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Abstract

A classical theorem of Spencer shows that any set system with n sets and n elements
admits a coloring of discrepancy O(y/n). Recent exciting work of Bansal, Lovett and
Meka shows that such colorings can be found in polynomial time. In fact, the Lovett-
Meka algorithm finds a half integral point in any “large enough” polytope. However,
their algorithm crucially relies on the facet structure and does not apply to general
convex sets.

We show that for any symmetric convex set K with Gaussian measure at least
e~"/590 the following algorithm finds a point y € K N [~1,1]" with Q(n) coordinates
in £1: (1) take a random Gaussian vector x; (2) compute the point y in K N[—1,1]"
that is closest to z. (3) return y.

This provides another truly constructive proof of Spencer’s theorem and the first
constructive proof of a Theorem of Gluskin and Giannopoulos.

1 Introduction

Discrepancy theory deals with finding a bi-coloring x : {1,...,n} — {£1} of a set system
Si,...,9m € {1,...,n} so that the worst inbalance max;—1__, |x(5;)| of a set is minimized,
where we denote x(5;) 1= ;g X(j). A seminal result of Spencer [Spe85| says that there is
always a coloring x so that |x(S;)| < O(y/n) if m = n. The result is in particular interesting
since it beats the random coloring which has discrepancy ©(y/nlogn). Spencer’s technique,
which was first used by Beck in 1981 [Bec81] is usually called the partial coloring method
and is based on the argument that due to the pigeonhole principle many of the 2" many
colorings x, x’ must satisfy |x(S;) — x'(S;)| < O(y/n) for all sets S;. Then one can take the
difference between such a pair of colorings with |{j | x(j) # Xx'(4)}| > § to obtain a partial
coloring of low discrepancy. Iterating the argument logn times provides a full coloring.

Few years later and on the other side of the iron curtain, Gluskin [GIu89| obtained the
same result using convex geometry arguments. In a paraphrased form, Gluskin’s result
showed the following:

Theorem 1 (Gluskin [GIu89], Giannopoulos [Gia97]). For a small constant § > 0, let K C
R™ be a symmetric convex set with Gaussian measure v,(K) > e~ and vy, ..., v, € R"
vectors of length |lvi|| < §. Then there are partial signs y1,...,ym € {—1,0,1} with
|supp(y)| > & so that Y, yv; € 2K.
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For the proof, consider all 2" many translates Y ., y;v; + K with y € {1}"™. Then one
can estimate that the total measure of the translates must be much bigger than 1, so there
must be many pairs 3/, y” € {£1}™ so that the translates overlap. Then take a pair that
differs in at least half of the entries and y := %(y’ —y") gives the vector that we are looking
for. For more details, we refer to the very readable exposition of Giannopoulos [Gia97].

In both, Spencer’s original result and the convex geometry approach of Gluskin and
Giannopoulos, the argument goes via the pigeonhole principle with exponentially many
“pigeons” and “pigeonholes” which makes both type of proofs non-constructive. In a more
recent breakthrough, Bansal [Banl0| showed that a random walk, guided by the solution
of an SDP can find the coloring for Spencer’s Theorem in polynomial time. However, the
approach needs a very careful choice of parameters and the feasibility of the SDP still
relies on the non-constructive argument. A simpler and truly constructive approach was
provided by Lovett and Meka [LM12] who showed that a “large enough” polytope of the
form P = {z € R" : |(v;,z)| < \; Vi € [m]} has a point y € PN [—1,1]" that can be found
in polynomial time and satisfies y; € {—1,1}" for at least half of the coordinates. If the v;’s
are scaled to unit length, then the “largeness” condition requires that

= n
-A7/16 Y 1

The approach of Lovett and Meka is surprisingly simple: start a random walk at the origin
and each time you hit one of the constraints (v;, z) = £\; or x; = =1, continue the random
walk in the subspace of the tight constraint. The end point of this random walk is the
desired point y.

Still, the algorithm of Lovett and Meka does not seem to generalize to arbitrary convex
sets and the condition in ([I]) might not be satisfied for convex sets even if they have a large
measure.

1.1 Related work

If we have a set system Si,...,S5,, where each element lies in at most t sets, then the
partial coloring technique from above can be used to find a coloring of discrepancy O(v/t -
logn) [Sri97]. A linear programming approach of Beck and Fiala [BF81| shows that the
discrepancy is bounded by 2t — 1, independent of the size of the set system. On the other
hand, there is a non-constructive approach of Banaszczyk [Ban98| that provides a bound
of O(v/tlogn) using a different type of convex geometry arguments. A conjecture of Beck
and Fiala says that the correct bound should be O(v/t). This bound can be achieved for
the vector coloring version, see Nikolov [Nik13].

More generally, the theorem of Banaszczyk [Ban98| shows that for any convex set K
with Gaussian measure at least 3 and any set of vectors vy, ..., vy, of length |lv;[ls < %,
there exist signs ¢; € {£1} so that Y ;" gv; € K.

A set of k permutations on n symbols induces a set system with kn sets given by the
prefix intervals. One can use the partial coloring method to find a O(v/klogn) discrepancy
coloring [SST], while a linear programming approach gives a O(klogn) discrepancy [Boh90].
In fact, for any k one can always color half of the elements with a discrepancy of O(vk) —



this even holds for each induced sub-system [SST]. Still, [NNN12| constructed 3 permuta-
tions requiring a discrepancy of ©(logn) to color all elements.

Also the recent proof of the Kadison-Singer conjecture by Marcus, Spielman and Sri-
vastava [MSS13| can be seen as a discrepancy result. They show that a set of vectors
V1., Uy € R™ with Y007, vin-T = I can be partitioned into two halfs S7,S59 so that
Zz’eSj vvl = (53 4+ O(Ve)I for j € {1,2} where ¢ = max;—1, n{|lv;||3} and I is the
n x n identity matrix. Their method is based on interlacing polynomials and no polynomial
time algorithm is known to find the desired partition.

For a very readable introduction into discrepancy theory, we recommend Chapter 4 in
the book of Matousek [Mat99] or the book of Chazelle [Cha01].

1.2 Owur contribution

Our main contribution is the following;:
Theorem 2. There is a randomized polynomial time algorithm, which for any symmetric
convex set K C R"™ with Gaussian measure at least e="/°% finds a point y € K N [—1,1]"

with y; € {—1,1} for at least gg5; many coordinates. Here it suffices if a polynomial time
separation oracle for the set K exists.

Our method is extremely simple:

[_L 1]n
Algorithm:
K
(1) take a random Gaussian vector z* ~ N™(0, 1) 0 \
(2) compute the point Y
y* = argmin{|2* —yll> |y € K 1 [-1,1]"} T
(3) return y*

In fact, the probability that the point y* satisfies the claim of Theorem 2is 1 — 279%™,
After the publication of the conference version of this paper, Eldan and Singh [ES14]

discovered the following alternative algorithm: given a large enough symmetric convex body

K C R", take a uniform random direction ¢ and optimize the program max{cz | = €

K N [—1,1]"}. The optimum solution y will again have a constant fraction of coordinates
in {—1,1} with high probability.

2 Preliminaries

In the following, we write  ~ N(0,1) if x is a Gaussian random variable with expectation
E[z] = 0 and variance E[z?] = 1. By N"(0,1) we denote the n-dimensional Gauss distribu-
tion and v, denotes the corresponding measure with density (%;n 73 e=1213/2 for 2 € R™. In
other words, v, (K) = Pr, nn(1)[r € K] whenever K is a measurable set. In fact, all sets
K that we deal with will be closed and convex and thus trivially measurable.

For a convex set K, let d(z, K) := min{||x —y||2 | y € K} be the distance of x to K and

for 6 >0, let K5 := {z € R" | d(x, K) < 0} be the set of points that have at most distance




d to K (in particular K C Kj). A half-space is a set of the form H := {z € R" | (v,z) < A}
for some v € R™ and A € R. The key theorem on Gaussian measure that we need is the
Gaussian Isoperimetric inequality (see e.g. |[LT11] for a proof):

Theorem 3. Let K C R™ be a measurable set and H be a halfspace so that vy, (K) = vyn(H).
Then for any § > 0, v (Ks) > yn(Hs).

A simple consequence is that any set K that is not too small, is close to almost all the
measur.

Lemma 4. Let ¢ > 0. Then for any measurable set K with ~,(K) > e <" one has
'Vn(K?,\\/sTL) >1—e™m

Proof. We assume that indeed 7, (K) = e " < % Choose A € R so that the halfspace

H = {x € R" | 1 < A} has measure 7,(H) = 7,(K) (note that A < 0). First, we claim
that |A| < 2\/en. This follows from

_%ﬁ 1
o V2T
using the estimate [, \/%e_xzﬂdaj < e /2 forallt > 0. By symmetry, we get Y (K3 /zm) >
1—e*". O

2 9
e /2da: < e 3N < eEn

For a vector v € R™ and A > 0, the set S = {z € R" : |{(v,z)| < A} is called a
strip. If v is a unit vector, then the strip has width 2\ and 7, (S) = ®(\) where we define
D(N) = fj‘)\ \/%e_xz/zdx. Useful estimates are ®(1) > e~ /2 and ®(A) > 1 — e */2 for all
A>0.

A convex body is called symmetric if x € K < —x € K. It is a convenient fact, that if
we intersect a symmetric convex body with a strip, the measure decreases only slightly.

Lemma 5 (Sidak [Sid67], Khatri [Kha67]). Let K C R" be a symmetric convex body and
S C R"™ be a strip. Then v,(K NS) > 7, (K) - y,(95).

The still unproven correlation conjecture suggests that this claim is true for any pair
K, S of symmetric convex sets. For more details on Gaussian measures, see the book of
Ledoux and Talagrand [LT11].

For 0 < e <1, let h(e) = elogy(L) + (1 — €)logy(7L) be the binary entropy function.
Recall that for 0 < ¢ < £, the number of subsets I C {1,...,n} of size |I| < en is bounded

Unstead of using the Gaussian isoperimetric inequality, one can prove Lemma @ also using the well-

known measure concentration inequality for Gaussian space: given a 1-Lipschitz function F : R" — R (i.e.
2 .

|F(z)—F(y)| < |lz—yl|2) one has Pr,nn(on[|F(z)—p| > A < 2e™* /2 with g = E,nn(0,1)[F(2)]. One can

then choose F(z) := d(z, K) with A :== 3,/en and one obtains Pr(|d(z, K) — u| > £\/en] < Qe8I < emEn

for n large enough. Since vn(K) > e ", we know that p < 2,/en and thus Pr[d(z, K) > 2- 3\/en] < e "

as claimed.



by@ 2ME)n - One can easily estimate that 2/(€) < e351082(2) which provides us with a bound
for later.

A simple fact about convexity is that the optimum solution to a convex optimization
problem does not change if we discard constraints that are not tight for the optimum. Note
that a function g : R™ — R is called strictly conver if g(Az+(1—X)y) < X-g(x)+(1—=X)-g(y)

forall z,y € R™ and 0 < A < 1.

Lemma 6. Let P,(Q C R" be convex sets and let g : R™ — R be a strictly convex function.
Suppose that x* is an optimum solution to min{g(x) | z € PNQ} and x* lies in the interior
of Q. Then z* is also an optimum solution to min{g(z) | z € P}.

Proof. Suppose for the sake of contradiction that there is a y* € P with g(y*) < g(«*), then
some convex combination (1 — \)y* + Az* with 0 < A < 1 lies also in @ and has a better
objective function than x*, which is a contradiction. U

3 Proof of the main theorem

Now we have everything to analyze the algorithm.

Theorem 7. Let 0 < ¢ < ﬁ be a constant and ¢ := %z—:logﬂ%). Suppose that K C R" is
a symmetric, convex body with v, (K) > e~%". Choose a random Gaussian z* ~ N™(0,1)
and let y* be the point in K N[—1,1]" that minimizes ||x* — y*||2. Then with probability
1 —e ") y* has at least en many coordinates i with y¥ € {—1,1}.

Proof. First, we want to argue that x* has at least a distance of Q(y/n) to the hypercube
[<1,1]". A simple calculation shows that Pr,xn(o [z > 2] = 2 [;° \/%?e—ﬂﬂdt > .
Then with probability 1 — e~%™ we have d(z*,[-1,1]") > /2 - 2 - 1)? =% - /n.

The crucial idea is that by the Gaussian isoperimetric inequality, * will not be far from
any body that has a large enough Gaussian measure. The set K N [—1,1]" itself has only
a tiny Gaussian measure, but we can instead consider the super-set K(I*) := K N{x €
R™ @ |a;) < 1Vi e I"} where I* := I*(z*) := {i € [n] | yf € {£1}} are the tight cube
constraints for y*. We claim that d(z*, K N [-1,1]") = d(z*, K(I*)) since the distance
is already defined by the tight constraints for y*! More formally, this claim follows from
an application of Lemma [0 with P := K(I*), Q := {z € R" | |z;] < 1 Vi ¢ I*} and
g(y) := ||z* — yl||2 which is a strictly convex function.

Now, let us see what happens if [I*| < en. We can apply the Lemma of Sidak and
Khatri (Lemma [5]) to lower bound the measure of K(I*) as

(K (I)) > v (K) - H Yo({z € R™ : |z;] < 1}) > yp(K) - e /2 > gm0 g=(e/2n > o—20m
iel*

2The argument is as follows: Define S := {S C [n] | |S| < en} and let X be the characteristic vector
of a uniform random element from S. If we define H(X) as the entropy of the random variable, then
log,(|S]) = H(X) < Y i H(X:) = >, h(Pr[Xs = 1]) < n- h(e) using subadditivity of entropy as well as
the monotonicity of h on the interval [0, 3].



using that strips of width 2 have measure at least e '/2 and that ¢ < 6. Now we know

that the measure of K (I*) is not too small and hence almost all Gaussian measure is close
to it. Formally we obtain v,(K (1) /55,) > 1 — e by Lemma [ It seems we are
almost done since we derived that with high probability, a random Gaussian vector has a
distance of at most 3v/26n to K (I*) and one can easily check that 3v/20n < %\/ﬁ for all
e < ﬁ. But we need to be a bit careful since I* did depend on x*. So, let us define
B = (1j<en(K(I)3,/35,)- Observe that we have defined ¢ so that there are at most en
many sets I C [n] with |I| < en. Then by the union bound

(B) =1=7( | ®\E(Dyyz5)) 21 D mB K (Dyyz5) = 1= = 17",

|I|<en [I|<en

Now we can conclude that with probability 1—e~ ") a random Gaussian will have distance
at least %\/ﬁ to the hypercube while at the same time it has distance at most 3v/2n < %\/ﬁ
to all sets K (I) with |I| < en. This shows that with high probability [I*| > en. O

We get the constants as claimed in Theorem Pl if we choose ¢ = ﬁ and observe that
in this case § > ﬁ.

We should spend few words on the computational aspects of our algorithm. We are
assuming that for any point = ¢ K, we can find a hyperplane separating = from K in
polynomial time. First, K must be full-dimensional and even contain a ball of radius
r := e~ 9" since otherwise K would be contained in a strip of width 27 which has a Gaussian
measure of less than r. We can slightly modify the algorithm and output “failure” in case
that ||z*|]2 > R with R := Cy/n for some some large enough constant C' — this happens
only with probability e~ Now we can use the Ellipsoid method |GLS81] to find a
point ¢ so that || — y*||2 < n where > 0 is some accuracy parameter. This can be done in
time polynomial in n, log(%), log(R) and log(%). Now we can round that point § to § with

1 iffg—1<n
gii=q -1 if[g+1<n
7;  otherwise
Then for n < 1 one has yf € {—1,1} = y; = y;. In particular g € [-1,1]” and the number

of integral entries in g is at least en as required. Let ||z||x := min{A > 0: 2 € AK} denote
the Minkowski norm of x. Then, 7 is almost in K as

— * ~ * — ~ 1 ~ * 1 — ~
19l < ly*llx + 117 —y HK+IIy—yIIK§1+;Hy—y H2+;Ily—y\|2§1+(n+1)'

=3

Here we use that ||z||x < @ for all vectors z € R™ as K contains a ball of radius r. In order
to actually obtain a point in K one can apply the above algorithm to the slightly scaled
body K’ := (1+ (n+ 1) 2)7'K and choose 1 small enough so that v, (K’) > e~1:00010n,
The calculations in the proof of Theorem [7] have enough slack to account for the slightly
reduced measure.



4 Extension to intersection with subspaces

As already mentioned, our algorithm includes the result of Lovett and Meka in the following
sense: Suppose our convex set is a polytope of the form K = {x € R" : [(v;,x)| < \; Vi €
[m]} where all the v;’s are unit vectors and A; > 1. In this case, the strip S = {x € R" :
(i, 2)| < A;} of length 2); has measure 7, (S) = ®();) > 1—e /2 > exp(—2¢*/2) using
that A; > 1. By the Lemma of Sidak-Khatri this means that

T (K) = ﬁexp(—Qe_)‘?/Q) = exp ( —2 Em: e—*?ﬂ) S -n/500
=1 i=1

as long as > ;" e N2 < To60» exactly as in Lovett-Meka (apart from different constants).
Please note that this line of arguments appeared already in the paper of Giannopou-
los [Gia97]. In the following we want to argue how (n) many constraints with A\; = 0
can be incorporated in the analysis.

For a subspace H we denote Ng(0,1) as the dim(H )-dimensional Gaussian distribution
restricted to the subspace H and we denote g as the corresponding measure. For example

one can generate a random z ~ Ny (0,1) by selecting any orthonormal basis u, . .. s Udim(H)

of H and letting z = Z?LIT(H) giu; where g1, ..., ggim(m) ~ N(0,1) are independent 1-dim.

Gaussians. Note that vy (H) = 1 and yg(R"\H) = 0. We want to remind the reader
that for any symmetric convex set K and any subspace H, by log-concavity of 7, one has
vu(K) > v,(K). More details can be found e.g. in Giannopoulos [Gia97].

We want to argue that the following variation of our main claim still holds:

Theorem 8. Fix 0 < ¢ < m and 0 := %Elog2(%). Let K C R"™ be a symmetric, convex
body with K C H and vg(K) > e where H = {x € R" | (v;,z) = 0 Vi € [m]} is a
subspace defined by m < 20n equations. Choose a random Gaussian x* ~ N™(0,1) and let
y* be the point in K N[—1,1]" that minimizes ||z* —y*||o. Then with probability 1 —e~"),

y* has at least en many coordinates i with y? € {—1,1}.

Proof. Reinspecting the proof of Theorem [T, we see that it suffices to argue that most of
the measure is still close to the sets K(I). Formally, we will argue that for all |I| < en one
has v, (K (1), /55,) = 1 — 2e=2". Then 7v26n < 1/n for € < g5 and the claim follows.

Hence, take a random point z* ~ N™(0,1) and let z* € H be the projection of z*
onto H (that means z* is the point in H closest to z*). We may assume w.l.o.g. that
v1,...,Um are orthonormal. First, at least some part of the measure is close to H, since
Y(H f557) 2 m({z € R™ @ [{v,x)| < 1Vi € [m]}) > e~2" by Lemma Bl By Lemma @
this implies that v,(H,, 55:) = W((H g57)5v355) = 1 — e~2" and hence with the latter
probability ||z* — 2* s < 4v/26n.

In a second step, observe that we need to argue that z* is close to K (I). We know that
Y (K(I)) > v (K) - e~ (/27 > =20 a5 before. Since z* is an orthogonal projection of
a Gaussian, we know that z* ~ Ny (0,1) and we obtain that d(z*, K(I)) < 3v/20n with
probability 1 — e=20". The claim then follows. O

For being able to use the algorithm iteratively to find a full coloring, it is important that
we admit centers that are not the origin. But this is very straightforward to obtain. In the



following, for ¢ € R® and K C R™ we define ¢ + K = {c+ 2 : € K} as the translate of K
by c.

Lemma 9. Let € < m and § := %ElogZ(%). Given a subspace H C R" of dimension at
least (1 —6&)n, a symmetric convex set K C H with vy (K) > e~ and a point ¢ € ]—1,1[".
There exists a polynomial time algorithm to find a point y € (¢ + K) N [—1,1]" so that at
least §n many indices i have y; € {—1,1}.

Proof. For symmetry reasons we may assume that 0 < ¢; < 1. Define a linear map F :
R™ — R™ with F((1 — ¢;) - €;) = e;, where e; is the ith unit vector. In other words,
F' stretches the space along the ith coordinate by a factor of 1%(;2 > 1. Note that in
particular F'({z € R" : |z;| <1—¢;}) = [—1,1]". Stretching can only increase the Gaussian
measure, that means ypg)(F(K)) > yu(K) — we will see formal arguments later in
Cor. [[4l Moreover, F(K) is still symmetric and convex. We can use Theorem [ to find
a vector y € F(K)N[—1,1]" so that [{i : v; € {—1,1}}| > en. Again, after potentially
replacing y with —y we may assume that [{i : y; = 1}| > §n. We claim that the point
7 = ¢+ F~1(y) will satisfy the claim. Since y € F(K), we have F~1(y) € K. Next, note
that 9, = ¢; + (1 — ¢;) - y;. Hence § € [—1,1]" and for each i with y; = 1 one has ¢; = 1.
This shows the claim. O

For the sake of completeness, we want to mention the slighly easier form of this lemma
that does not involve a subspace and has somewhat better constants:
Corollary 10. Let ¢ < ﬁ and 0 := %z—:log2(%). Given a symmetric convex set K C R"
with v, (K) > 79" and a point ¢ € ]—1,1[", there exists a polynomial time algorithm to
find a point y € (c + K) N [~1,1]" so that at least Sn many indices i have y; € {—1,1}.

Proof. Use the same proof as in Lemma [0 by apply directly Theorem [71 O

We want to briefly outline how one can iteratively apply Lemma [@in order to find a full
coloring (similar arguments can be found in [Gia97]). Intuitively, whenever we induce on a
subset of coordinates, the convex set needs to be still large enough. For a subset J C [n] of
indices, we call U = {z € R" : z; = 0 Vi € J} an azis-parallel subspace.

Lemma 11. Suppose that K C R" is a symmetric convex body so that for all axis-parallel
subspaces U C R™ one has that vy (K) > e~ dim(U)/500 " Then there is a polynomial time
algorithm to compute ay € {£1}" N O(logn) - K.

Proof. For iterations t = 1,...,T we will compute a sequence of points y® € (y(t_l) +K)N
[~1,1]" that ends with the desired vector y := y(™) € {~1,1}". We start with y(© := 0.
Then in iteration ¢t > 1, we define the subspace U := {x € R" : x; = 0 for yi(t_l) € {£1}} of
variables that have not been fixed so far. Then we apply Cor. IO with ¢ := ﬁ and 0 > ﬁ
to find a point y(t) € y(t_l) + (K NU). Note that in this application we consider Rdim(V)
as the ambient space. In each iteration a constant fraction of coordinates becomes integral
and after T = O(log n) iterations we have y(*) € {£1}". We have [jy®) — y*~V||x < 1 and
hence ||y||x < T by the triangle inequality. This settles the claim. O



For Spencer’s theorem it turns out that the O(log n)-term can be replaced by O(1) since
the incurred discrepancy bounds decrease from iteration to iteration. A general way to state
this is as follows:

Lemma 12. Suppose that K C R" is a symmetric convex body so that for all axis parallel

subspaces U C R" one has ’yU((djmT(U))EK) > ¢~ dmU)/500 for some constant € > 0. Then

one can compute a vector y € {£1}" N (c.K) in polynomial time.

Proof. Now we can apply the procedure from Lemma[[Tleven with a body K := (dlmT(U))E K

that shrinks over the course of the iterations. For some constant 0 < ¢ < 1 we have dim(U) <
_ .. . T _ t—1 1

=1 n in iteration ¢, hence ||y|lx < > ,_; Hy(t) — gyt I)HK <Y () = == O

Let us illustrate how to apply Lemma in Spencer’s setting. Consider a set system
S1,...,S, C [n] with n sets over n elements and define a convex body K := {z € R" :
|2 jes, ¥l < 100y/n Vi € [n]}. If at some point we have already all elements except
of m many colored, then this means that we have a subspace U of dimension dim(U) =
m left. For such a set system with m elements (but still n > m sets), we can reduce

the right hand side from 100y/n to a value 1004/m - log %" and the Gaussian measure is
still large enough. More formally, if we want vy (A - K) > e~™/590  then a scalar of size
A = 100y/m - log 22/(100y/n) < (%)1/5 suffices. Then Lemma [I2] finds a full coloring of
discrepancy O(y/n).

For the sake of completeness, we want to mention that after a modification of the

constants in (I, the original argument of Lovett and Meka [LMI12] could be adapted to
provide $n integral coordinates while having (1 —&)n many constraints i with A; = 0.

5 Extension to vector balancing

The attentive reader might have realized that we have essentially proven Giannopolous’
Theorem only in the variant in which the vectors v; correspond to the unit basis vectors.
But we want to argue here that the algorithm from above can also handle Giannopoulos’
general claim (apart from the fact that our partial signs z; will be in [—1,1] and not in
{-1,0,1}).

For this sake, consider Q@ = {z € R™ | >, z;u; € K}. Then @ is again a symmetric
convex set and all we need to do is to find a vector y € @ N [—1,1]™ that has Q(m) many
entries in 1. We know that it suffices to show that v,,(Q) is not too small — and this is
what we are going to do now.

First, let us discuss how the Gaussian measure of a body can change if we scale it in
some direction:

Lemma 13. Let K € R" be symmetric and convex and for some A > 0 define Q :
{(x1,22,...,2p) | Ax1,22,...,2,) € K}. Then Q is symmetric and convex and 7, (Q)

AV

Proof. Define f(x1) := Pry, . .~n(@1) [ € K]. Note that f is a symmetric function and



it is monotone in the sense that 0 < z1 <y; = f(z1) > f(y1). Then we can express both
measures as

o 1 2 o 1 2
Q) = 2 et o d :2/ —(@1/N?/2 d
ot (Q) /0 \/%6 f( IIJ‘l) X1 0 \/%)\e f(:El) 1

(*)

Y(K) = 2/0 \/%_Fe—x%ﬂ f(z1) day

(%)

For A < 1, we see that fQz1) > f(z1) and hence ,(Q) >

1 Tn
estimate that ((**)) T exp(323(1 Xlg)) 1+ and hence 7, (Q) >

(K). For A\ > 1, we can
3 (K. O

Since also the scaled set () is symmetric, iteratively applying Lemma [13] gives:

Corollary 14. Let K C R"™ be symmetric and convex and A € R™. Then

1
P M1,y A e K| > P eK
xNNnr(O,l)[( 17 nn) e [T, max{1, |\ 1T o (0, 1)[m ]
Lemma 15. Let vy, ..., v, € R" vectors with |lv;||3 < 8 fori =1,...,m and let K C R" be

a symmetric convex set. For Q = {x € R™ | 3.7 | x;v; € K} one has v,,(Q) > v (K)-e7P™.

Proof. We consider the random vector X = 221 x;v; with independent Gaussians x; ~
N(0,1). It is a well known fact in probability theory (see e.g. page 84 in [Fel71]), that there
is an orthonormal basis bq,...,b, € R™ and u € R" so that one can write X = Z?Zl Y u;b;
with y1,...,y, ~ N(0,1) being independent Gaussians and the total variance of X is
preserved, that means [|ul3 = >, ||lv;[|3. If we abbreviate A := [], max{1, |u;|}, then
we can apply Corollary [I4] to lower bound

Mm@ =PrX K= Pr [Zyzuzb e K] > lyw . [Zyzb e K] - AWK)

using the rotational symmetry of +,. It remains to provide a (fairly crude) upper bound on
A, which is

n

n n 1+m<e m
A:Hmax{l,]uil} H (1 +u?) exp (Zu?) :exp<ZHmH§) < efm
=1 i—1 i=1 i=1
U
For example, if 4, (K) > e™™/1000 and ||v; |3 < , then 7, (Q) > e™/5% and we can

apply Theorem 2 to obtain:

> ¢=™m/1000 4nd vectors

Theorem 16. Given a symmetric convex set K C R"™ with ~y,(K)
v1,...,vm € R™, with ||villo < 45 for all i = 1,...,m, there is a randomized polynomial
time algorithm to find a y € [—1,1]™ with Zi:l viy; € K and at least g55; many indices i
that have y; € {£1}. Here it suffices to have access to a polynomial time separation oracle

for K.

10



Concluding remarks. Finally, we want to repeat that it is still a wide open problem
whether or not the proof of Banaszczyk [Ban98| can be made constructive.

The author is very grateful to Daniel Dadush, Jakub Tarnawski and to the anonymous
referees for their helpful comments.
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