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INPUT SELECTION FOR PERFORMANCE AND

CONTROLLABILITY OF STRUCTURED LINEAR DESCRIPTOR

SYSTEMS∗

ANDREW CLARK, BASEL ALOMAIR, LINDA BUSHNELL, AND RADHA POOVENDRAN†

Abstract. A common approach to controlling complex networks is to directly control a subset
of input nodes, which then controls the remaining nodes via network interactions. While techniques
have been proposed for selecting input nodes based on either performance metrics or controllabil-
ity, a unifying approach based on joint consideration of performance and controllability is an open
problem. In this paper, we develop a submodular optimization framework for selecting input nodes
based on joint performance and controllability in structured linear descriptor systems. We develop
our framework for arbitrary linear descriptor systems. In developing our framework, we first prove
that selecting a minimum-size set of input nodes for controllability is a matroid intersection problem
that can be solved in polynomial-time in the network size. We then prove that input selection to
maximize a performance metric with controllability as a constraint is equivalent to maximizing a
monotone submodular function with two matroid basis constraints, and derive efficient approxima-
tion algorithms with provable optimality bounds for input selection. Finally, we present a graph
controllability index metric, which characterizes the largest controllable subgraph of a given complex
network, and prove its submodular structure, leading to input selection algorithms that trade-off per-
formance and controllability. We provide improved optimality guarantees for known systems such
as strongly connected networks, consensus networks, networks of double integrators, and networks
where all system parameters (e.g., link weights) are chosen independently and at random.

Key words. Linear descriptor systems, controllability, submodular optimization, matroids,
matroid intersection, networked control systems, structured systems
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1. Introduction. Complex networks consist of distributed nodes with locally
coupled dynamics in domains including intelligent transportation systems [40], social
networks [13], energy systems [35], and biological networks [23]. In many of these
applications, the complex network must be controlled to reach a desired state, for
example, steering a group of unmanned vehicles to a certain formation [31]. A common
approach to controlling complex networks is to directly control one or more states of
a subset of nodes, denoted as input nodes, while relying on the local coupling to drive
the remaining nodes to the desired state [15, 17].

An important design parameter when controlling complex networks is the set of
nodes that act as inputs. The problem of selecting a minimum-size set of input nodes
to control a complex network has achieved significant attention [22, 29, 36], with recent
work focusing on selecting input nodes to satisfy controllability, defined as the ability
to drive the network from any initial state to any desired state in finite time using the
input nodes. Since the seminal work of [22], a variety of discrete optimization methods
have been proposed for selecting input nodes to achieve controllability [26, 29, 36].

In addition to controllability, networked systems are expected to satisfy perfor-
mance criteria, including convergence rate of the dynamics [28] and robustness to
noise and disturbances [1, 30]. Approaches for selecting input nodes based on these
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2 Input Selection for Performance and Controllability

criteria, including submodular optimization [5, 8], convex relaxation [21], and combi-
natorial [12] algorithms, have been proposed in the literature, but are largely disjoint
from the algorithms for selecting input nodes to satisfy controllability. At present,
a unifying and computationally efficient approach for selecting input nodes based on
both controllability and performance is not available in the literature.

Current approaches to input selection assume either that the system matrices
are fully known, or that only the structure of the system matrices is known. In the
latter case, the system matrix consists of zero entries and free parameters, where the
free parameters can take any arbitrary value. Many practical systems, however, lie
between these two extremes, with either a mixture of known and unknown matrix
entries, or structural relationships between the unknown entries (i.e., all of the entries
of a row sum to zero, as in the case of linear consensus algorithms [16]). In [3],
it was observed that a set of selected input nodes may not satisfy controllability if
these structural properties are not taken into account. While input selection methods
that incorporate system structure have been proposed for specific applications such
as consensus [14], a computationally tractable general framework that guarantees
controllability of structured systems remains an open problem.

1.1. Our Contributions. In this paper, we develop a submodular optimization
framework for input selection based on joint consideration of performance and con-
trollability in structured linear descriptor systems. The submodular structure implies
that a variety of input selection problems can be solved up to a (1− 1/e) optimality
bound, using algorithms that depend on the constraints of each problem. We first
show that selecting the minimum-size set of input nodes to satisfy controllability of
structured linear descriptor systems can be mapped to a maximum-cardinality ma-
troid intersection problem, leading to the first polynomial-time algorithm for ensuring
controllability of such systems. We then investigate selecting a set of up to k input
nodes to maximize a performance metric while satisfying a controllability constraint,
and prove that this problem is equivalent to submodular maximization with two ma-
troid basis constraints. We develop a randomized algorithm for solving a relaxed,
continuous version of the problem with a (1 − 1/e) optimality bound, which can be
rounded to a feasible input set that satisfies controllability. As a third problem, we
relax the requirement that the system is controllable and select input nodes based
on a trade-off between performance and controllability. In this case, we prove that
the problem has the structure of submodular maximization subject to a cardinality
constraint, leading to (1− 1/e) optimality bound.

We next study input selection when the complex network is strongly connected
(i.e., there exists a directed path between any two nodes). We prove that, for almost
all systems with a given structure, the controllability of the networked system can
be represented as a single matroid constraint. Based on this result, we derive a
linear-time algorithm for selecting input nodes for controllability in structured linear
descriptor systems, and prove that this algorithm is guaranteed to select the minimum-
size input set. We further show that the problem of selecting a set of up to k input
nodes to optimize performance subject to a controllability constraint can be solved
with optimality bound of (1− 1/e) when the network is strongly connected.

We investigate three special cases of our framework, arising from classes of struc-
tured systems that have been studied in the existing literature, namely, linear con-
sensus [16], second-order integrator dynamics [34], and systems in which all nonzero
parameters can take arbitrary values [22]. We show that our general approach achieves
at least the same optimality guarantees compared to the current state of the art for
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each individual problem. Our results are illustrated via numerical study in the special
case of a consensus network.

1.2. Related Work. Structural controllability of linear systems with given in-
puts was first studied by Lin in [19], in the case where all nonzero matrix entries are
independent free parameters. Controllability of systems with additional relationships
between the matrix entries was considered subsequently [9, 24, 33]. In [33], graph-
based conditions for structural controllability of descriptor systems were introduced.
The work of [24] provided a matroid-based framework for structural controllability
of mixed-matrix descriptor systems, containing both fixed and free entries, as well as
polynomial-time algorithms for verifying controllability of such systems. For a de-
tailed survey of controllability results in linear descriptor systems, see [10]. In these
works, conditions and algorithms for verifying structural controllability with a given
input set are provided, but the problem of selecting the input nodes is not considered.

Selecting input nodes to satisfy controllability has been extensively studied in
recent years. Necessary and sufficient conditions for a set of input nodes to guar-
antee controllability in leader-follower consensus dynamics were presented in [39].
Graph-based necessary conditions were derived in [32]. These works considered con-
trollability from a given set of input nodes, but did not introduce efficient algorithms
for selecting the input nodes. In [22], a polynomial-time graph matching algorithm
was introduced for selecting a minimum-size set of input nodes to satisfy structural
controllability. The problem of selecting input nodes for controllability was further
considered in [6, 29, 36] for the case where all matrix entries are either zero or are free,
independent parameters. For the case where all entries of the system matrices are
fully known, input selection algorithms and optimality bounds were derived in [26].
In the present paper, we consider a broader class of system matrices that contain both
free parameters and fixed entries, taking the existing works as special cases.

Input selection based on performance criteria has also received research interest.
In [5, 8], submodular optimization approaches for selecting input nodes for robust-
ness to noise and smooth convergence to a desired state were developed. A convex
relaxation approach for minimizing errors due to link and state noise was proposed in
[11, 20, 21]. Combinatorial algorithms for input selection to minimize the H2-norm,
using information centrality, were introduced in [12].

1.3. Organization. The paper is organized as follows. In Section 2, we present
our system model, definitions and sufficient conditions for controllability, background
on submodularity and matroid theory, and examples of performance metrics that
can be incorporated into our framework. In Section 3, we develop our submodular
optimization framework for input selection in structured systems. Section 4 discusses
input selection in strongly connected network, and shows how connectivity improves
the optimality bounds of our approach. Section 5 presents three special cases of our
framework found in the existing literature. Section 6 contains a numerical study.
Section 7 concludes the paper.

2. Model and Preliminaries. In this section, we describe the system model
and definitions of controllability considered. Background on matroid theory and sub-
modularity is given. We then present sufficient conditions for controllability from
previous work based on matroids and an auxiliary graph construction. Finally, we
give examples of performance metrics that can be incorporated into our framework.

2.1. System Model. We consider a linear, time-invariant networked system
with a total of n states, where x(t) ∈ Rn is the vector of states at time t. In the
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absence of any control inputs, the system dynamics are described by

(2.1) F ẋ(t) = Ax(t).

Eq. (2.1) defines a linear descriptor system [10]. The matrices F and A can be
further decomposed as F = QF + TF and A = QA + TA. The values of QF and
QA are known, fixed parameters. The matrices TF and TA are structure matrices,
in which any nonzero entry can take any arbitrary real value. We assume that the
system defined by (2.1) satisfies solvability, defined as follows.

Definition 2.1. An LTI system of the form (2.1) is solvable if for any initial
state x(0) ∈ Rn, there exists a unique trajectory {x(t) : t > 0} that satisfies (2.1).

We now describe the effect of control inputs on the system (2.1). A subset S of
states act as control inputs, i.e., for each state i ∈ S, there exists a control input
ui(t) such that xi(t) = ui(t) for all t. The states in S correspond to the states of
nodes that are controlled directly by an external entity. In the following, without
loss of generality, we assume that the state indices are ordered so that states xR =
(x1, x2, . . . , xn−|S|) do not act as control inputs, and states xS = {xn−|S|+1, . . . , xn}
act as control inputs. The system dynamics are then given by
(2.2)
(

F̂
0

)(

ẋR(t)
ẋS(t)

)

=

(

ARR ARS

0(n−|S|)×|S| −I|S|×|S|

)(

xR(t)
xS(t)

)

+

(

0(n−|S|)×|S|

I|S|×|S|

)

u(t)

In (2.2), F̂ is the (n− |S|)× n matrix consisting of the first (n− |S|) rows of F . The
matrices ARR and ARS consist of the first (n− |S|) and last |S| columns of the first
(n− |S|) rows of A, respectively. The vector u(t) is the control input signal. The last
|S| rows of the equation enforce the condition that xi(t) = ui(t) for all i ∈ S.

As a notation, for a square matrix X ∈ Rn×n, N(X) is a graph with n vertices,
where there exists an edge (i, j) if Xji is nonzero.

2.2. Matroids and Submodularity. In what follows, we define the concepts of
matroids and submodular functions, which will be used in our optimization framework.
All definitions and lemmas in this subsection can be found in [27].

Definition 2.2. A matroidM = (V, I) is defined by a finite set V (denoted the
ground set) and a collection I of subsets of V such that (a) ∅ ∈ I, (b) if X ⊆ Y and
Y ∈ I, then X ∈ I, and (c) if X,Y ∈ I and |X | < |Y |, then there exists v ∈ Y \X
such that (X ∪ {v}) ∈ I. The collection I is denoted as the collection of independent
sets of M.

A maximal independent set is a basis ; we let B(M) denote the set of bases of a
matroidM. The rank function ρ of a matroid is a function ρ : 2V → Z≥0, given by
ρ(X) = max {|Y | : Y ⊆ X,Y ∈ I}. The rank of a matroid is equal to ρ(V ). Matroids
can be characterized by their rank functions, as demonstrated in the following lemma.

Lemma 2.3. Let ρ : 2V → Z≥0. Suppose that (i) ρ(∅) = 0, (ii) For any X ⊆ V
and v ∈ V \X, ρ(X) ≤ ρ(X∪{v}) ≤ ρ(X)+1, and (iii) For any X ⊆ V and v, w /∈ X,
if ρ(X) = ρ(X ∪ {v}) and ρ(X) = ρ(X ∪ {w}), then ρ(X) = ρ(X ∪ {x,w}). Then ρ
is the rank function of a matroid, which is denoted as the matroid induced by ρ.

A simple example of a matroid is the uniform matroid Uk, defined by X ∈ Uk if
|X | ≤ k for some k. In a linear matroid, the set V is equal to a collection of vectors
in Rm, and a set of vectors is independent if the vectors are linearly independent. In
this case, the rank function is equal to the column rank of the matrix defined by the
vectors. The following is a method of constructing matroids that will be used in this
paper.
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Definition 2.4. Let M1 = (V1, I1) and M2 = (V2, I2) be matroids. Then the
matroid unionM =M1 ∨M2 is defined by V = V1 ∪ V2 and X ∈ I if X = X1 ∪X2

with X1 ∈ I1, X2 ∈ I2.
It can be shown that the matroid union M is a matroid, with rank function

ρ(X) = min {ρ1(Y ) + ρ2(Y ) + |X \ Y | : Y ⊆ X}. A second matroid construction is
the dual matroid, described as follows.

Definition 2.5. Let M = (V, I) be a matroid. The dual of M, denoted M∗,
has ground set V and set of independent sets I∗ given by

I∗ = {X ′ ⊆ X : V −X is a basis ofM}.

If ρ is the rank function ofM, then the rank function ρ∗ ofM∗ is given by

ρ∗(X) = ρ(V −X) + |X | − ρ(V ).

We now define the concept of a submodular function.
Definition 2.6. Let V be a finite set. A function f : 2V → R≥0 is submodular

if for any sets A and B with A ⊆ B and any v ∈ V \B,

f(A ∪ {v})− f(A) ≥ f(B ∪ {v})− f(B).

The following lemma gives a method for constructing submodular functions.
Lemma 2.7. If f : 2V → R is submodular as a function of S, then f(V \ S) is

submodular as a function of S.
For a submodular function f : 2V → R, with |V | = n, the multilinear relaxation

F : Rn → R+ is defined as

F (x) =
∑

S⊆V

[

f(S)

(

∏

i∈S

xi

)(

∏

i/∈S

(1− xi)

)]

.

2.3. Definitions of Controllability. We now present the definition of control-
lability considered in this work, which can be found in more detail in [33]. For general
systems of the form

(2.3) F ẋ(t) = Ax(t) +Bu(t)

we first have the following lemma.
Lemma 2.8 ([41]). If the system (2.3) is solvable, then we can write x = [x1 x2]

T

and have matrices F1, F2, B1, and B2 such that the dynamics (2.3) are equivalent to

ẋ1(t) = F1x1(t) +B1u(t)

F2ẋ2(t) = x2(t) +B2u(t)

We now define the concepts of admissibility and reachability.
Definition 2.9. An initial state x(0) is admissible if x2(0) = −

∑m−1
i=0 F i

2u
(i)(0),

where m is the degree of nilpotency of F2 and u(i) is the i-th derivative of the input
u. A state x∗ is reachable if there exists t > 0, an admissible initial state x0, and an
input signal {u(t′) : t′ ∈ [0, t]} such that x(t) = x∗ when x(0) = x0.
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We let R denote the set of reachable states. We are now ready to define the
concept of controllability.

Definition 2.10. The system (2.2) is controllable if, for any admissible initial
state x0 and any reachable final state x∗ and time t > 0, there exists a control signal
{u(t′) : t′ ∈ [0, t]} such that x(0) = x0 and x(t) = x∗.

Finally, structural controllability is defined as follows.
Definition 2.11. The system (2.3) is structurally controllable if there exist

values for the free parameter matrices TF , TA, and TB such that (2.3) is controllable.
Structural controllability holds if the system (2.2) is controllable for almost any

choice of the free parameters. Note that, if QA = QF = 0, then Definition 2.11 reduces
to that of [22]. A matrix pencil interpretation is given by the following theorem.

Theorem 2.12 ([24]). The system (2.3) is structurally controllable if and only if
there exist free parameter matrices TF , TA, and TB such that the following conditions
hold:

(F,A,B) is solvable(2.4)

rank(A|B) = n(2.5)

rank((A− zF )|B) = n for all z ∈ C(2.6)

We have assumed that (2.4) holds, since the system is solvable. It remains to find
equivalent or sufficient conditions for (2.5) and (2.6). The following lemma gives a
matroid-based sufficient condition for (2.5).

Lemma 2.13 ([24]). Let M(I|QA|QB) denote the linear matroid defined by the
fixed parameter matrices QA and QB, and letM(I|TA|TB) denote the matroid defined
by the free parameter matrices TA and TB. Then rank(A|B) = n iff rank(M(I|QA|QB)∨
M(I|TA|TB)) = 2n.

In the following section, we give a graph construction, introduced in [24], that
will be used to derive sufficient conditions for (2.6).

2.4. Auxiliary Graph Construction. We consider the following auxiliary
graph constructed from (2.3). Define a matrix

(2.7) Ω =
w :
x :
u :





QA −QF QB

I 0
0 I





Here, w, x, and u denote indices, so that the first n rows are indexed w1, . . . , wn, the
second n rows are indexed x1, . . . , xn, and the third k rows are indexed u1, . . . , uk.

As an intermediate step in the construction, define a bipartite graph H with
vertex set

VH = {wT
1 , . . . , w

T
n } ∪ {x

Q
1 , . . . , x

Q
n } ∪ {w

Q
1 , . . . , w

Q
n }

and edge set

EH = {(wT
i , w

Q
i ) : i = 1, . . . , n} ∪ {(wT

i , x
Q
j ) : (i, j) ∈ N(TA) ∪N(TF )}.

The following lemma gives properties of matchings in this bipartite graph.
Lemma 2.14 ([24]). If the system (2.3) is solvable, then there exists a perfect

matching m on the graph H (i.e., a matching in which all nodes in {wT
1 , . . . , w

T
n } are

matched) such that the rows indexed in the set

J = {wi : m(wT
i ) = wQ

i } ∪ {xi : m(wT
j ) = xQ

i for some wj}
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are linearly independent in Ω.

Let J be a set satisfying the conditions of Lemma 2.14 with matching m, and
let ΩJ be a submatrix of Ω obtained from the rows in J . We have that ΩJ is an
n× (n+ k) matrix with full rank, and hence we can find rows J1 such that ΩJ∪J1

is
a full-rank (n+ k)× (n+ k) matrix. Let Ω̃ = ΩΩ−1

J∪J1
. We index the columns of Ω̃ in

the set J ∪ J1.

We now define the auxiliary graph Ĝ = (V̂ , Ê) using the matrix Ω̃. The vertex
set is equal to

V̂ = {wT
i : i = 1, . . . , n}∪{wQ

i : i = 1, . . . , n}∪{xT
i : i = 1, . . . , n}∪{xQ

i : i = 1, . . . , n}

∪ {uT
i : i = 1, . . . , k} ∪ {uQ

i : i = 1, . . . , k},

while the edge set is given by

Ê = {(wT
i , x

Q
j ) : (i, j) ∈ N(TA) ∪N(TF ),m(wT

i ) 6= xQ
j }

∪{(xQ
j , w

T
i ) : (i, j) ∈ N(TA) ∪N(TF ),m(wT

i ) = xQ
j }

∪{(wT
i , w

Q
i ) : m(wT

i ) 6= wQ
i } ∪ {(w

Q
i , w

T
i ) : m(wT

i ) = m(wQ
i )}

∪{(wT
i , u

Q
j ) : (i, j) ∈ N(TB)} ∪ {(u

T
j , u

Q
j ) : j = 1, . . . , n}

∪{(xQ, yQ) : x ∈ V̂ \ J, y ∈ J, Ω̃xy 6= 0, Ω̃xz = 0∀z ∈ J1}

Based on this graph construction, the following sufficient condition for rank(zF −
A|B) = n can be derived.

Lemma 2.15. Let

S− = {vQ : Ω̃vj 6= 0 for some j ∈ J1}.

Let V ′′ denote the set of nodes in V̂ that are part of a cycle. If all nodes in V ′′ are
connected to S− in the graph Ĝ, then the condition rank(zF − A|B) = n holds for
almost any values of the free parameters.

A proof is given in the appendix.

2.5. Performance Metrics. The optimality guarantees for the input selection
algorithms presented in this work are applicable to monotone submodular performance
metrics. The first metric is the network coherence, defined as follows.

Definition 2.16. Consider the node dynamics ẋi(t) = −
∑

j∈N(i) (xi(t)− xj(t))+

wi(t), where wi(t) is a zero-mean white process with autocorrelation function W (τ) =
δ(τ). The network coherence f(S) from input set S is the mean-square deviation in
the node state from consensus in steady-state.

The network coherence was defined in [30] and shown to be a supermodular
function of the input set in [8]. The second metric is the convergence error.

Definition 2.17. Consider the node dynamics ẋi(t) = −
∑

j∈N(i) Wij(xi(t)− xj(t)),
where the edge weights Wij are nonnegative. The convergence error at time t is defined
as ||x(t) − x∗1||p, for p ∈ [1,∞), where x∗ is the state of the input nodes.

The convergence error was proven to be a supermodular function of the input set
in [5]. Other examples of submodular functions include the information gathered by
a set of input nodes [18] and the trace of the controllability Gramian [38].
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3. Problem Formulation - Input Selection for Performance and Con-

trollability. In this section, we present our submodular optimization framework for
selecting input nodes based on performance and controllability. In order to provide
computational tractability, we first map the sufficient conditions of Lemma 2.13 and
Lemma 2.15 to matroid constraints on the input set. We present algorithms for se-
lecting a minimum-size input set to guarantee controllability. We then formulate the
problem of selecting a set of up to k input nodes to maximize a performance metric
while satisfying controllability. We prove that the problem is a submodular maximiza-
tion problem with two matroid basis constraints, and present efficient approximation
algorithms. For the case where the number of input nodes may not be sufficient to
guarantee controllability, we introduce a graph controllability index and formulate
the problem of selecting input nodes based on a trade-off between performance and
controllability.

3.1. Mapping controllability to matroid constraints. We derive matroid
constraints for the set of non-input nodes that are equivalent to or sufficient for the
conditions of Theorem 2.12. As a first step, we develop an equivalent representation
of the dynamics (2.2), and prove that structural controllability of (2.2) is equivalent
to structural controllability of the equivalent dynamics.

Lemma 3.1. Define the dynamics

(3.1) F ẋ =

(

ARR ARS

ASR ASS

)(

xR(t)
xS(t)

)

+

(

0
TB

)

u(t)

where TB is a diagonal matrix where the diagonal entries are free parameters. Then
the system (2.2) is structurally controllable if and only if (3.1) is structurally control-
lable.

Proof. Suppose that the system (3.1) are structurally controllable with (TB)ii =
αi for some real αi’s. For a given initial state x0 and desired state x∗, suppose that
there exists a set of control inputs u1(t), . . . , uk(t) such that x(t) = x∗. We have

αiui(t) +
∑

j

Aijxj(t) =
∑

j

Fij ẋj(t),

which is equivalent to

(3.2) αiui(t) +
∑

j

Aijxj(t)−
∑

j

Fij ẋj(t) + xi(t) = xi(t).

Rearranging terms implies that xi(t) = ûi(t), where ûi(t) is the left-hand side of (3.2).
Hence using ûi(t) as the input signal implies that structural controllability is achieved
for the dynamics (2.2) as well. The proof of the converse is similar.

Lemma 3.1 implies that it suffices to consider the conditions of Theorem 2.12
under the equivalent system (3.1). We first define a matroid constraint on the set
of non-input nodes that is equivalent to (2.5). For the system (3.1), the condition
rank[M(I|QA|QB) ∨M([I|TA|TB])] = 2n of Lemma 2.13 is given by

rank[M([I|QA|0]) ∨M([I|TA|TB(S)])] = 2n,

where TB(S) is a diagonal matrix with a free parameter in the i-th diagonal entry for
i ∈ S and zeros elsewhere. In order to establish a matroid constraint for Lemma 2.13
we have the following lemma.

Lemma 3.2. The function

ρ1(S) = rank(M([I|QA|0]) ∨M([I|TA|TB(S)])) − rank(M([I|QA]) ∨M([I|TA]))
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is a matroid rank function.
Proof. First, note that ρ1(∅) = 0. Next, consider ρ1(S ∪ {v}). Let ρ̂

S denote the
rank function of (M(I|QA|0)∨M([I|TA|TB(S)])), and let r̂S1 and r̂S2 denote the rank
functions ofM([I|QA|0]) andM([I|TA|TB(S)]), respectively. We have ρ1(S ∪{v}) =
ρ̂S∪{v}(V ). Let X∗ be the set that minimizes r̂S1 (X

∗)+ r̂S2 (X
∗)+n−|X∗|. Observing

that r̂S1 = r̂
S∪{v}
1 , we have

ρ̂S∪{v}(V ) = min
V
{r̂

S∪{v}
1 (X) + r̂

S∪{v}
2 (X) + n− |X |}

≤ r̂
S∪{v}
1 (X∗) + r̂

S∪{v}
2 (X∗) + n− |X∗|

= r̂S1 (X
∗) + r̂

S∪{v}
2 (X∗) + n− |X∗|

≤ r̂S1 (X
∗) + r̂S2 (X

∗) + 1 + n− |X∗| = ρ̂S(V ) + 1 = ρ1(S) + 1

Hence ρ1(S ∪ {v}) ≤ ρ1(S) + 1. On the other hand, for any set X ⊆ V ,

r̂
S∪{v}
1 (X) + r̂

S∪{v}
2 (X) + n− |X | = r̂S1 (X) + r̂

S∪{v}
2 (X) + n− |X |

≥ r̂S1 (X) + r̂S2 (X) + n− |X |

and so ρ1(S∪{v}) ≥ ρ1(S). Finally, suppose that ρ1(S∪{v}) = ρ1(S∪{w}) = ρ1(S).

Let X be the set that minimizes r̂
S∪{v}
1 (X) + r̂

S∪{v}
2 (X) + n− |X |. We then have

ρ̂S∪{v,w}(X) ≤ r̂
S∪{v,w}
1 (X) + r̂

S∪{v,w}
2 (X) + n− |X |

= r̂
S∪{v}
1 (X) + r̂

S∪{v,w}
2 (X) + n− |X |

= r̂
S∪{v}
1 (X) + r̂

S∪{v}
2 (X) + n− |X | = ρ1(S ∪ {v})

Since ρ1(S) satisfies the three criteria of Lemma 2.3, it is a matroid rank function.
We letM1 denote the matroid with rank function defined by ρ1(S) from Lemma

3.2. The following corollary allows us to express rank([A|B]) = n as a matroid rank
condition on the set of input nodes.

Corollary 3.3. Let M1 be the matroid with rank function defined by ρ1(S)
from Lemma 3.2. Then the rank condition rank(A|B) = n holds for input set S if and
only if ρ1(S) = 2n− rank(M([I|QA|0]) ∨M([I|TA|0])).

Proof. By Lemma 2.13, the condition rank([A|B]) = n is satisfied if and only if
rank(M([I|QA|0])∨M([I|TA|TB(S)])) = 2n. Combining with the definition of ρ1(S)
completes the proof.

Finally, we express rank([A|B]) = n as a matroid constraint on the set of non-
input nodes.

Lemma 3.4. The condition rank([A|B]) = n holds if and only if the set of non-
input nodes R satisfies R ∈ M∗

1, the dual of the matroid induced by rank function
ρ1(S).

Proof. Let ρ∗1 denote the rank function of the dual matroidM∗
1. We have ρ∗1(R) =

ρ1(V \ R) + |R| − ρ1(V ), which is equivalent to ρ1(S) = ρ∗1(R) − |R| + ρ1(V ). The
constraint of Corollary 3.3 is equivalent to ρ1(S) ≥ ρ1(V ), which is in turn equivalent
to ρ∗1(R) ≥ |R|. This, however, holds only when R ∈ M∗

1.
We now turn to the constraint that rank(A − zF |B) = n (Eq. (2.6)). The

following intermediate lemma is the first step in our approach.
Lemma 3.5. There exists a graph G′ = (V ′, E′), which can be constructed in

polynomial time, such that the auxiliary graph Ĝ = (V̂ , Ê) corresponding to system
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(3.1) is given by

V̂ = V ′ ∪ {uT
1 , . . . , u

T
k } ∪ {u

Q
1 , . . . , u

Q
k }(3.3)

Ê = E′ ∪ {(uT
i , u

Q
i ) : i = 1, . . . , k} ∪ {(wT

i , u
T
i ) : i ∈ S}(3.4)

In this graph, the set J1 = {uQ
1 , . . . , u

Q
k } and the condition of Lemma 2.15 is satisfied

if each node of V ′ that belongs to a cycle in G′ is reachable to a node in {wT
i : i ∈ S}

in the graph Ĝ.
Proof. The matrix Ω corresponding to (3.1) is given by

Ω =





QA −QF 0
I 0
0 I





By solvability of (3.1) and Lemma 2.14, we can select n linearly independent rows
J from the first 2n rows of Ω. Let Ψ denote the matrix consisting of these linearly
independent rows. The matrix ΩJ can be completed to a full-rank matrix by selecting
J1 = {u1, . . . , uk}, giving

ΩJ∪J1
=

(

Ψ 0
0 I

)

, Ω−1
J∪J1

=

(

Ψ−1 0
0 I

)

.

Note that the matrix ΩΩ−1
J∪J1

does not depend on the input set S. Let G′ denote

the auxiliary graph when S = ∅. By construction, the auxiliary graph Ĝ with a non-
empty input set S is given by (3.3) and (3.4), since adding nodes to S simply adds
edges to N(TB).

To prove that reachability to the nodes {wT
i : i ∈ S} is sufficient, note that it

suffices that each node is reachable to J1 = {uQ
1 , . . . , u

Q
k } by Lemma 2.15. Since each

node in {wT
i : i ∈ S} is reachable to J1, it suffices for all other nodes to be reachable

to {wT
i : i ∈ S}.

As a consequence of Lemmas 2.15 and 3.5, to ensure that rank(zF −A|B) = n, it
suffices to select an input set S such that each node in G′ is reachable to {wT

i : i ∈ S}.
In order to select such an input set, we define an equivalence relation ∼ on the nodes
in V ′ as i ∼ j if node i is path-connected to node j in G′ and vice versa. We let
[i] = {j : i ∼ j}, and define V = {[i] : i ∈ V̂ } (so that V is the quotient set of V̂ under
the relation ∼).

Define the graph G = (V ,E) by (i, j) ∈ E if there exists i′ ∈ [i] and j′ ∈ [j] such

that (i′, j′) ∈ E. Note that G is a directed acyclic graph. We let V
′
denote the set of

isolated nodes, i.e., nodes that have no incoming edges in G.

Lemma 3.6. All nodes in V̂ are connected to S iff for each [i] ∈ V
′
, S ∩ [i] 6= ∅.

Proof. We first show that if S ∩ [i] 6= ∅ for all [i] ∈ V
′
, then all nodes in V̂ are

connected to S. Let v ∈ V̂ . If v ∈ [i] with [i] ∈ V
′
, then there exists j ∈ S ∩ [i] such

that j is path-connected to v. If v ∈ [i] with [i] /∈ V
′
, then there are nodes i′ ∈ [i] and

j1 ∈ [j1] for some [j1] ∈ V such that (j1, i
′) ∈ Ê. Now, either [j1] ∈ V

′
or there exists

j′1 ∈ [j1] and j2 ∈ [j2] such that (j2, j
′
1) ∈ Ê. Since the graph G is acyclic, there exists

a sequence of components [i], [j1], . . . , [jL], with ([jl+1], [jl]) ∈ Ê and [jL] ∈ V
′
. This

sequence of components defines a directed path from a node v′ ∈ S to v.
Now, suppose that all nodes in V̂ are connected to S. For each v ∈ [i], with

[i] ∈ V
′
, v must be connected to at least one input node. Since [i] ∈ V

′
, only other

nodes in [i] are connected to v. Hence we must have S ∩ [i] 6= ∅.
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Lemma 3.6 enables us to express the connectivity criterion as a matroid constraint.

First, define a function ρ2(S) = |{[i] ∈ V
′
: [i] ∩ S 6= ∅}|. The following lemma

describes the rank condition in terms of function ρ2(S).

Lemma 3.7. Let c = |V
′
|. The function ρ2(S) is a matroid rank function, and

all nodes in V̂ are connected to S iff ρ2(S) = c.
Proof. The function ρ2(S) is a matroid rank function because ρ2(∅) = 0 and

(ρ2(S ∪ {v}) − ρ2(S)) ∈ {0, 1}, with ρ2(S ∪ {v}) − ρ2(S) = 1 iff there exists i such

that v ∈ [i] and S ∩ [i] = ∅. Furthermore, ρ2(S) = c if and only if for every [i] ∈ V
′
,

S ∩ [i] 6= ∅, which is exactly the condition of Lemma 3.6.
LetM2 denote the matroid induced by rank function ρ2(S). We are now ready

to state a sufficient matroid constraint on R for the condition (2.6).
Lemma 3.8. LetM∗

2 be the dual of the matroid induced by ρ2(S). If the non-input
nodes R satisfy R ∈ M∗

2, then the condition rank((zF −A)|B) = n is satisfied.
Proof. The rank function ρ∗2(R) of M∗

2 can be written as ρ∗2(R) = ρ2(V \ R) +
|R|−ρ2(V ) = ρ2(S)+|R|−c, or equivalently, ρ2(S) = ρ∗2(R)+c−|R|. Hence ρ2(S) = c
is equivalent to ρ∗2(R) = |R|, which holds if and only if R ∈ M∗

2.
We combine the results of Lemmas 3.4 and 3.8 to yield the following theorem.
Theorem 3.9. If R ∈ M∗

1 ∩M
∗
2, then the system is controllable from input set

S = V \R.
Having defined matroid-based sufficient conditions for controllability, we will next

formulate the problem of selecting the minimum-size input set to guarantee structural
controllability.

3.2. Minimum-Size Input Set Selection for Structural Controllability.

Selecting a minimum-size set S to satisfy structural controllability is equivalent to
selecting a maximum-size set R = V \ S that satisfies controllability. Based on The-
orem 3.9, the problem of selecting the minimum-size set of input nodes to guarantee
structural controllability can be formulated as

(3.5) maximize {|R| : R ∈M∗
1, R ∈ M

∗
2} .

Lemma 3.10. A minimum-size set of input nodes satisfying structural controlla-
bility can be obtained in polynomial-time.

Proof. The problem of selecting a minimum-size set of input nodes to satisfy
structural controllability is formulated as (3.5). Eq. (3.5) is a matroid intersection
problem, which can be solved in time O(n5/2τ), where τ is the time required to test
if a set R is inM∗

1 andM∗
2 [37]. The independence of R in each set can be evaluated

in polynomial time.
Algorithm 1 gives a polynomial-time procedure for solving (3.5) using the max-

imum cardinality matroid intersection algorithm of [37, Ch. 41]. Lemmas 3.2 and
3.8 and the above discussion generalize the main result of [22] from free matrices to
systems with a mix of free and fixed parameters.

3.3. Input Selection for Joint Performance and Controllability. We now
consider the problem of maximizing a monotone performance metric f(S) while sat-
isfying controllability with a set of up to k input nodes. Based on Theorem 3.9, the
problem formulation is given by

(3.6)

maximizeS⊆V f(S)
s.t. |S| ≤ k

(V \ S) ∈M∗
1

(V \ S) ∈M∗
2
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Algorithm 1 Algorithm for selecting the minimum-size input set to guarantee struc-
tural controllability.

1: procedure Min Controllable Set(M∗
1,M

∗
2)

2: Input: MatroidsM∗
1 andM∗

2

3: Output: Set of inputs S
4: R← ∅
5: while 1 do

6: EM∗

1
,M∗

2
(R)← ∅

7: for All i ∈ R, j /∈ R do

8: if (R − {i} ∪ {j}) ∈M∗
1 then

9: EM∗

1
,M∗

2
(R)← EM∗

1
,M∗

2
(R) ∪ {(i, j)}

10: end if

11: if (R − {i} ∪ {j}) ∈M∗
2 then

12: EM∗

1
,M∗

2
(R)← EM∗

1
,M∗

2
(R) ∪ {(j, i)}

13: end if

14: end for

15: DM∗

1
,M∗

2
(R)← directed graph with vertex set V and edge set EM∗

1
,M∗

2
(R)

16: X1 ← {j ∈ V \R : (R ∪ {j}) ∈M∗
1}

17: X2 ← {j ∈ V \R : (R ∪ {j}) ∈M∗
2}

18: if path exists from a node in X1 to a node in X2 then

19: P ← shortest X1-X2 path
20: R← R∆P
21: else

22: break

23: end if

24: end while

25: S ← V \R
26: return S
27: end procedure

Eq. (3.6) is a combinatorial optimization problem, making it NP-hard to solve in
the general case. The following lemma describes an equivalent formulation to (3.6).

Lemma 3.11. Define r1 = rank(M1) and r2 = rank(M2). Let M̂1 =M1∨Uk−r1

and M̂2 =M2 ∨ Uk−r2 , with B̂1 and B̂2 denoting the sets of bases of M̂1 and M̂2,
respectively. Let S∗ denote the optimal solution to the problem

(3.7)
maximizeS⊆V f(S)

s.t. S ∈ B̂1 ∩ B̂2

The set S∗ is the optimal solution to (3.6).
Proof. First, we have that the optimal solution to (3.6) satisfies |S| = k. If not,

then since f(S) is monotone, we can add elements to S and increase the value of f
without violating the constraints (V \ S) ∈ M∗

1 and (V \ S) ∈ M∗
2. Furthermore,

if R = (V \ S) ∈ M∗
1, then R can be completed to a basis R of M∗

1, and we have
(V \ R) ⊆ (V \R), implying that S = (V \ R) ∪ S for some set S with |S| = k − r1.
Since R is a basis ofM∗

1, V \R is a basis ofM1, and hence S ∈ B̂1. A similar result
holds for M̂2.

Now, consider S∗ ∈ B̂1∩B̂2. By construction rank(M̂1) = rank(M̂2) = k. We can
therefore write S∗ = S∗

1 ∪ Ŝ
∗
1 , where S

∗
1 is a basis ofM1 and |Ŝ∗

1 | = k−r1. Since S
∗
1 is
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a basis ofM1, we have (V \S∗
1) ∈M

∗
1, and thus the set R = (V \S∗) ⊆ (V \S∗

1) ∈M
∗
1,

implying that R = (V \ S∗) ∈ M∗
1. A similar argument implies that (V \ S∗) ∈ M∗

2.

By Lemma 3.11, solving (3.6) is equivalent to solving (3.7). We present a two-
stage algorithm for approximating (3.7). In the first stage, the algorithm solves a
relaxed, continuous version of the problem. In the second stage, the algorithm rounds
the solution to an integral value satisfying the constraints of (3.7).

The algorithm is defined as Algorithm 2 below. It contains two subroutines,
namely, MAX WEIGHTED BASIS and SWAP ROUND. The subroutine
MAX WEIGHTED BASIS takes as input two matroids M′ and M′′ with the same
ground set V (with |V | = n), as well as a weight vector α ∈ Rn, and outputs a set
I ∈ B(M′) ∩ B(M′′) such that

∑

i∈I αi is maximized (provided at least one common
basis exists). Polynomial-time algorithms for finding such sets are well-known [37,
Ch. 43].

The subroutine SWAP ROUND takes as input a vector r in the common base
polytope of two matroidsM′ andM′′, and outputs a set I ∈ B(M′) ∩ B(M′′). The
algorithm is randomized with the output satisfying E(f(I)) ≥ F (r). The swap round
algorithm was proposed in [4].

Algorithm 2 Input selection algorithm for joint performance and controllability.

1: procedure Input Select(f , M̂1, M̂2, k)
2: Input: Monotone submodular objective function f : 2V → R

3: Matroids M̂1, M̂2

4: Maximum number of inputs k
5: Output: Set of inputs S
6: δ ← 1

9k2 , t← 0, y(0)← 0

7: while t < 1 do

8: R(t) contains each j ∈ V independently with probability yj(t)
9: for j ∈ V do

10: ωj(t)← E[f(R(t) ∪ {j})− f(R(t))]
11: end for

12: I(t)← MAX WEIGHTED BASIS(M̂1,M̂2,ω)
13: y(t + δ)← y(t) + δ · 1(I(t))
14: t← (t+ δ)
15: end while

16: S ← SWAP ROUND(y(1),M̂1,M̂2)
17: return S
18: end procedure

In Algorithm 2, the 1(I(t)) denotes the incidence vector of set I(t), which has
a 1 in the i-th entry if i ∈ I and 0 otherwise. The following theorem describes the
optimality bound of Algorithm 2.

Theorem 3.12. Algorithm 2 runs in polynomial time with complexity O(τn5).
Letting S∗ denote the optimal solution to (3.6), the vector y(1) returned by the con-
tinuous relaxation satisfies F (y(1)) ≥ (1 − 1/e)f(S∗), where F is the multilinear
relaxation of f(S). The rounded solution S is a feasible solution to (3.6).

The proof is given in the appendix. The following theorem provides additional
optimality guarantees when the objective function f(S) is linear.

Theorem 3.13. If the function f(S) is of the form f(S) =
∑

i∈S τi for some
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real-valued weights τ1, . . . , τn, then the solution to (3.6) can be obtained in polynomial
time.

Proof. If the function f(S) is of the form f(S) =
∑

i∈S τi, then (3.6) is equivalent
to maximizing a modular function subject to two matroid basis constraints. For
problems of this form, the Edmonds weighted matroid intersection algorithm provides
an optimal solution in polynomial time [37].

3.4. Selecting Input Nodes for Performance-Controllability Trade-Off.

In this section, we study input selection based on a trade-off between performance
and controllability, instead of treating controllability as a constraint that must be
satisfied. This maximization may be beneficial when the number of input nodes k is
insufficient to guarantee controllability.

We first introduce two graph controllability indices (GCIs) that can be traded
off with a performance metric in order to maximize the level of performance and
controllability. The first controllability index c1(S) is given by

(3.8) c1(S) = max {|V ′| : rank(A(V ′)|B(V ′)) = |V ′|},

where A(V ′) and B(V ′) are sub-matrices of A and B consisting of the rows and
columns indexed in V ′. Intuitively, c1(S) is the size of the largest subgraph of V such
that the zero modes of all nodes in the subgraph are controllable. The second GCI
quantifies the controllability of the nonzero modes, characterized by the constraint
rank(zF −A|B) = n. We define c2(S) by

(3.9) c2(S) = |{i ∈ V : i is reachable to u in Ĝ}|

where Ĝ is defined as in Section 2.4. The function c2(S) quantifies the number of
nodes that are reachable to the input nodes, and hence satisfy controllability of the
nonzero modes. If c1(S) + c2(S) = 2n, then both the zero and nonzero modes of all
nodes are controllable, and hence controllability is satisfied. Otherwise, the problem
of joint maximization of performance and controllability can be formulated as

(3.10)
maximizeS⊆V f(S) + η(c1(S) + c2(S))
s.t. |S| ≤ k

The trade-off parameter η ≥ 0 is used to vary the relative weight assigned to
performance or controllability criteria. When η is small, then nodes are selected for
performance alone; at the other extreme, when η is large, nodes are primarily selected
to maximize controllability. The following result is the first step in deriving efficient
algorithms for solving (3.10).

Theorem 3.14. The functions c1(S) and c2(S) are submodular as functions of
S.

Proof. The function c1(S) is equal to the maximum-size set of non-input nodes
with controllable zero modes from the input nodes, plus the number of input nodes.
This can be written as c1(S) = ρ1(V \ S) + |S|, where ρ1 is defined as in Lemma
3.2. Since ρ1 is a matroid rank function, ρ1 is submodular and hence ρ1(V \ S)
is submodular as well by Lemma 2.7. Since the sum of submodular functions is
submodular, ρ1(V \ S) + |S| is submodular as a function of S.

It remains to show submodularity of c2(S). Let S ⊆ T , and suppose that v /∈ T .
We have that c2(T ∪ {v})− c2(T ) is equal to the number of nodes that are reachable
to v, but not to any node in T . Since S ⊆ T , any node that is not reachable
to T is automatically not reachable to S. Hence, any node that is reachable to v
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but not any node in T is also reachable to v but not any node in S, implying that
c2(T ∪ {v})− c2(T ) ≥ c2(S ∪ {v})− c2(S).

A greedy algorithm for approximating (3.10) is as follows. The set S is initialized
to be empty, and the algorithm proceeds over k iterations. At the i-th iteration, the
element v ∈ V maximizing f(S ∪ {v}) + η(c1(S ∪ {v}) + c2(S ∪ {v}) is selected and
added to S, terminating after k iterations. The following theorem gives an optimality
bound for this algorithm.

Theorem 3.15. The solution S obtained by the greedy algorithm satisfies (f(S)+
η(c1(S) + c2(S))) ≥ (1 − 1/e)(f(S∗) + η(c1(S

∗) + c2(S
∗))), where S∗ is the optimal

solution to (3.10).
Proof. Since f(S), c1(S), and c2(S) are submodular and monotone as functions

of S, the function f(S) + η(c1(S) + c2(S)) is monotone and submodular. Hence,
Theorem 4.1 of [25] implies that the greedy algorithm returns a set S satisfying a
(1− 1/e)-optimality bound with the optimal set S∗, thus completing the proof.

4. Input Selection in Strongly Connected Networks. The input selection
algorithms of the previous section hold for any arbitrary structured linear descrip-
tor system. In this section, we investigate the case where the graph induced by the
system matrices F , A, and B is strongly connected, i.e., there exists a directed path
from any node i to any node j. In this case, there is additional problem structure
that reduces the complexity and improves the optimality bounds of our input selec-
tion algorithms. The following lemma gives system properties that hold with high
probability for strongly connected networks.

Lemma 4.1. If the graph induced by (F,A,B) is strongly connected and
rank(A|B) = n, then the condition rank((zF − A)|B) = n holds for almost any fixed
parameter matrices QF , QA, and QB.

Proof. If rank(A|B) = n, then det (zF −A) 6= 0 for all z ∈ C, except for some
complex numbers z1, . . . , zn. Consider zi such that det (ziF −A) = 0. We have that

det (ziF −A) =
∑

σ∈Sn

n
∏

j=1

(ziF −A)jσ(j) .

We observe that each σ corresponding to a nonzero term of the summation induces
a decomposition of the graph into cycles j1, . . . , jm, in which jl+1 = σ(jl) and j1 =
σ(jm). If the determinant is zero, then there exist at least two such decompositions,
corresponding to distinct permutations σ and σ′, with products of weights that sum
to zero.

Suppose that the l-th column of the matrix (ziF −A) is linearly dependent on the
other columns. Suppose that the column is replaced by one of the input columns from
B. Since the graph is strongly connected, a new cycle is induced by adding the input
column. For almost all values of the free parameters of B, the cycle will not cancel
out with the other cycles in the graph, and hence the determinant will be nonzero.

If rank((zF − A)|B) = n, then only the constraint (V \ S) ∈ M∗
1 must hold.

We now describe how this additional problem structure improves the runtime and
optimality gaps of each of the input selection problems considered.

4.1. Minimum-Size Input Set Selection in Strongly Connected Net-

works. In the strongly connected case, the minimum-size input set selection problem
reduces to

(4.1)
maximize |R|
s.t. R ∈M∗

1
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The following algorithm can be used to compute the solution to (4.1). Initialize
the set R = ∅, and let V = {1, . . . , n} be the set of possible input nodes. The
algorithm iterates over all nodes in V , starting with the node indexed 1. For each
node i, test if (R∪{i}) ∈M∗

1. If so, set R = R∪{i}. The algorithm terminates after
all n nodes have been tested.

Lemma 4.2. When the network is strongly connected and the condition of Lemma
4.1 holds, the greedy algorithm returns the minimum-size input set to guarantee con-
trollability within O(n) computations of the matroid independence condition R ∈M∗

1.
Proof. Let B be the set of bases of M∗

1. We define a lexicographic ordering
on the sets R ∈ B as follows. Let R1, R2 ∈ B, and write R1 = {a1, . . . , am} and
R2 = {b1, . . . , bm}, where a1 < a2 < · · · < am and b1 < b2 < · · · < bm. We let
R1 ≺ R2 if there exists i such that aj = bj for j < i and ai < bi. We have that
≺ induces a total ordering on B, since for any R1 and R2 with R1 6= R2, we have
R1 ≺ R2 or R2 ≺ R1.

Let R∗ denote the set in B that is minimal under the ordering ≺. We show
that the algorithm described above outputs R∗. Let R∗ = {a1, . . . , am}, and let
R∗

i = R∗ ∩ {1, . . . , i}. Finally, let Ri denote the set computed by our algorithm at
iteration i. We prove by induction that R∗

i = Ri for each i.
We have R0 = R∗

0 trivially. Now, suppose Ri = R∗
i−1. We have two cases. First,

suppose that i ∈ R∗. Since Ri−1 ∪ {i} = R∗
i−1 ∪ {i} = R∗

i and R∗
i ⊆ R∗, we have that

(Ri−1 ∪ {i}) ∈ M
∗
1. Hence the algorithm will add i to the set, and Ri = R∗

i .
Now, suppose that i /∈ R∗, and suppose that R∗

i 6= Ri. By inductive hypothesis,
we must have that i ∈ Ri, which occurs if and only if Ri = (Ri−1∪{i}) is independent
inM∗

1. SinceM∗
1 is a matroid, we can complete Ri to a basis R̂ ∈ B. By definition

of the ≺ ordering, R̂ ≺ R∗, contradicting the assumption that R∗ is minimal under
the ordering ≺. This contradiction implies that i /∈ Ri, and so Ri = R∗

i .
Continuing inductively until i = n, we have that Rn = R∗

n = R∗. Since Rn is
equal to R∗ ∈ B, Rn is a basis of M∗

1, and hence is a solution to (4.1). The O(n)
runtime follows from the fact that the algorithm makes one independence check per
iteration over a total of n iterations.

The additional problem structure in the strongly connected case leads to a sim-
plified algorithm with reduced runtime compared to Algorithm 1.

4.2. Joint Performance and Controllability Input Selection in Strongly

Connected Networks. When the system graph is strongly connected and the con-
ditions of Lemma 4.1 hold, the complexity and optimality bounds of input selection
for joint performance and controllability are improved. With this additional structure,
the problem formulation is given by

(4.2)
maximize f(S)
s.t. |S| ≤ k

(V \ S) ∈M∗
1

The following lemma gives an equivalent formulation to (4.2).
Lemma 4.3. Let r1 = rank(M1) and define M̂1 =M1 ∨ Uk−r1 . If the objective

function f(S) is monotone, then the optimization problem (4.2) has the same solution
as

(4.3)
maximize f(S)

s.t. S ∈ M̂1
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Proof. Let S∗ and Ŝ denote the optimal solutions to (4.2) and (4.3), respectively.
We observe that both |S∗| = |Ŝ| = k by monotonicity of f(S). We show that if
|S| = k, then the conditions (V \S) ∈M∗

1 and S ∈ M̂1 are equivalent. First, suppose
that (V \ S) ∈ M∗

1. Let R∗ = (V \ S) ∈ M∗
1. The set R∗ can be completed to a

basis of M∗
1, denoted R̂ = R∗ ∪ R′, and so we have S = (V \ R̂) ∪ (V \ R′). Now,

(V \ R̂) ∈M1 and |V \R′| = k − r1, and so S ∈ M̂1.
Suppose that S ∈ M̂1 and |S| = k. Since |S| = k, S is a basis of M̂1, and so S

can be written as S = S1 ∪ S2 where S1 ∈ M1. Hence (V \ S) ⊆ (V \ S1) ∈M∗
1, and

so the second constraint of (4.2) is satisfied.
Convex relaxation approaches have been proposed for solving matroid-constrained

monotone submodular maximization problems [2, 4]. One such approach is to replace
Line 12 in Algorithm 2 with a subroutine that computes the maximum-weighted basis
of a matroid (such a basis can be computed efficiently using a greedy algorithm). It
was shown in [2] that this algorithm achieves a (1− 1/e) optimality bound.

4.3. Performance-Controllability Trade-Off in Strongly Connected Net-

works. In the strongly connected network case, we define the graph controllability
index (GCI)

c(S) = max {|V ′| : V ′ controllable from S}.

The following lemma provides additional structure on c(S).
Lemma 4.4. The function c(S) = c̃(S) + ζ, where ζ is a constant and c̃(S) is a

matroid rank function.
Proof. The largest controllable subgraph of G corresponds to a subset of states

such that, for the matrix A′ with columns indexed in V ′, we have rank(M([I|QA′ |0]∨
[I|TA′ |TB(S)]) = 2|V ′|. This subset of columns, however, is exactly the maximum-
size independent set in (M([I|QA|0]) ∨M([I|TA|TB(S)])), and the value of c(S) is
rank(M([I|QA|0])∨M([I|TA|TB(S)])). By Lemma 3.2, the rank is equal to the rank
ofM([I|QA]) ∨M([I|TA]) plus a matroid rank function of S.

The problem of selecting a set of up to k input nodes to maximize both a perfor-
mance metric f(S) and the GCI c(S) is formulated as

(4.4)
maximize f(S) + ηc(S)
s.t. |S| ≤ k

As in the general case, a greedy algorithm for maximizing f(S)+ ηc(S) is guaranteed
to return an input set S∗ such that f(S∗) + ηc(S∗) is within a (1− 1/e) factor of the
optimum. Moreover, when the performance metric f(S) is identically zero, so that
only controllability is optimized, we have the following result.

Lemma 4.5. If f(S) = 0, then the greedy algorithm returns the optimal solution
to (4.4).

Proof. For the problem of maximizing a matroid rank function subject to a
cardinality constraint, the greedy algorithm is known to return an optimal solution
[27]. If f(S) = 0, then by Lemma 4.4, Eq. (4.4) is equivalent to maximizing a matroid
rank function subject to a cardinality constraint, and hence the greedy algorithm
returns the optimal input set S.

5. Special Cases of Our Approach. In this section, we consider three special
cases of our framework, namely systems with linear consensus dynamics, networked
systems where each node has second integrator dynamics, and systems where all
parameters are free.
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5.1. Linear Consensus Dynamics. We first consider a network of N nodes
where each node i ∈ {1, . . . , N} has a state xi(t) ∈ R. The state dynamics of the
non-input nodes are given by ẋi(t) = −

∑

j∈N(i) Wij(xi(t)− xj(t)), where Wij are

nonnegative weights. In [14], it was shown that, by introducing a set of states {xe
j :

j = 1, . . . ,M}, where M is the number of edges in the network, the system can be
written in the form (2.3) as

(5.1)

(

I 0
0 0

)(

ẋ(t)
ẋe(t)

)

=

(

0 K
KI W

)(

x(t)
xe(t)

)

.

In (5.1), KI is the incidence matrix of the graph and K is the transpose of the
incidence matrix. W is a diagonal matrix with e-th entry equal to the weight on edge
e. We assume that the weights W are free parameters, so that QF , TF , QA, and TA

are given by

(5.2) QF =

(

I 0
0 0

)

, QA =

(

0 K
KI 0

)

, TA =

(

0 0
0 W

)

.

As a first step towards analyzing this class of system dynamics under our framework,
we consider the condition of Lemma 2.15. For this system, the matrix Ω of Section
2.4 is equal to

(5.3) Ω =

w

we

x

xe

u













−I K 0
KI 0 0
I 0 0
0 I 0
0 0 I













We use we and xe to denote the auxiliary graph nodes corresponding to the states
xe(t). We observe that in the augmented graph, since the weight matrix is diagonal,

there is a directed edge from we,T
j to xe,T

j for all edges indexed j = 1, . . . ,M . We
have the following intermediate result.

Lemma 5.1. The matching m with m(we,T
j ) = xe,T

j for all j = 1, . . . ,M and

m(wT
i ) = wQ

i for all i = 1, . . . , N satisfies the conditions of Lemma 2.14.
Proof. The matching m is valid under the construction of Section 2.4. The rows

of Ω from (5.3) indexed in J = {xe,Q
j : j = 1, . . . ,M} ∪ {wQ

i : i = 1, . . . , N} form the
matrix

ΩJ =

(

−I K
0 I

)

,

which has full rank.
We can then compute ΩΩ−1

J∪J1
as

(5.4) ΩΩ−1
J∪J1

=













I 0 0
−KI KIK 0
−I K 0
0 I 0
0 0 I













The graph G′ = (V ′, E′) of Lemma 3.5 defined by Eq. (5.4) is described by the
following lemma.
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Lemma 5.2. For the system (5.1), the edge set E′ of Lemma 3.5 is defined by

E′ = {(wQ
e , w

Q
i ) : e = (i, j) for some j ∈ V } ∪ {(xQ

i , x
Q
e ) : e = (i, j)for some j ∈ V }

∪{(wQ
e , xQ

e′) : edges e and e′ have a node in common}

∪{(xe,Q
j , xe,T

j ) : j = 1, . . . ,M} ∪ {(we,T
j , we,Q

j ) : j = 1, . . . ,M}

∪{(wQ
i , wT

i ) : i = 1, . . . , N}.

Proof. Considering the edge set of the auxiliary graph defined in Section 2.4,
the set {(wT

i , x
Q
j ) : (i, j) ∈ N(TA) ∪ N(TF ),m(wT

i ) 6= xQ
j } is empty, while the set

{(xQ
j , w

T
i ) : (i, j) ∈ N(TA) ∪ N(TF ),m(wT

i ) = xQ
j } is equal to {(xe,Q

j , xe,T
j ) : j =

1, . . . ,M} ∪ {(we,T
j , we,Q

j ) : j = 1, . . . ,M}. The set {(wT
i , w

Q
i ) : m(wT

i ) 6= wQ
i } ∪

{(wQ
i , w

T
i ) : m(wT

i ) = m(wQ
i )} is equal to {(we,T

j , we,Q
j ) : j = 1, . . . ,M}∪{(wQ

i , w
T
i ) :

i = 1, . . . , N}.

It remains to compute the set {(xQ, yQ) : x ∈ V̂ \ J, y ∈ J, Ω̃xy 6= 0, Ω̃xz = 0 ∀z ∈
J1}. This set is defined by the off-diagonal entries of ΩΩ−1

J∪J1
from (5.4). The entries

from we,Q
j to wQ

i correspond to the entries of the incidence matrix, and hence there is
a nonzero entry if and only if edge j is incident to node i. A similar argument holds
for the (xQ

i , x
e,Q
j ) edges. Finally, an edge (we,Q

j , we,Q
j′ ) is formed if (KIK)jj′ 6= 0. This

matrix is the edge Laplacian, which has a nonzero entry if and only if either j = j′,
or edges j and j′ are incident to the same node.

This description of the graph G′ enables characterization of the input-connected
nodes in V̂ .

Lemma 5.3. The nodes xT
i , w

T
i and wQ

i do not belong to any cycle in G′. A node

xQ
i is input-connected in G′ if and only if i is input-connected in the graph G induced

by the consensus dynamics. A node xe,T
j , we,T

j , xe,Q
j , or we,Q

j is input-connected in
G′ if and only if edge j is incident on a node that is input-connected in the consensus
network G.

Proof. By Lemma 5.2, wT
i and wQ

i are only connected to each other, and hence
are not part of any cycle since the link is directional. Similarly, the nodes xT

i cannot
belong to any cycle, since they have no incoming edges.

Now, suppose that there is a path from node i to an input i′ in G. Let (i, i1), . . .,
(ir, i

′) denote one such path, and let j0, . . . , jr denote the indices of the edges on the

path. Then there is a path π from xQ
i to wT

i′ , given by

(5.5) π = (xQ
i , x

e,Q
j0

) ∪
r−1
⋃

l=0

{

(xe,Q
jl

, xe,T
jl

), (xe,T
jl

, we,T
jl

), (we,T
jl

, we,Q
jl

), (we,Q
jl

, xe,Q
jl+1

)
}

∪ {(xe,Q
jr

, wQ
i′ ), (w

Q
i′ , w

T
i′ )}

For the other direction, we have that any path from xQ
i to wT

i′ has the form of
(5.5), and hence defines a path from i to i′ in G. Finally, suppose that edge j is
incident on node i and that there is a path from a node i to an input i′ in G. Let
(i, i1), . . . , (ir, i

′) denote one such path, and let j0, . . . , jr denote the indices of the
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edges on the path. For node we,Q
j , there is a path given by

π′ = (we,Q
j , xe,Q

j0
) ∪

r−1
⋃

l=0

{(xe,Q
jl

, xe,T
jl

), (xe,T
jl

, we,T
jl

), (we,T
jl

, we,Q
jl

), (we,Q
jl

, xe,Q
jl+1

)}

∪ {(xe,Q
jr

, wQ
i′ ), (w

Q
i′ , w

T
i′ )}

A path can also be found for nodes xe,Q
j , xe,T

j , and we,T
j by using the path (xe,Q

j ,

xe,T
j ), (xe,T

j , we,T
j ), (we,T

j , we,Q
j ).

Based on Lemma 5.3, we can characterize exactly when the condition of Lemma
2.15 holds, based on the connectivity of the network graph G.

Lemma 5.4. The condition of Lemma 2.15 holds for the system (5.1) if and only
if each node is input-connected in the graph G.

The proof follows directly from Lemma 5.3. Lemma 5.4 enables us to improve
the optimality bounds for a class of metrics with a certain structure. Suppose that
the connected components of the graph are equal to G1, . . . , Gr, with Gi = (Vi, Ei)
for i = 0, . . . , r. We consider metrics of the form

(5.6) f(S) =

r
∑

i=1

fi(S ∩ Vi).

Eq. (5.6) has the interpretation that the performance of nodes in connected com-
ponent Vi only depends on the set of input nodes for component Vi, instead of the
overall input set. This structure holds for, e.g., the metrics of [30, 8, 5]. For these
metrics, we have the following optimality result.

Theorem 5.5. For the consensus system (5.1), the problem of maximizing a
performance metric of the form (5.6) subject to controllability as a constraint and
|S| ≤ k, formulated as

(5.7)
maximize f(S)
s.t. (V \ S) ∈M∗

1 ∩M
∗
2

|S| ≤ k

can be approximated up to an optimality bound of (1 − 1/e) in polynomial time. As
a special case, if the graph G is strongly connected, then any monotone submodular
performance metric can be approximated up to an optimality bound of (1 − 1/e) in
polynomial time.

Proof. The proof is by showing that the optimality bounds of Algorithm 2 are
improved in this case. By Theorem 3.12, the continuous relaxation phase of Algorithm
2 returns a vector y(1) such that F (y(1)) ≥ (1 − 1/e)f(S∗), where S∗ is the optimal
solution to (5.7). Now, Theorem II.3 of [4] implies that the SWAP ROUND subroutine
satisfies E(f(S ∩ Q)) ≥ F (xi : i ∈ Q) for any set Q of equivalent elements of one of
the matroids M̂1 or M̂2. For the matroid M̂2, each set of elements Vs is equivalent,
and so E(f(S ∩ Vs)) ≥ F (xi : i ∈ Vs). Summing over s yields the desired result.

For the special case, we have that when the graph is strongly connected, input
connectivity holds provided there is at least one input. Hence we can obtain a (1−1/e)-
bound on the optimal input set.

5.2. Double Integrator Dynamics. We study networked systems where the
second derivative of each node’s state ξi(t) is a function of its neighbor states, so that
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ξ̈i(t) =
∑

j∈N(i) Wijξj(t) + Γij ξ̇j(t), where N(i) is the neighbor set of node i. The
double integrator model is applicable for larger vehicles that have inertial components
in their dynamics [34]. We write this system in the form (2.3) by introducing variables
ζi(t) = ξ̇i(t), resulting in dynamics

(5.8)

(

ξ̇(t)

ζ̇(t)

)

=

(

0 I
W Γ

)(

ξ(t)
ζ(t)

)

.

where F = I. In analyzing this system, we observe that it is not possible to indepen-
dently control the states ξi(t) and ζi(t) to any arbitrary trajectories, since ζi(t) = ξ̇i(t).
Hence we assume that the state ζi(t) (the velocity) is controlled in the input nodes,
while the state ξi(t) continues to follow the dynamics (5.8).

We first investigate the auxiliary graph condition of Lemma 2.15. The matrix Ω
is given by

(5.9) Ω =

wξ

wζ

xξ

xζ

u













−I I 0
0 −I 0
I 0 0
0 I 0
0 0 I













We have that the rows indexed inw have full rank, and hence the matchingm(wξ,T
i ) =

wξ,Q
i and m(wζ,T

i ) = wζ,Q
i for i = 1, . . . , N satisfies the conditions of Lemma 2.14.

This gives J = {wζ,Q
i : i = 1, . . . , N} ∪ {wξ,Q

i : i = 1, . . . , N}. We then have ΩJ∪J1
,

Ω−1
J∪J1

, and ΩΩ−1
J∪J1

as

(5.10) ΩJ∪J1
=





−I I 0
0 −I 0
0 0 I



 , Ω−1
J∪J1

=





−I −I 0
0 −I 0
0 0 I



 ,

ΩΩ−1
J∪J1

=

wξ

wζ

xξ

xζ

u













I 0 0
0 I 0
−I −I 0
0 −I 0
0 0 I













.

These matrix values lead to the following description of the auxiliary graph.
Lemma 5.6. The graph G′ of Lemma 3.5 has edge set E′ given by

E′ = {(wξ,Q
i , wξ,T

i ) : i = 1, . . . , N} ∪ {(wζ,Q
i , wζ,T

i ) : i = 1, . . . , N}(5.11)

∪{(xξ,Q
i , xξ,T

i ) : i = 1, . . . , N} ∪ {(xζ,Q
i , xζ,T

i ) : i = 1, . . . , N}

∪{(wξ,T
i , xξ,T

j ) : j ∈ N(i)} ∪ {(wξ,T
i , xζ,T

j ) : j ∈ N(i)}(5.12)

∪{(wζ,T
i , wξ,T

j ) : j ∈ N(i)} ∪ {(wζ,T
i , wξ,T

j ) : j ∈ N(i)}

∪{(xξ,Q
i , wξ,Q

i ) : i = 1, . . . , N} ∪ {(xξ,Q
i , wζ,Q

i ) : i = 1, . . . , N}(5.13)

∪{(xζ,Q
i , wζ,Q

i ) : i = 1, . . . , N}

Proof. The edges (5.11) correspond to the edges {(wQ
i , w

T
i ) : m(wT

i ) = wQ
i }

in the definition of Ê. The edges enumerated in (5.12) correspond to the edges
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{(wT
i , x

T
j ) : (i, j) ∈ N(TA). Finally, the value of ΩΩ−1

J∪J1
from (5.4) implies that the

edges enumerated in (5.13) correspond to the edges {(xQ, yQ) : x ∈ V̂ \J, y ∈ J, Ω̃xy 6=

0, Ω̃xz = 0∀z ∈ J1}.
Lemma 5.6 leads to the following result, which relates the connectivity of the

auxiliary graph and the graph G induced by the node dynamics. This is analogous to
Lemma 5.3.

Lemma 5.7. For any node i, the nodes wξ,Q
i , wζ,Q

i , xξ,Q
i , xζ,Q

i , wξ,T
i , wζ,T

i ,

xξ,T
i , and xζ,T

i are input-connected in the auxiliary graph G′ if and only if node i is
input-connected in the graph G.

Proof. Suppose that node i is connected to an input node i′ in G, with path
(i, i1), (i1, i2), . . . , (ir, i

′). Now, consider the node wζ,T
i . We can construct a path π

from wζ,T
i to wξ,T

i′ as

(5.14) π = (wζ,T
i , xξ,T

i0
) ∪

r
⋃

l=0

{(xξ,T
il

, xξ,Q
il

), (xξ,Q
il

, wξ,Q
il

), (wξ,Q
il

, wξ,T
il

), (wξ,T
il

, xξ,T
il+1

)}

∪ {(xξ,T
i′ , xξ,Q

i′ ), (xξ,Q
i′ , wξ,Q

i′ ), (wξ,Q
i′ , wξ,T

i′ )}.

Paths for the other types of nodes in the auxiliary graph can be constructed in a
similar fashion. Conversely, any path to an input node in the auxiliary graph will
have the form (5.14), and hence can be used to construct a path to an input node in
the graph G.

Lemma 5.7 implies that, for performance metrics satisfying (5.6), Algorithm 2
returns a set S satisfying f(S) ≥ (1 − 1/e)f(S∗), where S∗ is the optimal solution.
The proof is analogous to Theorem 5.5.

5.3. Input Selection in Networks of Free Parameters. We now investigate
systems where all of the matrix entries are free parameters, as in the models of [7,
22, 36]. We consider systems of the form ẋ(t) = Ax(t), where A is a free matrix and
F = I. The matrix Ω defined in Section 2 is then given by

(5.15) Ω =
w

x

u





−I 0
I 0
0 I





Hence the simple matching m(wT
i ) = wQ

i has full rank in (5.15), and we can compute
ΩJ∪J1

and ΩΩ−1
J∪J1

as

(5.16) ΩJ∪J1
=

(

−I 0
0 I

)

, ΩΩ−1
J∪J1

=





I 0
−I 0
0 I





Based on the value of ΩΩ−1
J∪J1

, the following lemma gives the construction of the
auxiliary graph G′.

Lemma 5.8. The auxiliary graph G′ of Lemma 2.15 has edge set E′ given by

E′ = {(wQ
i , w

T
i ) : i = 1, . . . , N} ∪ {(wT

i , x
T
j ) : j ∈ N(i)} ∪ {(xT

i , x
Q
i ) : i = 1, . . . , N}

∪ {(xQ
i , w

Q
i ) : i = 1, . . . , N}
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Proof. The first term follows from the matching m(wT
i ) = wQ

i . The second term
arises from the matrix A, while the third term is from the definition of the auxiliary
graph. The last term follows from the value of ΩΩ−1

J∪J1
in (5.16).

Hence, in the free parameter case we have a result analogous to Lemmas 5.3 and
5.7.

Lemma 5.9. The conditions of Lemma 2.15 are met if and only if each node is
path-connected to an input node in the graph G.

Proof. Suppose that a node i is path-connected to an input node i′ in G, where the
path is given by (i, i0), . . . , (ir−1, ir), (ir, i

′), letting ir+1 = i′. Then the corresponding
path in G′ is equal to

π = {(wQ
i , w

T
i ), (w

T
i , x

T
i0), (x

T
i0 , x

Q
i0
), (xQ

i0
, wQ

i0
)}

∪
r
⋃

l=0

{(wQ
il
, wT

il ), (w
T
il , x

T
il+1

), (xT
il+1

, xQ
il+1

), (xQ
il+1

, wQ
il+1

)}

∪(wQ
i′ , w

T
i′ )

We now investigate the other matroid constraint of Lemma 3.2. When all entries
of A are free, the constraint reduces to

rank(M([I|0|0]) ∨M([I|TA|TB(S)])) = 2n,

which is in turn equivalent to the second matroid being full rank. Hence the condition
can be reduced to rank(M([I|TA|TB(S)])) = n.

Lemma 5.9 implies that, if a system with free parameters is strongly connected,
then it suffices to find an input set such that the matroid of Lemma 3.2 is full rank. A
minimum-size input set such that rank(M([I|TA|TB(S)])) = n can be found efficiently
using the greedy algorithm. This enables efficient computation of an input set with
the same size as in [22], but through the matroid optimization framework.

Finally, we observe that, by Lemma 5.9, Algorithm 2 returns a set S that satisfies
a (1− 1/e) optimality bound, by the argument of Theorem 5.5.

6. Numerical Study. We numerically evaluated our framework using Matlab.
We considered the consensus network case of Section 5.1. Network topologies were
generated by placing nodes at uniform random positions within a square region, and
creating a link (i, j) if node i is within the communication range of node j. The
range of each node was chosen uniformly at random from the interval [0, 600]. We
investigated the minimum-size set of input nodes for structural controllability, as well
as selection of input nodes for joint performance and controllability.

In the case of selecting the minimum-size set of input nodes for structural control-
lability, we considered networks of size n = {10, 20, 30, 40}. The deployment area was
selected to yield average node degrees d = 3. We compared our submodular optimiza-
tion approach with selecting high degree nodes as inputs, as well as selecting random
nodes to act as inputs. The submodular optimization approach required fewer input
nodes to satisfy controllability, with the other heuristics selecting nearly all network
nodes before controllability is satisfied. For all schemes, the number of input nodes
was increasing in the network size.

We evaluated selection of input nodes in order to minimize the convergence error
with controllability as a constraint. The convergence error was defined as ||x(t) −
x∗1||2, where x∗ is the state of the input nodes, t = 1, and the initial state and
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The submodular optimization approach typically requires roughly one-quarter of the network to be

controlled, while the random and degree-based heuristics select nearly all network nodes before con-

trollability is satisfied.
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Fig. 2. Convergence error when input nodes are selected to minimize convergence error while

satisfying controllability. The number of nodes n was equal to 20. The submodular optimization

approach provided lower convergence error than degree-based and random selection algorithms, es-

pecially as the number of input nodes increased.

edge weights were chosen uniformly at random. The number of nodes was equal to
20, while the deployment area was chosen to achieve an average degree of 2. The
submodular optimization approach provided lower convergence error than the degree-
based and random heuristics, while also satisfying controllability from the input set.
As the number of input nodes increased, the gap between the submodular optimization
approach and the other heuristics increased.

7. Conclusions. In this paper, we studied the problem of input selection for
joint performance and controllability of structured linear descriptor systems. Our
main contribution was to prove that structural controllability of linear descriptor sys-
tems can be mapped to two matroid constraints, representing controllability of the
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zero and nonzero modes of the system. We demonstrated that, by exploiting this
matroid structure, a minimum-size set of input nodes to guarantee structural control-
lability of such systems can be selected in polynomial time via matroid intersection
algorithms. We further showed that selection of input nodes for joint performance
and controllability can be formulated as a submodular maximization problem subject
to two matroid basis constraints. We presented polynomial-time algorithms for ob-
taining a continuous solution to the input selection problem, providing a (1 − 1/e)
optimality bound, which can then be rounded to obtain a feasible input set. We
demonstrated that, when the objective function is modular, the optimal input selec-
tion for performance and controllability can be computed in polynomial time.

We investigated input selection in systems where the graph representation of the
system is strongly connected, and found that for almost all systems of this type the
number of matroid constraints can be reduced from two to one. This led to an O(n)
algorithm for selecting a minimum-size set of input nodes for structural controllability,
as well as more efficient polynomial-time algorithms for approximating the optimal
input set up to a factor of (1 − 1/e). We studied linear consensus systems, double
integrator systems, and systems consisting of free parameters within our framework,
and showed that the additional structure of each system provided a provable (1−1/e)
optimality bound for input selection based on performance and controllability.
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8. Appendix. In this appendix, we provide proofs of Lemma 2.15 and Theorem
3.12.

The steps in the proof of Lemma 2.15 follow those in [24]. First, define a set of
coefficients on the edges Ê of graph Ĝ. The coefficient γ(e) on edge e ∈ Ê is defined
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by

(8.1) γ(e) =
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Now, let Ω̃ = ΩΩ−1
J∪J1

and V − = {vQ : Ω̃vj 6= 0 for some j ∈ J1}. The following
appears as Theorem 4.7 of [24], albeit with slightly modified notation.

Theorem 8.1. Let Ṽ denote the set of vertices that are not reachable to V −, and
let G̃ denote the subgraph of Ĝ induced by Ṽ . Then the condition rank((zF−A)|B) = n
holds for almost any choice of the free parameters if and only if the sum of the γ(e)
along any directed cycle in G̃ is zero.

We now prove Lemma 2.15.

Proof. [Proof of Lemma 2.15] If the condition of Lemma 2.15 holds, then Ṽ does
not contain any cycle. Hence the condition of Theorem 8.1 holds automatically, and
we have rank((zF −A)|B) = n for almost any free parameters.

In order to prove Theorem 3.12, we first prove a sequence of lemmas, which will
establish that F (y(1)) ≥ (1 − 1/e)f(S∗). The lemmas follow Lemmas 3.1–3.3 of [2],
however, the results of [2] are for a single matroid constraint, instead of two matroid
basis constraints as in Theorem 3.12.

Lemma 8.2. Let y ∈ [0, 1]n and let R ⊆ V denote a random set such that j ∈ R
with probability yj. Then

f(S∗) ≤ F (y) + max
I∈B̂1∩B̂2

∑

j∈I

E(fR(j)),

where fR(j) = f(R ∪ {j})− f(R).

Proof. By submodularity, we have that f(S∗) ≤ f(R) +
∑

j∈S∗ fR(j). Taking
expectation over R yields

f(S∗) ≤ E(f(R)) +
∑

j∈S∗

E(fR(j)) ≤ F (y) + max
I∈I

∑

j∈I

E(fR(j)),

as desired.

Lemma 8.2 establishes an optimality result for an idealized version of Algorithm
2 where computation is performed over the actual values of E(fR(j)) instead of es-
timates computed via random sampling. The following lemma introduces bounds on
the errors introduced by sampling.

Lemma 8.3. With high probability, at each time t the algorithm finds a set I(t)
such that

∑

j∈I(t)

E(fR(t)(j)) ≥ (1− 2kδ)f(S∗)− F (y(t)).
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The proof is identical to Lemma 3.2 of [2] and is omitted. Finally, we prove the
optimality bound on the solution to the continuous relaxation.

Lemma 8.4. With high probability, the fractional solution y(1) found by solving
the continuous problem satisfies

F (y) ≥

(

1−
1

e
−

1

3d

)

f(S∗).

The proof follows that of Lemma 3.3 of [2]. We now prove Theorem 3.12.
Proof. [Proof of Theorem 3.12] The fact that F (y) ≥

(

1− 1
3

)

f(S∗) follows di-
rectly from Lemma 8.4. The feasibility of S follows from the SWAP ROUND algo-
rithm, which preserves membership in the bases of both matroids at each iteration
and returns an integral solution, corresponding to a common basis of B̂1 and B̂2. The
complexity of the procedure is dominated by the solution of the continuous problem,
which is in turn determined by the cost of computing the maximum weight matroid
intersection at each iteration. Since there are O(n2) iterations and the maximum
weight matroid intersection has complexity O(τn3) [37], where τ is the cost of testing
independence in M̂1 and M̂2, the overall complexity is O(τn5).


