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ON THE ERROR ANALYSIS OF STABILIZED FINITE ELEMENT

METHODS FOR THE STOKES PROBLEM

ROLF STENBERG∗ AND JUHA VIDEMAN†

Abstract. For a family of stabilized mixed finite element methods for the Stokes equations a
complete a priori and a posteriori error analysis is given.
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1. Introduction. Stabilization of mixed finite element methods for saddle point
problems [10, 9, 4, 3] is by now a well-established technique to design stable methods
with finite element spaces which do not have to satisfy the so-called Babuška–Brezzi
condition. The idea is to add a properly weighted residual of the momentum balance
equation to the variational bilinear form. This resembles the least squares method
and hence the formulation has often been called the Galerkin least squares method.
This is, however, a somewhat misleading name since the formulation does not lead to
a minimization problem.

In the paper by Franca and Stenberg [6] a unified stability and error analysis
for this class of methods was given. The error estimates were obtained under the
assumption that the solution is regular enough, and so far a general analysis has been
missing.

The purpose of this paper is to address this question. We will show that using a
technique proposed recently by Gudi [7] it is possible to derive quasi-optimal a priori
estimates. This technique uses estimates known from a posteriori error analysis.

In addition to the a priori analysis, we discuss a posteriori estimates. Since the
added stabilization term is exactly a weighted residual, the a posteriori analysis is
very straightforward. Similar a posteriori estimates were given in [18]. Our analysis
seems, however, more natural.

The plan of the paper is as follows. In the next sections we recall the continuous
Stokes problem and its discretization by stabilized finite element methods. Then we
present the new a priori analysis. We end by deriving the a posteriori error estimates.
We will use well established notation. In addition, we will use the shorthand notation
A . B for: there exist a positive constant C, independent of the mesh parameter h,
such that A ≤ CB.

2. The Stokes problem. We consider the Stokes equations for slow (or very
viscous) steady fluid flow or equivalently, the equations of incompressible elasticity,
which we normalize in such a way that 2µ = 1, where µ is the dynamic viscosity
or first Lamé parameter, respectively. Let div denote the vector valued divergence
applied to tensors and denote the symmetric velocity gradient/strain tensor by

(2.1) D(v) =
1

2

(

∇v +∇vT
)

.
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Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal (videman@math.ist.utl.pt).

1

http://arxiv.org/abs/1412.2893v1
mailto:rolf.stenberg@aalto.fi
mailto:videman@math.ist.utl.pt


2

Introducing the second order differential operator

(2.2) Av = divD(v),

the problem is: given (f , t, g), find (u, p) such that

−Au+∇p = f in Ω,(2.3)

divu = g in Ω,(2.4)

u = 0 on ΓD,(2.5)
(

D(u)− pI
)

n = t on ΓN .(2.6)

The domain Ω ⊂ IRd, d = 2, 3, is assumed bounded and with a polygonal or polyhedral
boundary. With the bilinear form

(2.7) B(w, r;v, q) = (D(w),D(v)) − (div v, r)− (divw, q),

and the linear form

(2.8) F(v, q) = (f ,v) + 〈t,v〉ΓN
− (g, q),

we define the variational formulation.

The continuous problem. Find (u, p) ∈ H1
D(Ω)× L2(Ω) such that

(2.9) B(u, p;v, q) = F(v, q) ∀(v, q) ∈ H1
D(Ω)× L2(Ω).

Here, H1
D(Ω) = H1(Ω) ∩ { v |v|ΓD

= 0 }.

The stability of this is a consequence of Korn’s inequality

(2.10) C‖v‖1 ≤ ‖D(v)‖0 ≤ ‖v‖1

and the condition

(2.11) sup
v∈H1

D
(Ω)

(div v, q)

‖v‖1
& ‖q‖0 ∀q ∈ L2(Ω).

Together they imply the stability:

Theorem 2.1. It holds

sup
(v,q)∈H1

D
(Ω)×L2(Ω)

B(w, r;v, q)

‖v‖1 + ‖q‖0
& (‖w‖1 + ‖r‖0)(2.12)

∀(w, r) ∈ H1
D(Ω)× L2(Ω).

Classical mixed finite element methods are based on the variational formulation above
posed in the finite element subspaces. By analogy with the continuous problem, the
discrete spaces have to satisfy the Babuška–Brezzi condition, i.e. the discrete coun-
terpart of (2.11). The recent monograph [1] contains the state of the art information
on stable velocity–pressure pairs.
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3. Stabilized methods. We denote the piecewise polynomial finite element
subspaces for the velocity and pressure by Vh ⊂ H1

D(Ω) and Ph ⊂ L2(Ω), respectively.
The underlying mesh is denoted by Ch. As usual, the diameter of an element K ∈ Ch,
is denoted by hK . Next, we define the bilinear and linear forms

(3.1) Sh(w, r;v, q) =
∑

K∈Ch

h2
K(−Aw +∇r,−Av +∇q)K ,

(3.2) Lh(v, q) =
∑

K∈Ch

h2
K(f ,−Av +∇q)K .

From the differential equation (2.3) it follows.
Lemma 3.1. If f ∈ L2(Ω) it holds

(3.3) Sh(u, p;v, q) = Lh(v, q) ∀(v, q) ∈ Vh × Ph.

Proof. The differential equation (2.3) has to be interpreted in the sense of distri-
butions. However, with the assumption f ∈ L2(Ω) the sum −Av +∇q is in L2(Ω)
and hence both Sh(u, p;v, q) and Lh(v, q) are well defined and equal.

Next, we define the forms

(3.4) Bh(w, r;v, q) = B(w, r;v, q)− αSh(w, r;v, q)

and

(3.5) Fh(v, q) = F(v, q)− αLh(v, q),

where α is a positive constant less than the constant CI in the following inverse
inequality, which is valid in piecewise polynomial spaces with shape regular elements:

(3.6) CI

∑

K∈Ch

h2
K‖Av‖20,K ≤ ‖D(v)‖20.

The stabilized formulation is then the following.
The Finite element method. Find (uh, ph) ∈ Vh × Ph such that

(3.7) Bh(uh, ph;v, q) = Fh(v, q) ∀(v, q) ∈ Vh × Ph.

The consistency follows from Lemma 3.1.
Theorem 3.2. Suppose that f ∈ L2(Ω). Then finite element method is consis-

tent, in the sense that the exact solution (u, p) ∈ H1
D(Ω) × L2(Ω) to (2.9) satisfies

the discrete variational form

(3.8) Bh(u, p;v, q) = Fh(v, q) ∀(v, q) ∈ Vh × Ph.

Next, we outline the main steps for analyzing the stability of the formulation. For
(v, q) ∈ Vh × Ph, the inverse inequality (3.6) and the assumption 0 < α < CI give

Bh(w, r;w,−r) = ‖D(w)‖20 − α
∑

K∈Ch

h2
K‖Aw‖20,K + α

∑

K∈Ch

h2
K‖∇r‖20,K

≥
(

1−
α

CI

)

‖D(w)‖20 + α
∑

K∈Ch

h2
K‖∇r‖20,K(3.9)

&
(

‖D(w)‖20 +
∑

K∈Ch

h2
K‖∇r‖20,K

)

.
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As for the continuous problem the stability for the velocity follows from Korn’s in-
equality (2.10), whereas the stability of the pressure is in the mesh dependent semi-
norm

(3.10)
(

∑

K∈Ch

h2
K‖∇r‖20,K

)1/2

as a consequence of the added stabilization term. This gives stability for all pressures
except the piecewise constants. In the case of continuous pressure approximations,
all modes except the globally constant function are stabilized. For discontinuous
pressures the stable subspace is that of pressures orthogonal to the space of piecewise
constants denoted by

(3.11) P 0
h = { q ∈ L2(Ω) | q|K ∈ P0(K) ∀K ∈ Ch }.

The stabilization term has no influence on P 0
h . Hence the stability has to be based

on the original bilinear form B, i.e. we have to assume that the following discrete
stability inequality is valid:

(3.12) sup
v∈Vh

(div v, q)

‖v‖1
& ‖q‖0 ∀q ∈ P 0

h .

The final stability estimate with the L2-norm for the pressure is then proved using
(3.9) and (3.12) and a “trick”, first introduced by Pitkäranta [13], and later applied for
the Stokes problem by Verfürth [15]. Our stability theorem is formulated as follows.

Theorem 3.3. Suppose that one of the following conditions is valid:

(i) Ph ⊂ C0(Ω),

(ii) the stability inequality (3.12) is valid.

For 0 < α < CI it then holds

(3.13) sup
(v,q)∈Vh×Ph

Bh(w, r;v, q)

‖v‖1 + ‖q‖0
& (‖w‖1 + ‖r‖0) ∀(w, r) ∈ Vh × Ph.

We emphasize the generality of the formulation. For continuous pressures all ele-
ments, triangles, quadrilaterals, tetrahedrons, prisms, hexahedrons and pyramids can
be used, and also mixing them is allowed provided the mesh is conforming. For dis-
continuous elements the only condition is that the stability estimate (3.12) is valid.
In two dimensions this is true if the local element are [P2(K)]2 and [Q2(K)]2 for tri-
angles and quadrilaterals, respectively. In three dimensions the choices [P3(K)]3 and
[Q2(K)]3 are sufficient for tetrahedrons and hexahedrons.

The following error estimate presented in the papers [10, 9, 4, 6, 5] is a direct
consequence of the stability and consistency

‖u− uh‖1 + ‖p− ph‖0 . inf
v∈Vh

(

‖u− v‖1 +
(

∑

K∈Ch

h2
K |u− v|22,K

)1/2
)

+ inf
q∈Ph

(

‖p− q‖0 +
(

∑

K∈Ch

h2
K |p− q|21,K

)1/2
)

.

The drawback of this estimate is that it requires that u ∈ H2(Ω) and p ∈ H1(Ω). For
less regular solutions the convergence was left open in the papers cited above. In the
following we will amend this situation by using arguments introduced by Gudi [7].
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4. A refined a priori error analysis. First, we recall results from a posteriori
error analysis [16, 17]. For an edge or face E in the mesh, we denote by ωE the union
of all elements in Ch having E as an edge or a face. We define oscK(f) by

(4.1) oscK(f) = hK‖f − fh‖0,K ,

where fh ∈ Vh is the L2-projection of f . Similarly, we define

(4.2) oscE(t) = h
1/2
E ‖t− th‖0,E,

with th ∈ Vh|ΓN
being the L2-projection. The global oscillation terms are defined

through

(4.3) osc(f)2 =
∑

K∈Ch

oscK(f)2 and osc(t)2 =
∑

E⊂ΓN

oscE(t)
2.

For an edge or face E = ∂K ∩ ∂K ′ the jump in the normal traction is

(4.4) [[(D(v)− qI
)

n]]|E = (D(v)− qI
)∣

∣

K
nK − (D(v)− qI

)∣

∣

K′
nK′ .

The following lower bounds are proved in [16, 17].
Lemma 4.1. For all (v, q) ∈ Vh × Ph it holds:

(4.5) hK‖Av −∇q + f‖0,K . ‖D(u− v)‖0,K + ‖p− q‖0,K + oscK(f) ∀K ∈ Ch.

For E in the interior of Ω

(4.6) h
1/2
E

∥

∥[[(D(v)− qI
)

n]]
∥

∥

0,E
. ‖D(u− v)‖0,ωE

+ ‖p− q‖0,ωE
+

∑

K⊂ωE

oscK(f)

and for E ⊂ ΓN

h
1/2
E

∥

∥(D(v)− qI
)

n− t
∥

∥

0,E
.‖D(u− v)‖0,ωE

+ ‖p− q‖0,ωE
(4.7)

+
∑

K⊂ωE

oscK(f) + oscE(t).(4.8)

Now we state the new error estimate. Note that osc(f) is a higher order term.
Theorem 4.2. It holds

(4.9) ‖u− uh‖1 + ‖p− ph‖0 . inf
v∈Vh

‖u− v‖1 + inf
q∈Ph

‖p− q‖0 + osc(f).

Proof. Let (v, q) ∈ Vh × Ph be arbitrary. By the stability estimate (3.13) there
exists (w, r) ∈ Vh × Ph with

(4.10) ‖w‖1 + ‖r‖0 = 1

and

(4.11) ‖uh − v‖1 + ‖ph − q‖0 . Bh(uh − v, ph − q;w, r).
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Using (3.7), (3.5), (2.9) and (3.4) yield

Bh(uh − v, ph − q;w, r) = Bh(uh, ph,w, r) − Bh(v, q;w, r)

= Fh(w, r) − Bh(v, q;w, r)

= F(w, r) − αLh(w, r) − Bh(v, q;w, r)(4.12)

= B(u, p;w, r)− αLh(w, r) − Bh(v, q;w, r)

= B(u, p;w, r)− αLh(w, r) − B(v, q;w, r) + αSh(v, q;w, r)

= B(u− v, p− q;w, r) + α
(

Sh(v, q;w, r) − Lh(w, r)
)

.

From the boundedness of the bilinear form B and the normalization (4.10), we have

(4.13) B(u− v, p− q;w, r) .
(

‖u− v‖1 + ‖p− q‖0
)

.

From the definitions (3.1) and (3.2) we have

(4.14) Sh(v, q;w, r) − Lh(w, r) =
∑

K∈Ch

h2
K(−Av +∇q − f ,−Aw +∇r)K .

Cauchy–Schwarz inequality then yields

|Sh(v, q;w, r) − Lh(w, r)|

≤
(

∑

K∈Ch

h2
K‖ −Av +∇q − f‖20,K

)1/2( ∑

K∈Ch

h2
K‖ −Aw +∇r‖20,K

)1/2

.

By local inverse inequalities we have

(

∑

K∈Ch

h2
K‖ −Aw +∇r‖20,K

)1/2

≤
(

2
∑

K∈Ch

h2
K

(

‖Aw‖20,K + ‖∇r‖20,K
)

)1/2

. (‖w‖1 + ‖r‖0).

Hence, (4.5) gives

|Sh(v, q;w, r) − Lh(w, r)| .
(

∑

K∈Ch

h2
K‖ −Av +∇q − f‖20,K

)1/2

.
(

‖u− v‖1 + ‖p− q‖0 + osc(f)
)

.

The assertion now follows from (4.11), (4.12), (4.13) and (4.15).
Remark 4.3. The above estimates are also valid for the Douglas–Wang formula-

tion [3], provided that the stabilizing term of inter-element pressure jumps is dropped.

5. A posteriori estimates. For the a posteriori estimates we define the local
estimators

(5.1) η2K = h2
K‖Auh −∇ph + f‖20,K + ‖divuh − g‖20,K

and

(5.2) η2E =

{

hE

∥

∥[[(D(uh)− phI
)

n]]
∥

∥

2

0,E
, when E ⊂ Ω,

hE

∥

∥(D(uh)− phI
)

n− t
∥

∥

2

0,E
, when E ⊂ ΓN .
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By Eh we denote the collection of edges/faces in Ω and on ΓN . The global error
estimator is then defined as

(5.3) η2 =
∑

K∈Ch

η2K +
∑

E∈Eh

η2E .

Taking (v, q) = (uh, ph) in Lemma 4.1 yields a local lower bound for the error. Now
we will prove the following upper bound.

Theorem 5.1. It holds

(5.4)
(

‖u− uh‖1 + ‖p− ph‖0
)

. η.

Proof. By the stability of the continuous problem (2.12), there exists (v, q) ∈
H1

D(Ω)× L2(Ω) with

(5.5) ‖v‖1 + ‖q‖0 = 1

and

(5.6) ‖u− uh‖1 + ‖p− ph‖0 . B(u− uh, p− ph;v, q).

Let ṽ ∈ Vh be the Clément interpolant [2] of v for which we have the estimate

(5.7)
(

∑

K∈Ch

h−2
K ‖v − ṽ‖20,K +

∑

E∈Eh

h−1
E ‖v − ṽ‖20,E

)1/2
. ‖v‖1 . 1.

Choosing the pair (v, q) = (ṽ, 0) in the finite element formulation (3.7) and the
consistency equation (3.8), we get

(5.8) Bh(u − uh, p− ph, ṽ, 0) = 0.

Subtracting this from the right hand side in (5.6), and using the definition of Bh, we
obtain

B(u− uh, p− ph;v, q) = B(u− uh, p− ph;v, q)− Bh(u − uh, p− ph, ṽ, 0)

= B(u− uh, p− ph;v − ṽ, q)− αSh(u− uh, p− ph; ṽ, 0).(5.9)

The first term above is estimated exactly as in the analysis of the standard mixed
method [16, 17], using element by element integration by parts and the interpolation
estimate (5.7). This results in

(5.10) B(u− uh, p− ph;v − ṽ, q) . η.

Recalling definition (3.1), equation (2.3), and using an inverse inequality together
with estimate (5.7), we get

∣

∣Sh(u− uh, p− ph; ṽ, 0)
∣

∣ =
∣

∣

∑

K∈Ch

h2
K(f +Auh −∇ph,−Aṽ)K

∣

∣

≤
(

∑

K∈Ch

h2
K‖f +Auh −∇ph‖0,K

)1/2( ∑

K∈Ch

h2
K‖Aṽ‖0,K

)1/2

. η‖ṽ‖1 . η.
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The assertion now follows by combining the above estimates.
Remark 5.2. Let us finally note that previous works on the a posteriori estimates

for stabilized methods have mostly been confined to low order methods or to methods

with stabilizing pressure jump terms, cf. [8, 11, 12, 14, 19, 18]. As mentioned in

the introduction, our estimates are the same as in [18], but our analysis is more

straightforward.

REFERENCES

[1] Daniele Boffi, Franco Brezzi, and Michel Fortin, Mixed finite element methods and ap-
plications, vol. 44 of Springer Series in Computational Mathematics, Springer, Heidelberg,
2013.

[2] Ph. Clément, Approximation by finite element functions using local regularization, RAIRO
Analyse Numérique, 9 (1975), pp. 77–84.

[3] Jim Douglas, Jr. and Jun Ping Wang, An absolutely stabilized finite element method for the
Stokes problem, Math. Comp., 52 (1989), pp. 495–508.

[4] Leopoldo P. Franca and Thomas J. R. Hughes, Two classes of mixed finite element meth-
ods, Comput. Methods Appl. Mech. Engrg., 69 (1988), pp. 89–129.

[5] Leopoldo P. Franca, Thomas J. R. Hughes, and Rolf Stenberg, Stabilized finite element
methods, in Incompressible computational fluid dynamics: trends and advances, Cambridge
Univ. Press, Cambridge, 2008, pp. 87–107.

[6] Leopoldo P. Franca and Rolf Stenberg, Error analysis of Galerkin least squares methods
for the elasticity equations, SIAM J. Numer. Anal., 28 (1991), pp. 1680–1697.

[7] Thirupathi Gudi, A new error analysis for discontinuous finite element methods for linear
elliptic problems, Math. Comp., 79 (2010), pp. 2169–2189.

[8] Antti Hannukainen, Rolf Stenberg, and Martin Vohraĺık, A unified framework for a
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