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INVERTING A MATRIX FUNCTION AROUND A SINGULARITY
VIA LOCAL RANK FACTORIZATION*

MASSIMO FRANCHIT AND PAOLO PARUOLO?

Abstract. This paper proposes a recursive procedure, called the extended local rank factor-
ization (ELRF), that characterizes the order of the pole and the coefficients of the Laurent series
representation of the inverse of a regular analytic matrix function around a given point. The ELRF
consists in performing a finite sequence of rank factorizations of matrices of nonincreasing dimen-
sion, at most equal to the dimension of the original matrix function. Each step of the sequence is
associated with a reduced rank condition, while the termination of the ELRF corresponds to a full
rank condition; this last step reveals the order of the pole. The Laurent coefficients B, are calcu-
lated recursively as Bn = Cn + >_1_| D Bp_j, where Cr, Dy, have simple closed form expressions
in terms of the quantities generated by the ELRF. It is also shown that the ELRF characterizes the
structure of Jordan pairs, Jordan chains, and the local Smith form. The procedure is easily cast in
an algorithmic form, and a MATLAB implementation script is provided. It is further found that
the ELRF coincides with the complete reduction process (CRP) in Avrachenkov, Haviv, and Howlett
[SIAM J. Matriz Anal. Appl., 22 (2001), pp. 1175-1189]. Using this connection, the results on the
ELRF provide both an explicit recursive formula for By, implied by the CRP, and the link between the
CRP and the structure of the local Smith form.
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1. Introduction. Consider a regular analytic matrix function A(z) defined on
an open set U C C, and let

(1.1) A(z) =) An(z—20)", An €CPP, Ay #0, z€U,
n=0

be its representation around the point zp € U. Assume that A(zp) = Ay is singular,
and let the Laurent representation of the inverse of A(z) be

(1.2) A() ™' =) Bu(z—2)""™", By #0.
n=0

This paper discusses a recursive procedure to determine the order of the pole of A(z)~*
at zg, m, and the Laurent coefficients, { B, }52, given the coefficients of the original
matrix function, {A,}52,.

A classical approach to characterizing the relation between (1.1) and (1.2) is via
the local spectral theory, based on the concepts of root functions, Jordan chains,
and the local Smith form; see [5, 12, 13, 17]. The case of matrix polynomials is an
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important special case; see [14, 15, 16, 28, 29, 31, 32] and [11, 30, 34, 36] for matrix
polynomials of degree one. The tools derived from the local spectral theory are used
in the study of similarity of matrices [11, 30, 34], for the solutions of systems of
differential equations [15, 16], and in linear control theory [4, 22, 27|, as well as in
time series econometrics [7, 8, 9, 19, 26, 35]. The same tools are also employed in
numerical algorithms, such as those in [37, 38], for calculating the global Smith form
of matrix polynomials and the Laurent representation of the inverse.

Another approach to the calculation of the Laurent coefficients B,, was proposed
in [3] (see also [23]) and begins by writing the identity A(2)A(z)~! = I as the following
linear system in the A,, B, matrices:

ApBy =0,
A()Bl + AlBO = O,

(1.3) AoBp-1+ -+ Am-1Bo =0,
AoBp + A1 B+ -+ A By =1,
AoBpy1 + AiBy 4+ A1 Bo =0,

In the following, equations in system (1.3) are indexed according to the highest value
of the subscript of B,,; for instance, AgBy = 0 is referred to as equation 0. Note that
the identity appears in equation m, which is the order of the pole.

In [3], the A, matrices (or reduced versions of them) are stacked into appropriate
augmented matrices, and the resulting system is solved for the Laurent coefficients
B,,. Because the system (1.3) is singular, its direct solution involves the computation
of a (Moore-Penrose) generalized inverse of dimension mp. Building on the results of
[22] and on the reduction technique developed in [20, 21], the authors of [3] further
propose a reduction process of system (1.3) based on its singularity. This process can
be applied once, giving rise to a one-step reduction process or, recursively, yielding
the so-called complete reduction process (CRP).

The CRP is expected to have numerical advantages with respect to the one-step
reduction process because it exploits further singularities, although an explicit formula
for the resulting Laurent coefficients is not available for the CRP. In addition, the CRP
also delivers the order of the pole. If one applies the direct solution or the one-step
reduction, the order of the pole must be predetermined, for example using the rank
test in [33]. The book [2] contains a thorough treatment of this approach and its
extensions; see, e.g., [1] for the case of operator pencils on Banach spaces.

The present paper exploits rank restrictions in (1.3), which are used to rank-
decompose some relevant matrices of small dimension (less than or equal to p), ob-
taining two new (block-)orthogonal bases. This allows one to define a relevant set of
projections of the B, coefficients, for which explicit (recursive) formulae are found;
the latter solutions are then rearranged into the general expression

By=Cn+) DiBuk, 020,
k=1

where C,,, Dy have simple closed form expressions. For a pole of order m, there are
m + 1 rank conditions: the first m are reduced rank restrictions, and the last one is
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a full rank condition, and this gives a way to calculate the order of the pole. This
procedure is called the extended local rank factorization (ELRF), being an extension
of the local rank factorization (LRF) proposed in [10].

The spirit of the ELRF is thus similar to that of Theorem 5 in [22] and also to the
rank test in [33], where the order of the pole is established recursively by checking
the rank of a sequence of matrices until a full rank condition is satisfied. The main
difference is that instead of working on stacked system matrices whose dimension
increases with m, the present approach works on matrices whose dimension is at most
equal to the dimension of the original matrix function, p, and that decreases with m.

The sequence of rank factorizations is further shown to deliver the partial multi-
plicities and the number of partial multiplicities of a given value, i.e., the local Smith
form, and to provide a construction of an extended canonical system of root functions
of A(z) at z9. In this way, the structure of a Jordan pair is fully characterized and full
information on Jordan chains is available. These theoretical results are translated into
an algorithmic form, and a MATLAB script that implements the ELRF is provided in
the supplementary material (99983_01.pdf [local/web 162KB]), which is linked from
the main article webpage.

The connections with the CRP in [3] are discussed, and it is shown that the CRP
coincides with the ELRF. Via this equivalence, the characteristics of the CRP are linked
to the structure of the local Smith form and it is shown that the number of reductions
in the CRP is equal to the number of distinct nonzero partial multiplicities and each
reduction step decreases the dimension of the coeflicients by the number of partial
multiplicities that are equal to a given value.

The rest of the paper is organized as follows. Section 2 motivates the techniques
used in the paper via an illustration on poles of orders one and two; section 3 contains
the general formulation and results; section 4 discusses the connections with the local
Smith form, the extended canonical system of root functions, Jordan chains, and
Jordan pairs; section 5 presents the algorithmic implementation of the ELRF and
its relation to the CRP in [3]; section 6 discusses the computational complexity of
the algorithm; section 7 illustrates the results via a numerical example; and section 8
concludes. The supplementary material contains the MATLAB script that implements
the ELRF.

2. Motivation. This section motivates and illustrates the technique presented
in the paper by discussing the cases of poles of orders one and two; the general
formulation is presented in section 3. In particular, the cases considered in this
section make it clear how the sequence of rank factorizations can be used to define a
new block-orthogonal basis, which is then employed to decompose B,, into relevant
projections.

The techniques presented in the paper make repeated use of rank factorizations
and projections, whose notation is introduced here: given a p X p matrix ¢ of rank
0 < r < p, its rank factorization is written as p = —af’, where « and 8 are p x r full
column rank matrices that span the column space (col p) and the row space (col¢’)
of ¢, respectively; the negative sign is chosen for convenience in the calculations.
The matrix ¢, denotes a p x (p — r) full column rank matrix that spans col™’ ¢,
the orthogonal complement of colp = cola. The orthogonal projection matrix onto
colp is denoted by P, = aa’ = ad’, where @ := a(a’a)™!, and it has rank r;
P, =I-P,=a,d| = a1d of rank p — r is the orthogonal projection matrix
onto colt . Similarly, for col¢’, one can define Pz and Pg, . When r =0, i.e., ¢ =0,
oneletsa=f=a=F=0anda; =p, =a; =S, =I1. When r = p, i.e., ¢ is of
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full rank, one can take either v or 5 equal to I and let o, =8, =a, = 81 =0.
Before considering the special cases of poles of orders m = 1,2, some general
observations are presented. Recall that the equations in (1.3) are referred to according
to the appropriate order index 0,1, . ... Consider equation 0 in (1.3) and observe that,
because Ay # 0 is singular, it can be rank-decomposed as Ay = —ap/3), where ag
and Sy have rank 0 < 7o := rank Ay < p. This implies that the associated projection
matrices Py, Po,, and Pg,, Pg,, are all different from 0. Note that equation 0 implies

BoBo = 0 so that
(2.1) By = Pg,Bo + Ps,, Bo = Pg,, Bo

can be substituted in (1.3).

Next, replacing Ag = —ap ) in a generic equation n in (1.3) and using Kronecker’s
delta d,, , (defined as 0y, m =1 and dy, = 0 otherwise), one can rewrite equation
n as

(2.2) a0B)Bn =  AxBn_k — dpml.
k=1

n

Note that (2.2) implies 3,B, = & Y1 AxBn—k — dn,m@( and hence

PgsyBr, = Boay, Z ApBn_k — 6n.mBody-
=1

This shows that equation n gives information on Pg,5,, but not on the complementary
part Pg,, B,. Because B,, does not appear in equations 0 to n — 1, this information
must necessarily come from the subsequent equations. The next two subsections show
what happens in the cases m =1 or 2.

2.1. Pole of order 1. In case m =1, system (1.3) reads as

_0405630 = 07
(23) —a0ﬁ631 + Alpﬁ(u By =1,
—apB\B2 + A1B1 + A3 Ps,, By = 0,

Here it is shown that all the information on Pg,, By is found in equation 1. In fact,
premultiply equation 1 by P,,, to find that
(2.4) (POtoJ_AlpﬁoJ_ )Bo = P,

QoL *

Because rank P,,, = rank Pg,, = p — rg, one has rank(P,,, A1Pg,, ) < p — 19, and
hence (2.4) is consistent if and only if P,,, A1 Pg,, has maximal rank p —ry. Because
Puy A1Ps,, = aorag, Ai1fo1 ), the maximal rank condition rank(Pn,, A1Ps,, ) =

p — ro is equivalent to the full rank condition
(2.5) ry =71, where 71 :=rankag, 411 and P :i=p—ry,

and of) | A1 is a square matrix of dimension r***. This corresponds to the condi-
tion in Theorem 3 of [22] and to Theorem 4.1 in [24].
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Note that in this case the full rank condition (2.5) implies that the rank factor-
ization ag, A1501 = —&in} is such that & and n; are square nonsingular matrices of
max.

dimension 7{"***; note also that, by premultiplying ap, A1for = =&, by & and
postmultiplying it by £, , the rank factorization can be written as

(26) PagLAIP,BgL = —Oélﬁi, where a1 :=@a@p & and [y := BQJ_’I]l.
Thanks to the full rank condition (2.5), one then has
(2.7) col(ap, aq) = col(Bo, p1) = CP

because (i) ag and oy are orthogonal by construction, (ii) each of them has full column
rank, and (iii) the sum of their number of columns ro+r; equals p. A similar argument
holds for By, B1. This implies

P,, =P, P3, = Pg,,, andhence I[=P, + P, =P, + Ps,.

oL

Using (2.6), one can rewrite (2.4) as —a1 31 By = Pa,, which implies 8] By = —a
and Pg, By = —f1&]; hence

By = Pg, By = —B1d}.

Summing up, when m = 1, equation 1 contains all the information on Pg,, By, and
thus one can solve for By using equations 0 and 1 only. This is in line with Theorem 1
in [3], which states that m + 1 equations are needed to calculate B,, given knowledge
of Bo, ey anl'

Similarly, it can be shown that the information on the second Laurent coefficient
By comes from equations 1 and 2. In fact, consider B; and decompose it into its
projections on col By and col A1, i.e., By = Pg,B; + P, B1. From equation 1 one finds
that ByB1 = a((A1 By — I), and hence one has

(2.8) Ps, By = Boalh(A1By — I).
Information on Pg, B; is obtained by premultiplying equation 2 by F,, to find that
—Po, A1 B1 = Po, A2 By. Inserting I = Pg, + P, between A; and B; and using (2.6),
one has OflﬁiBl = Poq (AQBO + AlpﬂoBl)- Substituting Pﬁo?l = ﬁo@é(AlBQ — I)
from (2.8) in the last expression and defining A, 1 := Ay + A1 Bo@y A1, one then finds
that
(29) OflﬁiBl = PalAQ,lBO — PoquBO@/O-
This implies 3] By = &} (As1Bo — A1B80a}) and hence
(210) P,Bl By = 3107/1 (Ag)lBo — Alﬁodg).
Substituting (2.8) and (2.10) in By = Pg,B1 + P, B1, one finds that

By = Cy + D1 By,
where Oy 1= —Boaf — f1a} A1 ol and Dy := Boah Ay + B1& Az 1. This shows that
when m = 1 one can solve for B; using equations 1 and 2 and the previous expression

for By. Similarly, for each n one can write B,, = Pg, B, + Pg, By, and solve equation
n for P, B, and equation n 4 1 for Pg, B,,, using knowledge of By, ..., By_1.
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The above illustrates the role of the “full rank condition”, equivalently stated as
the maximal rank of P,,, A1Pg,, or the full rank of af, | Ai18o.1 (ie., 71 = "), or as
col(ap, 1) = col(fBy, f1) = CP, where the latter and block-orthogonality of the bases
imply the projection identities I = Py, + P,, = Pg, + Ps,; see (2.4), (2.5), and (2.7).
Note that this full rank condition applies to equation 1 due to the presence of I on the
right-hand side (RHS), corresponding to the order of the pole m = 1. More generally,
for a pole of order m, the full rank condition applies to equation m, and this gives a
way of finding the order of the pole by checking the full rank condition, as shown in
section 3.

2.2. Pole of order 2. In case m = 2, system (1.3) reads as

—aofyBo = 0,

(2.11) — o) By + A1 Ps,, By =0,
—apByB2 + A1B1 + A3 Ps,, By = 1,

—apByBs + A1Bs + A2 By + AsPs,, By =0,

Proceeding as above in equation 1, one finds that
(2.12) (Pay, A1Ps,, )Bo =0,

i.e., using the rank factorization (2.6), —a;18{Bo = 0, which implies 8; By = 0 and
Pg, By = 0. If ry = r"®*, one would have (2.7) and hence By = 0, which in the present
case m = 2 would give a contradiction. This means that when m > 1 the following
reduced rank condition must hold:

max

(2.13) ry <" where 71 :=rankag, A1f1 and P :i=p—ry,

and in this case the rank factorization of A1501 = —&in), or equivalently (2.6),
involves a reduction of rank. Note that here &, n; are r*** x r; matrices and col o,
col 81 are ri-dimensional subspaces of col i, col Sy, respectively.

Letting a2 := (o, 1) and be := (5o, 51), one has colag; = col(ag, a2 ) and
col 8o = col(B1, ba1 ), where as (respectively, ba ) ) spans the (p—ro—r1)-dimensional
complementary subspace of colag, (respectively, col By ) not generated by a;q (re-
spectively, $1). Hence in this case one needs to decompose the Laurent coefficients
in more than two projections; in particular, note that using I = P,, + Pa, + Pa,, =
Pﬁo + Pﬁl + szi_, one has B,, = Pgan + Pﬁan + Png_Bn-

For n = 0, one finds that By = P, Bo. In fact, P3,Bo = 0 holds from equation
0 and Pg, By = 0 holds from equation 1 because a131By = 0 (see (2.12)) implies
Pg, By = 0. Information on P, By is found by premultiplying equation 2 by P,,, to
find that P, A1B1 + Pyo,, A2Ps,, Bo = Py, ; inserting I = P, + Pg,, between A;
and B; and using (2.6), one then finds that

(214) —alﬁiBl + POt()L AlP,BOBl + ]Do[(u AQP{DLBQ = Pa(u.

Observe that equation 1 implies 8)B1 = &) A1 Py,, Bo, i.e., P, B1 = Boa\ A1 Py, , Bo;
hence premultiplying (2.14) by P,,, and rearranging, one finds that

(215) (PazJ.

Ay 1Py, )Bo =P,

az|

A271 = AQ + AlBO@Z)Al-
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This equation has the same format of (2.4), and the same reasoning applies: because
rank P,,, = rankP,, = p —ro — r1, one has rank(P,, As1P,, ) < p—ro — 11,
and hence (2.15) is consistent if and only if P,,, A3 1P, has maximal rank p —

ro — r1. Because Py, Ay 1Py, = a2, (ab, As1bai )bl , the maximal rank condition
rank(P,,, A21F,, ) =p —ro — 1 is equivalent to the full rank condition

(2.16)  ro =1y, where ry:=rankab As1by; and r5*:=p—ro—ry,

and a) | As1bay is a square matrix of dimension r5***. This corresponds to Theorem
3 in [25].

Note that in this case the full rank condition (2.16) implies that the rank factor-
ization a’2J_A2,1b21_ = —&m)j is such that & and 79 are square nonsingular matrices
of dimension 75*; observe also that, by premultiplying a), A2 1boy = —&amh by G2
and postmultiplying it by b} | , the rank factorization can be written as

Paﬁ_ Ag)lpbﬁ_ = —Oézﬁé, where oo = ELQL&Q and (o := Z)ang.
Thanks to the full rank condition (2.16), one then has
(2.17) col(ap, a1, az) = col(Bo, B1, B2) = CP

because (i) ap, a1, as are orthogonal by construction, (ii) each of them has full column
rank, and (iii) the sum of their number of columns ro + r1 + ro equals p. A similar
argument holds for By, 81, B2.! This implies

Py, =P, , Ps, =P, , andhence I=PF,, + Py, + Py, = Pg, + P3, + Pg,.

Using P,,A21P3, = —asfh, one can then rewrite (2.15) as —ag84By = P,
which implies 85By = —a4 and Pg, By = —f2&5. Hence

By = Pg, By = —Badl.

Summing up, when m = 2 there are three rank conditions: (i) Ay = —apf), the
first reduced rank condition; (ii) (2.13), the second reduced rank condition; (iii) the
full rank condition (2.16). The meaning of this sequence of rank conditions can be
described as follows: (i) establishes that m > 0; (ii) establishes that m > 1; (iii)
establishes that m = 2.

As shown in section 3 below, this is true in general: for a pole of order m there are
m++1 rank conditions; the first j = 1,..., m are reduced rank conditions that establish
that the order of the pole is greater than j—1, and the last one is the full rank condition
that proves that the order of the pole is exactly m. These rank factorizations deliver
two new bases of CP, namely («o, . .., ) and (Bo, - . ., Bm), with mutually orthogonal
components; this gives rise to the projection identities I = Z;‘n:o P, = E;n:o Pg,.
Each Laurent coefficient B,, can then be decomposed into the sum of m+1 components
By, = P3yBp + -+ + Pg,, B,,. Equation j +n of (1.3) is solved for component Pg, B,
in terms of B,_1,..., Bg. The results are then rearranged and expressed recursively
as B, = C,, + EZ:I Dy B, i, where C,, Dy have simple closed form expressions in
terms of the matrices defined by the rank factorizations. This is the structure of the
results at the heart of the ELRF presented in the following sections.

lIndeed, a1 and B can be 0; see Remark 3.2 below.
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3. Laurent coefficients. This section contains the main results. Lemma 3.1
presents a rewriting of a generic equation in system (1.3) that is at the basis of the
ELRF; Theorem 3.3 provides the expression for a projection of a Laurent coefficient in
terms of the previous Laurent coefficients; Theorem 3.4 relates the rank conditions in
system (1.3) with the order of the pole of the inverse; finally, Theorem 3.5 provides
the recursive formula for the Laurent coefficients.

Results are based on the following lemma, which is proved by manipulating the
identity A(z)A(z)~! = I written in system form as in (1.3). Recall that P, indicates
the orthogonal projection matrix onto col ¢ and P, , denotes the orthogonal projection
matrix onto col™ ¢; further, let @ := p(¢'¢) " and set @ = 0 when ¢ = 0.

Recall that in this paper it is assumed that A(zg) = Ao # 0 is singular, say of
rank 0 < rg < p. The following lemma defines a sequence of rank factorizations that
is later shown to be relevant for the inversion of A(z) at z = zo.

LEMMA 3.1 (Extended local rank factorization of system (1.3)). Consider the
rank factorization Ay = —apf)y and let oy, B, j = 1,2,..., be defined by the rank
factorization

(3.1) P, AjuPy,, = —a;f3;, aj = (ag, ..., 1), bj == (Bo,---,Bj-1),

where Ag i, is defined by the recursions

Ay, fors=1
3.2 Ag g = _9 = )
(32) i { As—1k+1+As—1 ij BidiAiz1,  otherwise.
Then equation n > j =0,1,... in system (1.3) can be written as
n—j
(3.3) ;B Bn—j = Pa,, Ajr16Bn—jk + Pa;, Cjr1n—j,
k=1

where Cs 1 is defined by the recursions

—6p,ml fors =1,
(34) Cok := { Co1 k1 +As_101 Zf;g BiaCit1,,  otherwise.

Proof. The proof is reached by induction. For j = 0, (3.3) reads as oS\ B, =
Poo, S ki A1 kBn—k + Pay, Cin; by definition, Ay, = Ag, Ci,n = —06n,m!, and
ap = bp = 0, which implies P,,, = P,, = I. Hence (3.3) for j = 0 coincides with
(2.2). Next assume that (3.3) holds for j = 0,...,¢ — 1 for some ¢ > 1; one wishes
to show that it also holds for j = ¢. Write (3.3) for j = ¢ — 1, ay—18)_1Brn—r41 =

—0+1 .
P, . Z:1+ AppBn—t41-k + Pa,_,, Con—o41, premultiply by P,,, and rearrange

terms to find that

n—~

(3.5) 0=P,, A¢1Bn_v+ P,,, Z Apps1Bn—t—ip + Pa,  Con—v41 :=U +V,
=1

where ag := (ao,...,0¢-1), U := Py, A¢,1Bn—¢, and V is defined consequently. Next,
let be := (Bo,...,Be—1) and use projections, inserting I = Py, + P,,, between Ay
and B,,_, in U; one finds that

U = PaU_AZ,lpbu_Bn—Z + Pau_Al,lpb[Bn—E = Ul + U2'
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Substituting Py, = Pg, + -+ + Ps,_,, one has Uy = P,, | As1 Zl o Ps,Bn—¢; by the
induction assumption,
P3,B,_; = B, Z Ai1 kBn—o—r + Bia;Ci1 n—e,
k=1

which is derived from (3.3) replacing n with n — ¢+ j and j with ¢. Substituting in
Us, one finds that

-1

= auZ<A51ZﬁZOéA1+1k> n—t—k + auAuZﬁzOz Cit1n—r;

1=0

hence using (3.2) and (3.4), one has Us+V = P, Y 1_] A£+1 Brn—t—k+Pa, Cot1,n—t
so that substituting the rank factorization P,,, A¢1P,, = —apf, in Uy and rearrang-
ing terms, (3.5) is rewritten as

n—~{
BByt = Pa,, ZA£+1 kBrn—t—k + Pa,, Cry1n—r-
k=1
This shows that (3.3) holds for j = ¢. 0

Remark 3.2 (o and B;). Because rank P,;, Aj 1P, = ranka; A;1bj1, one
can replace (3.1) with the rank factorization

a;‘LAj,lij_ = —fjn;, aj; = (ao,...,aj,l),
(36) Qj 1= ijJ_fj, bj = (ﬁo, R ,ﬂjfl), ﬂj = 017;-
This shows that the rank factorizations can be performed on matrices of nonincreasing
dimensions, all less than or equal to p. In the following, let r; := rank aj  Ajabjo

indicate the rank of the jth rank factorization and r*** :=p — ZZ _o Ti its maximal
value.

It is possible that aj, 85, 7 = 1,2,..., in (3.1) have rank r; equal to 0. In this
case, both sides of (3.1) are equal to 0. Note also that, as j increases, cola; and col b;
are nondecreasing and eventually coincide with CP for some j = s; for subsequent
values of j, j > s, the left-hand side (LHS) of (3.1) is equal to 0, because the relevant
orthogonal complements have dimension 0, and hence all subsequent «;, 8; are equal
to 0.

Finally, observe that 3, is by construction orthogonal to g; for j = 0,...,s—1,1i.e.,
BLB; = 0; as a result, all 8;’s are mutually orthogonal. A similar block-orthogonality
holds for ajs. This fact is indicated in the following saying that {«;} and {f;} are
block-orthogonal sets of matrices.

Replacing n — j with n in (3.3), one can equivalently write equation n + j in
system (1.3) as

(3.7) ;B Bn = Pa,, Z Ajr1,6Bn—k + Pa;, Ciim;
k=1

this has the same format as (2.2) and implies that 8B, = @} Y ;_; Ajr1xBn i +
@;Cj+1,n, and hence one has proved the following result.
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THEOREM 3.3 (Projection of Laurent coefficients). One has for any j

(3.8) Pg,Bp = B;a; Y Aji1kBn i+ B;6;Cj11m.
k=1

When «;, §; are 0, (3.8) gives simply 0 = 0; hence the interesting cases are for
aj, B; different from 0. Observe also that in (3.8) the projection Pg, B,, is expressed
in terms of By_1,..., By and the quantities defined in (3.2), (3.4), and (3.6).

Next, one can show that the rank factorizations in (3.6) deliver complete bases of
CP, namely (ap, ..., as) and (B, ..., [Hs), when s = m; this ensures that E;nzo P, =
Z;n:() Pg; = I hold. Each Laurent coefficient B,, can thus be expressed as the sum
of m + 1 orthogonal projections, B, = Pg,B,, + --- + P3,, By, and subsequently
reconstructed using (3.8). In what follows, N = {1,2,...} is the set of positive
integers.

THEOREM 3.4 (Rank conditions and order of the pole). The following statements
are equivalent:

(i) A(2)™! has a pole of order m, with m € N, at z;

.. ‘ _ 0 forj=0,1,....m—1,
B9 ) (PuAnmaB={ p I0

r; <P (reduced rank condition) for j =0,1,...,m — 1,
(3.10) (i) { max  (full rank condition) for j = m;

T =T

(3.11)  (iv) col(a, . .., ) = col(Bo, ..., Bm) = CP.

Condition (iv), together with the block-orthogonality of {c;} and {f;}, implies the

projection identities
m m
I=> P, =) Ps.
j=0 j=0

Proof. (i) = (ii). Using (3.7), write equation j in system (1.3) as o;8;Bo =
Pa,, Cji1,0; applying definition (3.4), it is straightforward to verify that

_ 0 fors+k<m+1,

(3.12) Cok = { —I fors+k=m+1,

which implies (3.9) via (3.1).

(ii) = (i). (3.9) implies that the identity is on the RHS of equation m in (1.3),
which shows that the order of the pole of the inverse is equal to m.

(ii) = (iii). Substituting (3.1) in (3.9) one finds

0 for j=0,1,...,m—1,

. /. —
—a;f;Bo { P, for j =m,

Am 1|
which implies Pg, By = 0 for j = 0,1,...,m — 1. If the full rank condition in (3.10)
held for some j = s < m, one would have I = Pg, +-- -4 P3, and hence By = 0, which
would give a contradiction. This shows that for j = 1,...,m —1, r; must be less than
T i.e., the sequence of reduced rank conditions in (3.9) holds. For j = m, because

=rank P, |, =, one has rank(P,,  Am 1P, ) < rm®* and from (3.9)

rank P, |
one finds that P, , Am 155, , has maximal rank r**; this proves (3.10).

m L
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(iii) = (ii). Rewrite the LHS of equation j in (1.3) as a; 3} Bo as above. The RHS
of this rewriting of equation j is either of rank 7"** or of rank 0. When r; < r**¥,
the RHS of equation j needs to be 0, and this happens for j < m. When r; = r"**,
one must have hit the equation in (1.3) with the identity on the RHS; this happens
when j = m. This implies (3.9).

(iii) = (iv). By the definition of r2®* one has Z;nzo r; = p; moreover, because
{B;} arelinearly independent due to block-orthogonality, this implies (3.11). A similar
proof applies replacing {8;} with {a;}.

(iv) = (iii). If col(Bo, ..., Bm) = CP, then 377" r; = p, which implies (3.10). O

Theorems 3.3 and 3.4 allow one to build the recursive formula for the Laurent
coefficients, as shown by the following result.

THEOREM 3.5 (Laurent coefficients via extended local rank factorization). The
Laurent coefficients satisfy the recursion

(313) Bn=Cn+> DiBnx, Cni=> Bia;Cis1n, Di:=Y_ BiajAj 1,
k=1 j=0 Jj=0
where Agy, Csyi are defined in (3.2), (3.4) and aj,B; in (3.6); note that Co =
—Bma,.

Proof. Using (3.11), one has B, = >_7" Pg,By; substituting (3.8) in the last
expression and rearranging, one finds (3.13). O

COROLLARY 3.6 (Simplifications of the Laurent coefficients). One can rewrite
(3.13) as

—Bmal, ifn=0,
(314) B,=1 Co+>{_1DpBni ifl<n<m, g =: min(n, deg A(2)).
> DpBpk otherwise,

When A(z) is a matriz function, i.e., deg A(z) = oo, the sums in (3.14) involve n
terms; when A(z) is a matriz polynomial, i.e., deg A(z) < oo, those sums involve at
most deg A(z) terms.

Proof. As a direct consequence of (3.12), applying the definition of C,, in (3.13)
one finds that Cy = —f,a,. Moreover, note that if A(z) is a matrix polynomial of
degree d, i.e., Ay = 0 for k > d, then definition (3.2) implies A;, = 0 for k > d,
which yields Cs = 0 for £ > d and hence C,, = 0 for n > d + 1. Finally, observe
that definition (3.4) implies Cs = 0 for k£ > m, which yields C,, = 0 for n > m + 1.
Collecting these facts together, one can rewrite (3.13) as (3.14). O

4. Local Smith form, extended canonical system of root functions, and
Jordan pairs. This section links {«;, 8;,7;, Ajx} with the local Smith form of A(z)
at zp, its extended canonical systems of root functions, and Jordan pairs; see [13]
for their definitions. In particular, it is shown that the values of j with r; > 0
provide the distinct partial multiplicities of A(z) at zo and r; gives the number of
partial multiplicities that are equal to a given j. Three main results are presented:
Theorems 4.2 and 4.3 provide a characterization of the local Smith form of A(z) at
zp and a construction of an extended canonical system of root functions. As a direct
consequence of them, Corollary 4.4 provides a construction of Jordan pairs of A(z)
at zg.

The following notation is instrumental to state these results.
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DEFINITION 4.1 (Index sets J, Jy, and K). Let J := (j : r; > 0) be the ordered
set that contains the d := #J indexes j that correspond to nonzero ranks r;. Indicate
the elements of J by (j1,jo2,.-.,jd), and fix the reverse ordering m = j1 > jo > -+ >
Jd—1 > ja = 0. Next, let J4 be the ordered set that contains only the positive elements
of J, i.e.,

j+ = (_] e J: _] > 0) = (jl,jz,.. .,jd_l).

Finally, let KC be the ordered set that contains each j € Ji repeated r; times and
indicate its elements by (k1,ka, ... kp—r,) ==K, t.e.,

IC:Z (jl,...,jl,jg,...,jg,...,jdfl,...,jdfl)
T, times Tj, times Tjq_q times
= (Rryeee kg Kyt by s iz e k).
equal to j1 equal to ja equal to jq_1

Note that J = (J+,0) and that the index set J contains at least one element
(equal to m) and at most m elements, Jy = (m,m—1,...,1),i.e.,1 <d—1<m. The
index set K contains ) . 7 r; = p—ro elements. In the following, (a;);cs indicates
(@m, - ..,a0) and diag(a;);es indicates a block diagonal matrix with am,, ..., ag on
the main diagonal.

THEOREM 4.2 (Local Smith form and an extended canonical system of root func-
tions). Define the p x r; matric function

m—j—1
(4.1) v(z) = (5; —al Y Ajak(z— Zo)k> ,  JjeJ,
k=1
and the p X p matriz functions
Ym(2)
I'(2) = (7(2)jes = : ;
Y0(2)’
('Z - ZO)mITm,

(4.2) A(z) := diag((z — 20)’ I, ) jes =
(z — 20)°L,

Then
(4.3)  A(2)®(z) = ®(2)A(z), @(2):=TD(z)"", det®(z0) #0, detD(z) #0;

i.e., A(z) is the local Smith form of A(z) at zo, and ®(2) is an extended canonical
system of root functions of A(z) at 2.

Proof. The proof proceeds as follows: first one shows that

(4.4) () A()T = (2 = 20) 77i(2), JET, Fjlz) #0,

where ~;(z) is as defined in (4.1). Then one can rewrite (4.4) as I'(2)A(z)"! =
A(2)7'T'(z), where T'(2), A(z) are defined in (4.2) and T'(z) := (3;(2))jc 7, and finally

one can show that I'(2g),I'(z0) are nonsingular. This implies that A(z)['(z)~! =
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I'(z)"1A(z), and hence (4.3) holds. Thus (see Theorems 1.2 and 1.3 in [13]), A(2) is
the local Smith form of A(z) at zp and ®(z) is an extended system of root functions
of A(z) at zp.

One hence starts by proving (4.4); write (1.2) as

m—j—1
A(Z)71 = Bo(z—20)7m+ Z Bn(Z—ZQ)n7m+(Z—Zo)ino(Z), RQ(ZQ) = Bm,j,

n=1

and premultiply it by 3} to find that

—j=
BjA(z)~" = B;Bo(z — 20)~ Z (z—20)""" + (2 — 20) 7 Bj Ro(2).

First, consider j # m. From (3.14) one has By = —B,,a}, and hence ;B = 0; then

—j=
(4.5)  BLA( Z (z—20)""™ + (2 — 20) B Ro(2) = U(z) + V(2),
where U(z) is the first sum after the equal sign and
(4.6) BBn=0a} Y Ajj1kBnk+a;Cip1n

k=1

follows from (3.7). Observe that forn=1,...,m —j—1 one has j+ 1 +n < m, and
hence Cji1,, = 0 follows from (3.12); substituting (4.6) and rearranging terms, one
can rewrite U(z) as

m—j—1

Z < J Z A]Jrl an k) (Z - ZO)n_m

m—j—1 m—j
—/ § :
:04] J+1k< BnkZ—ZQ)n m).
1

k=

Next, multiply (1.2) by (z — 20)* and write it as

(z—20)FA(z) "t = < _Z:_ B,_k(z — zo)"_m> +(2—20) 7 R(2), Ri(20) = Bm—j—k;
then

U(z) = <Oé;- Z Ajrk(z — Zo)k> A(z)™H = (2 = 20) 7@ Z Ajr1kRe(2),
k=

k=1 1
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and (4.5) is rewritten as

1i(2) A(x) 7! = (2 = 20)7IF5(2),
where «;(z) is defined in (4.1) and

/

Ajy1,kRi( )) :

m—j—1

Jj—
k=1

7i(z) = <5 Ro(z

Note that

/

Aj+1,kBm—j—k> )

m—j—1
k=1

where the last expression follows from Ry (z9) = Bm—j—x. Now consider (3.3) for
n = m and write

Yi(20) = B85, Fi(20) = (ﬁ;Bm—j —a

m—j
_ _/

| = @] Ajr1,kBm—j—k + 0;Cj41,m—j;

-1

because Cji1m—j = —I (see (3.12)), one then finds that

=

i(20)' = & Aj1,m—j Bo — @ = — & Aji1,m—j B, — &,
where the last expression follows from By = —f3,,,&,,. This implies ¥;(z0)'o; = —1I,,,
and thus it proves that (4.4) holds for j # m.
Now consider j = m. From (3.14) one has 3/,,By = —a,, # 0 and hence

Ym(2) A(2)™Y = (2 — 20) "™ Am(2)’, where v, (2) = B and Y (20) = —@m # 0.
This completes the proof of (4.4). Finally, one can show that I'(z), (o) are non-
singular. Because I'(z9) = (8;)’;c 7, the first statement follows from (3.11). Because
¥j(20) aj = =1, and ¥;(20) ', =0 for h < j € 7, ['(20)(a;) e is a lower triangular
matrix with identities on the main diagonal, and hence it is nonsingular. Because
(aj)jes is nonsingular (see (3.11)), the same holds for I'(zo). 0

Theorem 4.2 links the rank structure of A(z) at zg, derived in Lemma 3.1 and
Theorem 3.4, to the local spectral characteristics of A(z) at zg. In particular, it de-
livers the structure of the local Smith form, A(z), and provides an extended canonical
system of root functions, ®(z). From A(z) in (4.2) one sees that the distinct partial
multiplicities of A(z) at zo are equal to the elements of J and further that there are
exactly r; partial multiplicities for each j € J. Note that J, contains the nonzero
partial multiplicities; information on them is also presented in the index set K, which
lists them with the corresponding repetitions. That is, full information on the orders
and the number of root functions of the same nonzero order in an extended canonical
system is available given K.

The next result expresses the coefficients of ®(z) in terms of {«;j, 85,7, 4k}

THEOREM 4.3 (Coeflicients of the extended canonical system of root functions).
Write ®(z) in (4.2) as D(z) = > 07 Pn(z — 20)"; then

min(n,m—1)

(4.7) o= (Bj)jess ®n= Y.  Dmps®uk, n>1,
k=1

m—k—1
where Dy, i == Zj 0 Bja Ajti k-
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Proof. From (4.1) one has that the degree of v;(z) is m — j — 1, and thus I'(2) in
(4.2) has degree m — 1. Writing I'(2) =Ty — 21:_11 I'x(z — 20)*, one then has

/8/
1“0:(5,)’, = : T = 0
J/jeT . ’ \Ijk )
Bo
Q1 Am—to b
Up = (Af1 0 )jeg, = : :
646A17k
where J := {j € J : j < m —k — 1} and in the last equality it is assumed that

m — k — 1 belongs to J.
Using the identity I'(z)®(z) = I, one finds that

min(n,m—1)
®o=Tg", @ =030 Y Tplay, n>1
k=1

since I'y! = (B;) e, one has I'j T, = djeq Bj@;Aji11 and thus the statement. O

Observe that even though the coefficients of ®(z) depend on the choice of bases
in the rank factorizations, any other choice delivers an alternative extended canonical
system of root functions.

Given ®(z) and K, one can construct a Jordan pair of A(z) at zy as follows.

COROLLARY 4.4 (Jordan pair). Let ¢;n be the ith column of ®,, and let k; be
the ith element in the index set KC; fori=1,...,p — 10, define

Z0 1

Xi = (¢i,n)7]?:_017 Jki = - - 9

respectively, of dimensions p X k; and k; X k;. Then the columns of X; form a Jordan
chain of mazimal length k; and Jy, is the corresponding Jordan block. Collecting the
Jordan chains and the Jordan blocks, respectively, in

X = (Xi)fz_lm, J = diag(Irj ® Jj)jej+,

one has that (X, J) is a Jordan pair of A(z) at 2.

Proof. The proof is a direct consequence of Theorems 4.2 and 4.3 and the defini-
tion of Jordan pairs in [13]. 0

5. Algorithmic implementation. This section contains an algorithmic imple-
mentation of the ELRF. This is formulated in Definition 5.3. A MATLAB script
that implements the ELRF is provided in the supplementary material (99983.01.pdf
[local/web 162KB]). The connections with the CRP in [3] are discussed in Theorem
5.10, where it is shown that the CRP coincides with the ELRF, and in Corollary 5.11,
which links the characteristics of the CRP to the structure of the local Smith form of
A(z) at 2.

Before describing the ELRF algorithm, it is useful to discuss the implementation of
the rank factorizations, which constitute its building blocks. In the following, {r, &, n}
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are said to be given by the rank factorization of p when ¢ = —¢n’, and £ and 7, are
full column matrices with r columns. It is also assumed that &, 7, €1, 11, €1, 71 can
be simultaneously computed, as illustrated in the following remarks.

Remark 5.1 (Rank factorization via SVD). Several standard matrix procedures
can be used to perform the rank factorization {r,&,n} of p; here computations are
illustrated using the singular value decomposition (SVD); see, e.g., [18]. Let ¢ =
USV’ represent the SVD of ¢, where U'U = V'V =TI and S = diag(s3, ..., s3), with
52 > ... > s2 > 0. The rank of ¢ is numerically computed as the largest integer
r for which s% > >s2>0and 2, = = sf, = 0. Given r, one can define
&= -U,n=W5, & =Us n. =V, where U = (Uy,Us) and V = (V1,Va) are
partitioned into blocks of the first r columns (with subscript 1) and the last p — r
columns (with subscript 2), and S; = diag(s?,...,s?). With this choice, one has
¢ =1, § 6 =n\mL = I, so that £ = & &1 = &1, 71 = nu; that is, no
matrix inversion is involved when computing the “bar” operation ¢ := ¢(¢’¢)~! in
these cases. Moreover, one has 7 = V; diag(s;?,..., s, 2). This requires the inversion
of the diagonal matrix S7, which can be computed elementwise. Note that this is one
possible choice of bases of the various spaces; this specific choice is convenient because

the only matrix inversion involved can be performed elementwise.

Remark 5.2 (Rank factorization via QR). As an alternative to the SVD, one
can consider using the QR decomposition; see, e.g., [18]. Let ¢ = QR represent the
QR decomposition of ¢, where Q'Q = QQ’ = I and R is upper triangular. The rank
r of ¢ is numerically computed as the number of nonzero rows of R. Given r, one
can define £ = —Q1, £, = Q2, n = Ry, where Q = (Q1,Q2) and R’ = (Ry, Rz) are
partitioned into blocks of the first r columns (with subscript 1) and the last p — r
columns (with subscript 2). With this choice, one has ¢’¢ = I and & &, = I,
so that £ = ¢ and £, = ¢, . However, unlike the SVD, the QR decomposition does
not return directly 7, , which can be computed using a second QR decomposition to
7, namely n = Q°R°. With this choice, one has 7, = @3, where Q° = (Q3, Q%) is
partitioned into blocks of the first r columns and the last p — r columns, which also
satisfies 7', n1 = I,—, so that 7, = n,. Hence, the same output obtained via the
SVD can be computed from the QR decomposition, provided this is applied twice.

The next definition contains an algorithmic implementation of the ELRF.

DEFINITION 5.3 (The ELRF algorithm).
INPUT: The inputs are the p X p matrices {A,}°2 and the number q of Laurent
coefficients By, ..., By—1 to be computed.?
OutrUT: The outputs are the scalar m and the Laurent coefficients By, ..., Bg_1.
INITIALIZATION: Set j =0, ri™®* =p, Jo =0, and ag = by = 0. Compute {ro, o, M0}
as the rank factorization of A,

(51) AO = _607767

and set ay = ag = &g, by = Bo = Mo, o = Pody. Go to RECURSION.
RECURSION: Ifr; = r***, then go to FINAL LOOPS; else increase j by 1 and perform

all the following computations: Set ri*® = ri®¢ —r;_y, compute A1 ; = Aj and
Dy j =600A1;, and for s =2,...,5 compute Ag j_sy1 and Dg j_s41 using

(52) As,k = As—l,k+1 + As—l,le—l,k; Ds,k = Ds—l,k + 05—1As,k-

2Because Aj is used in RECURSION j, in practice only a finite number of A, matrices is needed
as input to the algorithm.
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Next, calculate {r;,&;,m;} as the rank factorization of a’;; Aj1b;.1,
(5.3) ajy Ajabj = =&,

where a;1 = ajfu_fjfu_ and ij_ = bjfu_njfu_. If r; = 0, deﬁne L7j = g7j71;
ajy1 = aj, bj1 = bj, and 8; = 0; else (ie., 1 < r; < r;?‘lax) set J; = (J, Tj-1),
aj =a;185, B = bjin;, 0; = B, ajp1 = (ay,a5), and bjyr = (5;,b;)-

FINAL LooPS: Set m = j, J = Jj, a = ajt+1, b = bjy1 and compute Dyq11 using
(5.2) for k =1,...,q — 1. Neat, let C1 = —k,ml, E1x = —000k,m and compute
Erpg1k for k=0,...,q—1 using the following recursions to compute Es yi141—s for
§=2,....m+1:

(54) Cs,k = CstkJrl + Asfl,lEsfl,ka Es,k = Estk + 987108716'

Finally, use (3.14) to compute By, n=0,...,q—1, with Cy, = Ept1,k, Dy = Dppt1.k-
A few remarks are in order.

Remark 5.4 (Extension). The recursion of the ELRF coincide with the LRF of
[10]; the extension refers to the final loops, which allow one to calculate the Laurent
coefficients B,, n=1,...,q¢ — 1.

Remark 5.5 (Definitions). The matrices in (5.1), (5.2), (5.3), and (5.4) coincide
with those defined in Lemma 3.1 and Theorem 4.3.

Remark 5.6 (Order of the pole). The ELRF algorithm determines the order of
the pole m by checking the ranks of the rJ*** x 7*** matrices a;-LAjJ b1 in (5.3) until
full rank is found. This stopping condition terminates the recursion and determines

the order of the pole. This exploits the results in Theorem 3.4.

Remark 5.7 (Dimension of rank factorizations). Successive rank decompositions
are performed on matrices of nonincreasing dimension, i.e., TP < i < p — o,
where p is the dimension of A,, and rq is the rank of Ag.

Remark 5.8 (Nonuniqueness of factors in rank factorizations). Because in a
rank decomposition the factors are not unique, one of them can be chosen to be
orthonormal, for instance the first one as in Remark 5.1. In this case, one has &; = §;
(oj = @;) so that only 7; (3;) needs to be computed. Similarly, because &; 1, n;1 are
any bases of the orthogonal complements of col&; and col#;, one can choose them to
be orthonormal. In this case, because a;1 can also be chosen orthonormal, one finds
that aj411 = a;1&51 . Similar remarks apply to ;1 and b .

Despite the nonuniqueness of factors in the rank factorizations, the outputs of
the ELRF are invariant with respect to the choice of bases. Hence, in general, this
nonuniqueness can be exploited in an advantageous way for subsequent calculations.

Remark 5.9 (The ELRF and Moore—Penrose inverses). Note that (5.2) and (5.4)
coincide with (3.2) and (3.4). These expressions involve Moore-Penrose inverses of
dimension p because Bj&; is the Moore-Penrose inverse of a; ﬁ;; see, e.g., Theorem
5 on p. 48 of [6]. However, in practice one can compute Bj@;- using Moore—Penrose
inverses of matrices of dimension rj*** < rJF < p —rg; in fact, because a; =
aj1& and f; = bj1i);, one has ;&) = bj 1 7;€;a), . Here 7;€} is the Moore-Penrose
inverse of £;n; of dimension r;***. It can also be noted that if one performs the rank
factorizations as illustrated in Remark 5.1, the only matrix inversion involved in F]jf;-

max

is that of a rj** x rj** diagonal matrix, which can be performed elementwise.
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Next, attention is turned to the relation between the ELRF and the CRP in [3].
Given that in Theorem 5.10 below the two procedures are shown to coincide, it follows
that (3.13) provides the explicit recursive formula to compute the Laurent coefficients
when the CRP is performed.

THEOREM 5.10 (CRP and ELRF). The CRP coincides with the ELRF.

Proof. Substitute a; = a;1&;, 8; = bj1n; in (3.7) and premultiply by a;, to find
that

n
&b By = al; | Z AjirkBnoy + ) Cjyan;
k=1

inserting the projection identity I = P,,, + Py, between A;;1 % and B,_g, one then
finds that

n n
(5.5) fjn;-b;J_Bn = Z CL;‘J_AjJrl,kajLBn—k + Z CL;J_AjJrLkaj By + a;J_Cj+17n.
k=1 k=1

Note that (5.5) for j = 0 gives the original system (1.3). One can next show that,
given the system (5.5), the application of one reduction step in the sense of [3] leads
to the next matrix rank factorization in the ELRF. This shows that the CRP coincides
with the ELRF.

First, observe that (5.5) can be written in the format of equations (8.0)—(8.t)
in 3],

(5.6) CoVn+ > CiVok = R,
k=1

by setting Co = &1}, Ck = —a’; | Aji1kbj1, Vo = 7;'J_Bn7 and

n
R, = Z al Aj1 1Py, Bnk + a5, Cipin.
k=1
One can next apply a reduction step to (5.6) premultiplying it by a basis of the
left null space of Cj to find that

n
> & CrVok =&\ R
k=1
Observe that §;LCkVn,k = — ;LG;LAj‘l’l;kajL B, = _a;‘_,'_lLAjJr]”k;ij_*_lLank -
a;- 41 lAjJrl,kPﬁjBn_k, where the last equality follows by definition from aj;11 =
a;1&1 and Py, = PBy,.,, + Pg,;. Rearranging terms and setting s = n — 1, one has

S

/ ’
_aj+lj_Aj+1,1ij+1LBS - E aj+1J_Aj+17/€+1ij+1L Bs = SS?
k=1

where S, = f;LRS“ + 224:_11 a;‘+1LAj+1,kPﬁst+l—k- This can be rewritten in the
format of equations (10.0)—(10.t — 1) in [3],
(5.7) DoWs+ > DiWey = S,

k=1

3Here and in the proof of Corollary 5.11 the letters C' and D are used to match the notation in
[3], and they do not refer to (3.13) as in the rest of the paper.
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where Dy = —a), | Ajy1piabjis, Wep = lf);-JruBS_;C for k =0,...s, and s =
0,...,m — 1. Because the reduced system (5.7) is again reducible if and only if
Dy = a;-JrU_AjJrLl bj+11 is of reduced rank, which is the rank condition in (5.3), this
proves that the CRP coincides with the ELRF. ad

Finally, the characteristics of the CRP are linked to the structure of the local
Smith form of A(z) at zo. In Theorem 4.2, the latter is shown to be characterized by
the ELRF; via Theorem 5.10, the characteristics of the CRP in [3] are thus linked to
the structure of the local Smith form.

COROLLARY 5.11 (CRP and structure of the local Smith form). The CRP consists
of 1 <d — 1< m reduction steps, where d is the number of distinct partial multiplic-
ities of A(z) at zo (see Definition 4.1); reduction step i = 1,...,d — 1 decreases the
dimension of the coefficients by r;,.,_., the number of partial multiplicities that are
equal to the given value jg41—;.

Proof. In the proof of Theorem 5.10 it is shown that dimension of the Cy coef-
ficients of the reducible system (5.6) is 7 x r***, where '** = p — Zg;ol r;, and
the dimension of the Dy, coefficients of the reduced system (5.7) is 74 x 7%, where
—r; and 7; = rank Cy. Hence a reduction occurs if and only if 7; > 0,
i.e., j € J, and the dimension of the coefficients is decreased by ;. Because each and
every j € J is a partial multiplicity of A(z) at zo and there are r; partial multiplicities

that are equal to j (see A(2) in (4.2)), the statement is proved. O

6. Computational complexity. In this section the computational complexity
of the ELRF algorithm is discussed in terms of floating point operations (flops). Be-
cause of Theorem 5.10, this corresponds to the computational complexity of the CRP.
In particular, this confirms that the flops associated to the one-step reduction process
are always greater than or equal to those of the CRrp.

The AB + C operation, where A, B, and C are p x p matrices, requires O(p?)
flops; the same order of complexity holds for the rank decomposition of a p x p matrix
via SVD (see, e.g., p. 18 and p. 254 in [18]) or via QR (see p. 233 in [18]).* In each
recursion, j operations of the type AB + C are performed to compute Asj in (5.2)
and the same number of AB + C operations is required for D in (5.2). Hence
the total number of AB + C operations is 22;”21]' = m(m + 1), corresponding to
O(m?p?) flops. The total complexity of the rank decompositions is always less than
O(mp?) flops because it consists of O(p®) flops for (5.1) and of O((r***)?) flops for
(5.3), where 2 < p — .

Next, consider the final loops; each iteration involves AB + C' operations to com-
pute Agy and Ds in (5.2) and Cs and Cs in (5.4). Hence this requires O(m?p?)
flops. Because there are ¢ — 1 final loops, this leads to a total of O((q — 1)m?p?)
flops. Summing up, it can be seen that the ELRF computes m and By, ..., By_1 with
O(gm?p?) flops. Note that this complexity is determined by the AB + C operations
and not by the matrix rank decompositions. Note also that this estimate does not
include the simplifications due to the presence of zero matrices; see Corollary 3.6.

In [3], it is shown that (for known order of the pole) the one-step reduction process
computes By with O(max{m?p®, m3(p —r0)3}) flops. Hence when max{m?p?, m3(p —
r0)3} = m?2p3, ie., if m < p3/(p—10)3, the computational complexity of the one-step
reduction coincides with that of the ELRF (which, however, also provides the order

4For upper Hessenberg matrices, the flops order is lower; see (18, p. 228]. For generality, however,
the rest of the section refers to the generic case of unstructured matrices.
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of the pole), as can be seen by setting ¢ = 1. When m > p3/(p — 19)3, there is
a computational gain in using the ELRF, i.e., the CRP, with respect to the one-step
reduction process. This gain arises because stacking matrices in a potentially large
system and performing a Moore—Penrose inverse on it dominates the computational
complexity of the AB + C operations as m increases.

7. Example. This section illustrates results using a numerical example; the cal-
culations are performed using the MATLAB implementation of the ELRF provided in
the supplementary material (99983_01.pdf [local/web 162KB]). Consider the matrix
polynomial

100 0 0 0 00 —3 00 —3
A= 000 |]+[ 0 -1 0 )zl 0 0 0 |224[0 0 0 |23
000 0 0 0 0 0 0 —%

Ap Aq Az As

and observe that A(0) = Ay is singular. The ELRF at zg = 0 is used to determine the

order of the pole of A(z)~! at 29 = 0, to compute the coefficients of its principal part,

and to construct the local Smith form and a Jordan pair of A(z) at 0.
INIZIALIZATION delivers r§*** = 3, Jp = 0, and

-1
Ag=—1 0 (1 0 0), ar=a0=2%&, bi=P8=no,
0 H_/
——— o
o
-1 0 0
6‘0—50546: 0 0 O
0 0 O

Given that 1 =7y < r§** = 3, the counter j is increased to j = 1 and RECURSION 1

max

delivers r{"® = 2,

0 0 O
A =4=10 -1 0 |, Dy =00A1, =0,
i 0 0
1
(lluAmbu_:—( 0 )( 1 0), J1 = (1,0),
————
SN—— n
&1
0 i 0 . 00 0
op=a.s=11], fo=bum=| 1|, h=pat=| 0 1 0 |,
0 0 0 0 O
and az = (a1,ap), b2 = (B1,50), azL = b2y = (0,0,1)". Since 1 =7y < r®* = 2, the
counter j is incremented to j = 2 and RECURSION 2 delivers r3'®* = 1,
00 —3 00 1
A=A = 0 0 O , Dio="00A12= 0 0 O ,
30 0 000

and because D;,; = 0,


http://epubs.siam.org/doi/suppl/10.1137/140999839/suppl_file/99983_01.pdf
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_1
2

0
0 ) Dy =614, =0.
0 O

Next, one finds that a, As 1b21 = 0 and hence Jo = J1, az = aa, bs = bg, and
02 = 0. Because 0 = ry < r§'®* = 1, the counter is upgraded to j = 3 and RECURSION
3 delivers rg"® =1,

Ap1 =410 =

= O O

00 —% 00 1
A173 = A3 = 0 0 R D173 = 90141)3 = 0 0 O R
0 0 —% 0 0 O
00 -1 00 1
Aso=A13+A11Dio=| 0 0 O , Dao=D12+61A20= 0 0 0 |,
00 O 0 O
and
00 —%
A1 =Asp+ A1 Dy = 0 0 ) D31 = D31+ 0243, = 0.
0 0 O

Hence one finds that a}, A3 1b3; = 0 so that J5 = Jo, as = a3, by = b3, and 03 = 0.
Because 0 = r3 < r§*®* =1, the counter j is raised to 7 = 4 and RECURSION 4 delivers
=1, A14=A4,:=0, D14 =00414=0,

000 00 3
Asz3=A14+A11Di3=| 0 0 0 |, Dys=Diz+643=]0 0 0 |,
00 1 00 0
00 0 00 1L
Ao =As3+As1D2o=| 0 0 0 |, Dgos=Dgyo+bA30=| 0 0 0 |,
00 1 00 0
0 0 O
Ay =A32+A31D3: = 0 0 0 |, Dy1= D31+ 03441 =0.
00%
Hence one has a}y | A4 1bs1 = %, 4= —%, J1 = (4,1,0), and
0 ) 0 ) 00 0
ag=a416 = 0 |, Ba=byim= 0 , Oa=pBsay=[ 0 0 O ,
1 1 00 -2

as = (ou, o1, ), bs = (B4, B1, Po)-

Given that the full rank condition 1 = r4 = 7}"®* = 1 is reached, the algorithm
enters the FINAL LOOPS and defines m =j =4, J = J, = (4,1,0), a = a5, b = bs.
Setting ¢ = m = 4, one can then compute Dy = D5y, for k =1,2,3 and Cy, = Ej5
for k =0,1,2,3 using (5.2) and (5.4); one finds that

00 0 00 3
Di=|00 0 |, Dy=D3=|00 0 |,
00 —3 00 0
000 0 00 0 0
Co=|000], Ci=C=| 0 00 0 10
00 2 -1 00 0 0
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Hence (see Theorem 3.5), A(z) has a pole of order m = 4 at zp = 0 and the coefficients
of the principal part of A(z)~! at 29 = 0 are given by

0 00 0 0 0
By=Cy=| 0 0 0 |, B =Ci+DBy = 0 0 0 ,
0 0 2 -1 0 -1
0 0 1
=Cy+ DBy +DyBy = 0O 0 O ,
1o
40
=(C3+ DBy + DyBy + D3By = 0 —1 0
boo -
A direct computation shows that ( is satisfied. Because m = 4, p = 3, and

p—ro = 2, one has m > = p’ oo and thus a computational gain arises by performing
the complete reduction process instead of the one-step reduction.

Finally, construct the local Smith form and a Jordan pair of A(z) at 0 using
Theorems 4.2 and 4.3 and Corollary 4.4. From J = (4,1,0) and ry =71 =19 = 1
one has K = 7 = (4,1); see Definition 4.1.

From (4.2) the local Smith form of A(z) at zo =0 is

_ z4 0 0
A(z) :=diag((z — 20)’ I, ) jes = 0 =z O
0 0 1

From Corollary 4.4 one has that a Jordan pair (X, J) of A(z) at 29 =0 is

—1r 1 J O
X = (X,)P7T° = (X1, Xa), J = diag(Il,, ® Jj)jes, = ( 04 J1 ) ’

where

O =
O =

X1 = (p10)P = (h1.05 d1.1, D12, D1.3), Jy =

O =

X = (¢o, n)n 0 = ¢, J1 =0,

and ¢; ,, is the ith column of ®,,. Using (4.7), the latter is computed as

®o = (B4, 81, Bo), ®1 = D319,
@y = D31P1 + D2 2Pg, P3 = D31P2 + D22P1 + D1 3Pp

and found to be

1
D = 0], ®1=0, P3=3=
0

o O
o O O

hence
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0O 0 -1 -1 0
X1 = (¢1,0,01,1, 01,2, $1,3) = 0o 0 0 0 ; Xo=¢goo=| 1
-2 0 0 0 0

Application of Theorem 7.1 on p. 184 in [15] confirms that (X, J) is a Jordan pair of
A(z) at 0.

8. Conclusion. The ELRF delivers a recursive formula to compute the order of
the pole and the Laurent coefficients of the inverse of a regular analytic matrix func-
tion, without stacking coefficients in potentially large linear systems. The procedure
consists in performing a finite sequence of rank factorizations of matrices of nonin-
creasing dimension at most equal to the dimension of the original matrix function.

The sequence of rank factorizations is shown to deliver the partial multiplicities
and the number of partial multiplicities of a given value, i.e., the local Smith form of
the original matrix function, and to provide a construction of an extended canonical
system of root functions of A(z) at zg. In this way, the structure of Jordan pairs is
fully characterized and full information on Jordan chains is available.

Moreover, the CRP in [3] is shown here to coincide with the ELRF; via this equiv-
alence, one has that the number of reductions in the CRP is equal to the number of
distinct nonzero partial multiplicities and each reduction step decreases the dimen-
sion of the coefficients by the number of partial multiplicities that are equal to a given
value. This links the characteristics of the reduction process to the structure of the
local Smith form. Finally, it is shown that the computational complexity of the ELRF
compares favourably with the one of the one-step reduction process.
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