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STOCHASTIC MOTION OF BUMPS IN PLANAR NEURAL FIELDS

DANIEL POLL* AND ZACHARY P. KILPATRICK?

Abstract. We analyze the effects of spatiotemporal noise on stationary pulse solutions (bumps)
in neural field equations on planar domains. Neural fields are integrodifferential equations whose
integral kernel describes the strength and polarity of synaptic interactions between neurons at dif-
ferent spatial locations of the network. Fluctuations in neural activity are incorporated by modeling
the system as a Langevin equation evolving on a planar domain. Noise causes bumps to wander
about the domain in a purely diffusive way. Utilizing a small noise expansion along with a solv-
ability condition, we can derive an effective stochastic equation describing the bump dynamics as
two-dimensional Brownian motion. The diffusion coefficient can then be computed explicitly. We
also show that weak external inputs can pin the bump so it no longer wanders diffusively. Inputs
reshape the effective potential that guides the dynamics of the bump position, so it tends to lie
near attractors which can be single points or contours in the plane. Perturbative analysis shows the
bump position evolves as a multivariate Ornstein-Uhlenbeck process whose relaxation constants are
determined by the shape of the input. Our analytical approximations all compare well to statistics
of bump motion in numerical simulations.

Key words. neural field, stochastic differential equations, spatially extended noise, effective
diffusion

1. Introduction. Persistent and localized neural activity has been observed in
a number of experiments probing mechanisms of sensation [32,51] and memory [28,
43]. In particular, recordings from prefrontal cortex during spatial working memory
tasks link the spatiotemporal dynamics of neural activity to an animal’s resulting
behavior [26]. When a monkey is trained to recall the specific position of a cue, the
network location of persistent activity encodes the corresponding cue location. Any
displacement of the persistent activity from its initial location is reflected by errors the
monkey makes in recalling the cue’s position [54]. In a related way, persistent activity
in the entorhinal cortex [29] and hippocampus [16] can store an animal’s physical
location in its environment, constituting an internal “global positioning system” [1].
While most studies of spatial working memory tend to focus on recalling an analog
variable in one-dimension [49], networks performing such spatial navigation have been
shown to represent space in two [42] and even three dimensions [55].

Continuum neural field equations on planar domains are a well accepted model
of spatially structured neuronal activity evolving on the surface of in vitro and in
vivo brain tissue [8,50]. However, analyses of such equations tend to focus exclu-
sively on deterministic spatiotemporal dynamics [24,35,41,44], ignoring the impact of
the nervous system’s fluctuations [20]. Extending his seminal work on the stability of
stationary bump solutions in one-dimension [2], Amari was the first to explore the dy-
namics of spatially coherent activity in planar neural fields, focusing on D,,-symmetric
azimuthal instabilities of radially symmetric bumps [3,4]. Several authors have ex-
tended this work, studying the solutions that emerge from such symmetry breaking
instabilities such as multi-bumps [44], breathers [24], and labyrinthine patterns [18].
In addition, D;-symmetric modes of radially symmetric bumps can be destabilized by
incorporating an additional negative feedback variable into the evolution equations,
modeling spike frequency adaptation [17] or synaptic depression [11]. In this case,
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bumps no longer remain stationary when deformed by shifting perturbations. Indeed,
these previous studies have shed light on how the architecture and parameters of
neural field models shape the dynamics of their solutions.

Noise fluctuations have a considerable impact on the large scale dynamics of
neuronal activity [25]. A wide variety of previous modeling studies have explored how
noise and chaos affect bulk neuronal activity in high-dimensional spiking networks
[6,19,48]. However, recent work has also shown that incorporating weak noise into
neural field models can qualitatively reshape their long term dynamics [8]. Studies of
this sort proceed by casting the model in terms of a Langevin equation evolving on
a spatial domain subject to spatiotemporal noise. Weak additive noise can shift the
threshold of Turing bifurcations, beyond which stationary spatial patterns form [30].
Furthermore, noise leads to diffusive motion of fronts [13] and bumps [36], so they
execute a random walk about their mean position. Analysis and simulation of these
phenomena is inspired by studies of stochastic front propagation in reaction-diffusion
PDE models [5,45]. Complementary to these perturbative approaches, Kruger and
Stannat have recently developed a multiscale decomposition of solutions to stochastic
neural field models which allows for a rigorous treatment of the existence and stability
of solutions [38]. Furthermore, Faugeras and Ingles have addressed the issue of well-
posedness of solutions to stochastic neural fields [21]. Neural fields and reaction-
diffusion models tend to possess translation symmetry, and, as a result, their spatially
structured solutions are neutrally stable to spatial translations that preserve their
profile. However, if the translation symmetry of a neural field equation is broken by
spatial heterogeneity, its solutions will be linearly stable to translating perturbations.
In this case, they will tend to stay close to their initial position in the presence of
weak noise perturbations [13,36].

We extend these previous findings by exploring the stochastic motion of bumps
in planar neural fields, reaching beyond current work that tends to explore one-
dimensional domains [8,30]. Our principle finding is that weak noise causes stationary
bumps to execute two-dimensional Brownian motion, which can be quantified with an
effective diffusion coefficient. Our derivations require the enforcement of a solvability
condition for the linearization of a nonlinear Langevin equation on the plane. Since
bump position represents a memory of an initial condition, we are interested in what
features of the model shape the long term diffusion of the bump. Thus, we also an-
alyze the impact of external inputs on stochastic bump motion, finding they tend to
pin the bumps to their peaks. The paper proceeds by first introducing the stochastic
neural field model on the plane in section 2. We then begin section 3 by reviewing
previous analyses of existence and stability of radially symmetric bumps [44], provid-
ing intuition for the impact of noise perturbations on bump position. Subsequently,
we derive an effective equation for the dynamics of radially symmetric bumps subject
to weak noise, deriving an effective diffusion coefficient for the variance of the bump’s
position. In section 4, we extend these results by incorporating the effects of an
external input on the stochastic dynamics of bumps. Inputs stabilize bumps to trans-
lating perturbations, so the position of noise-driven bumps evolves approximately as
an Ornstein-Uhlenbeck process in two-dimensions.

2. Stochastic neural fields on planar domains. We will analyze the effective
diffusion of stationary bump solutions in planar neural field equations with noise. A
wide variety of previous studies have analyzed the existence and stability of bumps
in two-dimensional neural fields. Studies in bounded domains are often eased by the
fact that solutions can be decomposed into finite expansions of basis functions [10,22].

2



There are also several successful analysis of the existence and stability of bumps on
unbounded domains, such as R? [40,44]. As a starting point, we will review some
previous analyses of bump solutions in the planar neural field model [3,44,47, 52]

w = —u(x,t) + /R w(x — y)f(uly. 1)) dy, (2.1)

where u(x,t) denotes the total synaptic input to the neural field at the position
x = (w1,72) € R%. The integral term describes the synaptic connectivity of the
network, so that w(x —y) describes the strength (amplitude) and polarity (sign) of
connectivity from neurons at location y to neurons at location x. In our analysis, we
utilize a sum of N + 1 modified Bessel functions as our typical weight function w to
demonstrate the results we derive

N

wx—y) = ¢jKolallx —yll), (2.2)
§=0

where K, is a modified Bessel function of the second kind of order v. The constants
c¢; and o scale the amplitude and spatial decay of the jth term in the Bessel function
sum. One advantage of the weight function (2.2) is that integrals arising in (2.1) can
be computed analytically with the aid of Hankel transforms [24,40,44]. Note that ||.|
denotes the standard Euclidean 2-norm

Ix[] = /% + a3

so that w of the form (2.2) will be radially symmetric. The function f denotes
the firing rate of the model, which is a representation of the fraction of total active
neurons, 0 < f < 1. Experimental data suggests f should roughly be a sigmoidal
function [53]

1

fu) = 1+eur) (2.3)
where 7y is the gain and & is the threshold. The effective equations we derive for the
stochastic motion of bumps will hold for general firing rate functions f, but we consider
the high gain limit v — oo of (2.3) to compute the resulting formulas explicitly. In

this case [2,3]

1: u>k,

2.4
0: u<xk, (24)

so the firing rate function is a Heaviside function.

The planar neural field equation (2.1) in the absence of noise has been studied
extensively, demonstrating a wide variety of neural patterns [3,18,40,44]. However, our
main concern is the impact of noise on stationary bump solutions of (2.1). We focus
on a model that incorporates additive noise into a planar neural field, an extension
of recent studies that have explored how noise shapes spatiotemporal dynamics of
neural fields in one-dimensional domains [7,8,30,39]. The model takes the form of a
Langevin equation on the plane R? forced by a spatiotemporal noise process

du(x,t) = < —u(x,t) + /R? w(x —y)f(uly,t)) dy) dt + Y2dW (x,t). (2.5)
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The term dW (x,t) is the increment of a spatially varying Wiener process with spatial
correlations defined

(dW(x,t)) =0, (dW(x,t)dW (y,s)) = C(x —y)d(t — s)dtds, (2.6)

so that € describes the intensity of the noise, which we assume to be weak (¢ <« 1). The
function C(x —y) describes the spatial correlation in each noise increment between
two points x,y € RZ?. The spatial correlation function C(x — y) can be related
directly to the spatial filter F(x — y). First, we note that dW(x,t) can be defined
by convolving a spatially white noise process d)(x,t), satisfying (d)Y(x,t)) = 0 and
(dY(x,t)dY(y,s)) = 6(x — y)d(t — s)dtds, with the filter F(x —y), so

AW (x, ) = /Q Fx — y)dV(y, t)dy.

Thus, we can determine how the variance of dW(x,t) depends on the filter F(x —y)
by computing

(AW (e, )Ty, 1)) = < [ Fx—xaviax [ Fiy -y )ave t>dy/>
- / / Flx — x)F(y — y WY, )dV(y’, 1))dy'dx’
QJQ
= / / Fx—x"F(ly —y')o(x' —y')dy'dx'6(t — s)dtds
QJQ

(AW (x,t)dW (y,t)) = /Q]-"(x —x')F(y — x")dx'§(t — s)dtds
=C(x—y)d(t — s)dtds, (2.7)

Clx-y)= /Q]:(x —x)F(y — x")dx'. (2.8)

The last equality in (2.7) holds due to our definition of dW(x,t). Note that (2.8)
implies that C(x — y) should be an even symmetric function, since the arguments of
both functions F(x) can be exchanged. In other words, the points x and y in C'(x—y)
can also be exchanged.

As an example, consider the noise filter F(x) = cos(x1) + cos(z2) + sin(z1) +
sin(z2). To compute the associated spatial correlation function, we must restrict
integration to a compact domain Q C R? of size 2M7 x 2Mm (M € Z). Note, in
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numerical simulations, we are forced to do so anyway. By utilizing (2.8), we find
Clx—y) = / Flx - x)Fly - x)dx’
Q

2 2
:/QZ [COS(:Bj — SE;) + sin(x; — .’L‘;)] Z [cos(yj — x;) + sin(y; — x;)] dx

J=1

2
= /Q Z [0052 () cos(x;) cos(y;) + sin2(x;) sin(z;) sin(y;)] dx
j=1

=2M?7? Z [cos(z;) cos(y;) + sin(x;) sin(y;)]
C(x —y) =2M?*7? [cos(x1 — y1) + cos(wa — y2)] . (2.9)

Note that the size of the domain is controlled by M and this also scales the relationship
between the noise filter and correlation function, which is important to remember
when comparing numerical to analytical results. We will employ this canonical spatial
noise filter in our explorations of stochastic bump motion.

3. Wandering bumps in R?. We begin by studying bumps in the unbounded
domain 2 = R2, first in the absence of noise (2.1) and then in the presence of additive
noise (2.5). Recent studies have shown traveling waves and bumps in stochastic neural
fields wander diffusively about their mean position, but these analyses have focused
on one-dimensional domains [8,36]. Our analysis will allow us to approximate the
diffusion coefficient of a bump driven by noise in a two-dimensional domain. Since
we are exploring the model (2.5) in R?, we can utilize Hankel transforms to compute
integral terms [24].

3.1. Existence and stability of bumps. To begin, we review prior results
constructing rotationally symmetric stationary bump solutions in the noise-free sys-
tem (2.1) [3,44,47]. Specifically, we employ the assumption that the weight function
(2.2) is rotationally symmetric to look for stationary solutions of the form u(x,t) :=
U(x) = U(||x]]). In this case, the neural field equation (2.1) simplifies to

Ul = [ wlx =y )iy. (31)

By changing variables to polar coordinates x = (x1,22) — r = (r,0), we can convert
(3.1) to a double integral of the form

U(r) = /0 /0 w(|e =) f(U(x"))r'dr'do". (3.2)

Note that if we assume a Heaviside firing rate function (2.4), then (3.2) becomes

U(r) = /0277 /Oaw(|r —r'|)r'dr’de’, (3.3)

where U(r) > k when r < a and U(r) < k when r > a, so that » = a defines the
boundary of the bump. An advantage of utilizing a Heaviside firing rate function
(2.4) is that the stability of the bump can be probed by analyzing the dynamics of
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Fic. 3.1. Stationary bump solutions u(x,t) = U(r) to the deterministic model (2.1) with weight
function (2.2) and Heaviside firing rate (2.4). (A) A wider stable (solid) and narrower unstable
(dashed) branch of solutions to U(a) = k emerges from a saddle-node bifurcation at a critical value
of k above which no solutions exist. Weight function parameters are (left to right) [c1,c2,c3,ca] =
[10/9,-10/9,-1/3,1/3];[4/3,—-4/3,—2/5,1/3];|5/3,—5/3,—1/2,1/2]. (B) An ezample of a station-
ary bump U(x) for the parameters k = 0.2 and [c1, c2,c3,c4] = [5/3,—5/3,—1/2,1/2]. We have fized
o1, 0,03, 04] = [1,2,1/4,1/2], as in (3.8).

the boundary. When we analyze the stochastic motion of the bump, we will also
derive effective equations by focusing on perturbations of the bump boundary by
spatiotemporal noise. We can evaluate the integral in (3.3) using Hankel transform
and Bessel function identities, as in [24,44]

U= [ @) alro) s an)dp (3.4

where J,(z) is a Bessel function of the first kind of order v and the Hankel transform
is defined

i) = [ e™mulear

where p = ||h]|.

To illustrate our analysis, we consider the weight (2.2) given by a sum of modified
Bessel functions [44]. Using the fact that the corresponding Hankel transform of
Ko(sr) is H(p,s) = (p* + s?)~1, we have

N
Blp) = > eHlp.ay). (3.5)

The bump solution (3.4) can then be evaluated by using the formula (3.5) along with
the identity

/OO Jo(pr)Ji(pa)
0

3.6
p2 + 82 ( )

1 .
dpEI(a’r’s):{ slll(jal)K (57’) r>a,
s2a s

0
Iy(sr)Ki(sa) :r<a,

where I, is the modified Bessel function of the first kind of order v. We can thus
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generate an explicit solution for the stationary bump U(r), given

N

U(r) =2ma Z exZ(a,r, ag).
k=0

Applying the threshold condition U(a) = k, we can generate an implicit equation
relating the bump radius a with the threshold x and weight parameters

N
Ua) = 27Taz C—kIl(aka)KO(aka) = K. (3.7)
j=o V¥

In general, explicit solutions for a cannot be computed and (3.7) must be solved
numerically using root finding algorithms. Note also that satisfaction of the threshold
condition (3.7) is not sufficient for proving the existence of a bump. For instance,
the possibility of ring solutions must be eliminated by ensuring there are no other
threshold crossing points [18,44]. Furthermore, we must develop a linear stability
analysis to identify those bumps that will persist in the presence of perturbations.
This will especially be important in our analysis of the stochastic system (2.5), since
it will rely on the assumption that the perturbed solutions retains a profile similar to
the unperturbed system.

We demonstrate the results of this existence analysis by utilizing a Mexican hat
type weight distributions such as [11,44]

U)(’I’) = ClKo(T) + CQKO(2’I") + C3K0(T/4) =+ C4K0(T‘/2), (38)

where we have fixed the spatial scales [ay, as, ag, 4] = [1,2,1/4,1/2] and will take
c1,¢4 > 0 and co,c3 < 0 to generate a lateral inhibitory kernel. Typically, weight
functions like (3.8) lead to a maximum of two bump solutions, as shown in Fig. 3.1.

As mentioned, we must be aware of the possibility of azimuthal instabilities of
the stationary bump when developing our linear stability theory [9,44]. Thus, while it
may be convenient to analogize the shifting and expanding/contracting perturbations
of 1D bumps [2] with D; and circularly symmetric perturbations of 2D bumps [47],
one should be sure not to stop here. A full analysis of azimuthal perturbations to the
bump (3.2), D,-symmetric perturbations (n € Z, n > 1), is necessary since bumps can
destabilize through such symmetry-breaking instabilities [11,44]. It is worth noting
that this fact was originally identified by Amari in 1978 [4], and other systematic
analyses were carried out in the last decade [18,44].

To determine the stability of stationary solution, we will consider small, smooth
perturbations of the stationary bump solution (3.2) of the form wu(x,t) := U(x) +
e¥(x,t) where ¢ < 1. We substitute this into equation (2.1) and Taylor expand to
linear order to generate the equation

W =Tt + /RQ wx—y)f' Uy))¥(y,t)dy- (3.9)

Applying seperation of variables ¥(x,¢) = W(x)b(t) and rearranging terms results in
the solutions b(t) = e* and

A+ D86 = [ = y)1 W)V, (3.10)
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We can immediately identify neutrally stable perturbations, those corresponding to
A =0, by letting ¥(x) = U,,(x) with j € {1,2}. We apply integration by parts and
the definition of a stationary solution U given in (3.1) into (3.10) to yield

(A DUz, () = [ 0= PN, ) dy = [ wex=y)5 - (FU) dy
= [ o b=y ) I dy = [ S (wlx =) 1O dy

R? aT/J r2 0;
o ([ wtc- W) ay ) = v, 0. (311

Thus, by the linearity of the integral
Uy (x) = h1Uyg, (X) + hoUy, (x) (3.12)

generates the class of solutions corresponding to the eigenvalue A\; = 0. Note, we will
not have such a class of perturbations in the case of stationary external inputs, as the
translation symmetry of (2.1) will then be broken.

Prior to analyzing other azimuthal perturbations to the bump (3.2), we briefly
discuss how perturbations of the form (3.12) impact the long term bump position. In
fact, it is precisely this neutral stability of the bump that leads to purely diffusive
motion of the bump in the stochastic model (2.5). Specifically, we focus on the case of
a Heaviside firing rate function (2.4), so we can track the position A = (A, Ay) € R,
i.e. the spatial mean, of the bump by utilizing the level set condition u(x,t) = k,
which can be written

k=u(a+¢eb(0,t),0,t) =U(a+eb(f,t)) + c¥(a +eb(,t),0,t)
k =U(a) +eU'(a)b(6,t) + ¥ (a,,t) + O(?), (3.13)

where b(0,t) describes the perturbation of the bump boundary R(6,t) = a + €b(0, )
at angular coordinate # and ¢ < 1. Note we can employ the stationary level set
condition U(a) = & to cancel leading order terms in (3.13) to yield [24]
U(a,b,t)
b(0,t) = ————= + O(e). (3.14)
U (a)]

If we specifically denote ¥(a,0,t) to be a neutrally stable perturbation (3.12), then
U(a,0,t) = ¥z(a,0) and b(0,t) = by(0), so that to first order

~ Uy(a,0)  hU'(a)cosf + hyU'(a)sin 6

e O 07(a)]

= —hjcosf — hysinf,  (3.15)

where we have computed

0 , 0 I
871‘1U(HX”) =U'(a)cos¥, a—@U(HXH) =U'(a)siné. (3.16)

r=a r=a

Thus, the new bump boundary Ry(f) =~ a + €b1(0) can be approximated in polar
coordinates as

Ry(0) =a —echycosf — chysin. (3.17)
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This approximates the long-term perturbation to the bump boundary lim;_,~, R(,t) ~
Ry(0) by simply using the leading order term in the expansion b(0,t) = b1(0) +
Z;’;OJ# bj(0)erit, as limy—o b(6,t) = b1(0) since all other Re); < 0. This utilizes
the well known result that circularly symmetric bump solutions to (2.1) are neutrally
stable to Dy symmetric perturbations of the bump boundary [24,44]. Now, define the
centroid (center of mass) A = (Ay, Ay) as the first moments of mass along the x— and
y—directions scaled by the total mass for the lamina 2z of uniform density enclosed
by the curve (3.17). In Cartesian coordinates, these quantities are given by the double
integral formulae A; = [ fQR xdzdy/ foR dzdy and Ay = [ fQR ydady/ [ fQR dxdy.
By utilizing polar coordinates (x,y) = (rcos#,rsinf), and plugging in the formula
for the closed curve R(f) (3.17), we can compute:

A = OQW OR(G) 72 cos Odrdf B 3 Ozﬂ (a — ehy cos O — ehy sin 0)3 cos Odb
OZW OR(O) rdrdf i fo% (a —ehy cos @ — eha sin6)2d0
a? 2w .
< — 3eh 0 — 3ch 0 0do
_ 53 QSTCL ehy cos € 2511’1. ) cos N 0(52) ~ —eh,
5 Jo (a—2¢ehycost) — 2echysind) df
and
A fo% fOR(e) risinfdrdd % 027r (a — ehy cos O — chy sin 0)? sin 0d0
2 = = p= :
fOQW fOR(O) rdrdf % 02 (a — ehy cos @ — eho sin 0)2df
2 r2m . .
& a — 3ehy cos @ — 3ehy sin 6) sin 6df
_ o ( - 26in6) +O(e%) ~ —chy.

5 Jo (a—2ehycos® — 2chysin6) df

Thus a perturbation in the bump profile of the form (3.12) will yield a proportional
shift in the bump’s center of mass (A1, Ag) = —&(hq, h2). This foreshadows the impact
of noise-induced perturbations to the bump’s position, which we explore in section
3.2. Effectively, we will show the primary contribution to the stochastic motion of
bumps is the D;-symmetric portion of the spatiotemporal noise, which is filtered by
the bump as a spatial translation of its boundary and center of mass.

Lastly, we briefly review the analysis of azimuthal perturbations to the bump
boundary. Note that in the case of a Heaviside firing rate function (2.4), then

, d(r—a)
FUG) = 8(Ur) = w) = Tl (315)

where U’'(a) is the normal derivative of U(x) along the bump boundary r = a, in
polar coordinates r = (r,6). Thus, the eigenvalue equation (3.10) becomes

A+ 1)¥(r) = IUGW/O " (e — o)) W(a, )6, (3.19)

where a’ = (a,6’) in polar coordinates, equivalently a’ = a(cosf,sinf) in Cartesian
coordinates. Stability of the bump is thus determined by the spectrum of a compact
linear operator acting on continuous, bounded functions ¥(r,#) defined on the disc
of radius < a. The essential spectrum contains functions ¥(r) that vanish on the
boundary ¥(a,f) = 0 for all , so A = —1, contributing to no instabilities. We can
thus identify the discrete spectrum by setting r = a = (a, ) in (3.19), so

(A + 1)0(a, 0) = m /0% w <2asin (0 - 9)) W(a,0')d0,
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where we have utilized the identity

o
la —a’| = \/2a2 — 2a2 cos(f — 0') = 2asin (9 29 ) :

Any perturbation can be decomposed into the infinite series of Fourier modes U(a,d) =
S 0 A, (0) + B, YV, (0), where ¥, (0) = e™? and ¥, () = e~ [23,44]. We can
thus compute all the eigenvalues of the discrete spectrum by evaluating the expression

a 2m )
Ap=—1+ 7/ w(2asin(6/2))e~ "
T Sy RO

each associated with ¥, (0) for n € Z>¢. Note, A, will always be real, since rescaling
0 — 20:

2a " . .
Im{\,} = _W/o w(2asin B) sin(2nd)df = 0.

Therefore, the eigenvalue is real

a

U (a)l

A = RefA} = 14 / T w(2asin(0/2)) cos(nf)dd.  (3.20)
0

Note, the bump profile perturbation ¥(r,t) will be related to the bump boundary per-
turbation b(0,t) via the formula (3.14), as discussed above. The nth order boundary
perturbation has D,, symmetry; e.g. n = 0 uniformly expands/contracts the bump,
n = 1 shifts the bump.

By specifying the weight function w(r), we can compute the eigenvalue (3.20)
explicitly using Bessel functions to evaluate the integral

/027T w(la —a'l) cos(né')dd’ = /0% (/OOO w(p)Jo(pla— a'l)pdp) cos 0'do’
=27 /0 N @(p)Jn(pr)Jn(pa)pdp.

Thus, we can write (3.20) as

o0~

_ 0 w(p)Jn(pr)Jn(pa)pdp
= S ) T o) T (paypdp

Since we know A; = 0, the bump will be stable if A,, < 0 for all n # 1. Employing
the general weight distribution (2.2), we find

N
Zj:l ciKy(aja)ly(aja)

. 3.21
Y ¢ Ka(aja) I (oja) (321

More specifically, we could focus on the Mexican hat weight distribution (3.8) along
with the parameters given in Fig. 3.1A. Indeed, checking the formula for the eigen-
values (3.21), we find \,, < 0 (n # 1) for all solutions along the upper branch of wide
bump solutions.
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3.2. Effective equations for stochastic bump motion. We now explore how
noise impacts the long term position of bumps in the network (2.5). Previous authors
have analyzed the impact of noise on waves in reaction-diffusion [5,45,46] and neural
field models [7,8,36] using small-noise expansions, but those studies tend to be on one-
dimensional domains. Noise causes waves to execute an effective Brownian motion
in their instantaneous position. As we will show, this analysis naturally extends to
the effective stochastic dynamics of bumps in two-dimensional (2D) domains. The
position A(t) = (A1(t), Ao(t)) wanders diffusively, as a 2D random walk, as long as
noise is small so that the profile of the bump remains close to the solution of the
deterministic system (2.1). As mentioned, this relies upon the neutral stability of
the noise free system; different behavior will arise when we break this symmetry with
inputs, shown in section 4.

To begin, we assume that the weak additive noise (of O(¢'/2)) in (2.5) affects the
bump in two ways. Both are weak (O(/2)) compared to the amplitude of the bump,
allowing us to exploit regular perturbation theory to analyze the Langevin equation
(2.5). First, the bump diffuses from its original position x on long timescales according
to the stochastic variable A(t) = (A1(t), Aa(t)) (see Fig. 3.2, for example). Second,
there are fluctuations in the bump profile on short timescales [5], according to the
expansion £'/2® + e®; + £3/2®, + --.. This suggests the following ansatz for the
impact of noise on the bump solution U(x):

u(x,t) = U(x — A(t)) + /2P (x — A(t),t) +--- . (3.22)

Substituting (3.22) into (2.5) and truncating to O(1), we find that U(x) still satisfies
(3.1). Proceeding to linear order in £'/2, we find

d®(x,t) = LB(x, 1) + e V2VU(x) - dA(t) + dW (x, ), (3.23)

where VU (x) = (Uy, (x), U, (x))T denotes the gradient of U(x) and L is a non-self-
adjoint linear operator of the form

£2(0) = =p(x)+ [ wlx =) (U)p(y)dy (3.24)

for any L? integrable function p(x) on R?. We ensure a bounded solution to (3.23)
exists by requiring the inhomogeneous part is orthogonal to all elements of the null
space of the adjoint operator £*. The adjoint is defined by utilizing the L? inner
product

[ (el axiax = [ po) 270 .
]RQ RQ
where p(x), q(x) are L? integrable on R?. Thus
£9(0) = ~ax) + S (UG) [ wlx=y)ay)ay. (325)

The span of the nullspace of £* can be described by two functions, which we can
compute explicitly for a general firing rate function. That is, we can find an infinite
number of solutions to the null space equation

o(x) = F(UX) / w(x — y)e(y)dy, (3.26)

R2
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which can always be decomposed into a linear combination of two functions ¢; (x) and
pa2(x). Specifically, we take ¢1(x) = f'(U(x))U,, (x) and @a(x) = f/(U(x))Us, (%),
and note that by plugging into (3.26), we have

F(U)Us, (%) = f’(U(X))/ w(x = y) ' (U)Us, (y)dy,

R2

which holds due to to the equations in (3.11). Thus, we can derive an effective equation
for the position variable A(t) by taking the inner product of ¢; and @5 with both
sides of (3.23) to yield

/ F(Ux)Us, (%) (Uml ()AL () + Uy, (x)dAs(t) + £1/2dW (x, t)) dx=0 (3.27)
RQ

/R FUG)U, () (Uml (x)dA () + Uy, (x)dAs(t) + £1/2dW (x, t)) dx = 0.

Moreover, we can exploit the odd and even symmetries of the spatial derivatives
Uz, and U, that must hold since U(x) is radially symmetric. Namely, U,, is odd-
symmetric along the z;-axis and even along the z9-axis, and U,, is even-symmetric
along the z1-axis and odd along the xo-axis. Lastly, f/(U(x)) is radially symmetric
since U(x) is. This means [po f'(U(x))Uy, (X)Usy, (x)dx = 0. This allows us to rear-
range the system (3.27), yielding a pair of independent equations for the diffusion of
the bump along the z; and x5 axes

_ Jgz /(U (%)) Uy, (x)dW (x, t)dx

Joz F/(U(x)UZ (x)dx 7
With the stochastic system (3.28) in hand, we can approximate the effective diffu-
sivity of the bump. First, note that the mean position of the bump averaged across
realizations does not change in time ((A(t)) = (0,0)) since noise has mean zero

((W(x,t)) = 0). Computing the variance of the stochastic variable A(¢), we find it
obeys pure diffusion in two-dimensions:

e fio P W GDU, (S (U () Ui, ()W (x, OW (3, 6)dydx
e U2, (x)x
(A;()?) =eDjt, je{1,2}, (3.29)

dA;(t)

je{1,2}. (3.28)

(A;(t)%)

and using the definition of the spatiotemporal noise W(x,t) in (2.6), we find
D. — Jaz Jgo F(U(x)Us, (x) f'(U(y))Us, (y)C(x — y)dydx
i = 5 .
(o 10 () U2, ()

This allows us to calculate the effective diffusion of bumps in the stochastic planar
neural field (2.5). We simply need to compute the constituent functions U, and f'(U)
and evaluate the integrals in (3.30), which we now do in the case of Heaviside firing
rates (2.4).

(3.30)

3.3. Explicit results for the Heaviside firing rate. We now show that we
can explicitly calculate the effective diffusion coefficient (3.30) in the case of a Heav-
iside firing rate function (2.4), weight kernel comprised of modified Bessel functions
(2.2), and the following cosine noise correlation function derived in (2.9):

C(x) = cos(x1) + cos(xz). (3.31)
12
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FIG. 3.2. Numerical simulation of the stochastic neural field (2.5) on the plane R? with Heav-
tside firing rate (2.4) and Bessel function weight (2.2). (A-E) Snapshots of a simulation of a
bump wandering on the plane, due to noise with spatial correlation function C(x) = cos(x), at time
points t = 0,100, 200, 300,400. Thin lines represents the stochastic trajectory of the bump during
the time between the previous and current snapshot. (F) Plot of the trajectory of the bump centroid
for t € [0,400] demonstrates how its stochastic trajectory behaves as 2D Brownian motion. Other
parameters are Kk = 0.2, € = 0.04, and w is (3.8) with [c1,c2,c3,c4] = [5/3,—5/3,—1/2,1/2]. We
approzimate the center of mass of the bump using argmax, u(x,t).

Analogous to our linear stability calculations, by selecting a Heaviside firing rate
function (2.4), we find that the associated functional derivative f/(U) is given by
(3.18). Thus, the domain of integration of the terms in (3.30) collapse from R? to the
closed curve r = a, in polar coordinates r = (r, 6). Furthermore, the spatial derivatives
U, and U,, are given by the formulas (3.16), so that we can simply rewrite the term
in the denominator of (3.30) as an integral over the angular coordinate 6

2

(/. f’(U(X))Ufj(X)dX)Q—<| s [ st = ) 0@ cos 0 rara

a

271' 2
_ 2.2
(|U’ A a) cos 6] dﬁ) = a?*n*U’'(a)?.

We can apply a similar approach to the calculation of the numerator of (3.30), given
by

w20 @2D; = [ PO, (S V) (406~ y)dydx

2m 2
= a2/ / cos  cos ¢ C(a(cos O, sin ) — a(cos ¢, sin ¢)*)dOde.
o Jo
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Fic. 3.3. Variance of the bump position A(t) = (A1(t), A2(t)) evolving according to the stochas-
tic model (2.5) with Heaviside firing rate (2.4) and Bessel function weight (2.2). (A) Long-term
variance <A%)> scales linearly as pure diffusion, and the slope is given by the diffusion coefficient
D defined by the formula (3.32). Parameters are K = 0.2 and € = 0.05. (B) Plot of the effec-
tive diffusion coefficient € - D wversus the activity threshold k. The weight function w is (3.8) with
le1,c2,c3,c4] = [5/3,—5/3,—1/2,1/2]. Numerical variances are computed using 1000 realizations
each.

Rewriting by using the cosine correlation function (3.31) and utilizing the identity
cos(x — y) = cosx cosy + sinzx siny, we have
27 2w
72U’ (a)*D; = (/ cos(a cos ) cos 9d0> + (/ cos(asin f) cos 9d0>
0 0
2m 2 27
+ (/ sin(a cos ) cos 9d9) + (/ sin(a sin ) cos 9d9)
0 0

Applying the substitution v = asin 6, we find that

2 2

2

2m a —a
1 1
/ cos(asinf) cos0df = 7/ cosvdv + 7/ cosvdv = 0,
0 a aJa

—a

27 1 a 1 —a
/ sin(asin 0) cos 0df = — / sinvdv + — / sinwvdv = 0.
0 a aJaq

—a
Furthermore, breaking up the domain of integration of the first summand, we find

/2 3m/2

cos(a cos 0) cos 0d6 + / cos(a cos ) cos 0do

2
/ cos(a cosf) cos0df =
0 /2

—m/2

/2 /2
= / cos(a cos ) cos 6df + / cos(acos(f + 7)) cos(0 + m)do

—7/2 —m/2

w/2 /2
= / cos(a cos ) cos 0df — cos(a cos f) cos 0do = 0.
—7/2 —m/2

Lastly, we must compute the remaining summand, for which we make use of integra-
tion by parts

2m ™
/ sin(cos 6) cos 0df = 2a / sin? § cos(a cos 0)df = 2m.J; (a),
0 0

14



where we have made use of the explicit integral representation of a Bessel function of
the first kind of order v:

1 v i
Ju(2) = ;ﬁ/o sin? 6 cos(z cos 0)d.
Thus, we can finally write
4J1 (a)Q .
D= ——2% =1,2. 3.32
J U/(a)Q ) J , ( )

Effective diffusion along both the x1 and x5 axes is identical, due to radial symmetry of
the bump along with the Dy symmetry of the correlation function (3.31). We demon-
strate our analytical results, in comparison to statistics from numerical simulations,
in Fig. 3.3.

4. Stimulus-pinned bumps in RZ?. In this section, we explore how the in-
teraction of external inputs and noise determines the stochastic dynamics of bumps.
In previous work, we have shown in one-dimensional domains that both external in-
puts [36] and coupling between bumps in multiple layers [12,33,34] can help stabilize
bumps to the translating perturbations of noise. Inputs pin bumps in place so their
motion is mostly restricted to the peak(s) of the input function, and the stochastic
variable describing the bump’s location can be approximated with a mean-reverting
(Ornstein-Uhlenbeck) process. Thus, we consider an external stationary stimulus I (x)
acting on our stochastic system (2.5), and our modified model takes the form

du(x,t) = (—u(x, t) + /]R2 w(x —y)f(u(x,t)) dy + I(X)) dt + Y2dW (x, ). (4.1)
The primary forms of input we employ are a radially symmetric Gaussian
I(x)=I(r)=Age " /7", (4.2)
and a translationally symmetric Gaussian
I(x) = I(w1) = Age™ /", (4.3)

where I(z1) denotes independence from the second coordinate of the spatial vector
x = (21, x2). We begin by reviewing the existence and stability of radially symmetric
bumps in the noise free system (¢ — 0), as this foreshadows the impact of inputs
on the stochastic dynamics of bumps. Essentially, the local stability of bumps to
translating perturbations is altered by the input’s spatial heterogeneity.

4.1. Existence and stability of bumps. We begin by constructing the mod-
ified equations for radially symmetric bump solutions u(x,t) = U(x) = U(r) to the
model (4.1) in the absence of noise (¢ — 0). Previous work has shown that inputs
can stabilize stationary bumps in purely excitatory neural field models that incorpo-
rate linear adaptation [23] by altering the evolution of expanding/contracting (O(2)-
symmetric) perturbations to bump profiles. Here, we show inputs stabilize bumps to
translating (D;-symmetric) perturbations. We focus on the case where the external
input I(x) is rotationally symmetric, so in polar coordinates, I(r,0) = I(r,0 + s) for
s € [0,27]. Thus, our stationary bump solution satisfies the stationary equation

U(l[xIl) =/R2 wx —y)f(U(y))dy + I(x), (4.4)
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and by changing to polar coordinates x = (x1,z2) — (r,0), we have

27 00
U(r) :/0 /0 w(lr — ') f(U)r'dr'do’” + I(r). (4.5)

Assuming a Heaviside firing rate function (2.4), the integral in (4.5) collapses to a
compact domain

U(r) = /0 /0 w(|e —1'|)r'dr'dd" + 1(r), (4.6)

where 7 = a defines the boundary bump as in the input-free case (3.3). We can
evaluate (4.6) explicitly by assuming the weight function formula is a sum of modified
Bessel functions (2.2), finding

U(r) = 27‘(‘(12 exZ(a,ry o)+ I(r),

=1

where Z(a,r,s) is defined by the formula (3.6). To relate the bump radius a to
the threshold x of the Heaviside firing rate function (2.4), we apply the condition
U(a) = k, which can be written

N
Ua) = 27raz Sk (ara)Ko(aga) + I(a) = k.
j=1 Ak
One can then solve this nonlinear equation using numerical root finding.

To determine the stability of the input-driven stationary bump solution (4.5), we
study the impact of small smooth pertubations by employing the ansatz u(x,t) =
U(x) 4+ e¥(x,t) where ¢ < 1. Substituting this expansion into (4.1), when W = 0,
and truncating to linear order yields the equation (3.9) as in the input-free case. The
main difference is that bumps are defined by (4.5), incorporating the input term I(x).
Furthermore, applying separation of variables W(x,t) = W¥(x)e* and rearranging
terms yields the eigenvalue equation (3.10). However, when U (x) satisfies (4.5), such
bumps are no longer neutrally stable to perturbations that shift their position. It
is straightforward to show this in the case of a Heaviside firing rate function (2.4),
in which case eigenvalues associated with the Fourier modes ¥, () = ™’ are given
by the expression (3.20), so the eigenvalue A\; associated with shifts perturbations
W, (0) = e is given by the formula

A =-1+ W/o w(2asin(0/2)) cos(0)do, (4.7
and since U(r) is given by (4.6), then
2m
|U'(a)| = a/ w(2asin(0/2)) cos(0)dd — I'(a).
0

Thus, we can rewrite (4.7) as
I'(a)
a fo% w(2asin(6/2)) cos(8)dd — I'(a)

16
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FIG. 4.1. Numerical simulation of the stochastic neural field (4.1) on the plane R? with Heavi-
side firing rate (2.4) and Bessel function weight (2.2), subject to radially symmetric Gaussian input
(4-2). Thin lines represents the stochastic trajectory of the bump during the time between the pre-
vious and current snapshot. Dashed circle is a plot of the level set I(x) = k. (A-E) Snapshots
of a simulation of a bump wandering on the plane, due to noise with spatial correlation function
C(x) = cos(x), at time points t = 0,100,200, 300,400. Input causes the trajectory to stay in the
vicinity of the peak of the radially symmetric Gaussian (4.2) at the origin (z1,z2) = (0,0). (F)
Plot of the trajectory of the bump centroid for t € [0,400] demonstrates how its stochastic trajectory
behaves as 2D OU process. Parameters are e = 0.04, k = 0.2, Ag =1, 0 = 2, and w is (3.8) with
[c1,c2,c3,ca] =[5/3,-5/3,—1/2,1/2].

where the inequality holds when I(r) is a monotone decreasing function, as we have
assumed for the radially symmetric Gaussian (4.2). This indicates the bump will be
linearly stable to perturbations that alter its position, indicative of the mean-reverting
stochastic dynamics that emerge when weak noise is considered in (4.1). Eigenvalues
of all Fourier modes, representing azimuthal perturbations of the bump (4.6), can be
computed numerically from the formula (3.20).

4.2. Stochastic bump motion in the presence of weak inputs. Our anal-
ysis of the stochastic motion of bumps in the stationary input-driven system (4.1)
employs a similar approach to our analysis of the input-free (I(x) = 0) system (2.5).
However, the effective equations that emerge are no longer translationally invariant,
now depending on the spatial heterogeneity imposed by the input I(x). Our analysis
assumes that inputs are weak, having the same amplitude as the noise term [12], so
we write I(x) = £'/21(x). In this case, the O(1) terms are identical to the input-free
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FIG. 4.2. Numerical simulation of the stochastic neural field ({.1) on the plane R? with Heavi-
side firing rate (2.4) and Bessel function weight (2.2), subject to translationally symmetric Gaussian
wnput (4.3). Thin lines represents the stochastic trajectory of the bump during the time between the
previous and current snapshot. Dashed lines ar a plot of the level set I(x) = k. (A-E) Snapshots
of a simulation of a bump wandering on the plane, due to noise with spatial correlation function
C(x) = cos(x), at time points t = 0,100,200, 300,400. Input cause the trajectory to stay in the
vicinity of the peak of the translationally symmetric Gaussian (4.3) along the line x1 = 0. (F)
Plot of the trajectory of the bump centroid for t € [0,400] demonstrates how its stochastic trajectory
behaves as 2D OU process. Parameters are e = 0.04, k = 0.2, Ag =1, 0 = 2, and w is (3.8) with
[e1,c2,¢3,c4] = [5/3,-5/3,—1/2,1/2].

deterministic system (2.1) with stationary bump solution (3.1). We can then derive
a system of nonlinear stochastic differential equations for the effective motion of the
bump’s position A(t) = (A1(t), A2(t)), which we can then truncate to a multivariate
Ornstein-Uhlenbeck (OU) process assuming A(¢) remains small. This captures the
fact that bumps are systematically drawn back to the location of the peak(s) of the
external input as demonstrated in Fig. 4.1 and Fig. 4.2.

Employing the ansatz (3.22), assuming the bump’s profile has fluctuations £'/2®(x, t)
on fast timescales and stochastically varying position A(¢) on longer timescales, we
truncate to linear order in £'/2 and find

dd(x,t) = LO(x,t) + e V/2VU(X) - dA(t) + dW (x,t) + I(x + A(2)), (4.8)

where VU (x) = (U,, (x), U,,(x))T and £ is the non-self-adjoint linear operator (3.24)

with adjoint £* given by (3.25). As before, the nullspace of £* is spanned by the

two functions ¢1(x) = f/(U(x))Uy, (x) and pa(x) = f/(U(x))Us,(x). Thus, we can

enforce solvability of the O(¢/?) equation (4.8) to yield the pair of nonlinear stochastic
18



differential equations
dA;(t) = =G (A(t))dt — Y 2dW;(t), (4.9)
where the restorative dynamics of the input are described by the nonlinear function

v Jre U, ()1 (x + A)dx
G] (A) - fR2 f’(U(X))U:a (x)dx 9

and spatiotemporal noise provides the effective noise perturbations to the bump po-
sition through the white noise terms

o Jre S (UX)Us, ()W (x, ) dx
WJ (t) - I]RQ f/(U(X))Ufj (x)dx )

Note that (dW;(t)) = 0 and (dW(t)dW(s)) = 2D;6(t—s)dtds with D; given by (3.30).
As we demonstrated in our analysis of stimulus-driven bump existence and stability,
A = (0,0) is a stable fixed point of the noise-free system A;(t) = —e/2G;(A(t));
4 =1,2. Linearizing about this solution yields the multivariate OU process

je{1,2}, (4.10)

je{1,2}. (4.11)

dA;(t) + eYV2B;0;(t)dt = /2w (t), (4.12)
where
i e S U, ()L, (x)dx ,
i e W (77 17X e e e A

assuming [po f/(U(x))Us, (x)I,, (x)dx = 0, when j # k, which is the case when
I(x) is even symmetric along the x; and xo directions as (4.2) and (4.3) are. In
this case, we can use standard properties of an OU process to compute the mean
(A1) = A4 (0)e==""*#t and variance

81/2Dj

(A;(1)?) = 7 (1—e‘25”25ﬂ), (4.14)

so the variance (A (t)?) will approach a constant £'/2D;/j3; as t — oo and the mean
converges to the fixed point A = (0,0). Thus, we can describe the stochastic dynamics
of the position A(t) approximately using a multivariate OU process (4.12) or with
higher order corrections through the nonlinear SDE (4.9).

4.3. Explicit results for the Heaviside firing rate. We can explicitly calcu-
late the variances (A;(t)?) as described by the formula (4.14) in the case of a Heaviside
firing rate function (2.4), Bessel function weight kernel (2.2), and cosine noise corre-
lations (3.31). Thus, the derivative f'(U) is given by (3.18), spatial derivatives Uy,
(j = 1,2) are given by (3.16), and the diffusion coefficients D; (j = 1,2) are defined
by the formula (3.32). Again, the impact of spatiotemporal noise in bump dynam-
ics is primarily determined by interactions that occur at the bump boundary r = a.
Furthermore, in the case of a radially symmetric input such as the Gaussian (4.2), we
can compute the coefficients

S UG, (), (x)dx  anl'(a)  I'(a .
Bj = fR2 f’(U(x))Uﬁj (x)dx - anU'(a) - U’(a)’ j=A{12}. (4.15)
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Fic. 4.3. Variance of the bump position A(t) = (A1(t), A2(t)) evolving according to the stochas-
tic model (4.1) with Heaviside firing rate (2.4) and Bessel function weight (2.2). (A) Long-term vari-
ance {A1(t)?) saturates according to a multivariate Ornstein-Uhlenbeck process when input is given
by a radially symmetric Gaussian (4.2). Results from numerical simulations (dashed line) are well
matched to our theoretical result (4.14). An identical picture exists for (A2(t)?), the variance along
the xo direction. (B) Variance along the xo direction (Ao (t)?) climbs linearly and variance (A1 (t)?)
along the x1 direction saturates when input is given by a translationally symmetric Gaussian (4.3).
Parameters are k = 0.2, Ag =1, 0 =2, and w is (3.8) with [c1,c2,¢3,c4] = [5/3,—5/3,-1/2,1/2].
Numerical calculations of variance use 1000 realizations each.

Therefore, in the long time limit, the variances (A;(¢)?) will saturate to

1/27. a)?
Jim (8,0 = 52 = S (4.16)

We compare our explicit calculation of the variance to results from numerical calcu-
lations for the case of a radially symmetric Gaussian (4.2) in Fig. 4.3A.

In the case of the translationally symmetric Gaussian (4.3), we have that I, (x) =
0, 50 B2 = 0. As a result (Ay(t)?) = eDst, and the variance is only mean reverting
along the x; direction, as demonstrated by the numerical simulation in Fig. 4.2. The
coefficient describing the systematic dynamics along the x; direction is

2a A f027r exp [—a® cos® 0/0?] cos® 6df

/25 _
= 702 [U"(a)] ’

(4.17)

which can be computed using quadrature to evaluate the formula (4.14) for j = 1. We
compare these theoretical results with averages across numerical realizations in Fig.
4.3B. Thus, the variance along the zi-direction saturates, while the variance along
the zo-direction indefinitely climbs linearly.

4.4. Statistics of the nonlinear Langevin equation. More accurate approx-
imations of the variances (A?) can be obtained by performing an analysis of the full
nonlinear Langevin equation (4.9) for the stochastic motion of the input-driven bump.
In [12], it was recently shown this can be particularly useful when there are multi-
ple distinct fixed points of the noise free equations Aj = —12G,(A) (5 = 1,2),
as noise can eventually cause a phase-slip so a linearized approximation is no longer
valid. Here, we demonstrate that a derivation of nonlinear Langevin equations can
be extended to spatiotemporal patterns evolving in two-dimensions. Also, even if
the position A(t) = (A1(t), As(t)) does remain close to a single stable fixed point,
the stationary probability density Py(A) of (4.9) can be considerably different than
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Fic. 4.4. Nonlinear dynamics in the input driven neural field (4.1) on the plane R2 with
Heaviside firing rate (2.4) and Bessel function weight (2.2), subject to the periodic input I(x) =
0.3(cosx1 + cosz2). (A) Bump position (thin line) sampled from a single realization of the sys-
tem (4.1) for t € [0,4000], superimposed on a plot of the potential V(A). Ower long periods of
time, the stochastically-driven position of bumps tends to dwell primarily in the vicinity of min-
ima of the potential V(A) defined by (4.25). However, there are rare events whereby the bump
transitions to a neighboring potential well. Thick lines represent the paths of least action between
attractors at (2mm,2n7), m,n € Z. (B) Re-normalized stationary probability density Py(x) (so
that ||Po(X)||maz = 1, otherwise Po(x) would be infinitesimally small everywhere) has peaks at the
minima of the potential function V(A). Parameters are ¢ = 0.025, k = 0, and weight w is (3.8)
with [c1,c2,c¢3,¢c4] = [5/3,-5/3,-1/2,1/2].

that of the truncated OU process (4.12). Thus, we briefly present the computation of
this stationary probability density Py(A) by utilizing the associated Fokker-Planck
equation, saving a more extensive study for future work.

The stochastic dynamics is shaped by an underlying potential function V(A),
which is the solution to the pair of equations

av 1/2 dv 1/2

oY A — =l A 4.1

dA, € Gl( )7 dA, € GQ( )a ( 8)
so that the attractors of the noise free system are the minima of V/(A). While (4.18)
cannot always be solved explicitly, we will present an example below where they can,
for illustration. To analyze the system, we reformulate (4.9) as an equivalent Fokker-

Planck equation [27]

OP(AY) K D [ PPP(AL)
= :1{ Ty E G](A)P(A,t)}—i—aD]iaA? , (4.19)

J

where P(A,t) is the probability of finding the bump at position A = (Ay,As) at
time ¢. Assuming there is a single stable attractor defined by the potential V(A), in
the long time limit

via)

tlgélo P(A,t) = Py(A) = xexp [—ED:| , (4.20)

in the case of rotationally symmetric noise D1 = Dy = D, where x is a normalization
factor such that [, Po(A)dA = 1. The long time variance (||A[]?) = (A?) + (A3) is
thus given by the integral

<A§>+<A§>:/ (A2 + A2)Py(A)dA. (4.21)
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To demonstrate our analysis on a specific example, we focus on an input which al-
lows explicit computation of the steady state distribution. Thus, we take the external
input I(x) = Ag(cosz; + coszy) and assume we then wish to compute the statis-
tics of the stationary probability density Py(A). Furthermore, we take the Heaviside
firing rate function (2.4), then the integrals (4.10) can be simplified by making the
substitutions 1 = rcosf and zo = rsinf and integrating out the radial coordinate
r, SO

_U'(a) [7Tcos(O)I(a+ A)dO 1 27 coni\i

Ga) = U'a)? [ cos20d) U’(a)w/o O)l(a+A)ds - (4.22)
_U'(a) [{Tsin(0)[(a+ A)dO 1 ST

o) = U'a)? [T sin?0d0 U'(G)W/o bl(at A)db,  (423)

where a = (a, ). Selecting the doubly periodic function for our external input (x) =
Ap(cosxy + cosxsy), we generate terms similar to those that arose in our explicit
calculation of the diffusion coefficient D; (3.32). Subsequently, we find we can evaluate
these explicitly, to arrive at the compact expression

. 2A()J1 ((L)

Gj(A) = 0(a)

sin(A;), {j =12} (4.24)
Thus, the positions A; and Ay evolve independently in nonlinear system (4.9), in
the case of this specific input function. Thus, it is straightforward to evaluate the
potential function as the solution to (4.18), finding

_251/2A0J1(a)

V&) = =15

[cos(A1) + cos(Aq)], (4.25)
which can then be utilized to compute the statistics of the stationary probability
density (4.20). We demonstrate that stochastic trajectories of the bump tend to dwell
mostly in the minima of the potential function defined by (4.25) in Fig. 4.4A. Such
durations are interrupted by abrupt transitions of the bump between neighboring wells
as in the one-dimensional case [36]. An example of the rescaled stationary probability
density is given in Fig. 4.4B. We save a more thorough analysis of these results for
subsequent work.

5. Discussion. We have analyzed the impact of additive noise on the stochas-
tic motion of bumps in planar neural field equations. In networks with no spatial
heterogeneity, noise causes bumps to wander according to two-dimensional Brownian
motion. The diffusion coefficient associated with this motion can be approximated us-
ing an asymptotic expansion that treats the impact of noise perturbatively. Assuming
the bump retains its profile, to first order, we can derive an effective diffusion equation
for the bump’s position as a function of time. Notably, the dynamics of the bumps
can be separated into diffusion along the canonical directions (x1,3) in R2. In the
presence of spatially heterogeneous external inputs, the stochastic bumps no longer
obey dynamics well described by pure diffusion. Rather, bumps are attracted to the
local maxima of the input functions, so their motion can be approximated by multi-
variate Ornstein-Uhlenbeck processes. In particular, we find that the geometry of the
external inputs define the manifold to which bumps are attracted. Radially symmetric
inputs attract bumps to a single point and translationally symmetric peaked inputs
attract bumps to a one-dimensional line through R2.

22



Our primary motivation for exploring these models comes from extensive experi-
mental literature on persistent activity representing spatial working memory [26,42].
Particularly pertinent to this work are place cell and grid cell networks, which track a
mammal’s idiothetic position in two-dimensional space as it navigates through its en-
vironment [43]. Networks in cortex and hippocampus are capable of encoding analog
spatial variables for time periods lasting seconds up to tens of minutes on length scales
of hundreds of meters [29]. The specific single neuron and network architectural fea-
tures that engender this impressive accuracy are the subject of ongoing research [15].
We will extend the results presented here in future work by addressing how spatially
heterogeneous architecture [36,37] and the known multilayered structure of grid cell
networks [14,29] may contribute to the observed precision of spatial navigation net-
works of the brain. Thus, we will extend the methods we have developed for analyzing
coupling between multiple layers of one-dimensional stochastic neural fields to two-
dimensions [12,33]. Furthermore, it is important to note that synaptic connections
projecting from long-range axons can be subject to axonal transmission delays, as
in the planar neural field study of Hutt and Rougier [31]. In future work, we plan
to explore the impact of delays within and between layers of planar neural fields on
the stochastic motion of bumps, as we did in our recent work on one-dimensional
systems [34].

Lastly, we aim to extend this work by further analyzing the impact of external
inputs on the stochastic dynamics of bumps in planar neural fields. As we found here,
the local maxima of external inputs determine the most likely spatial regions to find
bumps that are perturbed by spatiotemporal noise. However, this general picture
may change if we consider external inputs that vary in time. For instance, stationary
external inputs that turn on and off periodically will likely not pin bumps in place as
well. In a similar way, we could explore how well bumps track the positions inputs
that move smoothly in space, dependent on their speed. It is possible that noise
may actually improve bumps’ tracking of external input positions, in some parameter
regimes. We may be able to exploit relative slow or fast timescales of external inputs
to extend our presented asymptotic analysis, which assumes inputs are stationary.
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