x ∈ D. In practice, estimating a priori opti-
mal index sets for the solutions of (2.4) is highly nontrivial (but possible to a certain
extent [4]), and hence we resort in this work to generic index sets which are easy to
generate and give equal weight to each dimension in Γ.

Definition 3.3 (Isotropic total degree index set). Let P,Q ∈ N. The isoTD

index set is defined as

isoTD(P,Q) =

{
µ ∈ NP0

∣∣ P∑
k=1

µk ≤ Q

}
.

It is easy to see that the cardinality of the isoTD(P,Q) index set is

# isoTD(P,Q) =

(
P +Q

Q

)
. (3.3)

In what follows, we use Λ = isoTD(L+M,Q) for some Q ∈ N and denote NΓ = #Λ.
See, e.g., [2, 3, 4] and the references therein for information on other types of index
sets.
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We look for an approximation (ũ, Ũ) of the parametric deterministic SCEM so-
lution (u, U) to (2.4) in the form

u(y,x) ≈ ũ(y,x) =

ND∑
j=1

∑
µ∈Λ

αj,µLµ(y)ϕj(x), (3.4a)

U(y) ≈ Ũ(y) =

M−1∑
i=1

∑
µ∈Λ

βi,µLµ(y)vi, (3.4b)

where {αj,µ} ⊂ R and {βi,µ} ⊂ R are the to-be-determined real coefficients. In
particular, the approximation of the electrode potentials in (3.4b) is an M -dimensional
vector whose components are Qth order polynomials in y. We denote by α ∈ RNDNΓ

and β ∈ R(M−1)NΓ the block vectors defined by {αj}µ = αj,µ and {βi}µ = βi,µ,
respectively.

The coefficient vector (α, β) is determined via the standard Galerkin projection:
requiring that (ũ, Ũ) satisfies (2.4) for all (v, V ) in the chosen finite-dimensional sub-
space of L2

P (Γ;H) ' L2
P (Γ) ⊗ H, i.e., for all (v, V ) = (Lµ′ϕj′ , Lµ′vi′), µ

′ ∈ Λ,
j′ = 1, . . . , ND, i′ = 1, . . . ,M − 1, one ends up at the linear system of equations
(cf. [23, 36]) (

∆ Υ
ΥT Π

)(
α
β

)
=

(
0
c

)
. (3.5)

Here, ∆ ∈ RNDNΓ×NDNΓ and Π ∈ R(M−1)NΓ×(M−1)NΓ are symmetric sparse matrices,
Υ ∈ RNDNΓ×(M−1)NΓ is a sparse (non-square) matrix, c ∈ R(M−1)NΓ is a block
vector, and 0 ∈ RNDNΓ is a zero vector. Take note that (3.5) has in total Ntot :=
(ND +M − 1)NΓ degrees of freedom.

In order to give the precise definitions of the elements in the system (3.5), let
us first introduce some auxiliary block matrices. In the following definitions, i, i′ =
1, . . . ,M − 1, j, j′ = 1, . . . , ND, k = 1, . . . , L + M , l = 1, . . . , L, m = 1, . . . ,M , and
µ, µ′ ∈ Λ, if not stated otherwise. The FEM matrices corresponding to the spatial
discretization of D are defined via

{A0}j,j′ =

∫
D

σ0∇ϕj(x) · ∇ϕj′(x) dx ,

{Al}j,j′ =

∫
Dl

σl∇ϕj(x) · ∇ϕj′(x) dx .

Notice that A0 is sparse and {Al}j,j′ is nonzero only if the supports of both ϕj and
ϕj′ intersect Dl. The elements of the stochastic moment matrices are

{G0}µ,µ′ =

∫
Γ

Lµ(y)Lµ′(y) dy = δµ,µ′ ,

{Gk}µ,µ′ =

∫
Γ

ykLµ(y)Lµ′(y) dy.

Since a univariate Legendre polynomial of a certain order is orthogonal to all lower
order polynomials, it follows easily that {Gk}µ,µ′ 6= 0 only if |µk − µ′k| = 1 and
µk′ = µ′k′ for k′ 6= k, which makes Gk very sparse. Finally, the electrode mass
matrices are defined through

{Sm}j,j′ =

∫
Em

ϕj(x)ϕj′(x) dS,
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and the contact conductance matrices through (cf. (2.6))

Zm =
1

2
(am + bm)G0 +

1

2
(bm − am)GL+m.

Standard FEM techniques can be used to construct Al, l = 0, . . . , L, and Sm, m =
1, . . . ,M , and we refer to [4, 13] for the efficient formation of Gk, k = 0, . . . , L+M .
The contact conductance matrices Zm, m = 1, . . . ,M , are trivial to construct as soon
as the stochastic moment matrices are available.

Now, the matrix ∆ can be given as

∆ =

L∑
l=0

Al ⊗Gl +

M∑
m=1

Sm ⊗ Zm,

where ⊗ denotes the Kronecker product. Moreover,

{Υj,i′}µ,µ′ = {Zi′+1}µ,µ′

∫
Ei′+1

ϕj(x) dS − {Z1}µ,µ′

∫
E1

ϕj(x) dS

and

{Πi,i′}µ,µ′ = {Z1}µ,µ′ |E1|+ δi,i′ {Zi′+1}µ,µ′ |Ei+1|,

where |Ei| denotes the area/length of the ith electrode. Finally, the block vector c is
defined elementwise by

{ci}µ = (I · vi)
∫

Γ

Lµ(y)dy =

{
0, µ 6= 0,

I1 − Ii+1, µ = 0,

where I ∈ RM� is the applied current pattern and 0 is the zero multi-index.

4. Inverse solution. The objective of EIT is to retrieve useful information
about the conductivity inside the examined body based on measured noisy electrode
current-potential pairs. In this section, we explain how the sGFEM approximation
(3.4b) for the second component of the solution to (2.4) can be employed in numer-
ically solving this problem in the Bayesian framework; see [20] for more information
on statistical inversion.

Let I1, . . . , IM−1 ∈ RM� be linearly independent current patterns that are driven
in turns through the M contact electrodes E1, . . . , EM , and suppose V 1, . . . , VM−1 ∈
RM are the corresponding measured noisy electrode potential vectors. (Notice that
there is no benefit in using more than M − 1 = dim(RM� ) current patterns because
the solution of (2.1) depends linearly on I.) We define

v =
[
(V 1)T, . . . , (VM−1)T

]T
∈ RM(M−1)

and

Ũ(Y) =
[
Ũ1(Y)T, . . . , ŨM−1(Y)T

]T
∈ RM(M−1)

with Ũm(Y) ∈ RM� being the sGFEM solution (3.4b) corresponding to the current
pattern I = Im in (2.4). In other words, Ũ ij(Y) ∈ R is the jth component of the

sGFEM solution (3.4b) for the current pattern Ii ∈ RM� .
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The electrode potentials v are assumed to be a realization of the random variable

V = Ũ(Y) + E, (4.1)

where E is the noise process contaminating the measurements. Notice that the model
(4.1) cannot be exact as it does not take into account the unavoidable discretization
errors in Ũ(Y), but we choose to ignore this fact to simplify the analysis. Moreover,
E : Ω→ RM(M−1) is assumed to be independent of Y, mean-free, and Gaussian with
a known covariance matrix L ∈ RM(M−1)×M(M−1). Combining (4.1) with the Bayes’
formula results in the posterior density

π(y |v) ∝ πnoise

(
v − Ũ(y)

)
πpr(y)

=
1√

(2π)M(M−1)|L|
exp
(
− 1

2
(v − Ũ(y))TL−1(v − Ũ(y))

)
πpr(y), (4.2)

where |L| is the determinant of the noise covariance matrix and the ‘constant’ of
proportionality is independent of y.

The choice of the prior density πpr in (4.2) should be based on a priori information
about the pixel values of the conductivity and the contact conductances. Since the
sGFEM forward solver of the previous section was already built under the assumption
that the parameters y belong to the hypercube Γ = [−1, 1]L+M , it is natural to choose

πpr(y) = πσ(yσ)πζ(yζ)1Γ(y), (4.3)

where 1Γ : RL+M → R is the indicator function of Γ ⊂ RL+M and we have assumed
that the parameters corresponding to the pixelwise conductivity values yσ ∈ RL and
those associated to the contact conductances yζ ∈ RM are independent a priori. We
assume to have no further prior information on the contact conductances, i.e., we
employ

πζ(yζ) = 2−M , yζ ∈ [−1, 1]M ,

whereas for the conductivity we choose a truncated multivariate normal prior density:

πσ(yσ) =
exp

(
− 1

2
yT
σM−1yσ

)
∫

Γσ

exp
(
− 1

2
ỹT
σ M−1 ỹσ

)
dỹσ

, yσ ∈ [−1, 1]L, (4.4)

where Γσ = [−1, 1]L and M ∈ RL×L is the covariance matrix of the underlying
multivariate normal distribution N (0,M). In this work, the covariance matrix is
assumed to be of the squared exponential type:

Ml,l′ = η2 exp

(
−|rl − rl′ |2

2s2

)
, (4.5)

where rl is the center of the pixel Dl, s > 0 is the correlation length, η > 0 is the
standard deviation, and l, l′ = 1, . . . , L.

Remark 4.1. The inclusion of 1Γ(y) in (4.3) is only natural because there is
absolutely no guarantee that Ũ(y) is any kind of an approximation for the electrode
potentials corresponding to a conductivity of the form (2.5) if y /∈ Γ. The ‘additional’
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priors πσ and πζ can, however, be selected as one wishes, bearing in mind that com-
plicated choices may hamper the computation of the MAP and CM estimates for the
posterior.

One could also utilize the prior information in πσ and πζ when building the

sGFEM forward solver to maximize the accuracy of Ũ(y) for those parameter vec-
tors y that live in regions of high prior probability (cf. [12]). One way of achieving
this is to replace the probability density (2.3) by an approximation of (4.3) in the
Legendre polynomial basis and use techniques in [13] to construct the (more involved)
stochastic moment matrices.

The reason for not taking such a path in this work is two-fold: (i) Changing πσ and
πζ does not affect the sGFEM forward solver in our setting, which significantly reduces
the computational cost for tuning/changing the prior. (ii) Using a more complicated
random field model than (2.2) for the sGFEM forward solver leads easily to a less
sparse system matrix (3.5) that is more laborious to construct, and it potentially also
makes controlling the positivity of the conductivity more involved.

The MAP estimate yMAP for Y, i.e., the maximizer of the posterior density (4.2),
can be computed by solving the constrained minimization problem

yMAP := arg min
y∈Γ

F (y), (4.6)

where

F (y) :=
(
v − Ũ(y)

)T
L−1

(
v − Ũ(y)

)
+ yT

σ M−1 yσ

is a positive-valued polynomial in y. Subsequently, the MAP estimate for the conduc-
tivity σMAP : D → R+ is obtained by evaluating (2.5) at y = yMAP, and the MAP
estimates for the contact conductances are deduced analogously via (2.6).

The CM estimates of the conductivity and contact conductances are obtained by
(numerically) evaluating the (L+M)-dimensional integrals

σCM(x) =

∫
Γ

σ(y,x)π(y |v)dy, x ∈ D, (4.7)

and

(ζm)CM =

∫
Γ

ζm(y)π(y |v)dy, m = 1, . . . ,M, (4.8)

respectively. To evaluate the reliability of the CM estimates, we also consider the
conditional standard deviations (SD)

σSD(x) =

L∑
l=1

σl1Dl(x)

[∫
Γ

y2
l π(y |v)dy−

(∫
Γ

yl π(y |v)dy

)2
] 1

2

, x ∈ D, (4.9)

and

(ζm)SD =
1

2
(bm − am)

[∫
Γ

y2
L+m π(y |v)dy−

(∫
Γ

yL+m π(y |v)dy

)2
] 1

2

(4.10)

in the numerical experiments of Section 6.
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5. Two-phase implementation. The implementation of the presented inver-
sion algorithm consists of two phases: the pre-measurement and post-measurement
processing. The former corresponds to computations that can be carried out before
performing any measurements, assuming the object shape, the electrode positions,
and the preliminary bounds for the conductivity and contact conductances are known.
The latter phase consists of forming the posterior density and computing the desired
estimates for the unknowns.

5.1. Pre-measurement processing. The pre-measurement phase consists of
the following six steps:

1. Specify the computational domain, i.e., the object shape together with the
electrode sizes and positions.

2. Select a suitable partition of the domain into pixels.
3. Specify bounds for the conductivity and contact conductance values, i.e.,
σ0, σ1, . . . , σL in (2.5) as well as a1, . . . , aM and b1, . . . , bM in (2.6).

4. Construct a suitable FEM polynomial basis for H1(D).
5. Select the index set Λ for the polynomial chaos expansion.
6. Compute the sGFEM solution (3.4a)–(3.4b).

We emphasize that all these steps can be performed without having the actual elec-
trode measurements in hand. Moreover, the sGFEM solution can be reused for dif-
ferent data sets as long as the bounds for the conductivity and contact conductances
or the measurement geometry are not altered.

The pre-measurement processing stage is clearly the more time consuming of the
two phases because the SCEM forward problem is discretized by over 107 degrees
of freedom in our two-dimensional numerical experiments. (In three dimensions, the
number of degrees of freedom could easily exceed 109.) Fortunately, if the measure-
ment configuration is known well in advance, the pre-measurement processing can be
carried out before the actual measurements.

5.2. Post-measurement processing. After the electrode potential measure-
ments v ∈ RM(M−1) are available, the post-measurement phase consists of the follow-
ing four steps:

1. Specify the noise covariance matrix L.
2. Select the correlation length s and the standard deviation η for the prior

covariance matrix M in (4.5).
3. Construct the posterior density (4.2).
4. Compute the desired estimates (MAP, CM, and SD) for the posterior distri-

bution.
Notice that the accuracy of the spatial FEM discretization does not affect the

computation time for the post-measurement phase since the approximate stochastic
forward solution Ũ(y) from (3.4b) does not involve the spatial FEM basis functions.
Hence, one should use as dense spatial FEM mesh as allowed by the pre-measurement
time and memory constraints. On the other hand, the discretization of L2(Γ) affects
the computation times of both phases.

6. Numerical experiments. We apply the above introduced methodology to
five sets of experimental data from a thorax-shaped water tank with vertically ho-
mogeneous embedded objects of steel and/or plastic extending from the bottom all
the way through the water surface. The circumference of the tank is 106 cm, and
M = 16 rectangular metallic electrodes of width 2 cm and height 5 cm are attached
to the interior lateral surface of the tank. In all tests, the tank is filled with tap water
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up to the top of the electrodes. The measurement configuration without inclusions
is presented in the left-hand image of Figure 6.1. (All photographs shown below are
cropped and spatially normalized versions of the original ones. We have also removed
most of the reflections on the water surface to ease perceiving the images.) The
measurements were performed with low-frequency (1 kHz) alternating current using
the Kuopio impedance tomography (KIT4) device [22]. The phase information of the
measurements is ignored, meaning that the amplitudes of electrode currents and po-
tentials are interpreted as real numbers. The employed (real) current patterns are
(cf. (3.1))

Im = (e1 − em+1) mA, m = 1, . . . ,M − 1,

with em denoting the mth Euclidean basis vector of RM . This choice of current basis
makes the first electrode special; it is marked with red color in Figure 6.1.

As the measurement setting is vertically homogeneous — notice that no current
flows through the bottom or the top of the water tank, which corresponds to homo-
geneous Neumann boundary conditions — it can be modeled with a two-dimensional
version of the SCEM (cf. Section 2). The conversion of conductivity (S/m) and con-

tact conductances (S/m
2
) into corresponding two-dimensional quantities is achieved

by multiplying with the height of the electrodes. The same measurement setting was
tackled in [8], where the conductivity of tap water was estimated to be around 0.2 –
0.25 mS/cm, i.e., 1.0 – 1.25 mS in the two-dimensional units. This also matches the
limits given for drinking water in the literature (0.05 – 0.5 mS/cm). Using [8] as our
reference, we choose σ0 = 1.1 mS and σ1, . . . , σL = 0.9 mS in (2.5), i.e., we let the
pixelwise conductivities vary between 0.2 mS and 2.0 mS in the forward solver. As the
examples consider inclusions that are either insulating (plastic) or highly conducting
(steel), the interval [0.2, 2.0] mS for the conductivity values may seem a bit restrictive.
However, according to our experience (cf., e.g., [8, 14]), 0.2 mS is a sufficiently low
value for modeling an insulating object accurately enough and, on the other hand,
highly conducting objects exhibit some resistivity in EIT, probably due to the con-
tact resistance at their boundaries (cf. [15]). A relatively large lower bound for the
conductivity also ensures that the sGFEM system matrix stays well conditioned. Fur-
thermore, we assume relatively bad contacts at the electrode-water interfaces and set
am = 10 mS/cm and bm = 103 mS/cm, m = 1, . . . ,M in (2.6) (cf. [16]).

The right-hand image of Figure 6.1 shows the computational domain D ⊂ R2

corresponding to the water tank together with our choice for the partition of the
domain into L = 76 pixels D1, . . . , DL (cf. (2.5)) that are intersections of certain
hexagons and D. We employ spatial FEM mesh (not shown) composed of ND = 9383
nodes with appropriate refinements at the edges of the electrodes (cf. [8]). As the
stochastic index set in (3.4a)–(3.4b), we use Λ = isoTD(L + M, 2), which results
in NΓ = 4371 stochastic degrees of freedom. In total, the discretized forward SCEM
problem includes Ntot = (ND+M−1)NΓ ≈ 4.1·107 unknowns, and the system matrix
in (3.5) has approximately 3 ·108 nonzero elements, i.e., approximately seven nonzero
elements per row. In all our numerical experiments, (3.5) is solved by the standard
direct linear solver of MATLAB, i.e., by the mldivide command, for simplicity and
to avoid any convergence and preconditioning issues related to iterative methods.
Using the conjugate gradient method with an ILU0 [25] based preconditioner, we
have been able to tackle denser FEM and pixel meshes, e.g., L = 145 corresponding
to NΓ = 13203 and Ntot ≈ 1.2 · 108, but this does not result in significantly better
results than the ones presented in Sections 6.1–6.3 below.
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Fig. 6.1: Left: thorax-shaped water tank with no inclusions. Right: the computa-
tional domain, its partition into L = 76 hexagonal pixels, and the M = 16 attached
electrodes. The current-feeding electrode E1 is red and the others are numbered in
counterclockwise order.

To motivate the choice of the stochastic index set, we mention that for Λ =
isoTD(L + M, 1), the conductivity reconstructions contain more artifacts, the in-
clusions are not as well localized, and the background conductivity level is higher
and not as smooth as with isoTD(L + M, 2). We were not able to test the case
Λ = isoTD(L + M, 3) with any reasonable FEM and pixel meshes due to memory
and time constraints. There is an obvious trade-off between the fineness of the FEM
mesh and the number of the hexagonal pixels in the reconstruction grid; the values
listed in the previous paragraph represent a compromise arrived at via trial and error.
Employing denser FEM mesh forces one to use a coarser pixel grid — and vice versa
— in order to keep the system size reasonable. Take note that increasing the number
of spatial degrees of freedom ND affects the size of the sGFEM system (3.5) linearly,
whereas increasing L leads to a quadratic growth rate since

NΓ =

(
2 + (L+M)

2

)
=

(L+ 17)(L+ 18)

2

for Λ = isoTD(L+M, 2) and M = 16 electrodes (cf. (3.3)). Recall also that increasing
ND affects only the computation time of the pre-measurement stage while the number
of pixels in the reconstruction grid has an effect on the time consumption in both pre-
and post-measurement phases.

The magnitude of the measurement noise on each electrode is assumed to be pro-
portional to the difference of the smallest and largest electrode potential measurement,
leading to the choice (cf. [8])

L = ξ2I, ξ = 0.01 (max(v)−min(v)), (6.1)

for the noise covariance matrix. Here and in the following, I denotes an identity
matrix of the appropriate size. Loosely speaking, (6.1) corresponds to assuming one
per cent of measurement noise. As the noise level of the measurement device is
probably only a couple of per mille depending on the measurement channel [22],
the assumed high variance for the noise process is actually used partially to mask
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the unavoidable discretization errors in the sGFEM forward solution for (2.1); see
[12, Remark 5.1]. We use the correlation length s = 5 and the standard deviation
η = 10ξ in the prior covariance matrix M of (4.5). The choice of s reflects the prior
assumption on the diameter of the embedded inhomogeneities, while the values of the
other free parameters ξ and η were chosen by trial and error, guided by the last test
case (cf. Figure 6.6). The prior covariance matrix was constructed assuming that all
pixels are hexagonal, and hence some center points of the pixels actually lie outside
the computational domain.

The MAP estimate yMAP — and subsequently σMAP — is obtained by solving
(4.6) as a nonlinear least-squares minimization problem by resorting to the lsqnonlin
function provided by the Optimization Toolbox of MATLAB. The CM estimates for
the conductivity and the contact conductances as well as the related standard devi-
ations are computed via Markov chain Monte Carlo (MCMC) simulations; the usage
of a deterministic sparse quadrature rule such as the one of Smolyak [32, 26] would be
another possibility, but we have had more success with MCMC techniques in connec-
tion with EIT. The standard Metropolis–Hastings algorithm (see, e.g., [20]) is used
to generate a sample of parameter vectors

{y(1), . . . ,y(N)} ⊂ RL+M

that is distributed (approximately) according to the posterior π(y | v) given by (4.2).
Starting from the corresponding MAP estimate, we use a single random walk, with a
burn-in period of 5 ·104 and a thinning of five, i.e., we only store every fifth element of
the Markov chain, to generate N = 4 · 105 samples. The proposal density for the ran-
dom walk is the truncated multivariate normal on Γ centered at the previous sample
with the covariance matrix 0.072 I, resulting in an acceptance rate of approximately
30%. Subsequently, the integrals (4.7) and (4.8) are approximated as

σCM(x) ≈ 1

N

N∑
i=1

σ(y(i),x) and (ζm)CM ≈
1

N

N∑
i=1

ζm(y(i)),

respectively. Similarly, the standard deviations (4.9) and (4.10) are approximated as

σSD(x) ≈
L∑
l=1

σl1Dl(x)

 1

N

N∑
i=1

(y
(i)
l )2 −

(
1

N

N∑
i=1

y
(i)
l

)2
 1

2

and

(ζm)SD ≈
1

2
(bm − am)

 1

N

N∑
i=1

(y
(i)
L+m)2 −

(
1

N

N∑
i=1

y
(i)
L+m

)2
 1

2

,

respectively. The number of samples was evaluated to be sufficient by visually exam-
ining the development of the CM estimates: in all numerical examples, the estimates
seemed to stabilize after about 2 · 105 samples — the final sample size was chosen to
be twice as large.

The solution of the SCEM forward problem and most other computations were
performed using the commercial software packages MATLAB1 and Mathematica2.

1Version 8.2.0 (R2013b), The MathWorks Inc., Natick, Massachusetts, 2013.
2Version 9.0, Wolfram Research Inc., Champaign IL, 2012.
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Fig. 6.2: Results of the first example. Top left: the target without embedded in-
clusions. Top right: the SD estimate σSD. Bottom left: the MAP estimate σMAP.
Bottom right: the CM estimate σCM. The unit in all images is mS, the MAP and
CM estimates use the same colormap, and the colorbar tick markers correspond to
the contour lines in the images.

MATLink [18] was employed for seamless two-way communication and data transfer
between Mathematica and MATLAB, and the needed FEM meshes were generated
by NETGEN mesh generator [28].

6.1. Experiment with empty tank. As a first simple example, we consider
the setting in the top left image of Figure 6.2, i.e., the case of no embedded inclu-
sions. The other images of Figure 6.2 show interpolated versions of the pixelwise
SD, MAP, and CM estimates for the conductivity. Both MAP and CM estimates
produce tolerable and almost identical reconstructions of the empty tank. Take note
that some of the small artifacts close to the object boundary are probably caused by
mismodeled geometry: the shape of the water tank and the positions of the electrodes
were estimated based on the photographs and previous experiments with the same
measurement configuration (cf. [8]). As expected, the SD estimate reveals that the
degree of uncertainty in the conductivity reconstruction is the highest in the central
parts of the tank and the lowest by the object boundary, with the smallest values of
σSD occurring close to the current-feeding (red) electrode. The SD estimates in the
other four test cases follow this same intuitive pattern.

The contact conductance estimates for the first experiment are presented in Ta-
ble 6.1. For most electrodes, the MAP estimates of the contact conductances are
close to the allowed minimum value, whereas the CM estimates stay at a higher level.
One possible explanation for the low MAP estimates is the algorithm’s attempt to
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Electrode 1 2 3 4 5 6 7 8
MAP 10 10 17 10 202 137 800 11

CM 448 546 567 564 340 497 446 453
SD 288 279 275 270 251 253 237 291

Electrode 9 10 11 12 13 14 15 16
MAP 382 681 11 13 10 27 10 762

CM 587 430 654 479 523 309 513 577
SD 241 250 268 265 283 232 289 282

Table 6.1: The MAP, CM, and SD estimates for the contact conductances in the first
experiment (mS/cm). The mean values of these MAP, CM, and SD estimates over
the sixteen electrodes are 193, 496, and 266 mS/cm, respectively.
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Fig. 6.3: Results of the second example. Top left: the target with one embedded
insulating inclusion. Top right: the SD estimate σSD. Bottom left: the MAP estimate
σMAP. Bottom right: the CM estimate σCM. The unit in all images is mS, the MAP
and CM estimates use the same colormap, and the colorbar tick markers correspond
to the contour lines in the images.

explain the overall resistivity of the tank by introducing as high contact resistances as
possible — recall that we introduced no additional prior for the contact conductances
in the post-measurement phase. Both the MAP and CM estimates give mean contact
conductances that are below the center of the interval [10, 103] mS/cm assumed in
the sGFEM forward solver; see Table 6.1. We do not consider contact conductance
estimates in the remaining examples as the general conclusions are the same as in this
preliminary test — and because the estimates for the contact conductances are not
as interesting as the reconstructions of the conductivity.
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Fig. 6.4: Results of the third example. Top left: the target with one embedded
highly conducting inclusion. Top right: the SD estimate σSD. Bottom left: the MAP
estimate σMAP. Bottom right: the CM estimate σCM. The unit in all images is mS,
the MAP and CM estimates use the same colormap, and the colorbar tick markers
correspond to the contour lines in the images.

6.2. Experiments with one inclusion. The top left image of Figure 6.3 shows
the target configuration of the second experiment: one insulating plastic cylinder em-
bedded in the bottom right corner of the water tank. The other images in Figure 6.3
are organized as in Figure 6.2, and they portray the MAP, CM, and SD estimates for
the conductivity. Both the MAP and CM estimates are able to find the general loca-
tion of the cylinder, with the MAP estimate providing a slightly better localization.
In the third experiment, one hollow steel cylinder with rectangular cross-section is
immersed in the water tank; see the top left image of Figure 6.4. The MAP and CM
estimates presented in the bottom row of Figure 6.4 provide reasonable reconstruc-
tions of the phantom also in this case, with the hump in the MAP estimate being
once again slightly sharper than in the CM estimate. Notice that the minimal and
maximal conductivity levels in the MAP and CM estimates of Figures 6.3 and 6.4 do
not lie close to the respective end points of the pixelwise interval [0.2, 2.0] mS used
in the sGFEM forward solver: the Gaussian smoothness prior (4.4) employed in the
post-measurement phase of the algorithm considerably restricts the spatial variations
in the reconstructions of the conductivity.

A comparison of the reconstructions in Figures 6.3 and 6.4 reveals that inclusions
close to the exterior boundary are better localized than those deep inside the domain,
which is not surprising taking into account the general form of the SD estimates. This
trend does not depend significantly on the type of the inclusion (insulating or highly
conducting) or its location in relation to the current-feeding electrode. Notice that the
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Fig. 6.5: Results of the fourth example. Top left: the target with one insulating and
one highly conducting inclusion. Top right: the SD estimate σSD. Bottom left: the
MAP estimate σMAP. Bottom right: the CM estimate σCM. The unit in all images
is mS, the MAP and CM estimates use the same colormap, and the colorbar tick
markers correspond to the contour lines in the images.

correlation length s = 5 cm in the prior covariance matrix (4.5) is arguably somewhat
conservative: we also tested smaller values such as s = 3 cm, which typically resulted
in better resolution and contrast for the (target) inclusions, but in some cases small
inclusion-like artifacts also appeared in the background, i.e., at locations where there
is only water inside the tank.

6.3. Experiments with two inclusions. We conclude with two experiments
with a pair of embedded inclusions: one plastic and one metallic cylinder. The target
configurations are shown in the top left images of Figures 6.5 and 6.6. The other im-
ages in Figures 6.5 and 6.6 illustrate the corresponding MAP, CM, and SD estimates
for the two measurement configurations. Even in this slightly more complicated set-
ting, our algorithm produces reasonably good reconstructions: in both experiments,
the positions of the two inhomogeneities can be identified accurately from the MAP
and CM estimates. Indeed, the highest and lowest reconstructed conductivity levels
are attained close to the center points of the metallic and plastic inclusions, respec-
tively. However, the reconstructions are heavily blurred, which is not very surprising
as the employed prior (4.4) prefers slow changes over sharp boundaries.

We have not tested the algorithm with a higher number of inhomogeneities, but
we suspect that the parametrization of the conductivity by the 76 pixels depicted in
Figure 6.1 is insufficient for reconstructing much more complicated phantoms than
the ones in Figures 6.5 and 6.6.
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Fig. 6.6: Results of the fifth example. Top left: the target with one insulating and one
highly conducting inclusion. Top right: the SD estimate σSD. Bottom left: the MAP
estimate σMAP. Bottom right: the CM estimate σCM. The unit in all images is mS,
the MAP and CM estimates use the same colormap, and the colorbar tick markers
correspond to the contour lines in the images.

7. Conclusions. We have studied the feasibility of solving the reconstruction
problem of EIT by combining SCEM and sGFEM, with the unknown conductivity
field parametrized by its values at a set of pixels. The functionality of the method
was demonstrated by applying it to five data sets from water tank experiments. In
all cases, the resulting MAP and CM estimates clearly provided useful information
about the conductivity phantom.

Assuming that the measurement configuration and the preliminary bounds for
the pixelwise conductivity values are known well in advance, the pre-measurement
phase of the reconstruction algorithm can be performed off-line, and subsequently
the (approximate) posterior distribution of the conductivity is obtained practically
for free when the measurement data becomes available. Hence, the on-line solution
phase of the algorithm consists solely of extracting the desired estimators from the
explicitly parametrized posterior.

In the post-measurement phase of the algorithm, we resorted exclusively to a
Gaussian prior with a covariance matrix of the type (4.5), which resulted in blurred
conductivity reconstructions. In principle, it should also be possible to use any other
prior (e.g., total variation [37]) for the conductivity in the post-processing phase.
Such a modification would only affect the form of the target function in (4.6) and the
integrands in (4.7) and (4.9), but it could lead to, e.g., more accurate detection of
inclusion boundaries. This line of research is left for future studies.
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