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BPX preconditioner for nonstandard finite element

methods for diffusion problems ∗

Binjie Li†, Xiaoping Xie ‡

School of Mathematics, Sichuan University, Chengdu 610064, China

Abstract

This paper proposes and analyzes an optimal preconditioner for a general linear symmetric

positive definite (SPD) system by following the basic idea of the well-known BPX framework.

The SPD system arises from a large number of nonstandard finite element methods for diffusion

problems, including the well-known hybridized Raviart-Thomas (RT) and Brezzi-Douglas-

Marini (BDM) mixed element methods, the hybridized discontinuous Galerkin (HDG) method,

the Weak Galerkin (WG) method, and the nonconforming Crouzeix-Raviart (CR) element

method. We prove that the presented preconditioner is optimal, in the sense that the condition

number of the preconditioned system is independent of the mesh size. Numerical experiments

are provided to confirm the theoretical results.

Keywords. BPX preconditioner, RT element, BDM element, HDG method, WG method,

nonconforming CR element

1 Introduction

This paper is to design an efficient preconditioner for a large class of nonstandard finite element

methods for solving the diffusion model





−div(A∇u) = f in Ω,

u = g on ∂Ω,
(1.1)

where Ω ⊂ Rd (d = 2, 3) is a bounded polyhedral domain, the diffusion tensor A : Ω → Rd×d is a

matrix function that is assumed to be symmetric and uniformly positive definite, f ∈ L2(Ω) and

g ∈ H
1

2 (∂Ω).
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Let Th be a triangulation of Ω, and Fh be the set of all faces of Th. We introduce a finite

dimensional space

Mh,k := {µh ∈ L2(∪F∈Fh
F ) : µh|F ∈ Pk(F ) for all F ∈ Fh and µh|∂Ω = 0}, (1.2)

with Pk(F ) denoting the set of polynomials of degree 6 k on F . Consider the following general

symmetric and positive definite (SPD) system for equation (1.1): Seek λh ∈ Mh,k such that

dh(λh, µh) = b(µh) for all µh ∈ Mh,k. (1.3)

Here dh(·, ·) : Mh,k × Mh,k → R is an inner-product on Mh,k and bh(·) : Mh,k → R is a linear

functional on Mh,k.

The first class of nonstandard finite element methods that fall into the framework (1.3) are

hybrid or hybridized finite element methods ([5, 35, 38, 39, 3, 14, 17, 18, 19, 4, 21, 20, 31]). Due

to the relaxation of the constraint of continuity at the inter-element boundaries by introducing

some Lagrange multipliers, the corresponding hybrid method allows for piecewise-independent

approximation to the potential or flux solution. Thus, after local elimination of unknowns defined

in the interior of elements, the method leads to a SPD discrete system of the form (1.3), where

the unknowns are only the globally coupled degrees of freedom describing the Lagrange multiplier.

In [3, 14], the Raviart-Thomas (RT) [37] and Brezzi-Douglas-Marini (BDM) mixed methods were

shown to have equivalent hybridized versions. A new characterization of the approximate solution

of hybridized mixed methods was developed and applied in [17] to obtain an explicit formula for

the entries of the matrix equation for the Lagrange multiplier unknowns. An overview of some new

hybridization techniques was presented in [18]. In [21] a unifying framework for hybridization of

finite element methods was developed. Error estimates of some hybridized discontinuous Galerkin

(HDG) methods were derived in [19, 20, 31].

The weak Galerkin (WG) method [42, 34, 33] is the second class of nonstandard approach that

applies to the framework (1.3). The WG method is designed by using a weakly defined gradient

operator over functions with discontinuity, and allows the use of totally discontinuous functions in

the finite element procedure. The concept of weak gradients provides a systematic framework for

dealing with discontinuous functions defined on elements and their boundaries in a near classical

sense [42]. Similar to the hybrid methods, the WG scheme can be reduced to the form (1.3) after

local elimination of unknowns defined in the interior of elements. We note that when A in (1.1)

is a piecewise-constant matrix, the WG method is, by introducing the discrete weak gradient as

an independent variable, equivalent to the hybridized version of the RT or BDM mixed methods.

For the discretization of the diffusion model (1.1) on simplicial 2D or 3D meshes, we refer to [30]

for a multigrid WG algorithm, and to [16] for an auxiliary space multigrid preconditioner for the

WG method as well as a reduced system of the weak Galerkin method involving only the degrees

of freedom on edges/faces.
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Besides, some noncnforming methods, e.g. the nonconforming Crouzeix-Raviart element method

[23], can also lead to a SPD discrete system of the form (1.3). To this end, one needs to introduce

a special projection of the flux solution to the element boundaries as the trace approximation. We

refer to [12, 6, 13, 1, 29, 36, 28, 40, 48] for multigrid algorithms or preconditioning for the CR or

CR-related nonconforming finite element methods. In particular, in [13], an optimal-order multi-

grid method was proposed and analyzed for the lowest-order Raviart-Thomas mixed element based

on the equivalence between Raviart-Thomas mixed methods and certain nonconforming methods.

As far as we know, the first preconditioner for the system (1.3) was developed in [25], where

a Schwarz preconditioner was designed for the hybridized RT and BDM mixed element methods.

In [26] a convergent V-cycle multigrid method was proposed for the hybridized mixed methods for

Poisson problems with full elliptic regularity. By following the idea of [26], a non-nested multigrid

V-cycle algorithm, with a single smoothing step per level, was analyzed in [22] for the system

(1.3) arising from one type of HDG method, where only a weak elliptic regularity is required. In

[32], a general framework for designing fast solvers for the system (1.3) was presented without any

regularity assumption.

It is well known that the BPX multigrid framework, developed by Bramble, Pasciak and Xu

[10], is widely used in the analysis of multigrid and domain decomposition methods. We refer to

[7, 8, 9, 11, 24, 27, 41, 46, 44, 45, 47] for the development and applications of the BPX framework.

In [43] an abstract framework of auxiliary space method was proposed and an optimal multigrid

technique was developed for general unstructured grids. Especially, in [44] an overview of multilevel

methods, such as V-cycle multigrid and BPX preconditioner, was given for solving various partial

differential equations on quasi-uniform meshes, and the methods were extended to graded meshes

and completely unstructured grids.

In this paper, we shall follow the basic ideas of ([10], [43], [44]) to construct a BPX precondi-

tioner for the system (1.3), which is, due to the definition of the discrete space Mh,k, corresponding

to nonnested multilevel finite element spaces. We will show the proposed preconditioner is optimal.

We arrange the rest of the paper as follows. Section 2 introduces some notation and prelim-

inaries. Section 3 introduces and analyzes a general auxiliary space preconditioner. Section 4

constructs the BPX preconditioner and derives the condition number estimation of the precondi-

tioned system. Section 5 shows some applications of the proposed preconditioner. Finally, Section

6 provides some numerical results.
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2 Notations and preliminaries

Throughout this paper, we use the standard definitions of Sobolev spaces and their norms and

semi-norms (cf. [2]), namely for an arbitrary open set D ⊂ Rd and any nonnegative integer s,

Hs(D) := {v ∈ L2(D) : ∂αv ∈ L2(D), ∀|α| 6 s},

‖v‖s,D := (
∑

|α|6s

∫
D |∂αv|2)

1

2 , |v|s,D := (
∑

|α|=s

∫
D |∂αv|2)

1

2 .

We denote respectively by (·, ·)D and 〈·, ·〉∂D the L2 inner products on L2(D) and L2(∂D), and

respectively by ‖·‖D and ‖·‖∂D the L2-norms on L2(D) and L2(∂D). In particular, (·, ·) and ‖·‖

abbreviate (·, ·)Ω and ‖·‖Ω, respectively.

Let Th be a conforming shape-regular triangulation of the polyhedral domain Ω. For any T ∈ Th,

hT denotes the diameter of T , and we set h := maxT∈Th
hT . We define the mesh-dependent inner

product 〈·, ·〉h : Mh,k×Mh,k → R and the norm ‖·‖h : Mh,k → R as follows: for any λh, µh ∈ Mh,k,

〈λh, µh〉h :=
∑

T∈Th

hT

∫

∂T

λhµh, ‖µh‖h := 〈µh, µh〉
1/2
h . (2.1)

We also need the following notation: for any µ ∈ L2(∂T ),

‖µ‖h,∂T := h
1

2

T ‖µ‖∂T ,

|µ|h,∂T := h
− 1

2

T ‖µ−mT (µ)‖∂T with mT (µ) :=
1

d+1

∑
F∈FT

1
|F |

∫
F
µ,

|µ|h := (
∑

T∈Th
|µ|2h,∂T )

1

2 ,

where FT := {F : F ⊂ ∂T is a face of T } and |F | denotes the (d − 1)-dimensional Hausdorff

measure of F .

In the context, we use x . y to denote x 6 cy, where c is a positive constant independent of h

which may be different at its each occurrence. The notation x ∼ y abbreviates x . y . x. For the

bilinear form dh(·, ·) in the system (1.3), we shall make the following abstract assumption.

Assumption 2.1. For any µh ∈ Mh,k, it holds

dh(µh, µh) ∼ |µh|
2
h. (2.2)

Remark 2.1. This assumption is valid for many nonstandard finite element methods, as will

be shown in Section 5. We note that the Schwarz preconditioner constructed in [25] can also be

extended to the system (1.3) under Assumption 2.1.

Based on Assumption 2.1, we are ready to present an estimate that describes the conditioning

of the system (1.3).

Theorem 2.1. Suppose Th to be quasi-uniform. Under Assumption 2.1, it holds

‖µh‖
2
h . dh(µh, µh) . h−2 ‖µh‖

2
h , ∀µh ∈ Mh,k. (2.3)
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Proof. By Lemma 3.1 of [30], we have

‖µh‖
2
h . |µh|

2
h. (2.4)

Then the desired conclusion follows from Assumption 2.1 and the fact |µh|2h . h−2 ‖µh‖
2
h.

Remark 2.2. In Theorem 2.3 of [25], a similar result was derived in the two-dimensional case.

But the proof there could not be extended to three-dimensional case directly.

We define the operator Dh : Mh,k → Mh,k by

〈Dhλh, µh〉h := dh(λh, µh) for all λh, µh ∈ Mh,k. (2.5)

Obviously, Dh is an SPD operator and, from Theorem 2.1, it follows the condition number estimate

κ(Dh) . h−2, (2.6)

where κ(Dh) :=
λmax(Dh)
λmin(Dh)

and λmax(Dh), λmin(Dh) denote the maximum and minimum eigenvalues

of Dh, respectively. In fact, with a slight modification of the proof of Theorem 2.1 of [30], we can

show that κ(Dh) ∼ h−2 holds under the condition that h is sufficiently small.

3 Auxiliary space preconditioning

In this section, we shall follow the basic idea of [43] to introduce a general auxiliary space precon-

ditioner for Dh. It should be stressed that we only require the triangulation Th to be conforming

and shape regular.

Let V be a finite dimensional Hilbert space endowed with inner product (·, ·) and its induced

norm ‖·‖. Let S : V → V be SPD with respect to (·, ·). We use (·, ·)S to denote the inner product

(S·, ·), and use ‖·‖S to denote the norm induced by (·, ·)S .

We choose the H1-conforming piecewise linear element space as the so-called auxiliary space

V c
h , namely

V c
h := {vh ∈ H1

0 (Ω) : vh|T ∈ P1(T ) for all T ∈ Th}. (3.1)

Then we introduce two different prolongation operators that map V c
h into Mh,k as follows:

• Π1
h : V c

h → Mh,k is defined by

Π1
hvh|F :=

1

|F |

∫

F

vh for all F ∈ Fh and vh ∈ V c
h . (3.2)

• Π2
h : V c

h → Mh,k is defined by

∫

F

Π2
hvhq :=

∫

F

vhq for all F ∈ Fh, vh ∈ V c
h and q ∈ Pk(F ). (3.3)
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Obviously, Π1
h coincides with Π2

h in the case that k = 0. For the sake of convenience, in the rest

of this paper, unless otherwise specified, we shall use Πh to denote both Π1
h and Π2

h at the same

time. Define the adjoint operator, Πt
h : Mh,k → V c

h , of Πh, by

(Πt
hµh, vh) := 〈µh,Πhvh〉h for all µh ∈ Mh,k and vh ∈ V c

h . (3.4)

Before defining the auxiliary space preconditioner, we introduce two linear operators, Sh and

B̃h, in the following two assumptions.

Assumption 3.1. Let Sh : Mh,k → Mh,k be SPD with respect to 〈·, ·〉h and satisfy the following

estimates: for all µh ∈ Mh,k,

〈Shµh, µh〉h . 〈D−1
h µh, µh〉h, (3.5)

‖µh‖
2
S−1

h
.

∑
T∈Th

h−2
T ‖µh‖

2
h,∂T . (3.6)

Assumption 3.2. Let B̃h : V c
h → V c

h be SPD with respect to (·, ·) and satisfy the estimate

(B̃h

−1
vh, vh) ∼ |vh|

2
1,Ω for all vh ∈ V c

h .

Then we define the general auxiliary space preconditioner BG
h : Mh,k → Mh,k by

BG
h := Sh +ΠhB̃hΠ

t
h. (3.7)

Remark 3.1. We note that the Jacobi iteration and the symmetric Gauss-Seidel iteration satisfy

Assumption 3.1 if Th is conforming and shape regular, while the Richardson iteration does if Th

is quasi-uniform.

Remark 3.2. The preconditioner BG
h was also analyzed recently in [16] for two types of WG

methods, where Th is assumed to be quasi-uniform. In our analysis below we only require Th to

be conforming and shape regular. We refer to Theorem 2.1 of [43] for a more general result for

auxiliary space preconditioning under quasi-uniform meshes.

For the auxiliary space preconditioner BG
h , we have the following main result.

Theorem 3.1. Under Assumptions 2.1, 3.1 and 3.2, it holds

κ(BG
h Dh) . 1, (3.8)

where κ(BG
h Dh) :=

λmax(B
G
h Dh)

λmin(BG
h
Dh)

, and λmax(B
G
h Dh) and λmin(B

G
h Dh) denote the maximum and

minimum eigenvalues of BG
h Dh, respectively.

Remark 3.3. Since we only require Th to be conforming and shape regular, Theorem 3.1 is not a

trivial application of Theorem 2.1 in [43].

6



Before proving Theorem 3.1, we introduce a key ingredient operator Ph : Mh,k → V c
h as follows:

For each node a of Th,

Phµh(a) :=





∑
T∈ωa

mT (µh)∑
T∈ωa

1 if a is an interior node,

0 if a ∈ ∂Ω,
(3.9)

where ωa denotes the set of simplexes that share the vertex a.

Lemma 3.1. For any µh ∈ Mh,k, it holds

|Phµh|1,Ω . |µh|h, (3.10)

∑

T∈Th

h−2
T ‖(I −ΠhPh)λh‖

2
h,∂T . |µh|

2
h. (3.11)

Proof. For any T ∈ Th, we use N (T ), ωT to denote the set of all vertexes of T and the set

{T ′ ∈ Th : T ′ ∈ ωa for some a ∈ N (T )}, respectively. For a ∈ N (T ), if a ∈ Ω, then we have

hd−2
T |mT (µh)− (Phµh)(a)|

2

.hd−2
T

∑

T1,T2∈ωa

T1,T2 share a same face

|mT1
(µh)−mT2

(µh)|
2

.h−1
T

∑

T1,T2∈ωa

T1,T2 share a same face

‖mT1
(µh)−mT2

(µh)‖
2
∂T1∩∂T2

.h−1
T

∑

T1,T2∈ωa

T1,T2 share a same face

(
‖µh −mT1

(µh)‖
2
∂T1∩∂T2

+ ‖µh −mT2
(µh)‖

2
∂T1∩∂T2

)

.h−1
T

∑

T ′∈ωa

‖µh −mT ′(µh)‖
2
∂T ′

.
∑

T ′∈ωa

|µh|
2
h,∂T ′ .

If a ∈ ∂Ω, suppose that F ⊂ ∂Ω is a face of T such that a ∈ ∂F . Since µh|∂Ω = 0, we have

hd−2
T |mT (µh)− (Phµh)(a)|

2 = hd−2
T |mT (µh)|

2 ∼h−1
T ‖mT (µh)‖

2
F

.h−1
T ‖µh −mT (µh)‖

2
F

.|µh|
2
h,∂T .

In light of the above two estimates, we immediately get

hd−2
T

∑

a∈N (T )

|mT (µh)− (Phµh)(a)|
2 .

∑

T ′∈ωT

|µh|
2
h,∂T ′ . (3.12)

Since mT (µh) is a constant on T , it follows

|Phµh|
2
1,T = |mT (µh)− Phµh|

2
1,T

. h−2
T ‖mT (µh)− Phµh‖

2
T (by inverse estimate)

. hd−2
T

∑
a∈N (T ) |mT (µh)− (Phµh)(a)|2

.
∑

T ′∈ωT
|µh|2h,∂T ′ , (by (3.12))
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which implies

|Phµh|
2
1,Ω =

∑

T∈Th

|Phµh|
2
1,T . |µh|

2
h,

i.e., the estimate (3.10) holds.

We recall that FT is the set of all faces of T . For any F ∈ FT , we use N (F ) to denote the set

of all vertexes of F . Since

‖mT (µh)−ΠhPhµh‖
2
∂T =

∑

F∈FT

‖mT (µh)−ΠhPhµh‖
2
F

. hd−1
T

∑

F∈FT

∑

a∈N (F )

|mT (µh)− Phµh(a)|
2 (by (3.2) and (3.3))

. hd−1
T

∑

a∈N (T )

|mT (µh)− Phµh(a)|
2

. hT

∑

T ′∈ωT

|µh|
2
h,T ′ , (by (3.12))

we get

‖µh −ΠhPhµh‖
2
∂T . hT |µh|

2
h,∂T + ‖mT (µh)−ΠhPhµh‖

2
∂T

.
∑

T ′∈ωT

hT ′ |µh|
2
h,∂T ′ .

Therefore,

‖(I −ΠhPh)µh‖
2
h =

∑

T∈Th

hT ‖(I −ΠhPh)µh‖
2
∂T . h2|µh|

2
h,

i.e. (3.11) holds.

Now, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. For any T ∈ Th, standard scaling arguments yield

|Πhv|h,∂T ∼ |v|1,T for all v ∈ P1(T ). (3.13)

Define D̃h := Πt
hDhΠh. Then, for any vh ∈ V c

h , we have

(D̃hvh, vh) = 〈Πhvh,Πhvh〉Dh

∼
∑

T∈Th
|Πhvh|2h,∂T (by Assumption 2.1)

∼
∑

T∈Th
|vh|21,T (by (3.13))

∼ (B̃h

−1
vh, vh), (by Assumption 3.2)

i.e.,

(D̃hvh, vh) ∼ (B̃h

−1
vh, vh) for all vh ∈ V c

h . (3.14)

By the definition of BG
h , it holds, for any µh ∈ Mh,k,

〈BG
h Dhµh, µh〉Dh

= 〈ShDhµh, µh〉Dh
+ (B̃hΠ

t
hDhµh,Π

t
hDhµh)

. ‖µh‖
2
Dh

+ (B̃hΠ
t
hDhµh,Π

t
hDhµh) (by Assumption 3.1)

. ‖µh‖
2
Dh

+ (D̃h

−1
Πt

hDhµh,Π
t
hDhµh) (by (3.14))

. ‖µh‖
2
Dh

+
∥∥∥D̃h

−1
Πt

hDhµh

∥∥∥
2

D̃h

,
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which, together with

∥∥∥D̃h

−1
Πt

hDhµh

∥∥∥
D̃h

= sup
vh∈V c

h

(D̃h

−1
Πt

hDhµh, vh)D̃h

‖vh‖D̃h

= sup
vh∈V c

h

(µh,Πhvh)Dh

‖vh‖D̃h

6 sup
vh∈V c

h

‖µh‖Dh
‖Πhvh‖Dh

‖vh‖D̃h

= ‖µh‖Dh
,

yields

〈BG
h Dhµh, µh〉Dh

. ‖µh‖
2
Dh

for all µh ∈ Mh,k. (3.15)

Thus it follows

λmax(B
G
h Dh) . 1. (3.16)

On the other hand, by Theorem 1 of [15], we have, for any λh ∈ Mh,k,

〈(BG
h )−1λh, λh〉h

= inf
µh+Πhvh=λh

〈S−1
h µh, µh〉h + (B̃h

−1
vh, vh)

6 ‖(I −ΠhPh)λh‖
2
S−1

h
+ ‖Phλh‖

2

B̃h
−1

.
∑

T∈Th

h−2
T ‖(I −ΠhPh)λh‖

2
h,∂T + |Phλh|

2
1,Ω (by Assumptions 3.1-3.2)

. ‖λh‖
2
Dh

, (by Lemma 3.1)

which implies

λmin(B
G
h Dh) & 1. (3.17)

As a result, the desired estimate (3.8) follows immediately from (3.16) and (3.17). This finishes

the proof.

4 BPX preconditioner

4.1 Preconditioner construction

Suppose we are given a coarse quasi-uniform triangulation T0. Then we obtain a nested sequence

of triangulations {Tj : 0 6 j 6 J} through a successive refinement process, i.e., Tj is the uniform

refinement of Tj−1 for j = 1, 2, . . . , J . We use hj to denote the mesh size of Tj , i.e., the maximum

diameter of the simplexes in Tj . For each triangulation Tj , we define V c
j by

V c
j := {v ∈ H1

0 (Ω) : v|T ∈ P1(T ) for all T ∈ Tj}, (4.1)

9



and let {φj,i : i = 1, 2, · · · , Nj} be the standard nodal basis of V c
j , where Nj is the dimension of

V c
j . We set {ηi : i = 1, 2, . . . ,M} to be the standard nodal basis of Mh,k. Set h = hJ , Th = TJ

and V c
h = V c

J .

With the operators Πh (defined by (3.2) or (3.3)), Πt
h (defined by (3.4)), the nodal basis,

{φj,i : i = 0, 1, . . . , Nj}, of V c
j , and the nodal basis, {ηi : i = 1, 2, . . . ,M}, of Mh,k, we define the

BPX preconditioner (in operator form) for the operator Dh given in (2.5) as follows:

Bhµh = h2−d
M∑

i=1

〈µh, ηi〉hηi +
∑

(j,i)∈Λ

h2−d
j (Πt

hµh, φj,i)Πhφj,i for all µh ∈ Mh,k, (4.2)

where Λ := {(j, i) : 0 6 j 6 J, 1 6 i 6 Nj}. It is trivial to verify that Bh is SPD with respect to

〈·, ·〉h.

Remark 4.1. We shall prove in the next subsection that both Π1
h and Π2

h lead to optimal precon-

ditioners in the case k > 1, although numerical results in Section 6 show that Π2
h is much more

efficient. We note that Π2
h was also used in [26], [22] and [32] to construct multilevel methods for

HDG methods.

4.2 Conditioning of BhDh

In this subsection, we shall use the framework of auxiliary space preconditioning introduced in

Section 3 to analyze the BPX conditioning of BhDh. For the sake of convenience, in this subsection

we assume

µi ∈ span{ηi} for all i = 1, · · · ,M.

We define two SPD operators Sh : Mh,k → Mh,k and B̃h : V c
h → V c

h , respectively as follows:

Shµh := h2−d
M∑

i=1

〈µh, ηi〉hηi for all µh ∈ Mh,k, (4.3)

B̃hvh =
∑

(j,i)∈Λ

h2−d
j (vh, φj,i)φj,i for all vh ∈ V c

h . (4.4)

Apparently we have

Bh = Sh +ΠhB̃hΠ
t
h. (4.5)

Thus, according to Theorem 3.1, to show κ(BhDh) . 1 it suffices to prove that Sh and B̃h satisfy

Assumption 3.1 and Assumption 3.2, respectively.

Lemma 4.1. The operator Sh defined by (4.3) satisfies Assumption 3.1.

Proof. For any µh ∈ Mh,k, by using the same technique as in the proof of Lemma 2.4 in [46], it is

easy to verify

〈S−1
h µh, µh〉h = inf∑

i
µi=µh

∑

i

hd−2

‖ηi‖
2
h

‖µi‖
2
h . (4.6)
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By a standard scaling argument, it holds ‖ηi‖h ∼ h
d
2 . Then from (4.6) it follows

〈S−1
h µh, µh〉h ∼ h−2 inf∑

i
µi=µh

∑

i

‖µi‖
2
h . (4.7)

Further more, since Th is shape regular, a standard scaling argument also yields
∑

i ‖µi‖
2
h ∼

‖
∑

i µi‖
2
h. Thus it holds

〈S−1
h µh, µh〉h ∼ h−2 ‖µh‖

2
h , (4.8)

and the desired estimate (3.6) follows from (4.8) immediately by the quasi-uniform assumption of

Th.

The thing left is to prove (3.5). In fact, from

〈Dhµh, µh〉h ∼ |µh|
2
h (by Assumption 2.1)

. h−2 ‖µh‖
2
h

. 〈S−1
h µh, µh〉h, (by (4.8))

which implies immediately 〈Shµh, µh〉h . 〈D−1
h µh, µh〉h. Hence, (3.5) follows immediately.

The following lemma follows from Theorems 3.1-3.2 of [44].

Lemma 4.2. The operator B̃h defined by (4.4) satisfies Assumption 3.2.

Finally, thanks to Theorem 3.1, we obtain immediately the following main conclusion for the

BPX preconditioning.

Theorem 4.1. Under Assumption 2.1, it holds

κ(BhDh) . 1, (4.9)

where Dh and Bh are defined by (2.5) and (4.2), respectively.

4.3 Implementation

We recall that {ηi : 1 6 i 6 M} is the standard nodal basis of Mh,k and {φj,i : i = 0, 1, . . . , Nj} is

the standard nodal basis of V c
j for j = 0, 1, · · · , J . For each µh ∈ Mh,k, we use µ̃h ∈ RM to denote

the vector of coefficients of µh with respect to the basis {η1, η2, . . . , ηM}. Let Dh ∈ RM×M be the

stiffness matrix with respective to the operator Dh defined in (2.5) with

λ̃T
hDhµ̃h := 〈Dhµh, ηh〉h for all λh, µh ∈ Mh,k.

Then it follows from Theorem 2.1, or the estimate (2.6), that

κ(Dh) . h−2.
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By the definition, (3.2), of Πh, there exists a matrix Ij ∈ RM×Nj for j = 0, 1, · · · , J , such that

Πh(φj,1, φj,2, . . . , φj,Nj
) = (η1, η2, . . . , ηM )Ij . (4.10)

We set Ih ∈ RM×M to be the identity matrix. From the definition, (4.2), of Bh, it follows, for any

µh ∈ Mh,k,

BhDhµh = h2−d
M∑

i=1

〈Dhµh, ηi〉hηi +
∑

(j,i)∈Λ

h2−d
j (Πt

hDhµh, φj,i)Πhφj,i

= h2−d
M∑

i=1

〈Dhµh, ηi〉hηi +
∑

(j,i)∈Λ

h2−d
j 〈Dhµh,Πhφj,i〉hΠhφj,i.

Thus, in view of (4.10), we have

˜BhDhµh = BhDhµ̃h, ∀µh ∈ Mh,k, (4.11)

where Bh, a preconditioner for Dh, is given by

Bh = h2−dIh +

J∑

k=0

h2−d
j IjI

t
j . (4.12)

From Theorem 4.1 it follows

κ(BhDh) . 1. (4.13)

This means that the matrix Bh is an optimal preconditioner for the stiffness matrix Dh.

5 Applications

We begin by introducing some notation. For any T ∈ Th, let V (T ) and W (T ) be two local finite

dimensional spaces. Define

Vh := {v ∈ L2(Ω) : vh|T ∈ V (T ) for all T ∈ Th},

Wh := {τ ∈ [L2(Ω)]d : τh|T ∈ W (T ) for all T ∈ Th}.

Then we introduce another local space as follows:

M(∂T ) :=
{
µ ∈ L2(∂T ) : µ|F ∈ Pk(F ) for all F ∈ FT

}
.

We recall

Mh,k := {µh ∈ L2(Fh) : µh|F ∈ Pk(F ) for all F ∈ Fh and µh|∂Ω = 0}. (5.1)

For the sake of clarity, in what follows we assume g = 0 for the model problem (1.1).

12



5.1 Hybridized discontinuous Galerkin method

The general framework of HDG method for the problem (1.1) reads as follows ([21]): Seek

(uh, λh,σh) ∈ Vh ×Mh,k ×Wh such that

(Cσh, τh) + (uh, divhτh)−
∑

T∈Th

〈λh, τh · n〉∂T = 0, (5.2a)

−(vh, divhσh) +
∑

T∈Th

〈αT (P
∂
T uh − λh), vh〉∂T = (f, vh), (5.2b)

∑

T∈Th

〈σh · n− αT (P
∂
T uh − λh), µh〉∂T = 0 (5.2c)

hold for all (vh, µh, τh) ∈ Vh ×Mh,k ×Wh, where C = A−1, divh is the broken div operator with

respective to the triangulation Th, n denotes the unit outward normal of T , P ∂
T : H1(T ) → M(∂T )

denotes the standard L2-orthogonal projection operator, and αT denotes a nonnegative penalty

function defined on ∂T .

For any T ∈ Th, we introduce two local problems as follows.

Local problem 1: For any given λ ∈ L2(∂T ), seek (uλ,σλ) ∈ V (T )×W (T ) such that

(Cσλ, τ )T + (uλ, divτ )T = 〈λ, τ · n〉∂T , (5.3a)

−(v, divσλ)T + 〈αTP
∂
T uλ, v〉∂T = 〈αTλ, v〉∂T , (5.3b)

hold for all (v, τ ) ∈ V (T )×W (T ).

Local problem 2: For any given f ∈ L2(T ), seek (uf ,σf ) ∈ V (T )×W (T ) such that

(Cσf , τ )T + (uf , divτ )T = 0, (5.4a)

−(v, divσf )T + 〈αTP
∂
T uf , v〉∂T = (f, v)T , (5.4b)

hold for all (v, τ ) ∈ V (T )×W (T ).

Theorem 5.1. [21] Suppose (uh, λh,σh) ∈ Vh×Mh,k ×Wh to be the solution to the system (5.2),

and suppose, for any T ∈ Th, (uλh
,σλh

)|T ∈ V (T )×W (T ) and (uf ,σf )|T ∈ V (T )×W (T ) to be

the solutions to the local problems (5.3) (by replacing λ with λh) and (5.4), respectively. Then it

holds

σh = σλh
+ σf , (5.5)

uh = uλh
+ uf , (5.6)

and λh ∈ Mh,k is the solution to the system (1.3), i.e.

dh(λh, µh) = bh(µh) for all µh ∈ Mh,k,

where

dh(λh, µh) := (Cσλh
,σµh

) +
∑

T∈Th

〈αT (P
∂
T uλh

− λh), P
∂
T uµh

− µh〉∂T , (5.7)

bh(µh) := (f, uµh
), (5.8)
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and, for any T ∈ Th, (uµh
,σµh

)|T ∈ V (T )×W (T ) denotes the solution to the local problem (5.3)

by replacing λ with µh.

We list four types of HDG methods as follows.

Type 1. V (T ) = Pk(T ), W (T ) = [Pk(T )]
d + Pk(T )x and αT = 0.

Type 2. V (T ) = Pk−1(T ) (k > 1), W (T ) = [Pk(T )]
d and αT = 0.

Type 3. V (T ) = Pk(T ), W (T ) = [Pk(T )]
d and αT = O(1).

Type 4. V (T ) = Pk+1(T ), W (T ) = [Pk(T )]
d and αT = O(h−1

T ).

Type 1 HDG method turns out to be the well-known hybridized RT mixed element method

([3]), and Type 2 HDG method turns out to be the well-known hybridized BDM mixed element

method ([14]). For both Types 1-2 HDG methods, it was shown in [25] that Assumption 2.1

holds.

Type 3 HDG method was proposed in [21] and analyzed in [20]. In [22] it was shown that

Assumption 2.1 holds for this method.

Type 4 HDG method was proposed and analyzed in [31]. The proof of Assumption 2.1 can

also be found there. For completeness we sketch the proof here.

Lemma 5.1. Let T ∈ Th. For any given λ ∈ M(∂T ), it holds

(C−1σλ,σλ)T + 〈αT (P
∂
T uλ − λ), P ∂

T uλ − λ〉∂T ∼ |λ|2h,∂T . (5.9)

Proof. We first show

h
− 1

2

T

∥∥λ− λ̄
∥∥
∂T

. ‖σλ‖T +
∥∥∥α

1

2

T (P
∂
T uλ − λ)

∥∥∥
∂T

, (5.10)

where λ̄ = 1
|∂T |

∫
∂T λ. In fact, from (5.3a) it follows

(∇uλ, τ )T = (Cσλ, τ )T + 〈P ∂
T uλ − λ, τ · n〉∂T for all τ ∈ W (T ). (5.11)

Taking τ = ∇uλ in (5.11), we immediately get

|uλ|1,T . ‖σλ‖+ h
− 1

2

T

∥∥P ∂
T uλ − λ

∥∥
∂T

. (5.12)

Define λ̃ := λ− λ̄ and ūλ := 1
|T |

∫
T
uλ, then we have

〈λ̃, uλ〉∂T = 〈λ̃, uλ − ūλ〉∂T

6
∥∥∥λ̃

∥∥∥
∂T

‖uλ − ūλ‖∂T

. h
1

2

T

∥∥∥λ̃
∥∥∥
∂T

|uλ|1,T

. h
1

2

T

∥∥∥λ̃
∥∥∥
∂T

(
‖σλ‖T +

∥∥∥α
1

2

T (P
∂
T uλ − λ)

∥∥∥
∂T

)
. by (5.12)
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This estimate, together with

〈λ̃, λ− P ∂
T uλ〉∂T 6

∥∥∥λ̃
∥∥∥
∂T

∥∥λ− P ∂
T uλ

∥∥
∂T

. h
1

2

T

∥∥∥λ̃
∥∥∥
∂T

∥∥∥α
1

2

T (λ− P ∂
T uλ)

∥∥∥
∂T

,

yields

∥∥∥λ̃
∥∥∥
2

∂T
= 〈λ̃, λ̃− P ∂

T uλ〉∂T + 〈λ̃, P ∂
T uλ〉∂T

= 〈λ̃, λ− P ∂
T uλ〉∂T + 〈λ̃, uλ〉∂T

. h
1

2

T

∥∥∥λ̃
∥∥∥
∂T

(
‖σλ‖T +

∥∥∥α
1

2

T (P
∂
T uλ − λ)

∥∥∥
∂T

)
,

which implies (5.10) immediately.

Second, we show

‖σλ‖T +
∥∥∥α

1

2

T (P
∂
T uλ − λ)

∥∥∥
∂T

. h
− 1

2

T

∥∥λ− λ̄
∥∥
∂T

. (5.13)

In fact, taking τ = σλ in (5.3a), v = uλ − λ̄ in (5.3b), and adding the two resultant equations, we

obtain

∥∥∥C 1

2σλ

∥∥∥
2

T
+
∥∥∥α

1

2

T (P
∂
T uλ − λ̄)

∥∥∥
2

∂T

= 〈λ− λ̄,σλ · n〉∂T + 〈αT (λ− λ̄), P ∂
T uλ − λ̄〉∂T

6
∥∥λ− λ̄

∥∥
∂T

‖σλ‖∂T +
∥∥∥α

1

2

T (λ− λ̄)
∥∥∥
∂T

∥∥∥α
1

2

T (P
∂
T uλ − λ̄)

∥∥∥
∂T

. h
− 1

2

T

∥∥λ− λ̄
∥∥
∂T

‖σλ‖T +
∥∥∥α

1

2

T (λ− λ̄)
∥∥∥
∂T

∥∥∥α
1

2

T (P
∂
T uλ − λ̄)

∥∥∥
∂T

. h
− 1

2

T

∥∥λ− λ̄
∥∥
∂T

(
‖σλ‖T +

∥∥∥α
1

2

T (P
∂
T uλ − λ̄)

∥∥∥
∂T

)
,

which implies

‖σλ‖T +
∥∥∥α

1

2

T (P
∂
T uλ − λ̄)

∥∥∥
∂T

. h
− 1

2

T

∥∥λ− λ̄
∥∥
∂T

. (5.14)

By noticing that the above estimate also indicates

∥∥∥α
1

2

T (P
∂
T uλ − λ)

∥∥∥
∂T

6
∥∥∥α

1

2

T (P
∂
T uλ − λ̄)

∥∥∥
∂T

+
∥∥∥α

1

2

T (λ− λ̄)
∥∥∥
∂T

. h
− 1

2

T

∥∥λ− λ̄
∥∥
∂T

,

the estimate (5.13) follows immediately. Then, from (5.10) and (5.13), it follows

(C−1σλ,σλ)T + 〈αT (P
∂
T uλ − λ), P ∂

T uλ − λ〉∂T ∼ h−1
T

∥∥λ− λ̄
∥∥2
∂T

. (5.15)

A standard scaling argument shows

|λ|h,∂T ∼ h
− 1

2

T

∥∥λ− λ̄
∥∥
∂T

, (5.16)

which, together with (5.15), indicates the desired estimate (5.9).

Based on Lemma 5.1, it is trivial to derive the proposition below.
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Proposition 5.1. For Type 4 HDG method, Assumption 2.1 holds.

Remark 5.1. It has been shown in [17, 18] that, when A is a piecewise constant matrix and k ≥ 1,

the bilinear form dh(·, ·) arising from the hybridized RT mixed element method, i.e. Type 1 HDG

method, coincides with that arising from the hybridized BDM mixed element method, i.e. Type

2 HDG method. Then any preconditioner for Type 1 HDG method is also a preconditioner for

Type 2 HDG method, and vice versa.

Remark 5.2. In [22], a first analysis of multigrid method for Type 3 HDG method was presented.

However, it was required there that that the model problem (1.1) admits the regulartiy estimate

‖u‖1+α,Ω 6 Cα,Ω ‖f‖α−1,Ω with α ∈ (0.5, 1] and Cα,Ω being a positive constant that only depends

on α and Ω. We note that our analysis in Section 4 for the BPX preconditioner does not require

any regularity assumption. In [32], a more general framework for designing multilevel methods for

HDG methods were presented and analyzed without any regularity assumption.

5.2 Weak Galerkin method

At first, we follow [42] to introduce the discrete weak gradients. Let T ∈ Th. We define ∇
i
w :

L2(T ) → W (T ) by

(∇i
wv, q)T := −(v, div q)T for all v ∈ L2(T ) and q ∈ W (T ) , (5.17)

and define ∇
b
w : L2(∂T ) → W (T ) by

(∇b
wµ, q)T := 〈µ, q · n〉∂T for all µ ∈ L2(∂T ) and q ∈ W (T ). (5.18)

Then we define the discrete weak gradients ∇w : L2(T )× L2(∂T ) → W (T ) with

∇w(v, µ) := ∇
i
wv +∇

b
wµ for all (v, µ) ∈ L2(T )× L2(∂T ). (5.19)

Hence, the WG discretization reads as follows: Seek (uh, λh) ∈ Vh ×Mh,k such that

(A∇w(uh, λh),∇w(vh, µh)) +
∑

T∈Th

〈αT (P
∂
T uh − λh), P

∂
T vh − µh〉∂T = (f, vh) (5.20)

holds for all (vh, µh) ∈ Vh × Mh,k, where αT denotes a nonnegative penalty function defined on

∂T .

We shall follow the same routine as in the previous subsection to show a new characterization

of the WG method. We introduce two local problems as follows.

Local problem 1’: For any given f ∈ L2(T ), seek uf ∈ V (T ) such that

(A∇
i
wuf ,∇

i
wv)T + 〈αTP

∂
T uf , P

∂
T v〉∂T = (f, v)T (5.21)

holds for all v ∈ V (T ).
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Local problem 2’: For any given λ ∈ L2(∂T ), seek uλ ∈ V (T ) such that

(A∇
i
wuλ,∇

i
wv)T + 〈αTP

∂
T uλ, P

∂
T v〉∂T = −(A∇

b
wλ,∇

i
wv)T + 〈αTλ, P

∂
T v〉∂T (5.22)

holds for all v ∈ V (T ).

Similar to Theorem 5.1, the following conclusion holds.

Theorem 5.2. Suppose (uh, λh) ∈ Vh×Mh,k to be the solution to the system (5.20), and suppose,

for any T ∈ Th, uf and uλh
to be the solutions to the local problems (5.21) and (5.22) (by replacing

λ with λh), respectively. Then it holds

uh = uλh
+ uf , (5.23)

and λh ∈ Mh,k is the solution to the system (1.3), i.e.

dh(λh, µh) = bh(µh) for all µh ∈ Mh,k,

where

dh(λh, µh) := (A∇w(uλh,λh
),∇w(uµh

, µh)) +
∑

T∈Th

〈αT (P
∂
T uλh

− λh), P
∂
T uµh

− µh〉∂T ,

(5.24)

bh(µh) := (f, uµh
). (5.25)

We consider two types of WG methods ([42]):

• Type 1. V (T ) = Pk(T ), W (T ) = [Pk(T )]
d + PK(T )x and αT = 0;

• Type 2. V (T ) = Pk−1(T ) (k > 1), W (T ) = [Pk(T )]
d and αT = 0.

In both cases, we can prove that Assumption 2.1 holds.

Theorem 5.3. For Type 1 WG method, Assumption 2.1 holds.

Proof. For T ∈ Th, define σ := ∇w(uλh,λh
)|T . Then from (5.22) it follows

(Aσ,∇i
wv)T = 0 for all v ∈ V (T ),

which implies

divP rt
T (Aσ) = 0, (5.26)

where P tr
T : [L2(T )]d → W (T ) denotes the standard L2-orthogonal projection operator. By the

definition of ∇w, we have

(Aσ,σ)T = (P rt
T (Aσ),∇w(uλh

, λh))T

= −(div(P rt
T (Aσ)), uλh

)T + 〈P rt
T (Aσ) · n, λh〉∂T

= 〈P rt
T (Aσ) · n, λh −mT (λh)〉∂T (by (5.26))

. h
− 1

2

T

∥∥P rt
T (Aσ)

∥∥
T
‖λh −mT (λh)‖∂T

. ‖Aσ‖T |λh|h,∂T ,
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which shows immediately

(Aσ,σ)T . |λh|
2
h,∂T . (5.27)

On the other hand, for any τ ∈ W (T ), from the definition of ∇w we have

(σ, τ )T = (∇w(uλh
, λh), τ )T

= −(uλh
, divτ )T + 〈τ · n, λh〉∂T

= (∇uλh
, τ )T + 〈τ · n, λh − uλh

〉∂T ,

which yields

(σ −∇uλh
, τ )T = 〈τ · n, λh − uλh

〉∂T . (5.28)

Taking τ ∈ W (T ) in (5.28) with





∫
F τ · nq =

∫
F (λh − uλh

)q for all F ∈ FT and q ∈ Pk(F ),
∫
T
τ ·∇v = 0 for all v ∈ V (T ),

(5.29)

we have

‖λh − uλh
‖2∂T = (σ −∇uλh

, τ )T = (σ, τ )T 6 ‖σ‖T ‖τ‖T

. h
1

2

T ‖σ‖T ‖λh − uλh
‖∂T ,

where we have used the estimate ‖τ‖T . h
1

2

T ‖λh − uλh
‖∂T , which is a trivial result by applying

the famous Piola mapping. The above inequality leads to

‖λh − uλh
‖∂T . h

1

2

T ‖σ‖T . (5.30)

Similarly, taking τ ∈ W (T ) in (5.28) with





∫
F τ · nq = 0 for all F ∈ FT and q ∈ Pk(F ),

∫
T
τ ,∇v)T = (∇uλh

,∇v)T for all v ∈ V (T ),
(5.31)

we have

|uλh
|1,T . ‖σ‖T . (5.32)

Since by a standard scaling argument it holds

‖λh −mT (λh)‖∂T ∼ inf
c∈R

‖λh − c‖∂T , (5.33)

we have

‖λh −mT (λh)‖∂T ∼ inf
c∈R

‖λh − c‖∂T

. ‖λh − uλh
‖∂T + inf

c∈R

‖uλh
− c‖∂T

. ‖λh − uλh
‖∂T + h

1

2

T |uλh
|1,T

. h
1

2

T ‖σ‖T , (by (5.30) and (5.32))
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which, together with (5.27), yields

(A∇w(uλh
, λh),∇w(uλh

, λh))T ∼ |λh|h,∂T . (5.34)

As a result, the desired estimate (2.2) follows immediately. This completes the proof.

Remark 5.3. Similarly, we can show that Assumption 2.1 holds for Type 2 WG method.

Remark 5.4. If A is a piecewise constant matrix, the two WG methods are equivalent to the

hybridized RT mixed element method and the hybridized BDM mixed element method, respectively.

We refer to (Remark 2.1, [30]) for the details.

5.3 Nonconforming finite element method

In this subsection we take Crouzeix-Raviart element method [23] as an example to show that the

theory in Section 4 also applies to nonconforming methods.

At first, we introduce the Crouzeix-Raviart finite element space LCR
h as follows.

LCR
h := {vh ∈ L2(Ω) : vh|T ∈ P1(T ), ∀T ∈ Th, vh is continuous at the

gravity point of each interior face of Th and vanishes at the

gravity point of each face of Th that lies on ∂Ω}.

(5.35)

As we know, the standard discretization of the Crouzeix-Raviart element method reads as follows:

Seek uh ∈ LCR
h such that

(A∇huh,∇hvh) = (f, vh) for all vh ∈ LCR
h , (5.36)

where ∇hvh is given by

∇hvh|T := ∇(vh|T ) for all T ∈ Th.

We define an operator Π̃h : LCR
h → Mh,0 by

Π̃hvh|F :=
1

|F |

∫

F

vh for all F ∈ Fh. (5.37)

Obviously, Π̃h is a bijective map, and its inverse map Π̃−1
h : Mh,0 → LCR

h satisfies

∫

F

Π̃−1
h µh =

∫

F

µh for all F ∈ Fh and µh ∈ Mh,0. (5.38)

By denoting µh := Π̃hvh and λh := Π̃huh, the system (5.36) is equivalent to the system (1.3), i.e.

dh(λh, µh) = bh(µh) for all µh ∈ Mh,0,

where

dh(λh, µh) := (A∇hΠ̃
−1
h λh,∇hΠ̃

−1
h µh), (5.39)

bh(µh) := (f, Π̃−1
h µh).
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By using standard scaling arguments, it is easy to verify that Assumption 2.1 holds in this

case.

Remark 5.5. We use dhdgh and dcrh to denote the bilinear forms defined in (5.7) and (5.39),

respectively. When A is a piecewise constant matrix, we can show that for Type 4 HDG method

(k = 0), dhdgh = dcrh . In fact, in this case we have, for any T ∈ Th,

M(∂T ) :=
{
µ ∈ L2(∂T ) : µ|F ∈ P0(F ) for each face F of T

}
,

V (T ) = P1(T ), W (T ) = [P0(T )]
d, αT = O(h−1

T ).

From (5.3b) it follows

〈αT (P
∂
T (uλ − λ), P ∂

T v − µ〉∂T = 0 for all (v, µ) ∈ V (T )×M(∂T ).

Thus, in view of (5.7), it holds

dhdgh (λh, µh) = (Cσλh
,σµh

). (5.40)

On the other hand, it follows from (5.3a) and (5.38) that

(Cσµh
, τ )T = 〈µh, τ · n〉∂T = 〈Π̃−1

h µh, τ · n〉∂T = (∇Π̃−1
h µh, τ )T

holds for all τ ∈ W (T ). Since C = A−1 is a constant matrix on T , the above equality means

∇hΠ̃
−1
h µh = Cσµh

. (5.41)

Thus, in light of (5.40)-(5.41) and (5.39) we have

dhdgh (λh, µh) = (A∇Π̃−1
h λh,∇Π̃−1

h µh) = dcrh (λh, µh).

Remark 5.6. As shown in [17, 18], when A is a piecewise constant matrix, the stiffness matrix

of dh(·, ·) arising from the lowest order hybridized RT mixed finite element method, i.e. Type 1

HDG method (k = 0) in Subsection 5.1, is the same as that arising from the Crouzeix-Raviart

element method.

Remark 5.7. From Remarks 5.4-5.6, we know that when A is a piecewise constant matrix and

k = 0, the four methods, namely Type 1 and Type 4 HDG methods in Subsection 5.1, Type 1

WG method in Subsection 5.2, and the Crouzeix-Raviart element method, lead to the same bilinear

form dh(·, ·), and hence share the same optimal preconditioners.

6 Numerical experiments

In this section, we report several numerical examples in two-dimensions to verify the theoretical

results of Theorem 4.1 and Theorem 3.1. We only consider the problem (1.1) with the diffusion
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tensor A = I, where I is the identity matrix. We test two types of HDG methods, i.e., Type 3

HDG method (k = 0, 1) with αT = 1 and Type 4 HDG method (k = 0, 1) with αT = h−1
T for all

T ∈ Th. We refer to [22, 32] for more numerical results of Type 3 HDG method.

Example 1. We set Ω = (0, 1)× (0, 1) (a square domain) with the initial triangulation T0 (Figure

1). We produce a sequence of triangulations {Tj : j = 1, 2, · · · , 10} by a successive refinement

procedure: connecting the midpoints of three edges of each triangle.

For each j = 5, 6, · · · , 10, we set Th = Tj , and let Dh and Bh be defined by (2.5) and (4.2)

respectively. Suppose we are to solve the system Dhx = bh, where bh is a zero vector. Taking

x0 = (1, 1, . . . , 1)t as the initial value, we use the famous preconditioned conjugate gradient method

(PCG) to solve this system with the preconditioner Bh. The stopping criterion is that the initial

error, i.e.
√
xT
0 Dhx0, is reduced by a factor of 10−6.

In the case k = 0, the prolongation operators Π1
h and Π2

h are equivalent, so we have one BPX

preconditioner. In the case k = 1, we have two different BPX preconditioners since Π1
h and Π2

h are

not equivalent, and we compute both cases. The corresponding numerical results, i.e. the number

of iterations in PCG, are listed in Table 1.

Example 2. The only difference between this example and Example 1 is that we set Ω = (0, 1)×

(0, 1)/[0, 1)×{0.5} (a crack domain) with the initial triangulation T0 (Figure 2). The corresponding

numerical results are presented in Table 2.

Example 3. This example is to verify Theorem 3.1 for graded triangulations. We only consider

Type 3 HDG method. For simplicity we only highlight the difference between this example and

the previous two examples.

We set Ω = (−1, 1)× (−1, 1) and define A(x, y) = diag(a(x, y), a(x, y)) with

a(x, y) :=





1, −1 < x < 0, −1 < y < 0;

7, 0 < x < 1, −1 < y < 0;

17, 0 < x < 1, 0 < y < 1;

3, −1 < x < 0, 0 < y < 1.

We show the first two triangulations T0 and T1 in Figure 3 and produce a sequence of graded

triangulations {Tj : j = 0, 1, · · · , 25} in a successive way: Tj+1 (j = 2, 3, · · · , 24) is obtained

by refining the smallest square containing the origin in Tj (in T1, the vertexes of the square to

refine is in red color) as what has been done from T0 to T1. T25 is shown in Figure 4. For each

j = 5, 10, 15, 20, 25, we set Th = Tj and, in the definition (3.7) of BG
h , we set Sh to be the standard

symmetric Gauss-Seidel iteration and set B̃h = A−1
h , where A−1

h : V c
h → V c

h is defined by

(Ahuh, vh) := (A∇uh,∇vh) for all uh, vh ∈ V c
h .

The corresponding numerical results are presented in Table 3.
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Figure 1: T0 (left) and T1 (right) on square domain Figure 2: T0 (left) and T1 (right) on crack domain

Figure 3: T0 (left) and T1 (right) Figure 4: T25

k T5 T6 T7 T8 T9 T10

0 dof 6080 24448 98048 392704 1571840 6289408

20 20 20 20 20 19

1 dof 12288 49152 196608 786432 3145728 12582912

Π
1

h
54 57 59 60 61 62

Π
2

h
31 32 33 34 34 35

Type 3 HDG method

k T5 T6 T7 T8 T9 T10

0 dof 6080 24448 98048 392704 1571840 6289408

20 20 20 20 20 19

1 dof 12288 49152 196608 786432 3145728 12582912

Π
1

h
54 57 59 60 61 62

Π
2

h
31 32 33 34 34 35

Type 4 HDG method

Table 1: Numerical results for the Example 1 (dof denotes the number of degrees of freedom)

k T5 T6 T7 T8 T9 T10

0 dof 7568 30496 122432 490624 1964288 7860732

26 26 27 27 27 27

1 dof 15360 61440 245760 983040 3932160 15728640

Π
1

h
55 58 59 61 62 63

Π
2

h
33 34 35 36 36 37

Type 3 HDG method

k T5 T6 T7 T8 T9 T10

0 dof 7568 30496 122432 490624 1964288 7860732

26 27 27 27 27 27

1 dof 15360 61440 245760 983040 3932160 15728640

Π
1

h
55 58 59 61 62 63

Π
2

h
33 34 35 36 36 37

Type 4 HDG method

Table 2: Numerical results for Example 2

k T5 T10 T15 T20 T25

0 14 14 14 14 14

1 Π
1

h
26 26 27 26 26

1 Π
2

h
18 18 18 18 18

Table 3: Numerical results for Example 3

From Tables 1-3 we have the following observations.

• For all the examples, the numbers of iterations in PCG are independent of the mesh size.

This means the proposed preconditioners are optimal. Besides, the prolongation operator Π2
h

behaves better than Π1
h in the case k = 1.
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• Example 1 admits the full elliptic regularity, while Example 2 only admits the regularity

estimate ‖u‖1+α,Ω 6 Cα,Ω ‖f‖α−1,Ω with α ∈ (0, 12 ). These two examples confirm that the

proposed BPX preconditioner is optimal. This is conformable to Theorem 4.1.

• Example 3 confirms Theorem 3.1, where the triangulation Th is not quasi-uniform.
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