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Abstract. We construct spherically symmetric, static solutions to the Einstein-Vlasov
system with non-vanishing cosmological constant Λ. The results are divided as follows.
For small Λ > 0 we show existence of globally regular solutions which coincide with
the Schwarzschild-deSitter solution in the exterior of the matter sources. For Λ < 0 we
show via an energy estimate the existence of globally regular solutions which coincide
with the Schwarzschild-Anti-deSitter solution in the exterior vacuum region. We also
construct solutions with a Schwarzschild singularity at the center regardless of the sign
of Λ. For all solutions considered, the energy density and the pressure components have
bounded support. Finally, we point out a straightforward method to obtain a large
class of globally non-vacuum spacetimes with topologies R× S3 and R× S2 × R which
arise from our solutions using the periodicity of the Schwarzschild-deSitter solution. A
subclass of these solutions contains black holes of different masses.

1. Introduction

Schwarzschild’s construction of a static explicit solution in 1915 was the first example of
a solution to Einstein’s field equations in general relativity [27]. It has been found later
that the class of static, spherically symmetric, asymptotically flat solutions to Einstein’s
equations in vacuum consists only of that element [13] making it necessary to consider
the non-vacuum field equations to construct further classes of spherically symmetric static
spacetimes.

1.1. Static solutions with Vlasov matter. In this work we consider matter described
as a collisionless gas. In astrophysics this model is used to study galaxies and globular
clusters where the stars, or the galaxies, are the particles of the gas and where collisions
between these are sufficiently rare to be neglected. The particles interact by the gravi-
tational field which the particle ensemble creates collectively. Within the framework of
general relativity the particle system is described by the Einstein-Vlasov system. The
mathematical investigation of this system was initiated by Rein and Rendall in 1992 [25]
in the context of the Cauchy problem and shortly thereafter the same authors provided
the first study of static, spherically symmetric solutions to this system [24]. Since then,
the Einstein-Vlasov system has been successfully studied in several contexts and many
global results have been obtained during the last two decades. We refer to [2] for a re-
view of these results but let us in particular mention the recent monumental work on this
system concerning the stability of the universe [26].
The purpose of the present work is to extend the class of static solutions to the Einstein-
Vlasov system to the case with a non-vanishing cosmological constant Λ. Several results
on static and stationary solutions to this system have been obtained in the case when
Λ = 0. The first result of this kind was provided in [24], where the authors construct
spherically symmetric isotropic static solutions with compactly supported energy den-
sity and pressure. The solutions are asymptotically flat and thus serve as models for
isolated, self-gravitating systems. Several generalizations of this result have since then
been obtained, in particular solutions with non-isotropic pressure, and solutions with a
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Schwarzschild singularity at the center, have been established, cf. [23, 21]. An approac
by variational methods was developed by Wolansky [28]. The most difficult part in these
proofs is to show that the matter has compact support. A neat and quite general method
to treat this problem has recently been obtained by Ramming and Rein in [20]. How-
ever, this method does not straightforwardly apply to the situation we consider in this
work. The cosmological constant changes the structure of the equations and this implies
that inequality (1.23) in [20], on which this method is based, does not hold when Λ 6= 0.
Hence, we rely on a different method in this work. The results discussed above all concern
the spherically symmetric case. Let us point out that results beyond spherical symmetry
have been established. The existence of stationary axially symmetric solutions to the
Einstein-Vlasov system has recently been shown, cf. [9] and [10] for the non-rotating and
the rotating case respectively. In this context we also mention a result on static solutions
for elastic matter which has been obtained without any symmetry assumption [1].

1.2. Static solutions with non-vanishing cosmological constant. A specific class
of solutions has so far not been discussed which concerns the Einstein equations with a
non-vanishing cosmological constant Λ. The model solutions for the vacuum equations are
the Schwarzschild-deSitter and Schwarzschild-Anti-deSitter (Schwarzschild-AdS) solution
for Λ > 0 and Λ < 0, respectively. Einstein’s equations with non-vanishing Λ are of
significant physical interest, where the case Λ > 0 applies to a universe with accelerated
expansion [26], while the case Λ < 0 is relevant in the context of AdS-CFT correspondence
[18]. Concerning the Einstein-Vlasov system no existence results for the static Einstein
equations with non-vanishing cosmological constant are known. The aim of the present
paper is to prove existence of spherically symmetric static solutions to the Einstein-Vlasov
system with small positive or arbitrary negative cosmological constant. The solutions we
construct are in general anisotropic. The results provided in this work are as follows.

1.2.1. Globally regular solutions for 0 < Λ � 1. We construct globally regular static
solutions for small Λ > 0. The fundamental difference to the case of vanishing cosmological
constant is that for large radii the metric tends towards a cosmological horizon and
it is thus necessary to show that the support of the matter quantities vanishes before
the cosmological horizon is reached. We show that for small Λ > 0 the solutions we
construct are close to the solutions corresponding to the Λ = 0 case for which the matter
quantities have compact support, and in addition, the latter solutions obey a Buchdahl
type inequality. These facts imply that the support of the matter quantities can be
controlled also in the case when Λ > 0. It is then possible to continue the solution from
the vacuum region by a Schwarzschild-deSitter solution. This method yields a large class
of globally regular solutions which coincide with a Schwarzschild-deSitter solution outside
a compact set. The result is given in Theorem 3.7.

1.2.2. Globally regular solutions for Λ < 0. The case of negative cosmological constant is
a priori simpler since the cosmological term has a good sign which yields a monotonically
decreasing behavior of the lapse function. An energy argument following the general idea
of [23] is used to establish global in r existence yielding globally regular solutions for
general Λ < 0. The result is given in Theorem 4.2.

1.2.3. Solutions with a Schwarzschild singularity for 0 < Λ � 1. To construct solutions
with singularities in the center, we start with the vacuum equations which can be solved
explicitly by the Schwarzschild-deSitter solution. This solution is considered until a radius
which allows to continue the vacuum solution by one which at the same point satisfies
the ansatz for the distribution function and eventually merges into a non-vacuum region.
It is shown that the support of the matter quantities is compact and outside the matter
region the solution can again be extended by a vacuum solution with mass parameter
corresponding to the interior mass of black hole and matter. As in the non-singular case
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these constructions only work out for sufficiently small Λ > 0. The result is given in
Theorem 5.5.

1.2.4. Solutions with a Schwarzschild singularity for Λ < 0. This point is similar to the
case Λ > 0 with Schwarzschild singularities. In particular a smallness condition for |Λ| is
needed as well. The result is given in Theorem 5.9.

1.2.5. Solutions with topologies R × S3 and R × S2 × R. A significant generalization of
the results with Λ > 0 is presented in the final section. The periodic structure of the
Schwarzschild-deSitter space [17] allows us to consider solutions with regular massive
center, and solutions with central black holes, and glue them to a periodic Schwarzschild-
deSitter solution with a black hole region followed by another matter region - forming
a static space-time with two non-vacuum ends and a black hole (or several) in between.
The result is given in Theorem 6.1.

1.3. Outline of the paper. This paper is organized as follows. In Section 2 we introduce
the notation and give a short review on the static Einstein-Vlasov system in spherical
symmetry. We discuss the anisotropic ansatz for the distribution function, variations of
which are used in this work. A Buchdahl type inequality, which applies to solutions of the
Einstein-Vlasov system, is then reviewed shortly as it is used later in the existence proof
for Λ > 0. The Einstein-Vlasov system in spherical symmetry with a specific ansatz for
the distribution function reduces to an integro-differential equation given in (2.24). This
equation lies at the heart of the analysis in the paper. In Section 3 we prove existence
of globally regular solutions for small Λ > 0. The proof is divided into several steps
beginning with local in r existence in 3.1, a continuation criterion in 3.2, existence for
sufficiently large radii to reach a vacuum region in 3.3 and finally the proof of the existence
Theorem in 3.4. In Section 4 the existence of globally regular solutions for arbitrary Λ < 0
is proven along with a result (cf. Theorem 4.2) which states existence for such solutions
outside a ball, which eventually is used to prove existence of solutions with Schwarzschild
singularities in the center. Section 5 begins with a generalization of the Buchdahl type
inequality, mentioned above, for solutions with Schwarzschild singularities. This result
is useful for the construction of solutions of this kind when Λ > 0. These solutions are
obtained in Theorem 5.5. Analogous solutions for the case of negative Λ are given in
Theorem 5.9. Finally, Section 6 discusses the globally non-trivial generalizations of the
constructed solutions for Λ > 0.
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2. Preliminaries

2.1. Setup and notations. We consider the Einstein-Vlasov system with cosmological
constant Λ ∈ R. For background on this system we refer to [2]. For the spherically
symmetric, static Lorentzian metric g we use the standard ansatz

(2.1) ds2 = −e2µ(r)dt2 + e2λ(r)dr2 + r2dϑ2 + r2 sin2(ϑ)dϕ2.
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Assuming in addition the matter distribution function f to be spherically symmetric and
static one obtains the reduced system of equations

va√
1 + |v|2

∂f

∂xa
−
√

1 + |v|2µ′x
a

r

∂f

∂va
= 0,(2.2)

e−2λ(2rλ′ − 1) + 1− r2Λ = κr2%,(2.3)

e−2λ(2rµ′ + 1)− 1 + r2Λ = κr2p,(2.4)

where κ = 8π, |v| =
√
δijvivj , vr =

δijv
ixj

r and the matter quantities read

% =

∫
R3

f(x, v)
√

1 + |v|2 dv1dv2dv3,(2.5)

p =

∫
R3

f(x, v)√
1 + |v|2

v2
r dv1dv2dv3.(2.6)

There is an additional Einstein equation

(2.7) e−2λ

(
µ′′
(
µ+

1

r

)(
µ′ − λ′

))
= κpT ,

where

(2.8) pT =
1

2

∫
R3

∣∣∣∣x× vr
∣∣∣∣2 f(x, v)

dv√
1 + |v|2

.

The quantity % can be understood as energy density, p as radial pressure and pT as tan-
gential pressure. To ensure a regular center the following boundary condition is imposed

(2.9) λ(0) = 0.

This condition will be used in the first part of this work but when we consider solutions
with a Schwarzschild singularity at the center it will be dropped. A detailed derivation of
the system (2.2)-(2.8) in the Λ = 0 case can be found in [25]. It will be seen below that
a solution of the reduced system (2.2)-(2.6) also solves the full system. Considering the
characteristic curves of the Vlasov equation (2.2) one can simplify the system of equations.
Along these characteristic curves the quantities E and L, given by

(2.10) E = eµ(r)
√

1 + |v|2 =: eµ(r)ε and L = |x× v|2,
are conserved (cf. [24]). Therefore any ansatz for the matter distribution f of the form

(2.11) f(x, v) = Φ(E,L)

solves the Vlasov equation (2.2), and this equation drops out from the system of equations.

2.2. Relevant results. In the following we discuss the known results for the Einstein-
Vlasov system with vanishing cosmological constant, Λ = 0, which are relevant for the
work presented in this paper. The existence of a unique solution µ(r), λ(r) to given initial
values µ(0) = µ0 and λ(0) = 0 has been proved using the ansatz

(2.12) f(x, v) = Φ(E)[L− L0]`+,

where E > 0, L > 0, L0 ≥ 0, ` > −1
2 , Φ ∈ L∞((0,∞)) for the matter distribution

f , cf. [23]. Furthermore, it can be shown that the support of the matter quantities is
contained in an interval [0, R0], 0 < R0 <∞, if one takes a so called polytropic ansatz for
f . This ansatz has the form

(2.13) f(x, v) = φ

(
1− E

E0

)
L`,

where φ : R→ [0,∞) is measurable, φ(η) = 0 for η < 0, and φ > 0 a.e. on some interval
[0, η1] with η1 > 0 and E0 is some prescribed cut-off energy, cf. [20]. Moreover, it is
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required that there exists γ > −1 such that for every compact set K ⊂ R there exists a
constant C > 0 such that

(2.14) φ(η) ≤ Cηγ , η ∈ K.
In [22] this result is generalized to anisotropic matter distributions of the form

(2.15) f(x, v) = c0[E0 − E]k+[L− L0]`+,

where k ≥ 0, ` > −1/2 fulfill the inequality k < 3` + 7/2 and c0, E0 > 0, L0 ≥ 0. It is
shown in [22] that for sufficiently small L0 the support of f is contained in an interval
[Ri, R0] where 0 ≤ Ri < R0 <∞ and Ri > 0 provided L0 > 0.
By direct calculation one shows that the matter quantities fulfill the generalized Tolman-
Oppenheimer-Volkov equation (TOV equation)

(2.16) p′(r) = −µ′(r)(p(r) + %(r))− 2

r
(p(r)− pT (r)).

Another result relevant for the proof presented here is a generalized Buchdahl inequality
[4], which is the content of the following lemma.

Lemma 2.1 (Theorem 1 in [4]). Let λ, µ ∈ C1([0,∞)) and let %, p, pT ∈ C0([0,∞)) be
functions that satisfy the system of equations (2.3)-(2.7), the condition (2.9) and such
that p+ 2pT ≤ %. Then

(2.17) sup
r>0

2m(r)

r
≤ 8

9
,

where

(2.18) m(r) = 4π

∫ r

0
s2%(s)ds.

Remark 2.2. The inequality (2.17) holds for a more general class of functions, cf. [4].
Moreover, the inequality is sharp, and the solutions which saturate the inequality are in-
finitely thin shell solutions, cf. [4]. In [3] it is shown that there exist regular, arbitrarily
thin, shell solutions to the Einstein-Vlasov system such that the quantity 2m/r can be
arbitrarily close to 8/9. It should also be mentioned that Buchdahl type inequalities have
been obtained in the case of non-vanishing cosmological constant, cf. [6, 7]. These results
assume the existence of static solutions to the Einstein-matter equations with a cosmolog-
ical constant.

To prove existence of solutions of the static Einstein-Vlasov system with non-vanishing
Λ we make use of the results discussed above. To simplify calculations we define y :=
ln(E0) − µ as in [20] so that eµ = E0/e

y. For the distribution function f we choose the
ansatz1

(2.19)

f(x, v) = Φ(E,L) = c0φ

(
1− E

E0

)
[L− L0]`+

= c0φ
(
1− εe−y

)
[L− L0]`+,

φ(η) = [η]k+,

where k ≥ 0, ` > −1/2 fulfill the inequality k < 3`+ 7/2 and c0, E0 > 0, L0 ≥ 0. For the
construction of globally regular solutions L0 has to be sufficiently small to ensure finite
support of the matter quantities [22]. When considering solutions with a black hole at the
center, there are positive lower bounds on L0. The expressions for the matter quantities
% and p take the form

(2.20) %(r) = Gφ(r, y(r)), p(r) = Hφ(r, y(r)),

1To be precise any φ that is of the kind of the φ in (2.13) would meet the assumptions of the following
lemmas and theorems.
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where

Gφ(r, y) = c`c0r
2`

∫ ∞
√

1+L0/r2

φ
(
1− εe−y

)
ε2

(
ε2 −

(
1 +

L0

r2

))`+ 1
2

dε,(2.21)

Hφ(r, y) =
c`c0

2`+ 3
r2`

∫ ∞
√

1+L0/r2

φ
(
1− εe−y

)(
ε2 −

(
1 +

L0

r2

))`+ 3
2

dε,(2.22)

given in [23]. The constant c` is given by

(2.23) c` = 2π

∫ 1

0

s`√
1− s

ds.

Lemma 2.3. The functions Gφ(r, y) and Hφ(r, y) defined in (2.21) and (2.22), respec-
tively, have the following properties.

(i) Gφ(r, y) and Hφ(r, y) are continuously differentiable in r and y.
(ii) The functions Gφ(r, y) and Hφ(r, y) and the partial derivatives ∂yGφ(r, y) and

∂yHφ(r, y) are increasing both in r and y.

(iii) There is vacuum, i.e. f(r, ·) = p(r) = %(r) = 0 if e−y(r)
√

1 + L0/r2 ≥ 1, in
particular if y(r) ≤ 0.

Proof. By performing a change of variables in the integrals in (2.21) and (2.22) the differ-
entiability follows, cf. [23], Lemma 3.1. The monotonicity can be seen directly from the
structure of Gφ and Hφ. The last statement is obvious since φ(η) = 0 if η ≤ 0. �

2.3. Main equation. From the Einstein equations (2.3) and (2.4) one obtains the dif-
ferential equation for y

(2.24)

y′(r) = − κ/2

1− Λr2

3 −
κ
r

∫ r
0 s

2Gφ(s, y(s))ds

×
(
rHφ(r, y(r))− 2rΛ

3κ
+

1

r2

∫ r

0
s2Gφ(s, y(s))ds

)
.

A solution to (2.24) yields a solution to the system (2.2-2.6). It should however be pointed
out that in order to obtain an asymptotically flat solution one needs to redefine E0 and µ
as follows. Given an initial value y0, a solution y of equation (2.24) is obtained having a
limit y(∞). By letting E0 := 1/y(∞) and eµ := E0y(r) we get a solution with the proper
boundary condition at infinity. Furthermore it should be mentioned that a solution to
the system (2.2-2.6) provides a solution to all the Einstein equations. This is shown in
Theorem 2.1 in [25] in the case when Λ = 0. The proof is analogous in the case with
non-vanishing Λ. The equation (2.24) is analyzed and solved in the remainder of this
work.

3. Static, anisotropic globally regular solutions for Λ > 0

In this section we prove existence of globally regular static solutions with small Λ > 0.

3.1. Local existence. The following local existence lemma corresponds to the first part
of the proof of Theorem 2.2 in [24] for the case Λ = 0.

Lemma 3.1. Let Φ : R2 → [0,∞) be of the form (2.19) and let Gφ, Hφ be defined by
equations (2.21) and (2.22), respectively. Then for every y0 ∈ R and every Λ > 0 there
is a δ > 0 such that there exists a unique solution yΛ ∈ C2([0, δ]) of equation (2.24) with
initial value yΛ(0) = y0.
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Proof. We consider the equation (2.24) and integrate it using the initial condition yΛ(0) =
y0. The following fixed point problem is obtained,

(3.1) yΛ(r) = (TyΛ)(r), r ≥ 0

where the operator T is given by

(3.2) (Tu)(r) := y0 −
∫ r

0

κ/2

1− s2Λ
3 −

κ
s

∫ s
0 σ

2Gφ(σ, u(σ))dσ

×
(
sHφ(s, u(s))− 2sΛ

3κ
+

1

s2

∫ s

0
σ2Gφ(σ, u(σ))dσ

)
ds.

This operator is considered on the set

(3.3) M :=
{
u : [0, δ]→ R | u(0) = y0, y0 − 1 ≤ u(r) ≤ y0 + 1,

r2Λ

3
+
κ

r

∫ r

0
s2Gφ(s, u(s))ds ≤ c < 1, r ∈ [0, δ]

}
.

We note that M is non-empty if δ > 0 is chosen sufficiently small. As carried out in detail
in the appendix, Section A, it is shown that T acts as a contraction on M . This implies
(by the Banach fixed-point theorem) that there exists yΛ ∈ M such that TyΛ = yΛ.
Differentiability of yΛ follows from the structure of T . The differentiation with respect to
r yields that yΛ solves equation (2.24) on the interval [0, δ]. Away from the singularity
r = 0, standard existence and uniqueness results are applied to extend yΛ to a maximal
solution on an interval [0, Rc). Obviously, the boundary condition at r = 0 is satisfied.
The regularity of the functions Gφ and Hφ implies that yΛ ∈ C2((0, Rc)), (cf. [23]) and it
can be shown that the second derivative continuously extends to r = 0 and y′Λ(0) = 0. �

3.2. Continuation criterion. The solution yΛ exists at least as long as the denominator
of the right hand side of equation (2.24) is strictly larger than zero. The following lemma
formulates this assertion.

Lemma 3.2. Let y0 ∈ R and let Rc > 0 be the largest radius such that the unique local
C2-solution yΛ of equation (2.24) with yΛ(0) = y0 exists on the interval [0, Rc). Then
there exists RD ≤ Rc such that

(3.4) lim inf
r→RD

(
1− r2Λ

3
− κ

r

∫ r

0
s2Gφ(s, yΛ(s))ds

)
= 0.

Remark 3.3. Lemma 3.2 implies that the denominator on the right hand side of equation
(2.24) becomes arbitrarily small on [0, Rc), i.e. the numerator has no singular behavior
that would make the solution collapse as long as the denominator is larger than zero.

Remark 3.4. We can a priori not exclude the case Rc = ∞ which would however not
occur due to the Λ term.

Proof. Assume

(3.5) 1− r2Λ

3
− κ

r

∫ r

0
s2Gφ(s, yΛ(s))ds > 0

for all r ∈ [0, Rc). Otherwise RD < Rc (with RD characterized as above) occurs due to
the continuity of yΛ and Gφ and the lemma follows. Assume now that the assertion of
the lemma does not hold, i.e. there is a constant a > 0 such that

(3.6) 1− r2Λ

3
− κ

r

∫ r

0
s2Gφ(s, yΛ(s))ds ≥ a
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for all r ∈ [0, Rc). First we show that this implies the existence of a C > 0 such that for
all r ∈ [0, Rc) we have |y′Λ(r)| ≤ C. Therefore we consider

(3.7) |y′Λ(r)| ≤ 4π

a

(
rHφ(r, yΛ(r)) +

2rΛ

3κ
+

1

r2

∫ r

0
s2Gφ(s, yΛ(s))ds

)
.

Here it is used that Hφ and Gφ are positive. It is obvious that the second term, 2rΛ
3κ , is

bounded on the interval [0, Rc). We show that the right hand side of (3.7) is bounded on
this interval. Assume the opposite,

(3.8) lim sup
r→Rc

Hφ(r, yΛ(r)) =∞ or lim sup
r→Rc

∫ r

0
s2Gφ(s, yΛ(s))ds =∞.

The second possibility implies lim supr→Rc Gφ(r, yΛ(r)) = ∞. On the interval [0, Rc) we
have the upper bounds Hφ(r, yΛ(r)) ≤ Hφ(Rc, yΛ(r)) and Gφ(r, yΛ(r)) ≤ Gφ(Rc, yΛ(r)),
cf. Lemma 2.3, (ii). And since Hφ(r, y) and Gφ(r, y) are increasing functions in y
(cf. Lemma 2.3) this in turn implies

(3.9) lim sup
r→Rc

yΛ(r) =∞.

It follows that for all ε > 0 sufficiently small there exists r ∈ (Rc − ε,Rc) such that
y′Λ(r) > 0 which on the other hand implies

(3.10) rHφ(r, yΛ(r)) +
1

r2

∫ r

0
s2Gφ(s, yΛ(s))ds <

2rΛ

3κ
,

by equation (2.24) for y′Λ. This contradicts the assumption that either Hφ(r, yΛ(r)) or
the integral

∫ r
0 s

2Gφ(s, yΛ(s))ds diverge as the right hand side of (3.10) is bounded. Thus
|y′Λ(r)| is bounded on [0, Rc).
In the remainder of this proof it is shown that the solution can be continued beyond Rc
which yields the desired contradiction. To achieve this, similar methods as in the proof
of Lemma 3.1 will be used. For δ, ε > 0, δ > ε define yε = yΛ(Rc − ε), the interval Iε
containing Rc by Iε = [Rc − ε,Rc − ε+ δ], and

(3.11) uy(r) :=
{
yΛ(r); r ∈ [0, Rc − ε]
u(r); r > Rc − ε

.

Consider the operator

(3.12)

(Tεu)(r) = yε +

∫ r

Rc−ε

κ/2

1− s2Λ
3 −

κ
s

∫ s
0 σ

2Gφ(σ, uy(σ))dσ

×
(
sHφ(s, u(s))− 2sΛ

3κ
+

1

s2

∫ s

0
σ2Gφ(σ, uy(σ))dσ

)
ds

acting on the set

(3.13)

Mε =
{
u : Iε → R | u(Rc − ε) = yε, yε − 1 ≤ u(r) ≤ yε + 1,

r2Λ

3
+
κ

r

∫ r

0
s2Gφ(s, uy(s))ds ≤ c < 1, r ∈ Iε

}
.

Using (3.6) and |y′Λ(r)| < C on [0, Rc) for a C > 0 one can prove that Tε acts as a
contraction on Mε. In virtue of Banach’s fixed point theorem the operator Tε has a fixed
point yε ∈ Mε such that (yε)y defined by (3.11) solves equation (2.24) on the interval

(0, Rc − ε+ δ). But this contradicts the definition of Rc and the lemma follows. �
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3.3. Existence beyond the non-vacuum region.

Lemma 3.5. Let Φ : R2 → [0,∞) be of the form (2.19) and let y be the unique global
C1-solution of equation (2.24) in the case Λ = 0 where y(0) = y0 > 0, cf. [23]. As proved
in [23], f has bounded spatial support [0, R0) where y(R0) = 0 defines R0 uniquely. Let yΛ

be the unique C2-solution of equation (2.24) with Λ > 0 and yΛ(0) = y(0) that according
to Lemma 3.1 exists at least on an interval [0, δ] for a certain δ > 0 and let fΛ be the
distribution function corresponding to yΛ.
Then yΛ exists at least on [0, R0 + ∆R] and the spatial support of fΛ is bounded by some
R0,Λ < R0 + ∆R if Λ and ∆R > 0 are chosen such that

(3.14) 0 < Λ < min

{
|y(R0 + ∆R)|
Cy(R0 + ∆R)

,
1
18

Cv(R0 + ∆R)

}
holds. The constants Cy(r) defined in equation (3.24) and Cv(r) defined in equation (3.22)
are determined by the background solution y.

Remark 3.6. Note that the upper bound for Λ in (3.14) is strictly larger than zero since
|y(R0 +∆R)| > 0. This holds because the globally existing background solution y is strictly
monotone and we have y(R0) = 0 by definition of R0.

Proof. We define

m(r) = 4π

∫ r

0
s2%(s)ds, mΛ(r) = 4π

∫ r

0
s2%Λ(s)ds,(3.15)

v(r) = 1− 2m(r)

r
, vΛ(r) = 1− r2Λ

3
− 2mΛ(r)

r
.(3.16)

Consider the continuous function vΛ. Note that vΛ(0) = 1. We define

(3.17) r∗ := inf{r ∈ [0, Rc) | vΛ(r) = 1/18},
i.e., r∗ is the smallest radius where vΛ(r) = 1

18 . Lemma 3.2 assures that r∗ < Rc, i.e., r∗

is well defined. Note that vΛ(r) is the quantity in Lemma 3.2. In addition, we define

(3.18) r̃ := sup{r ∈ [0, Rc] | |yΛ(r)− y(r)| ≤ |y(R0 + ∆R)|}.
The right hand side of this inequality is given by the background solution y, which exists
globally. Note that |y(R0 +∆R)| > 0 since y is strictly monotone, and y(0) = yΛ(0) = y0,
so 0 < r̃ by continuity of y and yΛ. Let

(3.19) r̃∗ := min{r∗, r̃}.
Choosing Λ s.t. (3.14) holds, we will show that r̃∗ > R0 + ∆R. We assume the opposite,
r̃∗ ≤ R0 + ∆R, and consider the sum |%Λ(r)− %(r)|+ |pΛ(r)− p(r)| on the interval [0, r̃∗].
By the mean value theorem we have

(3.20) |%Λ(r)− %(r)|+ |pΛ(r)− p(r)| =
(∣∣∣∂yGφ(r, y)

∣∣
u1

∣∣∣+
∣∣∣∂yHφ(r, y)

∣∣
u2

∣∣∣) |yΛ(r)− y(r)|

where u1, u2 ∈ [y(r), yΛ(r)] are chosen appropriately. From the estimate (B.2) in Appen-
dix B we have that for r ≤ r̃∗

(3.21) |%Λ(r)− %(r)|+ |pΛ(r)− p(r)| ≤ ΛCgh(r̃∗),

where Cgh is defined in (B.2). Note that Cgh(r) is increasing in r. Still on [0, r̃∗] we
compute

(3.22)

|v(r)− vΛ(r)| ≤ r2Λ

3
+

2

r
|mΛ(r)−m(r)| = r2Λ

3
+

8π

r

∫ r

0
s2|%Λ(s)− %(s)|ds

≤
(

(r̃∗)2

3
+

8π

3
(r̃∗)2Cgh(r̃∗)

)
Λ =: Cv(r̃

∗)Λ
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Since we have v(r) ≥ 1
9 (Buchdahl inequality, cf. Lemma 2.1) and Λ < 1/18

Cv(R0+∆R) by

choice of Λ we can conclude

(3.23) vΛ(r) ≥ v(r)− ΛCv(r̃
∗) >

1

9
− 1/18

Cv(R0 + ∆R)
Cv(r̃

∗) ≥ 1

18

on [0, r̃∗] since Cv(r̃
∗) < Cv(R0 + ∆R) because Cv(r) is increasing and r̃∗ ≤ R0 + ∆R by

assumption.
We also consider the distance between y and yΛ on [0, r̃∗]. Following the procedure
depicted in Section B of the appendix one obtains

(3.24)

|yΛ(r)− y(r)| ≤ Λ

(
3r2 + 29πr4

(
Hφ(r, y0) +

1

3
Gφ(r, y0)

))
+ 72π

(
r + 24πr2

(
Hφ(r, y0) +

1

3
Gφ(r, y0)

))∫ r

0
Cgh(s)Λds

=: Cy(r)Λ ≤ Cy(r̃∗)Λ.

Since Cy(r̃
∗) ≤ Cy(R0 + ∆R) and Λ < |y(R0+∆R)|

Cy(R0+∆R) on [0, r̃∗] by assumption, the relation

(3.25) |yΛ(r)− y(r)| < |y(R0 + ∆R)|
already holds. Equations (3.23) and (3.25) state that vΛ(r̃∗) > 1

18 and |yΛ(r̃∗)− y(r̃∗)| <
|y(R0 +∆R)|, respectively on the interval [0, r̃∗], which is a contradiction to the definition
of r̃∗. Thus we have r̃∗ > R0 + ∆R as desired.
We have shown that yΛ exists at least on [0, R0 +∆R] as the continuation criterion applies
and from equation (3.25) we already know that yΛ(R0 + ∆R) < 0. Since yΛ is continuous
it has at least one zero at in the interval (R0, R0 + ∆R). In particular there exists an
interval (R0Λ, R0 + ∆R) where yΛ is strictly smaller than zero. R0Λ is the largest zero of
yΛ in (R0, R0 + ∆R). So the spatial support of fΛ is contained in the interval [0, R0,Λ)
and this implies the assertion. �

3.4. Global regular solutions for Λ > 0. In the last two sections we have seen that
for suitably chosen Λ there exists a unique solution yΛ to equation (2.24) on the interval
[0, R0 + ∆R] for some ∆R > 0. This solution uniquely induces a solution µΛ, λΛ of the
equations (2.3), (2.4) on [0, R0+∆R] whose distribution function fΛ is of bounded support
in space. By gluing a Schwarzschild-deSitter metric to this solution one can construct a
global static solution to the Einstein-Vlasov system.

Theorem 3.7. Let Φ : R2 → [0,∞) be of the form (2.19). For every initial value
µ0 < 0 there exists a constant C = C(µ0, φ) > 0 such that for every 0 < Λ < C there
exists a unique global solution µΛ, λΛ ∈ C2([0,∞)), fΛ ∈ C0([0,∞) × R3) of the static,
spherically symmetric Einstein-Vlasov system (2.2)-(2.6) with µΛ(0) = µ0, and λΛ(0) = 0
such that the support of the distribution function is bounded. This solution coincides with
the Schwarzschild-deSitter metric in the vacuum region.

Proof. According to Lemma 3.1 there exists a C2-solution yΛ of equation (2.24) on a small
interval [0, δ]. In the proof of Lemma 3.5 we saw that this solution can be extended at
least until r = R0 + ∆R for any ∆R if one chooses Λ small enough. Beyond the support
of %Λ and pΛ, thus for r ∈ [R0,Λ, R0 + ∆R], equation (2.24) takes the form

(3.26) y′Λ(r) = −1

2

d

dr
ln

(
1− r2Λ

3
− 2M

r

)
where M = mΛ(R0,Λ). This equation is solved by the (shifted) Schwarzschild-deSitter
metric, whose corresponding y-coefficient yS is given by

(3.27) yS(r) = −1

2
ln

(
1− r2Λ

3
− 2M

r

)
− ln

(
e−λ(R0,Λ)

)
.
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The shift has been chosen such that yΛ can be extended by yS as a C2-solution of equation
(2.24) on [0,∞) using a modified ansatz for the matter distribution fΛ. Namely, for
r > R0 + ∆R we drop the original ansatz Φ for fΛ and continue fΛ by the constant zero
function, i.e.

(3.28) fΛ(x, v) =
{

[1− εe−y]k+ [L− L0]`+, r ∈ [0, R0 + ∆R]
0, r > R0 + ∆R

.

Obviously fΛ is continuous since fΛ(r) = 0 already on (R0,Λ, R0 + ∆R) but d
drfΛ(r, v) is

not continuous in general.
Via µΛ = ln(E0)− yΛ and

(3.29) e−2λΛ = 1− r2Λ

3
− κ

r

∫ r

0
s2Gφ(s, yΛ(s))ds

one can construct a local solution µΛ, λΛ ∈ C2([0, Rc)) of (2.3), (2.4), where Rc > R0 +
∆R. This solution fulfills the boundary conditions λΛ(0) = 0, µΛ(0) = ln(E0) − y0,

λ′Λ(0) = µ′Λ(0) = 0. We now see that E0 = eµ(R0,Λ) and continue µΛ and λΛ with the
Schwarzschild-deSitter coefficients µS , λS given by

(3.30) e2µS = e−2λS = 1− r2Λ

3
− 2M

r

in a continuous way beyond R0 + ∆R. From equation (3.26) we deduce that also the
derivatives of µΛ and µS can be glued together in a continuous way. The functions µΛ,
λΛ, and fΛ solve the Einstein-Vlasov system (2.2), (2.3), (2.4) globally. �

Remark 3.8. In the isotropic case, i.e. L0 = ` = 0 in the ansatz (2.19) for the dis-
tribution function f , the matter quantities % and p are monotonically decreasing. This
implies that their support in space is a ball. In the anisotropic case however, so called
shell solutions occur, cf. [8]. The support of such matter shells is in general not connected.

4. Static, anisotropic, globally regular solutions for Λ < 0

4.1. Local existence. In this section an existence lemma for Λ < 0 is stated for small
radii. This lemma corresponds to the first part of the proof of Theorem 2.2 in [24] for the
case Λ = 0.

Lemma 4.1. Let Φ : R2 → [0,∞) be of the form (2.19) and let Gφ, Hφ be defined by
equations (2.21) and (2.22), respectively. Then for every y0 ∈ R and every Λ < 0 there
exists a δ > 0 such that there exists a unique solution yΛ ∈ C2([0, δ]) of equation (2.24)
with initial value yΛ(0) = y0.

Proof. The proof works in an exact analogue way as in the case Λ > 0. �

4.2. Globally regular solutions for Λ < 0. For negative cosmological constants the
global existence of solutions can be proved in an analogue way as done in [23] for the case
Λ = 0. After establishing the local existence of solutions analog to the Λ > 0 case, we show
that the metric components stay bounded for all r ∈ R+ with an energy estimate. This
will yield the global existence of solutions of the Einstein-Vlasov system with negative
cosmological constant. In the next step we show by virtue of a suitable choice of an ansatz
for the matter distribution f , that the matter quantities % and p are of bounded support.
In the following theorem the existence on spatial intervals of the form R\ [0, r0), for r0 > 0
is included for the purpose of applying the same theorem to the construction of static
spacetimes with Schwarzschild singularities in the center (cf. Section 5.2). The solutions
of interest here are those where the radius variable takes values in all of R.
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Theorem 4.2. Let Λ < 0 and let Φ : R2 → [0,∞) be of the form (2.19) and let Gφ and
Hφ be defined by equations (2.21) and (2.22). Then for every r0 ≥ 0 and µ0, λ0 ∈ R there
exists a unique solution λΛ, µΛ ∈ C1([r0,∞)) of the Einstein-Vlasov system (2.2)-(2.6)
with µΛ(r0) = µ0 and λΛ(r0) = λ0. One has λ0 = 0 if r0 = 0.

Proof. We use an energy argument similar to [23]. Let yΛ ∈ C2([r0, r0 + δ]) be the local
solution of equation (2.24) with yΛ(r0) = ln(E0)e−µ0 . If r0 = 0 the existence of this
local solution is established by Lemma 4.1 and in the case r0 > 0 the existence of a local
solution follows directly from the regularity of the right hand sides of (2.3) and (2.4). Let
[r0, Rc) be the maximal interval of existence of this solution. By µΛ = ln(E0)− yΛ and

(4.1) e−2λΛ = 1− Λ

3

(
r2 − r3

0

r

)
− 2

r

(
r0

2

(
1− e−2λ0

)
+ 4π

∫ r

r0

s2Gφ(s, yΛ(s))ds

)
one constructs a local solution µΛ, λΛ ∈ C2([r0, Rc]) of equations (2.3) and (2.4). We
define

(4.2) wΛ(r) = − Λ

12π
+

1

r3

(
−r

3
0Λ

24π
+
r0

8π

(
1− e−2λ0

)
+

∫ r

r0

s2%Λ(s)ds

)
.

The Einstein equation (2.3) implies

(4.3) µ′Λ(r) = 4πre2λΛ(r) (pΛ(r) + wΛ(r)) .

By adding equations (2.3) and (2.4) we have

(4.4)
(
µ′Λ(r) + λ′Λ(r)

)
= 4πre2λΛ(r)(pΛ(r) + %Λ(r)).

We assume Rc <∞ and consider the quantity eµΛ+λΛ (pΛ + wΛ) on the interval
[
Rc
2 , Rc

)
.

On this interval, in particular away from the origin, a differential inequality will be estab-
lished that will allow us to deduce that both µΛ and λΛ are bounded on

[
Rc
2 , Rc

)
. Using

the TOV equation (2.16) we obtain for r ∈
[
Rc
2 , Rc

)

(4.5)

d

dr

(
eµΛ+λΛ (pΛ + wΛ)

)
= eµΛ+λΛ

(
−2pΛ

r
− 3wΛ

r
− Λ

4πr
+

2pTΛ

r
+
%Λ

r

)
≤ C1e

µΛ+λΛ =
C1

pΛ + wΛ︸ ︷︷ ︸
=:C2

(pΛ + wΛ) eµΛ+λΛ .

In the course of this estimate we have used that Λ
4πr , pTΛ(r)/r and %Λ(r)/r stay bounded

for r ∈
[
Rc
2 , Rc

)
. The constant C2 is bounded since wΛ(r) > 0 for negative Λ. It follows

(4.6)
d

dr
ln
(
eµΛ+λΛ (pΛ + wΛ)

)
≤ C2 ⇒ λΛ + µΛ <∞.

Equation (4.3) implies that µ′Λ(r) ≥ 0 and therefore µΛ(r) ≥ µ0. We also have

(4.7) e−2λΛ ≤ 1 +
r2|Λ|

3
≤ 3 +R2

c |Λ|
3

<∞.

This in turn implies λΛ > −∞ and we deduce from equation (4.6) that both µΛ and
λΛ are bounded on

[
Rc
2 , Rc

)
. This allows to continue µΛ and λΛ as C2-solutions of the

Einstein equations beyond Rc which contradicts its definition. So Rc =∞. �

We prove in the following theorem that the distribution function in the previous theorem
is compactly supported which yield physically reasonable solutions.

Theorem 4.3. Let Φ : R2 → [0,∞) be of the form (2.19) and let µ0 ∈ R , r0 ≥ 0 and let
λΛ, µΛ ∈ C1([r0,∞)), f(x, v) = Φ(E,L) be the unique global-in-r solution of the Einstein-
Vlasov system (2.2) – (2.6) with negative cosmological constant where µΛ(0) = µ0 such
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that y0 = ln(E0)e−µ0 > 0. Then there exists R0 ∈ (r0,∞) such that the spatial support of
fΛ is contained in the interval [r0, R0).

Proof. Due to Lemma 2.3, (iii) we have vacuum if yΛ(r) ≤ 0. By assumption we have
yΛ(0) > 0. In the following we show that limr→∞ yΛ(r) < 0. Since yΛ is continuous and
monotonically decreasing, this implies that yΛ possesses a single zero R0 and the support
of the matter quantities %Λ and pΛ is contained in [0, R0).
We define yvac,Λ by

(4.8) yvac,Λ = y0 −
1

2
ln

(
1− r2Λ

3

)
.

So we have

(4.9) y′vac,Λ(r) = − κ/2

1− Λr2

3

(
−2rΛ

3κ

)
and yvac,Λ(0) = yΛ(0) = y0. Furthermore, since y′Λ(r) < y′vac,Λ(r) which can be seen

immediately by means of equation (2.24) we have

(4.10) yΛ(r) ≤ yvac,Λ(r) = y0 −
1

2
ln

(
1 +

r2|Λ|
3

)
r→∞−→ −∞ < 0

and the theorem follows. �

Remark 4.4. The solution coincides with Schwarzschild-AdS for r ≥ R0 if the continuity
condition

(4.11) µΛ(R0) = ln(E0)− yΛ(R0) =
1

2
ln

(
1− R2

0Λ

3
− 2M

R0

)
is fulfilled, where M = 4π

∫ R0

0 s2%Λ(s)ds. So if y0 is given, the corresponding value of E0

in the ansatz Φ for the matter distribution f can be read off.

5. Solutions with a Schwarzschild singularity at the center

In this section we construct spherically symmetric, static solutions of the Einstein-Vlasov
system with non-vanishing cosmological constant that contain a Schwarzschild singularity
at the center. We consider both the case with a positive and a negative cosmological
constant. The construction for the case Λ > 0 makes use of the corresponding solutions
with vanishing Λ. In the following we will call this solution, where Λ = 0, a background
solution. The global existence of the background solution is proved in [23]. The matter
quantities belonging to this background solution are of finite support.

5.1. Matter shells immersed in Schwarzschild-deSitter spacetime. The construc-
tion of the solution with Λ > 0 can be outlined as follows. In the vacuum case, i.e. when
the right hand sides of the Einstein equations (2.3) and (2.4) are zero, the solutions are
given by

(5.1) e2µ(r) = 1− r2Λ

3
− 2M0

r
, e2λ(r) =

(
1− r2Λ

3
− 2M0

r

)−1

, r > rBΛ

where rBΛ is defined to be the black hole event horizon, i.e. the smallest positive zero of
1− r2Λ/3− 2M0/r. If one chooses L0 and M0 appropriately and Λ sufficiently small the
following configuration is on hand. For small r > rBΛ one sets f(x, v) ≡ 0 and the metric
is given by Schwarzschild-deSitter. Thus one has the coefficients (5.1). Increasing the
radius r one reaches an interval [r−Λ, r+Λ] where also an ansatz f(x, v) = Φ(E,L) of the
form (2.19) yields vacuum, i.e. Gφ(r, y(r)) = Hφ(r, y(r)) = 0. In this interval it is possible
to glue to the Schwarzschild-deSitter solution (5.1) a non vacuum solution solving the
Einstein-Vlasov system. It will be shown that the matter quantities %Λ and pΛ of this
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solution have finite support. Beyond the support of the matter quantities the solution
will be continued again by Schwarzschild-deSitter.
For negative cosmological constant, globally defined solutions can be constructed as well.
Like in the case above, the black hole is surrounded by a vacuum shell which is on its part
surrounded by a shell containing matter. In the outer region, we again have vacuum.
Before we consider the system with Λ 6= 0 we establish a Buchdahl type inequality for
solutions of the Einstein equations with a Schwarzschild singularity at the center. This
inequality is relevant for the proof of existence of solutions of the Einstein-Vlasov system
with Λ > 0.

Lemma 5.1. Let λ, µ ∈ C1([0,∞)) and let %, p, pT ∈ C0([0,∞)) be functions that satisfy
the system of equations (2.3-2.7) with a Schwarzschild singularity with mass parameter
M0 > 0 at the center, and such that p+ 2pT ≤ %. Then the inequality

(5.2)
2(M0 +m(r))

r
≤ 8

9

holds for all r ∈
[

9
4M0,∞

)
where m(r) is given by

(5.3) m(r) = 4π

∫ r

2M0

s2%(s)ds.

Proof. For the prove of the lemma we apply techniques that are already used in [19]
to prove the Buchdahl inequality for globally regular solutions without Schwarzschild
singularity. Only the steps that differ from the proof of Theorem 4.1 in [19], or Theorem
1 in [5] for the charged case, will be described in detail.

By integrating the Einstein equation (2.3) over the interval
(

9M0
4 , r

)
we obtain

(5.4) e−2λ = 1− 9M0

4r

(
1− e−2λ0

)
− 8π

r

∫ r

9M0
4

s2%(s)ds,

where λ0 = λ
(

9M0
4

)
. Since we have vacuum on

(
2M0,

9M0
4

)
on this interval the metric is

given by the Schwarzschild metric and one can compute λ0 explicitly. One finds that

(5.5) e−2λ = 1− 2(M0 +m(r))

r
.

We plug this into the other Einstein equation (2.4) and obtain the differential equation

(5.6) µ′(r) =
1

1− 2(M0+m(r))
r

(
4πrp+

M0 +m(r)

r2

)
.

We now introduce the variables

(5.7) x =
2(M0 +m(r))

r
, y = 8πr2p(r).

Note that x < 1 and y ≥ 0. The first inequality must hold true since otherwise the metric
function λ would not stay bounded. Next we let β = 2 ln(r) and consider the curve(
x
(
eβ/2

)
, y
(
eβ/2

))
parameterized by β in [0, 1) × [0,∞). In the following a dot denotes

the derivative with respect to β. Using the Einstein equations and the generalized TOV
equation (2.16) one checks that x and y satisfy the equations

8πr2% = 2ẋ+ x,(5.8)

8πr2p = y,(5.9)

8πr2pT =
x+ y

2(1− x)
ẋ+ ẏ +

(x+ y)2

4(1− x)
.(5.10)



STATIC SOLNS TO THE E-V SYSTEM WITH NON-VANISHING COSMOLOGICAL CONSTANT 15

By virtue of these equations (5.8) – (5.10) the condition p + 2pT ≤ % can be written in
the form

(5.11) (3x− 2 + y)ẋ+ 2(1− x)ẏ ≤ −α(x, y)

2
, α = 3x2 − 2x+ y2 + 2y.

From now on the proof is analogue to the proof of Theorem 1 in [5] for the charged case.
One defines the quantity

(5.12) w(x, y) =
(3(1− x) + 1 + y)2

1− x
and shows that since 0 ≤ x < 1 and y ≤ 0 this quantity is bounded by 16 along the curve
(x, y) with an optimization procedure. The inequality w ≤ 16 is already equivalent to

(5.13)
2(M0 +m(r))

r
≤ 8

9

for all r ∈
[

9M0
4 ,∞

)
and the proof is complete. �

Remark 5.2. In the case when M0 = 0 it is known that the inequality is sharp, cf. [4]
and [19]. For the purpose of this work the bound (5.2) is sufficient and we have not tried
to show sharpness.

In the course of the proof of Theorem 5.5 we will need a continuation criterion for the
solution of the Einstein equations, namely the following statement.

Lemma 5.3. Let Λ > 0, µ0 ∈ R and M0, r0 > 0. Let Gφ and Hφ defined by equations
(2.21) and (2.22). Then the equation

(5.14)

µ′Λ =
1

1− Λ
3

(
r2 − r3

0
r

)
− 2

r

(
M0 + 4π

∫ r
r0
s2Gφ(s, µΛ(s))ds

)
×
(

4πrHφ(s, µΛ(s))− Λ

(
r

3
+

r3
0

6r2

)
1

r2

(
M0 + 4π

∫ r

r0

s2Gφ(s, µΛ(s))ds

))
has a unique local C2-solution µΛ with µ(r0) = µ0 with maximal interval of existence
[r0, Rc), Rc > 0. Moreover, there exists RD ≤ Rc such that

(5.15) lim inf
r→RD

(
1− Λ

3

(
r2 − r3

0

r

)
− 2

r

(
M0 + 4π

∫ r

r0

s2Gφ(s, µΛ(s))ds

))
= 0.

Proof. The local existence of a C2-solution of equation (5.14) follows from the regularity
of the right hand side. Basically one is in the situation of Lemma 3.2, i.e., the case with
a regular center and Λ > 0, except for the fact that there are additional terms containing
r0 and M0. But on a finite interval [r0, Rc) these terms are bounded and well behaved,
i.e. the proof can be carried out in an analogue way. �

Remark 5.4. Lemma 5.3 implies that if the denominator of the right hand side of equa-
tion (5.14) is strictly larger than zero on an interval [r0, r), then µΛ can be extended
beyond r as a solution of (5.14).

The following theorem states the existence of solutions for Λ > 0 with a Schwarzschild
singularity at the center.

Theorem 5.5. Let Φ : R2 → [0,∞) be of the form (2.19) with E0 = 1 and let L0,M0 ≥ 0
such that L0 > 16M2

0 . Then there exists a unique solution µΛ, λΛ ∈ C2((rBΛ,∞)),
f ∈ C0((rBΛ,∞)× R3) of the Einstein-Vlasov system (2.2) – (2.6) for Λ > 0 sufficiently
small. The spatial support of the distribution function fΛ is contained in a shell {r+Λ <
r < R0Λ}. In the complement of this shell the solution of the Einstein equations is given
by the Schwarzschild-deSitter metric.
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Remark 5.6. In the course of the proof one will come across the fact that in one of
the vacuum regions, either r ≤ r+Λ or r ≥ R0Λ, the component µvac given by e2µvac =

1− r2Λ
3 −

2M
r of the Schwarzschild-deSitter metric will be shifted by a constant. But this

shift is just a reparametrization of the time t [23]. Thus the shell of Vlasov matter causes
a redshift.

Proof. In the first part of the proof we consider the black hole region and show that the
chosen parameters lead to the configuration depicted in Figure 1. Then we make use of
the existence of a background solution and construct the desired solution µΛ.

1
a(r)

aΛ(r)

%Λ(r) R0R0Λ

r̂ r+Λ r+ r

rB rBΛ r− r−Λ

gluing

gluing

µ(r)

µΛ(r)

black hole vacuum matter vacuum

Figure 1 – Qualitative sketch of a black hole configuration surrounded by a shell of matter

We define the functions

a(r) =

√
1− 2M0

r

√
1 +

L0

r2
,(5.16)

aΛ(r) =

√
1− r2Λ

3
− 2M0

r

√
1 +

L0

r2
.(5.17)

Moreover, we define r− and r+ to be the first and second radius where a(r) = 1, respec-
tively, and rB := 2M0 to be the event horizon of the black hole. Since L0 > 16M2

0 we
have rB < r− < r+ (cf. [23]). Note also that r+ > 4M0 >

18
5 M0.

Since 9M2
0 Λ < 1 by assumption (Λ is chosen to be small), there exists a black hole horizon

rBΛ of the Schwarzschild-deSitter metric with parameters M0 and Λ. It can be calculated
explicitly2 by

(5.18) rBΛ = − 2√
Λ

cos

(
1

3
arccos

(
−3M0

√
Λ
)

+
π

3

)
.

2To assure oneself of that one has chosen the right zero, using d
dx

arccos(x) = − 1√
1−x2

one checks

lim
Λ→0

rBΛ
l′Hôspital

= lim
Λ→0

2 sin
(

1
3

arccos
(
−3M0

√
Λ
)

+ π
3

)
1

3
√

1−(3M0
√

Λ)2

3M0

2
√

Λ

1/
(

2
√

Λ
) = 2M0.
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Note that rB < rBΛ. We construct an upper bound to rBΛ. Set v(r) = 1− 2M0
r .

(5.19)

v(rBΛ) =

∫ rBΛ

rB

v′(s)ds+ v(rB)︸ ︷︷ ︸
=0

≥
∫ rBΛ

rB

(
inf

s∈[rB ,rBΛ]
v′(s)

)
ds = (rBΛ − rB)v′(rBΛ)

⇒ rBΛ ≤ rB +
v(rBΛ)

v′(rBΛ)

A short calculation yields v(rBΛ) =
r2
BΛΛ
3 and v′(rBΛ) = 2M0

r2
BΛ

. One also checks by explicit

calculation that drBΛ
dΛ > 0. So the distance

(5.20) rBΛ − rB ≤
r4
BΛΛ

6M0

between the two horizons can be made arbitrarily small if Λ is chosen to be sufficiently
small. In particular we need Λ to be small enough to assure rBΛ < r−.
Next we define r−Λ and r+Λ to be the first and second radius where aΛ(r) = 1. Note that
a(r) > aΛ(r) for all r ∈ (rBΛ, rC), where rC is the cosmological horizon of the vacuum
solution, thus the second positive zero of 1 − r2Λ/3 − 2M0/r. Between r− and r+ the
function a(r) has a unique maximum at r = r̂, given by

(5.21) r̂ =
L0 −

√
L2

0 − 12M2
0L0

2M0
.

We consider the distance between a2(r) and a2
Λ(r) at this radius r̂:

(5.22) |a2(r̂)− a2
Λ(r̂)| = Λ

r̂2 + L0

3
.

Choosing Λ sufficiently small one can attain |a2(r̂)−a2
Λ(r̂)| < a2(r̂)−1. This implies that

aΛ(r) − 1 has exactly two zeros in the interval (r−, r+). This in turn yields the desired
configuration

(5.23) 2M0 = rB < rBΛ < r− < r−Λ < r̂ < r+Λ < r+.

In the vacuum region [r−Λ, r+Λ] the function aΛ(r) coincides with the expression

e−yΛ(r)
√

1 + L0
r2 . Lemma 2.3, (iii) implies that therefore for r ∈ [r−Λ, r+Λ] also the

ansatz Φ for the distribution function f yields %Λ(r) = Gφ(r, yΛ(r)) = 0 and pΛ(r) =
Hφ(r, yΛ(r)) = 0. So at r = r+Λ one can continue f by the ansatz Φ in a continuous way
and for r ≥ r+Λ the Einstein equations lead to the differential equation

(5.24)

µ′Λ =
1

1− Λ
3

(
r2 − r3

+Λ

r

)
− 2

r

(
r+Λ

2 (1− e−2λ0) + 4π
∫ r
r+Λ

s2%Λ(s)ds
)

×

(
4πrpΛ − Λ

(
r

3
+
r3

+Λ

6r2

)
+
r+Λ

2r2

(
1− e−2λ0

)
+

4π

r2

∫ r

r+Λ

s2%Λ(s)ds

)
where λ0 = λ(r+Λ).
There exists a background solution µ ∈ C2((2M0,∞)) to the Einstein equations with
Λ = 0 (cf. [23]). For r ∈ (2M0, r+Λ] this solution is given by the Schwarzschild metric
and for r > r+Λ as a solution of equation (5.24) with Λ = 0. The background solution is
continuous at r+Λ if

(5.25)
r+Λ

2

(
1− e−2λ0

)
= M0.
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Furthermore, the background solution µ has the property that there exists R0 > 0 such
that µ(R0) = 0 which implies that the support of matter quantities % and p is contained in
the interval (r+, R0) (cf. [23]). In the remainder of the proof we show that using properties
of this background solution µ one obtains a global solution µΛ of equation (5.24). We set

µ0Λ =
1

2
ln

(
1−

r2
+ΛΛ

3
− 2M0

r+Λ

)
,(5.26)

µ0 = µ(r+Λ) =
1

2
ln

(
1− 2M0

r+Λ

)
.(5.27)

In the following we seek for a solution µΛ of equation (5.24) on on an interval beginning
at r = r+Λ with the initial value µ0Λ at given in (5.26) that we can glue to the vacuum
solution on (rBΛ, r+Λ]. Note that µ0Λ < 0. Since there are no issues with an irregular
center the local existence of µΛ on an interval (r+Λ, r+Λ + δ], δ > 0 follows from the
regularity of the right hand side of equation (5.24). So let (2M0, Rc) be the maximum
interval of existence of µΛ. We define

vM0(r) = 1− 2

r

(
M0 + 4π

∫ r

r+Λ

s2%(s)ds

)
,(5.28)

vM0Λ(r) = 1− Λ

3

(
r2 −

r3
+Λ

r

)
− 2

r

(
M0 + 4π

∫ r

r+Λ

s2%Λ(s)ds

)
(5.29)

as the denominator of the right hand side of equation (5.24). We set

(5.30) ∆v0 :=
1

18
vM0Λ(r+Λ) =

1− 2M0
r+Λ

18
≤ 1

18

and define the radii

(5.31)
r∗ = inf {r ∈ (r+Λ, Rc) | vM0Λ(r) = ∆v0 } ,
r̃ = sup{r ∈ (r+Λ, Rc) | |µΛ(r)− µ(r)| ≤ µ(R0 + ∆R)},

and set r̃∗ := min{r̃, r∗}. Note that µ(R0 + ∆R) > 0 since µ(R0) = 0 and µ is strictly
increasing. We assume that r ≤ r̃∗ and calculate |µ(r) − µΛ(r)|. To make calculations
more convenient, we extend % and p on [0, 2M0] as constant zero such that integrals of %
and p over (r+, r) can be replaced by integrals over (0, r). First we calculate

(5.32) |µ0 − µ0Λ| =
1

2
ln

1 +
r2

+ΛΛ

3

(
1−

r2
+ΛΛ

3
− 2M0

r+Λ

)−1
 =: C0Λ(r).

We write

(5.33)

|µ(r)− µΛ(r)|

≤
∫ r

r+Λ

1

vM0Λ(s)

[
4πs|pΛ(s)− p(s)| − Λ

(
s

3
+
r3

+Λ

s2

)

+
4π

s2

∫ s

0
σ2|%Λ(σ)− %(σ)|dσ

]
ds

+

∫ r

r+Λ

(
4πsp(s) +

4π

s2

∫ s

0
σ2%(σ)dσ

) ∣∣∣∣ 1

vM0Λ(s)
− 1

vM0(s)

∣∣∣∣ds+ C0Λ(r)

We would like to apply the generalized Buchdahl inequality (Lemma 5.1) to the back-
ground solution µ on the interval [r+Λ,∞). We have that r+Λ > r̂ ≥ 3M0 > 9/4M0.
The crucial condition is the existence of a vacuum region on

(
2M0,

9
4M0

]
. But this is
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ensured by virtue of the assumption L0 > 16M2
0 which implies r+ > 4M0. So the differ-

ence |µ(r)−µΛ(r)| can be further simplified and estimated. Using similar estimates as in
Appendix B we obtain an inequality of the form

(5.34) |µ(r)− µΛ(r)| ≤ CΛ(r) + C(r)

∫ r

0
(|p(s)− pΛ(s)|+ |%(s)− %Λ(s)|) ds

where C(r) is increasing in r, CΛ(r) is increasing both in Λ and r and we have CΛ(r) = 0
if Λ = 0. Note that the constants are fully determined by M0, L0, φ and µ.
In virtue of the mean value theorem, the sum |pΛ − p|+ |%Λ − %| can be estimated as

(5.35) |pΛ(r)− p(r)|+ |%Λ(r)− %(r)| ≤ C · |µΛ(r)− µ(r)|,

where the constant C is determined by the derivatives of Gφ and Hφ. A Grönwall ar-
gument yields |µΛ(r) − µ(r)| ≤ CµΛ(r) implying |%Λ(r) − %(r)| ≤ CgΛ(r) with certain
constants CgΛ and CµΛ.
One can choose Λ small enough such that for all r ∈ (r+Λ, R0 + ∆R] we have

(5.36) |µΛ(r)− µ(r)| < µ(R0 + ∆R).

Moreover, we consider the difference

(5.37) |vM0(r)− vM0Λ(r)| ≤ Λ

3

∣∣∣∣∣r2 −
r3

+Λ

r

∣∣∣∣∣+
8πr2

3
CgΛ(r).

Lemma 5.1 implies vM0(r) ≥ 1
9 for all r ∈ (r+Λ,∞). Choosing Λ sufficiently small, such

that for all r ∈ (r+Λ, R0 + ∆R] we have |vM0(r)− vM0Λ(r)| ≤ 1
18 one obtains vM0Λ ≥ 1

18
on (r+Λ, R0 + ∆R].
So altogether, one has deduced that r̃∗ ≥ R0 + ∆R if Λ is chosen sufficiently small. This
implies that µΛ exists at least on [0, R0+∆R] by Lemma 5.3 and also that µΛ(R0+∆R) >
0. From the latter property one deduces that there exists a radius R0Λ > R0 such that
for all r ∈ [R0Λ, R0 + ∆R] we have %Λ(r) = pΛ(r) = 0. On this interval, we can glue
an appropriately shifted Schwarzschild-de Sitter metric to µΛ. This yields the desired
solution defined on (rBΛ,∞). �

Remark 5.7. To see that the solutions constructed in Theorem 5.5 are non-vacuum, one
checks that for r ≥ r+Λ one has

(5.38)
d

dr
aΛ(r) < 0 and

d2

dr2
aΛ(r) ≤ 0.

Since aΛ(r) corresponds to e−yΛ(r), this implies that for some r > r+Λ the quantity

e−yΛ(r)
√

1 + L0
r2 < 1 which in turn implies by Lemma 2.3, (iii) that %Λ(r), pΛ(r) > 0

for some r > r+Λ.

Remark 5.8. In contrary to the metric without a singularity at the center, the metric
with a Schwarzschild singularity does not coincide with the not shifted Schwarzschild-de
Sitter solution for r > R0Λ. This can be seen as follows. We have

(5.39) µ′Λ(r) ≥ 1

2

d

dr
ln

(
1− r2Λ

3
− 2M0

r

)
.

Certainly, the mass parameter M of the vacuum solution, that is glued on in the outer
region, is larger than M0. This implies

(5.40) 1− r2Λ

3
− 2M0

r
> 1− r2Λ

3
− 2M

r
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for all r ∈ (rBΛ, rC). So there is no ansatz Φ for the matter distribution that yields a met-
ric component µΛ that connects the two vacuum solutions without any shift. But by suit-
able choice of Φ and E0 one can determine whether the inner or the outer Schwarzschild-
deSitter metric is shifted. For the maximal C2-extension of the metric constructed in
Theorem 5.5 we will need the aolution to coincide with the not shifted Schwarzschild-
deSitter metric for r > R0Λ.

5.2. Matter shells immersed in Schwarzschild-AdS spacetimes. We construct so-
lutions of the Einstein-Vlasov system with a Schwarzschild singularity at the center for
the case Λ < 0. The result is given in the following theorem.

Theorem 5.9. Let Φ : R2 → [0,∞) be of the form (2.19) and let L0,M0 ≥ 0
such that L0 < 16M2

0 . Then there exists a unique solution µΛ, λΛ ∈ C2((rBΛ,∞)),
f ∈ C0((rBΛ,∞) × R3) of the Einstein-Vlasov system (2.2) – (2.6) for Λ < 0 and |Λ|
sufficiently small. The spatial support of the distribution function fΛ is contained in a
shell, {r+Λ < r < R0Λ}. In the complement of this shell, the solution of the Einstein
equations is given by the Schwarzschild-AdS metric.

Proof. We define rB := 2M0 to be the Schwarzschild black hole horizon of the background
solution and rBΛ to be the black hole horizon for the Schwarzschild-AdS with Λ < 0,
i.e. the smallest positive zero of 1− r2Λ/3− 2M0/r. Define also the functions

a(r) =

√
1− 2M0

r

√
1 +

L0

r2
,(5.41)

aΛ(r) =

√
1− r2Λ

3
− 2M0

r

√
1 +

L0

r2
.(5.42)

Moreover we define r− and r+ to be the first and second positive zero of a(r)− 1, respec-
tively, as well as r−Λ and r+Λ to be the first and second positive zero of aΛ(r) − 1. The
assumption L0 < 16M2

0 assures that rB < r− < r+ but a priori r+Λ = ∞ and r−Λ = ∞
are possible. However, we show that the configuration is

(5.43) rBΛ < r−Λ < r+Λ <∞.

First, we observe that a(r) < 1 for all r > r+ and also that aΛ(r) > a(r) for all r ∈ R+

since Λ < 0. So we have rBΛ
< r−Λ < r− < r+ < r+Λ. It remains to show that

r+Λ < ∞. This is done by showing that for |Λ| sufficiently small the functions a and aΛ

are sufficiently close at a radius r+ + ∆r, ∆r > 0 such that aΛ(r+ + ∆r) < 1. So we
consider the difference |a2

Λ(r)− a2(r)| at the radius r+ + ∆r:

(5.44) |a2
Λ(r+ + ∆r)− a2(r+ + ∆r)| = |Λ|(r+ + ∆r)2 + L0

3
.

Choosing |Λ| small one attains this difference to be smaller than a(r+ + ∆r) − 1 which
implies r+Λ < r+ + ∆r <∞.
Given this configuration (5.43) we construct a global solution of the Einstein-Vlasov
system in the following manner. For r ∈ (rBΛ, r+Λ] we set f(x, v) ≡ 0 and

(5.45) µΛ(r) =
1

2
ln

(
1− r2Λ

3
− 2M0

r

)
.

For r ≥ r+Λ we set f(x, v) = Φ(E,L). Since also Φ(E,L) = 0 on the interval (r−Λ, r+Λ)
the distribution function f is continuous and the metric coefficient µΛ is given by the
ODE (5.24) with Λ < 0 for all r ∈ (r−Λ,∞). The initial value λ0 of λΛ is determined by
the continuity criterion

(5.46)
r+Λ

2

(
1− e−2λ0

)
= M0.
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The last step of the proof is to assure for the existence of a solution with the desired
properties of the Einstein-Vlasov system on [r+Λ,∞) with initial values λ0 given by (5.46)
and µ0 = µΛ(r+Λ), given by equation (5.45). But this is already implied by the Theorems
4.2 and 4.3. �

6. Solutions on R× S3 and R× S2 × R

In Sections 3.4 and 5.1 we constructed spherically symmetric, static solutions of the
Einstein-Vlasov system with small positive cosmological constant Λ. For small radii the
Λ-term plays only a minor role. This was crucial for the method of proof. However, the
global structure of the constructed spacetime is substantially different when Λ > 0 and
shows interesting properties. In particular, it allows for solutions with different global
topologies.
The following theorem gives a class of new solutions to the non-vacuum field equations
with non-trivial global topology. These solutions are constructed from pieces consisting
of solutions constructed in Theorems 3.7 and 5.5.

Theorem 6.1. Let Λ > 0 be sufficiently small and let M1 = R×S3 and M2 = R×S2×R.
The following types of static metrics solving the Einstein-Vlasov system exist on these
topologies.

(i) There is a class of static metrics on M1, which is characterized in Figure 2. In
regions I and IV a metric in this class coincides with two a priori different solu-
tions of the type constructed in Theorem 3.7 with identical total mass, but possibly
different matter distributions and radii of the support of the matter quantities R1

and R2 and regular centers. The metric in regions II and III is vacuum.
(ii) There is a class of static metrics on M1, which is characterized in Figure 3. A

metric in this class consists of two regular centers with finitely extended matter
distribution around each of the centers of equal mass but possible different matter
distributions and radii R1, R2 of the type constructed in Theorem 3.7. These two
regions are connected by a chain of black holes of identical masses (the diagram
shows the minimal configuration with one black hole).

(iii) There is a class of metrics on M2, which is characterized in Figure 4. The space-
time consists of an infinite sequence of black holes, each surrounded by matter
shells of possibly different radii and positions. In regions IV, VII, X and XIII these
solutions coincide with those constructed in Theorem 5.5. The necessary condi-
tions on the masses are MA1

% = MA2
% , MB1

% = MB2
% and MA

0 +MA2
% = MB1

% +MB
0 ,

where M i
0, i = A,B, denote the mass parameter of the black holes and M

ij
% ,

i = A,B, j = 1, 2 denote the quasilocal mass of the matter shells defined in
equation (6.11).

Remark 6.2.

(a) The black hole masses in the third class of solutions in the previous theorem can
be pairwise different. Only the total mass of black hole and matter shell have to
agree pairwise, cf. condition in (iii) above.

(b) Combinations of the classes (ii) and (iii) yield similar metrics on M3 = R × R3

with a regular center followed by an infinite sequence of black holes.
(c) The second class of solutions could also be generalized by adding matter shells

around the black holes. The mass parameters then have to be adjusted.
(d) When crossing the cosmological horizon or the event horizon of a black or white

hole the Killing vector ∂t changes from being timelike to spacelike. This means
that the maximal extended spacetime contains both static and dynamic regions that
are alternating. This holds for all constructed classes.
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Figure 2 – Penrose diagram of the maximal C2-extension of a metric constructed as spher-
ically symmetric solution of the Einstein-Vlasov system. Region I corresponds to the region
0 < r < rC . The metric is extended in an analogue way to the standard extension of the
deSitter metric. The gray lines are surfaces of constant r.
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Figure 3 – Penrose diagram of the maximal C2-extension of a metric constructed as spher-
ically symmetric solution of the Einstein-Vlasov system. Region I corresponds to the region
0 < r < rC . In this region matter (represented by the shaded area) is present and the metric
is regular. This metric is extended with the Schwarzschild-deSitter metric that leads to a
periodic solution. The periodic course stops when a matter region appears again preventing
the metric from being singular at r = 0. The gray lines are surfaces of constant r.

Proof. We outline now the construction of the spacetimes given in the previous theorem.
For the first two classes of spacetimes we consider solutions of the Einstein-Vlasov system
with a regular center. Let (µΛ, λΛ, fΛ) be a static solution of the spherically symmetric
Einstein-Vlasov system with positive cosmological constant Λ defined for r ∈ [0, rC) such
that the support of the matter quantities is bounded by a radius 0 < R0Λ < rC . The
radius rC denotes the cosmological horizon. On [R0Λ, rC) there is vacuum on hand and
the metric is given by the Schwarzschild-deSitter metric (6.4) with the ADM mass M as
mass parameter. The ADM mass M is then given by

(6.1) M = 4π

∫ R0Λ

0
s2%Λ(s)ds.

If 9M2Λ < 1, the polynomial r3 − 3
Λr + 6M

Λ has one negative zero and two positive ones.
The largest zero of this polynomial is defined to be the cosmological horizon rC . Moreover,
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Figure 4 – Penrose diagram of the maximal C2-extension of a metric constructed as spher-
ically symmetric solution of the Einstein-Vlasov system. The solution coincides with the
Schwarzschild-deSitter spacetime in the vacuum regions and the black holes are surrounded
by shells of Vlasov matter (gray shaded domains). Notably the black holes do not necessarily
have the same mass. The grey lines are surfaces of constant r.

rn is the negative zero, and rBΛ the smaller positive one. In terms of the ADM mass M
and the cosmological constant Λ these zeros can be calculated explicitly. Note that the
Buchdahl inequality for solutions with Λ 6= 0 [6] implies rBΛ < R0Λ.

Case (i): Consider Figure 2. This spacetime can be obtained in an analogue way to the
standard procedure to compactify the deSitter space as described for example in [17]. In
the following, this procedure is carried out in detail. The metric is given as a non-vacuum
solution of the Einstein-Vlasov system for r ∈ [0, rC), corresponding to region I in Figure
2, as discussed in Theorem 3.7. In this region we have

(6.2) ds2 = −e2µ(r)dt2 + e2λ(r)dr2 + r2dϑ2 + r2 sin2(ϑ)dϕ2.

In the first step we introduce coordinates UI, VI that transform the region R× [0, rC)×S2

into the left triangle (region I) in Figure 2. The coordinates usually used to compactify
the vacuum deSitter metric as for example described in [17] will do. They are given by

(6.3) UI =

√
rC − r
rC + r

e
− t
rC , VI = −

√
rC − r
rC + r

e
t
rC

and can be compactified via the transformations pI = arctan(UI), qI = arctan(VI). The
left part of Figure 5 shows the transformed region R× [0, rC) in the pI, qI-coordinates.

I I

IIC

IIIC

IV IV

pI qI pC qC pIV qIV

r̃=R0Λr̃=R0Λ

r
=

0

r̃
=

0

r=∞,I +

r̃=∞,I−
r=
rC

r=
r
C

r̃=
r
C

r̃=
rC

Figure 5 – Construction of the spacetime shown in Figure 2. We use three coordinate charts
to compactify the spacetime. Regions that are shaded in the same orientation are covered by
two of the coordinate charts simultaneously, thus there coordinates can be changed. The gray
areas are matter regions and the dashed lines correspond to r = rBΛ. We distinguish between
r and r̃ to emphasize that there are different spacetime regions that cannot be covered by a
single chart (t, r, ϑ, ϕ). All coordinates p and q take values in

[
−π2 ,

π
2

]
.
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The support of the matter (i.e. the matter distribution f) ends at a radius R0Λ. For
r ≥ R0Λ the metric is merely given by the Schwarzschild-deSitter metric

(6.4) ds2 = −
(

1− r2Λ

3
− 2M

r

)
dt2 +

dr2

1− r2Λ
3 −

2M
r

+ r2dΩ2, R0Λ ≤ r < rC .

At r = rC there is a coordinate singularity of the metric that we want to pass. For
this purpose we express the metric in other coordinates that do not have a singularity at
r = rC being defined on the region where r ∈ [R0Λ, rc) (region I in the middle part of
Figure 5). These coordinates are given by

(6.5) UC =

√
(rC − r)(r − rn)γ−1

(r − rBΛ)γ
e
− t

2δC > 0, VC = −

√
(rC − r)(r − rn)γ−1

(r − rBΛ)γ
e

t
2δC < 0,

where δC = rC
Λr2
C−1

> 0 and γ = rBΛ

(1−Λr2
BΛ)δC

, 0 < γ < 13. They are used in the standard

compactification procedure of the Schwarzschild-deSitter metric. For details, see [12] or
[14]. In the new coordinates the line element of the Schwarzschild-deSitter metric (6.4)
reads

(6.6) ds2 = −
4Λδ2

C

3r
(r− rn)2−γ(r− rBΛ)1+γdUCdVC + r2dϑ2 + r2 sin2(ϑ)dϕ2, r ≥ R0Λ.

Note that here r is seen as a function of UC and VC . The coordinates only take values
in {(u, v) ∈ R2 |u > 0, v < 0}. We extend them to R2. This extension gets beyond rC .
Again, the spacetime region covered by the coordinates UC and VC can be compactified
using the transformation pC = arctan(UC), qC = arctan(VC). The middle part of Figure 5
shows the region covered by UC and VC , each taking values in R, in the pC , qC-coordinates.
The line element (6.6) can be extended to the whole area covered by UC and VC in an
analytic way. In the region where r ∈ [R0Λ, rC) the coordinate charts (6.3) and (6.5)
overlap and one can change coordinates (the shaded areas in the left and middle part of
Figure 5). The transformation law is given by

(6.7)

UC(UI) =

√
(rC + r)(r − rn)γ−1

(r − rBΛ)γ
e

3−2Λr2C
rC UI ,

VC(VI) =

√
(rC + r)(r − rn)γ−1

(r − rBΛ)γ
e
− 3−2Λr2C

rC VI .

Region IV in Figure 2 corresponds to a second universe that also can be equipped with
Schwarzschild coordinates (t̃, r̃). We distinguish between r and r̃ to emphasize that the
charts (t, r) and (t̃, r̃) cover different regions of the spacetime. Geometrically these regions
look equal. This will be different for the second class of spacetimes (ii). In the region
r̃ ∈ [R0Λ, rC) (region IV in the middle part of Figure 5), in terms of the t̃, r̃-coordinates
UC and VC are given by

(6.8) UC = −

√
(rC − r̃)(r̃ − r−)γ−1

(r̃ − rBΛ)γ
e
− t̃

2δC < 0, VC =

√
(rC − r̃)(r̃ − r−)γ−1

(r̃ − rBΛ)γ
e

t̃
2δC > 0.

To get a compactification of the whole region IV, including r̃ < rB, we introduce coordi-
nates similar to (6.3), namely

(6.9) UIV = −
√
rC − r̃
rC + r̃

e
− t̃
rC , VIV =

√
rC − r̃
rC + r̃

e
t̃
rC

covering the region characterized by r̃ ∈ [0, rC). This region can again be compactified via
p = arctan(U), q = arctan(V ). This yields the right part of Figure 5. For r̃ ∈ [R0Λ, rC)

3The signs of these expressions can be checked with the equality 1− r2CΛ

3
− 2M

rC
= 0
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the coordinates can be changed using an analogue law as (6.8). On the spacetime region
represented by the middle part of Figure 5 the line element can be expressed by (6.6).
Since both, in region I and IV the metric can be brought into the form (6.2) via coordinate
transformations also the energy densities are identical in these regions. This of course
implies that in both regions the mass parameter is equal.

Case (ii): Now we come to the spacetimes characterized by Figure 3. For the construction
of a C2-extension of the metric (6.2) at least five coordinate charts are necessary. Figure 6
illustrates this construction. Again we begin with the region r ∈ [0, rC) where the metric

I I

IIC

IIIC

IV IV

VBH

VIWH

VII

pI qI pC qC pB qB

r
=

0

r=∞,I +

r=∞,I−

r=0

r=0

r=
rC

r=
r
C

r
=
R

0
Λ

r=
r
B
Λ

r=
rB

Λ
r=
r
C

r=
rC

r=
r
C

r=
rC

Figure 6 – Construction of the spacetime shown in Figure 3. On regions that are shaded in
equal directions two coordinates are defined and one can change between them. All coordi-
nates p, q take values in

[
−π2 ,

π
2

]
.

is given by (6.2). In the same way as described above one expresses the line element
in other coordinates pC , qC that avoid the singularity at r = rC and cover the region
r0Λ < r < rC . The line element as given by (6.6) can be analytically4 extended onto the
regions I – IV in Figure 6. From now on the procedure differs from the one above. Regions
I and IV are not supposed to be geometrically identical but region IV shall be a vacuum
region thus the metric will be given by Schwarzschild-deSitter everywhere. Certainly,
the line element (6.6) of the Schwarzschild-deSitter metric being given in terms of the
coordinates UC , VC now shows a singularity at r = rBΛ

5. This coordinate singularity can
be overcome by virtue of the coordinates

(6.10) UB =

√
(r − rBΛ)(r − rn)β−1

(rC − r)β
e

t
2δB , VB = −

√
(r − rBΛ)(r − rn)β−1

(rC − r)β
e
− t

2δB ,

where δB = rBΛ

1−Λr2
BΛ

> 0 and β = rC
(Λr2

C−1)δB
> 1. The coordinates are defined on the

middle part of Figure 6. This is part of the standard compactification procedure of the
Schwarzschild-deSitter metric, cf. [12] or [14]. Alternating the coordinate charts (UC , VC)
and (UB, VB) this procedure can be continued an arbitrary amount of times extending
the spacetime to additional black hole and cosmological regions. This periodic extension
stops if for r < rC the metric is not given by a vacuum solution of the Einstein equations
but again by the solution (6.2) of the Einstein-Vlasov system. There is no coordinate
singularity at r = rBΛ and also a regular center at r = 0. So a regular expression of the
line element by the coordinates (6.3) is possible again, leading to region X in Figure 3.
This region now is geometrically identical to region I in Figure 3 (and also in Figure 6).
In the extension procedure just described the expressions for the coordinates (6.8) and
(6.10) used to pass the coordinate singularities at r = rBΛ and r = rC in the vacuum
regions of the spacetime M1 depend on Λ and M . So the identification of corresponding
regions in the different coordinate charts, e.g. I or IV in Figure 6, is only possible if the

4In matter regions the regularity of the metric is C2 as provided by Theorem 3.7, in vacuum regions
the metric is analytic.

5By abuse of notation we use r for the radius coordinate in every region of the spacetime M1.
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parameters Λ and M are equal in all regions of M1. In terms of the notation of Figure 3
this implies M1 = M2.

Case (iii): A maximal extension of a solution to the Einstein-Vlasov system on the man-
ifold M2 as characterized by Figure 4, i.e. spacetimes in class (iii), can be obtained in a
similar way. Starting point is the region rBΛ < r < rC . On this interval the existence of
a unique solution to a given ansatz for f is established by Theorem 5.5. The solution on
hand can be understood as a Schwarzschild-deSitter spacetime with an immersed shell of
Vlasov matter supported on an interval (r+Λ, R0Λ). Two mass quantities are important.
On the one hand one has the mass parameter M0 of the black hole at the center. On the
other hand M that is defined to be

(6.11) M = M0 +M%, M% = 4π

∫ R0Λ

r+Λ

s2%Λ(s)ds.

This quantity represents the sum of the mass of the black hole and the shell of Vlasov
matter. As constructed in Theorem 5.5, for rBΛ < r ≤ r+Λ the metric is given by a
shifted Schwarschild-deSitter metric

(6.12) ds2 = −C
(

1− r2Λ

3
− 2M0

r

)
dt2+

dr2

C
(

1− r2Λ
3 −

2M0
r

)+r2dΩ2, rBΛ < r ≤ r+Λ

with the mass M0 of the black hole as mass parameter and the shift C > 0. For R0Λ ≤
r < rC the metric is given by the Schwarzschild-deSitter metric (6.4) with mass parameter
M .
The two critical horizons, rBΛ and rC can be given explicitly as zeros of the expression

1 − r2Λ
3 −

2m(r)
r . But it is important to note that the mass parameter m(r) does not

stay constant throughout the whole interval (rBΛ, R0Λ). The black hole horizon rBΛ is
characterized by M0 and the cosmological horizon rC by M . This has to be kept in mind
when choosing coordinates to construct an extension of the metric on M2 as illustrated

in Figure 7. We distinguish between the zeros of 1 − r2Λ
3 −

2m(r)
r when m(r) ≡ M0 and
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+
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Figure 7 – Construction of the spacetime shown in Figure 4. The middle part shows a
Schwarzschild-deSitter spacetime with an immersed matter shell for rBΛ = rB0 < r < rC .
The left and the right part show the adjacent vacuum region containing several coordinate
singularities. On regions that are shaded in equal directions two coordinates are defined and
one can change between them. All coordinates p, q take values in

[
−π2 ,

π
2

]
.

m(r) ≡M and call them rB0, rC0 or rB, rC , respectively. Note that rB0 = rBΛ. Consider
the metric on the region rB0 < r < rC being part of region VII in Figure 4 or the middle
part of Figure 7. The metric shall be extended to the left (regions IV, VB, VIW) and
to the right (regions VIIIC, IXC, X) as a vacuum solution until the next matter shell
appears. So the coordinate transformations have to be chosen with respect to the radii
rB and rC belonging to the current mass parameter in the respective spacetime region.
Three coordinate charts are needed to extend the metric beyond the black hole and the
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cosmological horizon. First we compactify the region rBΛ = rB0 < r < rC using the
coordinates

(6.13) UB =

√
(r − rB0)(r − rn)β−1

(rC − r)β
e

t
2δB0 , VB = −

√
(r − rB0)(r − rn)β−1

(rC − r)β
e
− t

2δB0 .

where δB0 = rB0

1−Λr2
B0

> 0 and β = rC
(Λr2

C−1)δB0
> 1. These coordinates give rise to

pB = arctan(UB) and qB = arctan(VB). This region is depicted in the middle part of
Figure 7. The spacetimes characterized by Figure 4 show two types of connected vacuum
regions. The first type is characterized by r ≤ r+Λ (inside the matter shell) and the
second one by r ≥ R0Λ (beyond the matter shell). To extend the metric to the region
inside the matter shell (and the black hole) one uses the coordinates

(6.14) UB0 =

√
(r − rB0)(r − rn)β0−1

(rC0 − r)β0
e

t
2δB0 , VB0 = −

√
(r − rB0)(r − rn)β0−1

(rC0 − r)β0
e
− t

2δB0 ,

where δB0 = rB0

1−Λr2
B0

> 0 and β0 = rC0

(Λr2
C0−1)δB0

> 1, and the corresponding compactifica-

tion pB0 = arctan(UB0), qB0 = arctan(VB0). These coordinates are valid for 0 < r < r+Λ.
The black hole horizon can be crossed using the usual arguments of the extension of the
Schwarzschild-deSitter metric as for example done in [17, 12, 14]. This is illustrated in the
left part of Figure 7. The region beyond the matter shell (and the cosmological horizon)
can be reached via the coordinates

(6.15) UC = −

√
(rC − r)(r − rn)γ−1

(r − rB)γ
e
− t

2δC , VC =

√
(rC − r)(r − rn)γ−1

(r − rB)γ
e
− t

2δC ,

with δC = rC
Λr2
C−1

> 0 and γ = rB
(1−Λr2

B)δC
, 0 < γ < 1. These coordinates extend the metric

to the area R0Λ < r <∞, shown in the right part of Figure 7.
On the connected vacuum regions the metric is given by only one expression even though
vacuum extends onto several regions of M2, e.g. regions VII, VIIIC, IXC and X. This
implies that the coordinates UB0, VB0 or UC , VC have to be given by the same expressions
(6.14) or (6.15), respectively (modulo sign, cf. [17, 12, 14]) which in turn implies that the
mass parameter has to stay the same on these connected vacuum regions. For the vacuum
region with r ≥ R0Λ this implies MA

0 +MA2
% = MB

0 +MB1
% (notation of Figure 4). On the

region characterized by r ≤ r+Λ this is always granted because the mass is entirely given
by the black hole mass M0. Finally the shift constants C > 0 of the vacuum metric have
to coincide in this region (IV and VII in Figure 4). They are determined by the matter
shells surrounding the black hole and are equal in particular if these shells have the same
shape which implies MA1

% = MA2
% . �

Appendix A. Proof that T acts as a contraction

In order to show that the operator T , defined in (3.2) acts as a contraction on the set M ,
defined in (3.3), one has to check

(a) u ≡ y0 ∈M ,
(b) u ∈M ⇒ Tu ∈M , and
(c) ∃a ∈ (0, 1) ∀u, v ∈M : ‖Tu−Tv‖∞,δ ≤ a‖u−v‖∞,δ, where ‖.‖∞,δ = supr∈[0,δ](.).

(i): Consider u ≡ y0. Only the second critical condition

(A.1)
r2Λ

3
+
κ

r

∫ r

0
s2Gφ(s, u(s))ds ≤ c

is relevant. We calculate

r2Λ

3
+
κ

r

∫ r

0
s2Gφ(s, u(s))ds ≤ r2Λ

3
+
κr2

3
Gφ(δ, y0) ≤

Λ + κGφ(r, y0)

3
δ2 ≤ c



28 H. ANDRÉASSON, D. FAJMAN, M. THALLER

for δ small enough.
(ii): We have to guarantee that y0 − 1 ≤ (Tu)(r) ≤ y0 + 1 and

r2Λ

3
+
κ

r

∫ r

0
s2Gφ(s, Tu(s))ds ≤ c.

By choosing δ sufficiently small, one can achieve the domain of integration in T to become
arbitrarily small and these properties follow.
(iii): We calculate

‖Tu− Tv‖∞,δ

=

∥∥∥∥∥
∫ r

0

[
κ/2

1− s2Λ
3 −

κ
s

∫ s
0 σ

2Gφ(σ, u(σ))dσ

(
s(Hφ(s, u(s))−Hφ(s, v(s)))

+
1

s2

∫ s

0
σ2(Gφ(σ, u(σ))−Gφ(σ, v(σ)))dσ

)

+

(
sHφ(s, v(s))− 2sΛ

3κ
+

1

s2

∫ s

0
σ2Gφ(σ, v(σ))dσ

)

×

(
κ/2

1− s2Λ
3 −

κ
s

∫ s
0 σ

2Gφ(σ, u(σ))dσ
− κ/2

1− s2Λ
3 −

κ
s

∫ s
0 σ

2Gφ(σ, v(σ))dσ

)]
ds

∥∥∥∥∥
∞,δ

.

Since Gφ(r, u), Hφ(r, u), ∂uGφ(r, u), and ∂uHφ(r, u) are strictly in u increasing functions,
we have

sup
u∈[y0−1,y0+1]

Hφ(r, u) = Hφ(r, y0 + 1) =: Hsup(r),

sup
u∈[y0−1,y0+1]

Gφ(r, u) = Gφ(r, y0 + 1) =: Gsup(r),

sup
u∈[y0−1,y0+1]

|∂uHφ(r, u)| = |∂uHφ(r, y0 + 1)| =: G′sup(r),

sup
u∈[y0−1,y0+1]

|∂uGφ(r, u)| = |∂uGφ(r, y0 + 1)| =: H ′sup(r).

We can estimate the first summand in the following way:∫ r

0

κ/2

1− s2Λ
3 −

κ
s

∫ s
0 σ

2Gφ(σ, u(σ))dσ

×
(
s(Hφ(s, u(s))−Hφ(s, v(s))) +

1

s2

∫ s

0
σ2(Gφ(σ, u(σ))−Gφ(σ, v(σ)))dσ

)
ds

≤ κ

2(1− c)
δ2

2

(
H ′sup(δ) +

1

3
G′sup(δ)

)
‖u− v‖∞,δ.

Next, we consider the second summand:∫ r

0

(
sHφ(s, v(s))− 2sΛ

3κ
+

1

s2

∫ s

0
σ2Gφ(σ, v(σ))dσ

)
×

(
κ/2

1− s2Λ
3 −

κ
s

∫ s
0 σ

2Gφ(σ, u(σ))dσ
− κ/2

1− s2Λ
3 −

κ
s

∫ s
0 σ

2Gφ(σ, v(σ))dσ

)
ds

≤
∫ r

0
s

(
Hsup(r)− 2Λ

3κ
+

1

3
Gsup(r)

)
κ2s2

6(1− 2c+ c2)
ds G′sup(r) ‖u− v‖∞,δ

≤ κ2δ4

24(1− 2c+ c2)

(
Hsup(δ)− 2Λ

3κ
+

1

3
Gsup(δ)

)
G′sup(δ) ‖u− v‖∞,δ.
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So we get in total

‖Tu− Tv‖∞,δ ≤

(
κ

4(1− c)

(
H ′sup(δ) +

1

3
G′sup(δ)

)
δ2

+
κ2

24(1− 2c+ c2)

(
Hsup(δ)− 2Λ

3κ
+

1

3
Gsup(δ)

)
G′sup(δ)δ4

)
‖u− v‖∞,δ.

If one actually wants to calculate δ one can make use of the estimate

Gφ(r, u) = c`r
2`

∫ ∞
√

1+L0/r2

φ
(
1− εe−y

)
ε2

(
ε2 −

(
1 +

L0

r2

))`+ 1
2

dε

≤ c`r2`

∫ ∞
1

φ
(
1− εe−y

)
ε2
(
ε2 − 1

)`+ 1
2 dε(A.2)

and the analogue one for Hφ to obtain a polynomial in δ.

Appendix B. Estimate of |%Λ(r)− %(r)|+ |pΛ(r)− p(r)|

The following calculation is valid for r ∈ [0, r̃∗] where we can take for granted 1− 2m(r)
r ≥ 1

9

(Buchdahl inequality, cf. [4]), 1 − r2Λ
3 −

2mΛ(r)
r ≥ 1

18 and |yΛ(r) − y(r)| ≤ |y(R0 + ∆R)|,
∆R > 0 where R0 is defined to be the (first) zero of the background solution y. Since

(B.1) |%Λ(r)− %(r)|+ |pΛ(r)− p(r)|

≤

(
sup

u∈[yΛ(r),y(r)]
|∂uGφ(r, u)|+ sup

u∈[yΛ(r),y(r)]
|∂uHφ(r, u)|

)
|yΛ(r)− y(r)|

we calculate

|yΛ(r)− y(r)| ≤
∫ r

0
|y′(s)− y′Λ(s)|ds

≤
∫ r

0

[
4π

1− s2Λ
3 −

2mΛ(s)
s︸ ︷︷ ︸

≤72π

×

(∣∣∣∣− sΛ

12π

∣∣∣∣+ s|Hφ(s, yΛ(s))−Hφ(s, y(s))|

+
1

s2

∫ s

0
σ2|Gφ(σ, yΛ(σ))−Gφ(σ, y(σ))|dσ︸ ︷︷ ︸

I1

)

+

(
sHφ(s, y(s)) +

1

s2

∫ s

0
σ2Gφ(σ, y(σ))dσ

)(
4π

1− s2Λ
3 −

2mΛ(s)
s

− 4π

1− 2m(s)
s

)
︸ ︷︷ ︸

I2

]
ds.

We estimate I1 and I2 separately:

I1 =

∫ r

0

1

s2

∫ s

0
σ2|Gφ(σ, yΛ(σ))−Gφ(σ, y(σ))|dσds

≤
∫ r

0

∫ r

0
|Gφ(σ, yΛ(σ))−Gφ(σ, y(σ))|dσds

≤ r

∫ r

0
|Gφ(σ, yΛ(σ))−Gφ(σ, y(σ))|dσ,
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I2 =
4π

1− s2Λ
3 −

2mΛ(s)
s

− 4π

1− 2m(s)
s

≤ 4π · 18 · 9 ·
(
s2Λ

3
+

8π

s

∫ s

0
σ2|Gφ(σ, yΛ(σ))−Gφ(σ, y(σ))|dσ

)
≤ 648π

(
s2Λ

3
+ 8πs

∫ s

0
|Gφ(σ, yΛ(σ))−Gφ(σ, y(σ))|dσ

)
.

So using that y is decreasing we have

|yΛ(r)− y(r)|

≤ Λ

∫ r

0

(
6s+ 216πs3

(
Hφ(r, y0) +

1

3
Gφ(r, y0)

))
ds

+72πr

∫ r

0
|Hφ(s, yΛ(s))−Hφ(s, y(s))|ds

+

(
72πr + 5184π2 r

3

3

(
Hφ(r, y0) +

1

3
Gφ(r, y0)

))∫ r

0
|Gφ(s, yΛ(s))−Gφ(s, y(s))|ds

≤ Λ

(
3r2 + 54πr4

(
Hφ(r, y0) +

1

3
Gφ(r, y0)

))
+

(
72πr + 1728π2r3

(
Hφ(r, y0) +

1

3
Gφ(r, y0)

))
×
∫ r

0
(|Hφ(s, yΛ(s))−Hφ(s, y(s))|+ |Gφ(s, yΛ(s))−Gφ(s, y(s))|)ds

≤ ΛC1(r) + C2(r)

∫ r

0
(|pΛ(s)− p(s)|+ |%Λ(s)− %(s)|) ds

The derivatives with respect to y of Gφ(r, y) and Hφ(r, y) are strictly increasing both in
r and y. And since |yΛ(r)− y(r)| ≤ |y(R0 + ∆R)| we can write(

sup
u∈[yΛ(r),y(r)]

|∂uGφ(r, u)|+ sup
u∈[yΛ(r),y(r)]

|∂uHφ(r, u)|

)
≤
∣∣∂uGφ(r̃∗, u)|y0+|y(R0+∆R)|

∣∣+
∣∣∂uHφ(r̃∗, u)|y0+|y(R0+∆R)|

∣∣ =: C3.

So we have obtained that equation (B.1) is of the form

|pΛ(s)− p(s)|+ |%Λ(s)− %(s)| ≤ C4(r)Λ + C5(r)

∫ r

0
(|pΛ(s)− p(s)|+ |%Λ(s)− %(s)|) ds

Note that C4(r) is strictly increasing. Grönwall’s inequality yields

(B.2) (|%Λ(r)− %(r)|+ |pΛ(r)− p(r)|) ≤ C4(r)e
∫ r
0 C5(r)ds = C4(r)ΛerC5(r) =: Cgh(r)Λ.

Note that Cgh(r) is increasing when r is increasing.
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[4] H. Andréasson, Sharp bounds on 2m/r of general spherically symmetric static objects,

Jour. Diff. Eq., Vol. 245, Issue 8, 2243-2266 (2008)
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Håkan Andréasson, Chalmers University of Technology and University of
Gothenburg
hand@chalmers.de

David Fajman, University of Vienna
David.Fajman@univie.ac.at

Maximilian Thaller, University of Vienna
Maximilian.Thaller@arcor.de

http://arxiv.org/abs/hep-th/9908109

	1. Introduction
	1.1. Static solutions with Vlasov matter
	1.2. Static solutions with non-vanishing cosmological constant
	1.3. Outline of the paper

	2. Preliminaries
	2.1. Setup and notations
	2.2. Relevant results
	2.3. Main equation

	3. Static, anisotropic globally regular solutions for >0
	3.1. Local existence
	3.2. Continuation criterion
	3.3. Existence beyond the non-vacuum region
	3.4. Global regular solutions for >0

	4. Static, anisotropic, globally regular solutions for <0
	4.1. Local existence
	4.2. Globally regular solutions for <0

	5. Solutions with a Schwarzschild singularity at the center
	5.1. Matter shells immersed in Schwarzschild-deSitter spacetime
	5.2. Matter shells immersed in Schwarzschild-AdS spacetimes

	6. Solutions on RS3 and RS2R
	Appendix A. Proof that T acts as a contraction
	Appendix B. Estimate of |(r)-(r)|+|p(r)-p(r)|
	References

