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Abstract

The aim of this article is to elaborate and rigorously analyze a topological derivative

based imaging framework for locating an electromagnetic inclusion of diminishing size from

boundary measurements of the tangential component of scattered magnetic field at a fixed

frequency. The inverse problem of inclusion detection is formulated as an optimization

problem in terms of a filtered discrepancy functional and the topological derivative based

imaging functional obtained therefrom. The sensitivity and resolution analysis of the

imaging functional is rigorously performed. It is substantiated that the Rayleigh resolution

limit is achieved. Further, the stability of the reconstruction with respect to measurement

and medium noises is investigated and the signal-to-noise ratio is evaluated in terms of the

imaginary part of free space fundamental magnetic solution.
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1 Introduction

The concept of derivatives with respect to geometry or topology has played a significant role
in industrial and engineering optimization problems, especially for designing optimal shapes of
various products subject to industrial constraints [35]. Soon after its emergence [24], the idea
was embraced for imaging of diametrically small anomalies [18] and inverse scattering problems;
see, for example, [2, 4, 15, 22, 23, 25, 27] and articles cited therein.

In topological derivative based imaging framework, a trial inclusion is created in the (inclusion-
free) background medium at a search point, furnishing fitted data. Then a misfit functional
is constructed using measurements and the fitted data. The search points that minimize the
discrepancy between measured data and the fitted data are then sought. In order to find its
minima, the misfit is expanded using the asymptotic expansions due to the perturbation of the
wave-field in the presence of an inclusion versus its characteristic size. The leading order term
in the expansion is then referred to as the topological derivative of the misfit, which synthesizes
its sensitivity relative to the insertion of an inclusion at a given search location. Its maximum,
which corresponds to the point at which the insertion of the inclusion maximally decreases the
misfit is therefore a potential candidate for the location of the true inclusion.
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The topological derivatives have been used heuristically in the context of imaging and non-
destructive testing lacking rigorous mathematical justifications, unlike in shape optimization
wherein they attracted enormous interest from mathematical as well as numerical view point.
For the first time, the stability and resolution analysis of the topological derivative based
imaging of small inclusions for the anti-plane elasticity was performed by Ammari et al. [5].
Therein, it is elucidated that in order to get a stable and guaranteed localization with a good
resolution, the use of a filtered discrepancy is indispensable whereas the filter needs to be defined
in terms of a Neumann-Poincaré type boundary integral operator. The filtered topological
derivative functional is proved to achieve Raleigh resolution limit. Moreover, it is elucidated
that this topological sensitivity framework is stable and robust with respect to medium and
measurement noises, and with limited view measurements. It performs far batter than classical
imaging frameworks including back-propagation technique, MUSIC-type imaging and Kirchhoff
migration in worse imaging conditions.

The full elasticity case of topological sensitivity framework in a linear isotropic regime was
rigorously explained by Ammari et al. [1]. The study surprisingly indicates that the classical
framework does not guarantee a localization of the inclusion even with a filtered discrepancy
functional. Moreover, even if it is somehow able to locate the inclusion, the resolution of the
functional degenerates thanks to nonlinear coupling between shear and pressure components
at the boundary. In order to counter the coupling artifacts and to have a guaranteed local-
ization of small inclusions, a modified imaging framework was proposed based on a weighted
Helmholtz decomposition [3] applied to the initial guess furnished by filtered topological deriva-
tive functional. The modified framework is then proved to be stable with respect to medium
and measurement noises. Furthermore, it achieves the Rayleigh resolution limit.

The aim in this article is to study a topological derivative based imaging framework for
detecting diametrically small electromagnetic inclusions from single and multiple boundary
measurements of the tangential component of scattered magnetic field over a fixed frequency.
It is assumed that the magnetic field satisfies full three dimensional Maxwell equations and
the inclusion is penetrable however homogeneous with electromagnetic parameters different
from that of the background medium. The work is focused on the analysis of the detection
capabilities of a filtered topological derivative based imaging functional wherein the filter is
defined in terms of a boundary integral operator. Precisely, the aim of the article is three-
fold: First to introduce a filtered topological derivative based imaging framework, then to
perform sensitivity and resolution analysis of the algorithm and finally to investigate its stability
with respect to measurement and medium noises. The potential applications envisioned by
the imaging of electromagnetic inclusions of diminishing size can be found in non-destructive
testing of small material impurities, medical diagnosis and therapeutic protocols, especially
for detecting and curing cancers of vanishing size and for brain imaging. It is worthwhile
precising that the problem of detecting small electromagnetic inclusions has been previously
studied by using MUSIC-type algorithms [6], time reversal and phase conjugation techniques
[36–38], reverse time migration [19], topological derivative based imaging [30], and asymptotic
expansion techniques [8, 9]. For the imaging of thin electromagnetic inclusions and cracks in a
two dimensional setting, we refer the reader to [33, 34] for instance. We will restrict ourselves
only to the detection of the inclusion and will not discuss its morphology (shape, size and
material properties) in this paper. In this regard, we refer for instance to the recent results by
Asch and Mefire [12] and Bao et al. [13].

The rest of this article is organized in the following manner. In Section 2, we collect
some notation and important results on electromagnetic Green’s functions, boundary layer
potentials and polarization tensors. The inverse problem under taken in this study is then
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mathematically formulated. In Section 3, a filtered quadratic misfit is defined and its topological
derivative is evaluated using asymptotic expansion of the scattered magnetic field with respect
to the characteristic size of the inclusion. The sensitivity and resolution analysis of the imaging
functional is performed in Section 4. Section 5 is dedicated to perform stability analysis of
the topological derivative based imaging with respect to measurement noise whereas Section 6
deals with its stability with respect to medium noise. Finally, a summary of the results obtained
herein is provided in Section 7.

2 Mathematical formulation

In this section, we introduce some notation and collect some basic results for electromagnetic
Green’s functions and layer potentials indispensable for this study. We also mathematically
formulate the inverse problem undertaken.

2.1 Notation

Let X ⊂ R3 be a smooth domain with simply connected boundary ∂X and ν denote the outward
unit normal vector on ∂X. We define the surface divergence of a complex valued vector field
u ∈ Ck(∂X) for k ∈ N by

div∂Xu = divũ|∂X −
([
∇ũ|∂X

]
ν
)
· ν, (2.1)

where ũ is a smooth extension of u to the whole space R3.
Let Hs(X) and Hs

loc(X) be the usual Sobolev spaces for s > 0. By Hs(∂X) the trace space
of Hs+1/2(X) and by H−s the L2−dual space of Hs(∂X) are denoted. Moreover, THs(∂X)
defines the tangential trace space of Hs+1/2(X) under the action of the operator γν [u] = ν×u|∂X
and its L2− dual is denoted by TH−s(∂X). We also define the Hilbert space

THs
div(∂X) :=

{
u ∈ (THs(∂X))

3 ∣∣ div∂Xu ∈ Hs(∂X)
}
. (2.2)

Similarly, the dual space of THs
div(∂X) is denoted by TH−s

div(∂X). Finally, we define the spaces
H(X ; curl) and Hloc(X ; curl) by

H(X ; curl) :=
{
u ∈ (Hs(X))

3
∣∣∣ curl u ∈ L2(X)

}
, (2.3)

Hloc(X ; curl) :=
{
u ∈ (Hs

loc(X))3
∣∣∣ curl u ∈ L2

loc(X)
}
. (2.4)

Refer to [16, 17, 31] and references therein for further details.
For matrices A = (aij)

3
i,j=1 and B = (bij)

3
i,j=1, the contraction operator ‘:’ is defined by

A : B :=
∑3

i,j=1 aijbij , and the Frobenius norm ‖ · ‖ of A is defined by ‖A‖ :=
√
A : A.

2.2 Problem formulation

Let D = ρBD + zD be a small three-dimensional bounded inclusion with a smooth and simply
connected boundary ∂D, permittivity ǫ1 > 0 and permeability µ1 > 0, where BD is a regular
enough bounded domain in R3 representing the volume of the inclusion, zD is the vector
position of its center and ρ > 0 is the scale factor. The inclusion D is compactly supported in
the bounded open background domain Ω ⊂ R3 with a smooth and simply connected boundary
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∂Ω. Let ǫ0 > 0 and µ0 > 0 be the permittivity and permeability of Ω without inclusion D,
letting κ := ω

√
ǫ0µ0 and c = 1/

√
ǫ0µ0 to be the background wave-number and speed of light

in the medium, respectively, where ω > 0 is the frequency pulsation. We define the piecewise
constant functions µρ and ǫρ by

µρ(x) :=

{
µ1, x ∈ D,

µ0, x ∈ R3 \D,
and ǫρ(x) :=

{
ǫ1, x ∈ D,

ǫ0, x ∈ R3 \D.
(2.5)

Furthermore, let D be of diminishing characteristic size and be separated apart from ∂Ω, that
is, there exists a constant d0 > 0 such that

inf
x∈D

dist(x, ∂Ω) ≥ d0 > 0 and ρκ ≪ 1. (2.6)

Let Hρ ∈ Hloc(curl,Ω) denote the time-harmonic magnetic field in Ω in the presence of D,
that is, the solution to





∇× (ǫ−1
0 ∇×Hρ) − ω2µ0Hρ = 0, Ω \D,

∇× (ǫ−1
1 ∇×Hρ) − ω2µ1Hρ = 0, D,

(Hρ × ν)
+ − (Hρ × ν)

−
= 0, ∂D,

ǫ−1
0 (∇×Hρ)+ × ν − ǫ−1

1 (∇×Hρ)− × ν = 0, ∂D,

µ0H
+
ρ · ν − µ1H

−
ρ · ν = 0, ∂D,

ǫ−1
0 (∇×Hρ) × ν = h, ∂Ω.

(2.7)

We also define the background magnetic field (in the absence of any inclusion inside Ω)
H0 ∈ Hloc(curl,Ω) as the solution to

{
∇×∇×H0 − κ2H0 = 0, Ω,

ǫ−1
0 (∇×H0) × ν = h, ∂Ω.

(2.8)

In this paper, we are interested in the following problem.

Inverse problem

Given the measurements Hρ × ν for all x ∈ ∂Ω, find the position zD of the inclusion D using
a filtered topological derivative based imaging framework.

A similar problem has been studied by Masmoudi et al. [30] using topological derivative
based sensitivity framework by invoking an adjoint field. The aim here is to design and de-
bate the performance of topological derivative based detection framework applied to a filtered
quadratic misfit. Moreover, the approach adopted herein is based on the asymptotic expansion
of the scattered magnetic field with respect to the size of the inclusion.

2.3 Electromagnetic Green’s functions

Consider the outgoing fundamental solution g to Helmholtz operator −(∆ +κ2) in R3 given by

g(x,y) :=
eiκ|x−y|

4π|x− y| , x 6= y, x,y ∈ R
3, (2.9)

4



and introduce the dyadic Green’s function Γ by

Γ(x,y) := −ǫ0

(
I3 +

1

κ2
∇∇T

)
g(x,y), (2.10)

where I3 is 3 × 3 identity matrix. The function Γ(x,y) is the solution to

∇x ×∇x × Γ(x,y) − κ2Γ(x,y) = −ǫ0δy(x)I3, x,y ∈ R3, (2.11)

subject to Silver-Müller condition

lim
|x−y|→∞

|x− y|
[
∇x × Γ(x,y) × x− y

|x− y| − iκΓ(x,y)

]
= 0. (2.12)

Here δy(·) = δ0(·−y) is the Dirac mass at y and the operator ∇× acts on matrices column-wise,
that is,

∇× [Γp] := ∇× [Γ]p, for all constant vectors p ∈ R
3.

It is worthwhile precising that Γ possesses the following reciprocity properties in isotropic
dielectric materials; see [6, Sect. 2.2],

Γ(x,y) = Γ(y,x) and ∇x × Γ(x,y) = [∇y × Γ(y,x)]
T
. (2.13)

The following electromagnetic Helmholtz-Kirchhoff identities are the key ingredients to elu-
cidate the localization capabilities of the imaging functional proposed in the next section.

Lemma 2.1 (See [19, Lemma 3.2] ). Let B(0, r) be an open ball in R3 with large radius r → ∞
and boundary ∂B(0, r). Then, for all x,y ∈ B(0, r), we have

ˆ

∂B(0,r)

(
Γ(x, z)

)T
Γ(z,y)dσ(z) = − ǫ0

κ
ℑm

{
Γ(x,y)

}
+ Q(x,y), (2.14)

where Q = (qij)
3
i,j=1 is such that |qij(x,y)| + |∇xqij(x,y)| ≤ Cr−1 uniformly for all x,y ∈

B(0, r). Here and throughout this paper dσ denotes the surface element.

Lemma 2.2. Let B(0, r) be an open ball in R3 with large radius r → ∞ and boundary ∂B(0, r).
Then, for all x,y ∈ B(0, r), we have
ˆ

∂B(0,r)

(
Γ(x, z) × ν(z)

)T(
Γ(z,y) × ν(z)

)
dσ(z) = − ǫ0

κ
ℑm

{
Γ(x,y)

}
+ Q̃(x,y), (2.15)

where Q̃ = (q̃ij)
3
i,j=1 is such that |q̃ij(x,y)| + |∇xq̃ij(x,y)| ≤ C̃r−1 uniformly for all x,y ∈

B(0, r).

The identity (2.15) can be proved trivially by mimicking the proof of Lemma 2.1 provided
in [19, Lemma 3.2]. For the sake of completeness, we briefly sketch the proof in Appendix A.

2.4 Layer potentials

We define the scalar single layer potential Sκ associated with domain X of a scalar field φ ∈
Hs−1/2(∂X) by

Sκ[φ](x) :=

ˆ

∂X

g(x,y)φ(y)dσ(y), x ∈ R
3 \ ∂X. (2.16)

The vector single layer potential is defined likewise and still represented by Sκ by abuse of
notation. We have the following result from [29, Lemma 2.3].
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Lemma 2.3. For all j ∈ TH
−1/2
div (∂X)

∇ · Sκ[ j ](x) = Sκ[div∂Xj](x), x ∈ R
3 \ ∂X. (2.17)

Using Sκ and Lemma 2.3, we define the electric single layer potential for j ∈ TH
−1/2
div (∂X)

by

Sκ
E [ j ] (x) := Sκ[ j ](x) +

1

κ2
∇Sκ [ div∂X j ] (x) = − 1

ǫ0

ˆ

∂X

Γ(y,x) j(y)dσ(y), (2.18)

Moreover, for ψ ∈ TH
−1/2
div (∂X), we define the magnetic dipole operator Pκ by

Pκ[ψ](x) :=

ˆ

∂X

∇x × (g(x,y)ψ(y)) dσ(y) × ν(x), x ∈ ∂X, (2.19)

and the operator Pκ
∗ by

Pκ
∗ [ψ](x) := Pκ[ψ × ν](x) × ν(x). (2.20)

Then, following results hold.

Lemma 2.4 (See [31, Section 5.5] and [20, Section 6.3]). The operator Pκ is continuous

mapping from TH
−1/2
div (∂X) to itself. The operator 1

2I − Pκ is Fredholm of index zero from

TH
−1/2
div (∂X) to itself, where I : TH

−1/2
div (∂X) → TH

−1/2
div (∂X) is the identity operator. More-

over, for all ψ ∈ TH
−1/2
div (∂X)

Pκ
∗ [ψ] × ν = −Pκ[ψ × ν]. (2.21)

Lemma 2.5 (See [21, Lemma 2.6]). The electric single layer potential Sκ
E is continuous from

TH
−1/2
div (∂X) to Hloc(curl,R

3) and for all j ∈ TH
−1/2
div (∂X),

(
∇×∇×−κ2I

)
Sκ
E [ j ](x) = 0. (2.22)

Moreover, Sκ
E satisfies the Silver-Müller condition.

Lemma 2.6 (See [20, Theorem 6.12], [31, Theorem 5.5.1] and [28, Section 5]). For all j ∈
TH

−1/2
div (∂X), the traces (Sκ

E [ j ] × ν)± and ((∇× Sκ
E [ j ]) × ν)± are well defined and

(
Sκ
E [ j ] × ν

)±
= 0, (2.23)

(
(∇× Sκ

E [ j ]) × ν
)±

=

(
∓1

2
I + Pκ

)
[ j ]. (2.24)

Here superscripts + and − indicate the limiting values at ∂X from outside and inside X re-
spectively.

2.5 Polarization tensor

Let us define the piecewise constant function γ by

γ(x) :=

{
γ0, x ∈ R3 \X,

γX , x ∈ X,
(2.25)
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where γ0, γX ∈ C such that ℜe{γ0},ℜe{γX} > 0, and let vi be the scalar potential defined as
the solution to the transmission problem





∆vi = 0, (R3 \X) ∪X,

v+i − v−i = 0, ∂X,

γ0
γ1

(
∂vi
∂ν

)+

−
(
∂vi
∂ν

)−

= 0, ∂X,

vi(x) − xi → 0, |x| → ∞.

(2.26)

We define the polarization tensor MX(k) := (mij)
3
i,j=1, associated with the domain X depend-

ing on the contrast k := γ0/γX , by

mij (k) :=
1

k

ˆ

X

∂vi
∂xj

dx. (2.27)

Lemma 2.7 (See [8, Section 3.1]). The tensor MX(k) is real symmetric positive definite if
k ∈ R+. Moreover, when X is a ball

MX(k) =
3

2k + 1
|X |I3. (2.28)

3 Topological derivative based imaging framework

Let zS ∈ Ω be a search point. Nucleate a trial inclusion Dδ = δBS + zS inside the background
Ω with permittivity ǫδ and permeability µδ defined by

µδ(x) :=

{
µ2, x ∈ Dδ,

µ0, x ∈ R3 \Dδ,
and ǫδ(x) :=

{
ǫ2, x ∈ Dδ,

ǫ0, x ∈ R3 \Dδ,
(3.1)

where ǫ2, µ2 > 0. Let Hδ be the magnetic field in the presence of inclusion Dδ in Ω satisfying
a transmission problem analogous to that in (2.7). We collect Hδ × ν(x) for all x ∈ ∂Ω and
define the discrepancy functional

Hf [H0](zS) :=
1

2

ˆ

∂Ω

∣∣∣∣
(

1

2
I − Pκ

)[
(Hρ −Hδ) × ν

]
(x)

∣∣∣∣
2

dσ(x). (3.2)

Here the subscript f substantiates the use of a filter
(
1
2I − Pκ

)
in the cost functional. As

already established by Ammari et al. [1, 5] for the case of Helmholtz and elasticity equations,
the identification of the exact location of true inclusion using the classical L2−cost functional
over a bounded domain cannot be guaranteed, and the post-processing of the data is necessary.
We establish later on that guaranteed identification can be achieved using filtered discrepancy
functional Hf . It is emphasized that the post-processing compensates for the effects of an
imposed Neumann boundary condition on the magnetic field.

By construction, the search point zS relative to which the field Hδ minimizes the functional
Hf [H0] is a potential candidate for zD. In order to study the optimization problem (3.2), we
define the topological derivative of misfit Hf as follows.

Definition 3.1 (Topological derivative). For any zS ∈ Ω and incident field H0, the topological
derivative (imaging functional) of the misfit Hf [H0], hereafter denoted by ∂THf [H0], is defined
by

∂THf [H0](zS) := −∂Hf [H0](zS)

∂(δ3)
. (3.3)
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Nota Bene: In the sequel, we systematically adopt the following notation for brevity.

µ0

µ1
:= µ1r,

ǫ0
ǫ1

:= ǫ1r,
µ0

µ2
:= µ2r,

ǫ0
ǫ2

:= ǫ2r, aµ := (µ2r − 1), aǫ := (ǫ2r − 1),

M
µ
D := MBD

(µ1r) , Mǫ
D = MBD

(ǫ1r) M
µ
S := MBS

(µ2r) , Mǫ
S = MBS

(ǫ2r)

The following asymptotic expansion of the scattered magnetic field due to the presence of
inclusion Dρ versus scale factor ρ, is the key ingredient to evaluate ∂THf [H0].

Theorem 3.2 (See [10, Theorem 1]). For all x ∈ ∂Ω, and Dρ = ρBD + zD satisfying (2.6)

(1

2
I−Pκ

)[
(Hρ −H0) × ν

]
(x) = ρ3κ2 (µ1r − 1)ǫ−1

0

[
Γ(zD,x) × ν(x)

]
M

µ
DH0(zD)

+ ρ3(ǫ1r − 1)ǫ−1
0

[(
∇zD

× Γ(x, zD)
)T

× ν(x)
]
Mǫ

D∇×H0(zD) + O(ρ4), (3.4)

where the term O(ρ4) is bounded by Cρ4 uniformly on x with constant C independent on zD.

Remark that, from Theorem 3.2, we also have for all x ∈ ∂Ω and zS ∈ Ω

(1

2
I − Pκ

)[
(Hδ−H0) × ν

]
(x) = δ3κ2aµǫ

−1
0

[
Γ(zS ,x) × ν(x)

]
M

µ
SH0(zS)

+ δ3aǫǫ
−1
0

[(
∇zS

× Γ(x, zS)
)T

× ν(x)
]
Mǫ

S∇×H0(zS) + O(δ4). (3.5)

Theorem 3.3. For all zS ∈ Ω and incident fields H0,

∂THf [H0](zS) = −ℜe
{
κ2aµU(zS) ·Mµ

SH0(zS) + aǫ∇×U(zS) ·Mǫ
S∇×H0(zS)

}
, (3.6)

where the back-propagator U is defined by

U(z) := Sκ
E [ν ×W] (z) with W(z) :=

(
1

2
I − Pκ

)
[(Hρ −H0) × ν] (z). (3.7)

Proof. Note that, by virtue of asymptotic expansion (3.5), for all zS ∈ Ω

Hf [H0](zS) − 1

2

ˆ

∂Ω

∣∣∣
(

1

2
I − Pκ

)
[(Hρ −H0) × ν] (z)

∣∣∣
2

dσ(z) = O
(
δ6
)

−ℜe
{
ˆ

∂Ω

(
1

2
I − Pκ

)
[(Hδ −H0) × ν] (z) ·

(
1

2
I − Pκ

)
[(Hρ −H0) × ν] (z)dσ(z)

}
,

= − δ3aǫ
ǫ0

ℜe
{
ˆ

∂Ω

[
(∇zS

× Γ(z, zS))
T × ν(z)

]
Mǫ

S∇×H0(zS) ·W(z)dσ(z)

}

− δ3κ2aµ
ǫ0

ℜe
{
ˆ

∂Ω

Γ(zS , z) × ν(z)Mµ
SH0(zS) ·W(z)dσ(z)

}
+ O(δ4), (3.8)

since
(
1
2I − Pκ

)
[(Hδ −H0) × ν] = O(δ3) by Theorem 3.2.

Recall that for any matrix A, and vectors u, v and w

[(A× u)v] ·w =
[
(A× u)Tw

]
· v = [AT (u×w)] · v.
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Therefore, we have

[Γ(zS , z) × ν(z)]Mµ
SH0(zS) ·W(z) =

[
(Γ(zS , z))

T
ν(z) ×W(z)

]
·Mµ

SH0(zS).

Moreover, from property (2.13) and symmetry of Γ,

ˆ

∂Ω

Γ(zS , z) × ν(z)Mµ
SH0(zS) ·W(z)dσ(z)

=

ˆ

∂Ω

Γ(z, zS)
(
ν(z) ×W(z)

)
dσ(z) ·Mµ

SH0(zS) = −ǫ0U(zS) ·Mµ
SH0(zS). (3.9)

Similarly,

ˆ

∂Ω

[(
∇zS

× Γ(z, zS)
)T × ν(z)

]
Mǫ

S∇×H0(zS) ·W(z)dσ(z),

=

ˆ

∂Ω

[(
∇zS

× Γ(z, zS)
)T × ν(z)

]T
W(z)dσ(z) ·Mǫ

S∇×H0(zS),

=

ˆ

∂Ω

∇zS
× Γ(z, zS)

[
ν(z) ×W(z)

]
dσ(z) ·

[
Mǫ

S∇×H0(zS)
]
,

= −ǫ0∇×U(zS) ·Mǫ
S∇×H0(zS). (3.10)

By virtue of (3.9) and (3.10), expansion (3.8) renders

Hf [H0](zS) − 1

2

ˆ

∂Ω

∣∣∣
(1

2
I − Pκ

)[
(Hρ −H0) × ν

]
(z)
∣∣∣
2

dσ(z)

=δ3ℜe
{
κ2aµU(zS) ·Mµ

SH0(zS) + aǫ∇×U(zS) ·Mǫ
S∇×H0(zS)

}
+ O(δ4). (3.11)

Finally, the conclusion follows by tending δ3 → 0.

To conclude this section, we precise that thanks to Lemma 2.5 and Lemma 2.6 the back-
propagator U is the solution to boundary value problem





∇×∇×U(x) − κ2U(x) = 0, x ∈ Ω,

∇×U(x) × ν(x) =

(
1

2
I + Pκ

)[
ν ×

(
1

2
I − Pκ

)
[(Hρ −H0) × ν]

]
(x), x ∈ ∂Ω.

(3.12)

4 Sensitivity and resolution analysis

In this section, we explain why should the topological derivative functional attain its maximum
at the true location zD of the electromagnetic inclusion D.

4.1 Imaging with single incident field

In order to ascertain the localization and resolution of the imaging function ∂THf [H0], we
entertain two special cases for simplicity. Precisely, we consider the dielectric inclusions (µ0 = µ1

but ǫ0 6= ǫ1) and permeable inclusions (µ0 6= µ1 but ǫ0 = ǫ1) only. The general case (µ0 6= µ1

and ǫ0 6= ǫ1) can be dealt with analogously, and the same conclusions hold but the analysis is
more involved.
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Consider the case of a permeable inclusion. Let ǫ2 = ǫ0 thereby restricting ∂THf [H0] to

∂THf [H0](zS) = − κ2aµℜe {U(zS) ·Mµ
SH0(zS)} ,

=κ2ǫ−1
0 aµℜe

{
ˆ

∂Ω

Γ(z, zS) (ν(z) ×W(z)) dσ(z) ·Mµ
SH0(zS)

}
.

Note that

W(z) =

(
1

2
I − Pκ

)
[(Hρ −H0) × ν] (z),

=ρ3κ2ǫ−1
0 (µ1r − 1)

[
Γ(zD, z) × ν(z)

]
M

µ
DH0(zD) + O(ρ4).

Therefore, on injecting back the expression for W, we obtain

∂THf [H0](zS) := ρ3κ4ǫ−2
0 Cµℜe

{
M

µ
SH0(zS) · R1(zS , zD)Mµ

DH0(zD)
}

+ O(ρ4), (4.1)

where

Cµ := (µ1r − 1)(µ2r − 1). (4.2)

R1(x,y) :=

ˆ

∂Ω

(
Γ(x, z) × ν(z)

)T(
Γ(y, z) × ν(z)

)
dσ(z). (4.3)

Recall from Lemma 2.2, that for all x,y ∈ Ω far from the boundary ∂Ω, we have

R1(x,y) ≃− ǫ0κ
−1ℑm

{
Γ(x,y)

}
(4.4)

Therefore, by substituting back the approximation of R1, we arrive at

∂THf [H0](zS) ≃ −ρ3κ3ǫ−1
0 Cµℜe

{
M

µ
SH0(zS) · ℑm

{
Γ(zS , zD)

}
M

µ
DH0(zD)

}
+ O(ρ4). (4.5)

On the other hand, if the inclusion is dielectric, that is, µ1 = µ0 and we let µ2 = µ0, the
topological derivative reduces to

∂THf [H0](zS) = − aǫℜe {∇ ×U(zS) ·Mǫ
S∇×H0(zS)} ,

=ǫ−1
0 aǫℜe

{
∇×

ˆ

∂Ω

Γ(z, zS)(ν(z) ×W(z)dσ(z) ·Mǫ
S∇×H0(zS)

}
.

In this case, W admits the expansion

W(z) = ρ3ǫ−1
0 (ǫ1r − 1)

[(
∇zD

× Γ(z, zD)
)T × ν(z)

]
Mǫ

D∇×H0(zD) + O(ρ4).
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Therefore, ∂THf [H0] becomes

∂THf [H0](zS) =ρ3ǫ−2
0 Cǫℜe

{
ˆ

∂Ω

∇zS
× Γ(z, zS)

[
ν(z) ×

(
(∇zD

× Γ(z, zD))
T × ν(z)

Mǫ
D∇×H0(zD)

)]
dσ(z) ·Mǫ

S∇×H0(zS)

}
+ O(ρ4),

=ρ3ǫ−2
0 Cǫℜe

{
ˆ

∂Ω

(∇z × Γ(zS , z))
T
[
ν(z) ×

(
(∇z × Γ(zD, z)) × ν(z)

Mǫ
D∇×H0(zD)

)]
dσ(z) ·Mǫ

S∇×H0(zS)

}
+ O(ρ4),

=ρ3ǫ−2
0 Cǫℜe

{
Mǫ

S∇×H0(zS) · R2(zS , zD)Mǫ
D∇×H0(zD)

}
+ O(ρ4), (4.6)

where

Cǫ := (ǫ1r − 1)(ǫ2r − 1). (4.7)

R2(x,y) :=

ˆ

∂Ω

(
∇z × Γ(x, z) × ν(z)

)T(
∇z × Γ(y, z) × ν(z)

)
dσ(z). (4.8)

Note that, by virtue of the assumption (2.6), and the Silver-Müller condition, for all x,y ∈ Ω
away from boundary ∂Ω

R2(x,y) ≃κ2

ˆ

∂Ω

(
Γ(x, z)

)T(
Γ(y, z)

)
dσ(z) ≃ −κǫ0ℑm

{
Γ(x,y)

}
, (4.9)

where for the latter identity, Lemma 2.1 is invoked. Therefore, we conclude that

∂THf [H0](zS) ≃ −ρ3κCǫ

ǫ0
ℜe
{
Mǫ

S∇×H0(zS) · ℑm
{
Γ(zS , zD)

}
Mǫ

D∇×H0(zD)
}

+ O(ρ4).

(4.10)

4.1.1 Sign and decay properties of topological derivative

For both dielectric and permeable inclusions,

∂THf [H0](zS) ∝ ℑm
{
Γ(zS , zD)

}
= − ǫ0κ

4π

[
2

3
j0(κr)I3 + j2(κr)

(
r̂ r̂T − 1

3
I3

)]
, (4.11)

where j0 and j2 are the spherical Bessel functions of first kind and r := zS − zD with r := |r|
and r̂ = r/r. Since jn(kr) = O(1/kr) as kr → ∞ (see, for instance [32, 10.52.3]), the functional
zS → ∂THf [H0](zS) rapidly decays for zS away from zD and has a sharp peak when zS → zD
with a focal spot size of half a wavelength of the incident wave. Therefore, the resolution of the
imaging functional zS → ∂THf [H0](zS) achieves the Rayleigh resolution limit. Moreover, it
synthesizes the sensitivity of Hf [H0](zS) relative to the insertion of an inclusion at the search
location zS ∈ Ω. Heuristically, if the contrasts (ǫ2r − 1) and (µ2r − 1) have the same signs
as (ǫ1r − 1) and (µ1r − 1) respectively, then the functional Hf [H0](zS) must observe the most
pronounced decrease at the potential candidate zS ∈ Ω for the true location zD. In other

words, zS → ∂Hf [H0]
∂(δ3) (zS) is expected to attain its most pronounced negative value; refer, for

instance, to [14, 15, 26] for detailed discussions on sign heuristic.
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Notice that both Cµ and Cǫ are positive if the contrasts of true and trial inclusions have

same signs. Consequently, by virtue of the decay property, ∂THf [H0](zS) = −∂Hf [H0]
∂(δ3) (zS)

assumes its maximum positive value for both dielectric and permeable inclusions when zS → zD.
Thus, the functional ∂THf [H0](zS) possesses a sharpest decay and the functional Hf [H0](zS)
decreases rapidly when the contrasts are chosen to have same signs.

4.2 Imaging with multiple incident fields

Let θ1, θ2, · · · , θn be n−equidistributed directions on the unit sphere and let

H
j,ℓ
0 (x) = θ⊥,ℓ

j eiκθ
T
j x, j ∈ {1, 2, · · · , n}, ℓ ∈ {1, 2} (4.12)

be the incident magnetic fields where θ⊥,ℓ
j are the polarization directions such that (θj , θ

⊥,1
j , θ⊥,2

j )

forms an orthonormal basis of R3. The incident fields H
j,ℓ
0 are the solutions to the Maxwell

equations

{
∇×∇×H

j,ℓ
0 − κ2H

j,ℓ
0 = 0, Ω,

hj,ℓ(x) = ǫ−1
0 ∇×

(
θ⊥,ℓ
j eiκθ

T
j x

)
× ν(x), ∂Ω.

(4.13)

We recall that for n sufficiently large

1

n

n∑

j=1

eiκθ
T
j (x−y) ≃ 4π

κ
ℑm

{
g(x,y)

}
. (4.14)

Since (θj , θ
⊥,1
j , θ⊥,2

j ) form a basis of R3, therefore θ⊥,1
j (θ⊥,1

j )T + θ⊥,2
j (θ⊥,2

j )T = (I3 − θjθ
T
j ) so

that

1

n

2∑

ℓ=1

n∑

j=1

eiκθ
T
j (x−y)θ⊥,ℓ

j

(
θ⊥,ℓ
j

)T
=

1

n

n∑

j=1

(
I3 − θjθ

T
j

)
eiκθ

T
j (x−y),

=
1

n

n∑

j=1

(
I3 −

1

κ2
∇∇T

)
eiκθ

T
j (x−y),

=

(
I3 −

1

κ2
∇∇T

)
1

n

n∑

j=1

eiκθ
T
j (x−y),

= − 4π

κǫ0
ℑm

{
Γ(x,y)

}
. (4.15)

Similarly,

1

n

2∑

ℓ=1

n∑

j=1

eiκθ
T
j (x−y)

(
θj × θ⊥,ℓ

j

)(
θj × θ⊥,ℓ

j

)T
≃ − 4π

κǫ0
ℑm

{
Γ(x,y)

}
. (4.16)

Let us define the topological derivative for multiple incident fields by

∂THf (zS) :=
1

n

2∑

ℓ=1

n∑

j=1

∂THf [Hj,ℓ
0 ](zS). (4.17)

The following result holds
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Theorem 4.1. Let zS ∈ Ω, D = ρBD +zD satisfy (2.6) and n ∈ N be sufficiently large. Then,

1. for a permeable inclusion (ǫ0 = ǫ1 = ǫ2)

∂THf (zS) ≃ 4πρ3κ2Cµ

ǫ20
ℜe
{
ℑm

{
Γ(zS , zD)

}
M

µ
D : Mµ

Sℑm
{
Γ(zS , zD)

}}
+ O(ρ4). (4.18)

2. for a dielectric inclusion (µ0 = µ1 = µ2)

∂THf (zS) ≃ 4πρ3κ2Cǫ

ǫ20
ℜe
{
ℑm

{
Γ(zS , zD)

}
Mǫ

D : Mǫ
Sℑm

{
Γ(zS , zD)

}}
+ O(ρ4). (4.19)

The constants Cµ and Cǫ are defined by (4.2) and (4.7) respectively.

Proof. When ǫ0 = ǫ1 = ǫ2, for all zS ∈ Ω

∂THf (zS) =
1

n

2∑

ℓ=1

n∑

j=1

∂THf [Hj,ℓ
0 ](zS),

= − ρ3κ3Cµ

ǫ0n

2∑

ℓ=1

n∑

j=1

ℜe
{
M

µ
SH

j,ℓ
0 (zS) · ℑm

{
Γ(zS , zD)

}
M

µ
DH

j,ℓ
0 (zD)

}
+ O(ρ4),

= − ρ3κ3Cµ

ǫ0
ℜe
{
ℑm

{
Γ(zS , zD)

}
M

µ
D : Mµ

S

[ 1

n

2∑

ℓ=1

n∑

j=1

θ⊥,ℓ
j

(
θ⊥,ℓ
j

)T
eiκθ

T
j (zS−zD)

]}
+ O(ρ4).

Here we have made use of the fact that θj ·Aθj = θjθ
T
j : A. Finally, (4.18) follows immediately

by virtue of (4.15).
In order to prove the other identity, we proceed in the similar fashion. Consider

∂THf (zS) =
1

n

2∑

ℓ=1

n∑

j=1

∂THf [Hj,ℓ
0 ](zS),

= − ρ3κCǫ

ǫ0n

2∑

ℓ=1

n∑

j=1

ℜe
{
Mǫ

S∇×H
j,ℓ
0 (zS) · ℑm

{
Γ(zS , zD)

}
Mǫ

D∇×H
j,ℓ
0 (zD)

}
+ O(ρ4),

= − ρ3κ3Cǫ

ǫ0n

2∑

ℓ=1

n∑

j=1

ℜe
{
Mǫ

S

(
θj × θ⊥,ℓ

j

)
· ℑm

{
Γ(zS , zD)

}
Mǫ

D

(
θj × θ⊥,ℓ

j

)
eiκθj ·(zS−zD)

}
+ O(ρ4),

On further simplification, we arrive at

∂THf (zS) = − ρ3κ3Cǫ

ǫ0
ℜe
{
ℑm

{
Γ(zS , zD)

}
Mǫ

D : Mǫ
S

1

n

2∑

ℓ=1

n∑

j=1

(
θj × θ⊥,ℓ

j

)(
θj × θ⊥,ℓ

j

)T
eiκθj ·(zS−zD)

}
+ O(ρ4),

The proof is completed by invoking approximation (4.16).

As an immediate consequence of Theorem 4.1 and Lemma 2.7, the following result can be
readily proved.
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Corollary 4.2. Let zS ∈ Ω, D = ρBD + zD be an open sphere in R3 such that condition (2.6)
holds and n ∈ N be sufficiently large. Then,

1. for a permeable inclusion (ǫ0 = ǫ1 = ǫ2)

∂THf (zS) ≃ρ3κ2C̃µ

∥∥ℑm
{
Γ(zS , zD)

}∥∥2 + O(ρ4). (4.20)

2. for a dielectric inclusion (µ0 = µ1 = µ2)

∂THf (zS) ≃ρ3κ2C̃ǫ

∥∥ℑm
{
Γ(zS , zD)

}∥∥2 + O(ρ4). (4.21)

The constants C̃µ and C̃ǫ are defined by

C̃µ :=
36πµ1µ2Cµ

ǫ20(2µ0 + µ1)(2µ0 + µ2)
|BD| |BS |, C̃ǫ :=

36πǫ1ǫ2Cǫ

ǫ20(2ǫ0 + ǫ1)(2ǫ0 + ǫ2)
|BD| |BS |. (4.22)

In rest of this paper, we analyze the stability of the multi-incidence imaging functional (4.17)
with respect to medium and measurement noises.

5 Statistical stability with respect to measurement noise

The aim here is to substantiate that the imaging functional proposed in Section 4.2 is stable
with respect to additive measurement noise. For brevity, the simplest model of the measurement
noise is entertained. Precisely, it is assumed that the accurate value of magnetic field at the
boundary is corrupted by a mean-zero circular Gaussian noise ηnoise : ∂Ω → C3, with covariance
σ2
noise, that is,

Hρ(z) := Htrue
ρ (z) + ηnoise(z), z ∈ ∂Ω, (5.1)

where Hρ is the corrupted value of the magnetic field at the boundary.
Nota Bene. In the sequel, E denotes the expectation with respect to the statistics of the
noise. In this section, a superposed true indicates the true value of a quantity, that is, the value
without noise corruption.

We assume that ηnoise satisfies following five properties.

1. The measurement noises at different locations on the boundary are uncorrelated.

2. The different components of the measurement noise are uncorrelated.

3. The real and imaginary parts of the measurement noise are uncorrelated.

4. The measurement noises corresponding to two different incident waves are uncorrelated.

5. All the noises corresponding to individual measurements have same variance σ2
noise.

Then, under aforementioned assumptions, we have

E

[
ηnoise(y)ηnoise(y′)

T
]

= σ2
noiseδy(y′)I3, (5.2)

E

[
η
j
noise(y)ηj′

noise(y
′)
T
]

= σ2
noiseδjj′δy(y′)I3, (5.3)
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where superposed j and j′ indicate respectively the j−th and j′−th measurements and δjj′ is
the Kronecker’s delta function which assumes the value 1 when j = j′ and zero otherwise.

The imaging functional ∂THf (z) is mainly affected by the additive noise during the back-
propagation step due to the construction of back-propagator in terms of the measurements at
the boundary. In the presence of measurement noise, for all z ∈ Ω the back-propagator takes
on the form

U(z) = − 1

ǫ0

ˆ

∂Ω

Γ(x, z)ν(x) ×
(

1

2
I − Pκ

)[(
Htrue

ρ −H0 + ηnoise
)
× ν
]

(x)dσ(x),

=Utrue(z) + Unoise(z), (5.4)

where Utrue corresponds to the back-propagation of the noise-free data whereas Unoise corre-
sponds to noise back-propagation and is given by

Unoise(z) := − 1

ǫ0

ˆ

∂Ω

Γ(x, z)ν(x) ×
(

1

2
I − Pκ

)
[ηnoise × ν] (x)dσ(x). (5.5)

Let us now discuss the statistics of Unoise(z). We have the following lemma.

Lemma 5.1. The random field Unoise(z), z ∈ Ω, is a mean zero Gaussian field with covariance

E

[
Unosise(z)Unosise(z′)

T
]
≃ −σ2

noise(4κǫ0)−1ℑm
{
Γ(z, z′)

}
, ∀z, z′ ∈ Ω. (5.6)

The reader is refered to Appendix B for the proof. Lemma 5.1 indicates that Unoise is a
speckle pattern, that is, a random cloud of hot spots having typical diameters of the order of
wavelength and amplitudes of the order of σnoise/(2

√
κǫ0).

We are now ready to perform the stability analysis of the imaging functional ∂THf . For
brevity, we restrict ourselves only to the cases of permeable and dielectric inclusions, however
the results extend to the cases otherwise.

5.1 Stability analysis for permeable inclusions

Recall that the imaging functional for a permeable inclusion reduces to

∂THf (z) = −κ2aµ
n

2∑

ℓ=1

n∑

j=1

ℜe
{(

Uture,j,ℓ(z) + Unoise,j,ℓ(z)
)
·Mµ

SH
j,ℓ
0 (z)

}
, (5.7)

where superposed j and ℓ indicate the fields associated with incident wave H
j,ℓ
0 . It is straight

forward that the first term in the above expression with Utrue,j,ℓ is identical to the one discussed
in Section 4.2 and renders the true image obtained in the case without medium noise. The
second term introduces a corruption in the image due to the measurement noise. Albeit, the
main peak of the true imaging functional is buried in the random cloud of hot spots due to
noise, yet it is not altered. Let us compute the covariance of the corrupted image by

Cov
(
∂THf (z), ∂THf (z′)

)

=
κ4a2µ
n2

2∑

ℓ,ℓ′=1

n∑

j,j′=1

E

[
ℜe
{
Unoise,j,ℓ(z) ·

[
M

µ
SH

j,ℓ
0 (z)

]}
ℜe
{
Unoise,j′,ℓ′(z′) ·

[
M

µ
SH

j′,ℓ′

0 (z′)
]}]

,

=
κ4a2µ
2n2

2∑

ℓ=1

n∑

j=1

ℜe
{[

M
µ
SH

j,ℓ
0 (z)

]
· E
[
Unoise,j,ℓ(z)Unoise,j,ℓ(z′)

T
]
M

µ
SH

j,ℓ
0 (z′)

}
,
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where we have made use of the assumption that Unoise,j,ℓ and Unoise,j′,ℓ′ are uncorrelated.
Using the expression (4.12) for H

j,ℓ
0 , Lemma 5.1 and the approximation (4.15), we obtain

Cov
(
∂THf (z), ∂THf (z′)

)

= −
a2µσ

2
noiseκ

3

8n2ǫ0

2∑

ℓ=1

n∑

j=1

ℜe
{[

M
µ
SH

j,ℓ
0 (z)

]
· ℑm

{
Γ(z, z′)

}
M

µ
SH

j,ℓ
0 (z′)

}
,

= −
a2µσ

2
noiseκ

3

8n2ǫ0

2∑

ℓ=1

n∑

j=1

ℜe
{
M

µ
Sθ

⊥,ℓ
j · ℑm

{
Γ(z, z′)

}
M

µ
Sθ

⊥,ℓ
j eiκθ

T
j (z−z

′)
}
,

= −
a2µσ

2
noiseκ

3

8n2ǫ0
ℜe
{
ℑm

{
Γ(z, z′)

}
M

µ
S : Mµ

S

[ 1

n

2∑

ℓ=1

n∑

j=1

θ⊥,ℓ
j

(
θ⊥,ℓ
j

)T
eiκθ

T
j (z−z

′)
]}

,

≃
πa2µσ

2
noiseκ

2

2nǫ20
ℜe
{
ℑm

{
Γ(z, z′)

}
M

µ
S : Mµ

Sℑm
{
Γ(z, z′)

}}
.

This shows that the typical shape of the hot spots created by the additive noise are exactly of
the form of the main peak. Thus the perturbation in the image due to measurement noise is of
order σnoise/

√
2n and the typical shape of hot spots in the perturbation is identical with that

of the main peak of functional ∂THf related to accurate data. The main peak of ∂THf is not
altered by the perturbations. Moreover, since the typical size of the perturbation is inversely
proportional to

√
2n, the use of multiple incident fields further enhances the stability of the

imaging framework based on ∂THf .
For a particular case of spherical inclusions, Lemma 2.7 yields

Cov
(
∂THf (z), ∂THf (z′)

)
≃ σ2

noiseã
2
µκ

2(2n)−1
∥∥ℑm

{
Γ(z, z′)

}∥∥2, (5.8)

where

ãµ =
3
√
πµ2|BS |

ǫ0(2µ0 + µ2)
aµ =

3
√
π(µ0 − µ2)|BS |
ǫ0(2µ0 + µ2)

.

It follows immediately from (5.8) that the variance of ∂THf at zS is given by

Var
(
∂THf (zS)

)
≃ σ2

noiseã
2
µκ

2(2n)−1
∥∥ℑm

{
Γ(z, z)

}∥∥2. (5.9)

Therefore, the signal-to-noise ratio (SNR), defined by

SNR :=
E [∂THf (zD)]√
Var [∂THf (zD)]

, (5.10)

can be approximated by virtue of expression (5.9) and Corollary 4.2 as

SNR ≃
√

2nκρ3C̃µ

ãµσnoise

∥∥∥ℑm
{
Γ(zD, zD)

}∥∥∥ =
12

√
2nπκρ3|BD||µ0 − µ1|
ǫ0(2µ0 + µ1)σnoise

∥∥∥ℑm
{
Γ(zD, zD)

}∥∥∥. (5.11)

Recall that

ℑm
{
Γ(zS , zD)

}
= − ǫ0κ

4π

[
2

3
j0(κr)I3 + j2(κr)

(
r̂r̂T − 1

3
I3

)]
.

Therefore, the behavior of j0 and j2 for r → 0 dictates that ℑm
{
Γ(zD, zD)

}
≃ −ǫ0κ(6π)−1I3.

Consequently,

SNR ≃ 12
√
nκ2ρ3|BD||µ0 − µ1|√
2π(2ǫ0 + ǫ1)σnoise

. (5.12)
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This elucidates that signal-to-noise ratio depends directly on the volume of the inclusion ρ3|BD|,
the operating wavenumber κ and the contrast µ0 − µ1, and inversely proportional to the noise
standard deviation σnoise.

5.2 Stability analysis for dielectric inclusions

For the case when D is a dielectric inclusion, we have

∂THf (z) = −aǫ
n

2∑

ℓ=1

n∑

j=1

ℜe
{
∇×

(
Uture,j,ℓ(z) + Unoise,j,ℓ(z)

)
·Mǫ

S∇×H
j,ℓ
0 (z′)

]}
.

Observe again that the first term corresponds to the true image in the absence of the noise as
for the case of permeable inclusions whereas the covariance of corrupted image is now given by

Cov
(
∂THf (z), ∂THf (z′)

)
,

=
a2ǫ

2n2

2∑

ℓ,ℓ′=1

n∑

j,l=1

ℜe
{
E

[
∇×Unoise,j,ℓ(z) ·Mǫ

S∇×H
j,ℓ
0 (z)∇×Unoise,j′,ℓ′(z′) ·Mǫ

S∇×H
j′,ℓ′

0 (z′)
]}

,

=
a2ǫ

2n2

2∑

ℓ=1

n∑

j=1

ℜe
{
Mǫ

S∇×H
j,ℓ
0 (z) · E

[
∇×Unoise,j,ℓ(z)∇×Unoise,j,ℓ(z′)

T
]
Mǫ

S∇×H
j,ℓ
0 (z′)

}
.

Using the arguments as in Lemma 5.1, it can be easily proved that

E

[
∇×Unoise,j,ℓ(z)∇×Unoise,j,ℓ(z′)

T
]
≃ −σ2

noiseκ(4ǫ0)−1ℑm
{
Γ(z, z′)

}
.

Therefore,

Cov
(
∂THf (z), ∂THf (z′)

)

≃− a2ǫσ
2
noiseκ

8n2ǫ0

2∑

ℓ=1

n∑

j=1

ℜe
{
Mǫ

S∇×H
j,ℓ
0 (z) · ℑm

{
Γ(z, z′)

}
Mǫ

S∇×H
j,ℓ
0 (z′)

}
,

= − a2ǫσ
2
noiseκ

8n2ǫ0

2∑

ℓ=1

n∑

j=1

ℜe
{
ℑm

{
Γ(z, z′)

}
Mǫ

S : Mǫ
S

[
∇×H

j,ℓ
0 (z)

] [
∇×H

j,ℓ
0 (z′)

]T }
,

= − a2ǫσ
2
noiseκ

3

8nǫ0
ℜe
{
ℑm

{
Γ(z, z′)

}
Mǫ

S : Mǫ
S

[ 1

n

2∑

ℓ=1

n∑

j=1

(
θj × θ⊥,ℓ

j

)(
θj × θ⊥,ℓ

j

)T
eiκθ

T
j (z−z

′)
]}

,

≃− πa2ǫσ
2
noiseκ

2

2nǫ20
ℜe
{
ℑm

{
Γ(z, z′)

}
Mǫ

S : Mǫ
Sℑm

{
Γ(z, z′)

}}
,

where the use of the approximation (4.16) has been made to get last identity. The analysis
above elucidates that the conclusions drawn in Section 5.1 are valid for the case of dielectric
inclusions as well and functional ∂THf is robust with respect to measurement noise.

When D is a spherical inclusion, the covariance of the corrupted image turns out to be

Cov
(
∂THf (z), ∂THf (z′)

)
≃ σ2

noiseã
2
ǫκ

2(2n)−1
∥∥ℑm

{
Γ(z, z′)

}∥∥2,

where

ãǫ :=
3
√
πǫ2|BS |

ǫ0(2ǫ0 + ǫ2)
aǫ =

3
√
π|ǫ0 − ǫ2||BS |
ǫ0(2ǫ0 + ǫ2)

.
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Therefore, the variance of ∂THf for a spherical dielectric inclusion is given as

Var
(
∂THf (zS)

)
≃ σ2

noiseã
2
ǫκ

2(2n)−1
∥∥ℑm

{
Γ(zS , zS)

}∥∥2. (5.13)

The signal-to-noise ratio in this case can be given as

SNR ≃ 12ρ3|BD|κ
√

2nπ|ǫ0 − ǫ1|
ǫ0(2ǫ0 + ǫ1)σnoise

∥∥∥ℑm
{
Γ(zD, zD)

}∥∥∥, (5.14)

by virtue of Corollary 4.2. As in the previous section, the behavior of j0 and j2 when r → 0
suggests that

SNR ≃ 12
√
nρ3|BD|κ2|ǫ0 − ǫ1|√

2π(2ǫ0 + ǫ1)σnoise

. (5.15)

6 Statistical stability with respect to medium noise

In this section, we aim to investigate the statistical stability of the imaging functional ∂THf

with respect to medium noise. For simplicity, we assume that only one of the permittivity and
permeability parameters fluctuates around the background value at a time. The general case
of medium noise can be dealt with analogously but is more involved and is not presented for
brevity.

6.1 Fluctuations in permeability

Let the permeability of Ω, denoted by µ(x) throughout in this section, be fluctuating around
the background permeability such that

µ(x) = µ0

(
1 + γ(x)

)
, (6.1)

where γ(x) represents a random fluctuation such that the typical size of γ, denoted by σγ , is
small enough so that the Born approximation is valid. We emphasize that γ is a real-valued
function.
Nota Bene. Throughout this subsection, we term the homogeneous medium with parameters
(ǫ0, µ0) as the reference medium, and the random medium without inclusion as the background
medium still denoted by Ω by abuse of notation. Further, superposed 0 indicates a field in the
reference medium and any field otherwise is related to the random medium with or without
inclusion henceforth.

Let G0 and G be the reference and background dyadic Green’s functions with Neumann
type boundary conditions, that is, the solutions to

{
∇x ×∇x ×G0(x,y) − κ2G0(x,y) = −ǫ0δy(x)I3, Ω,(
∇x ×G0(x,y)

)
× ν(x) = 0, ∂Ω,

(6.2)

and
{
∇x ×∇x ×G(x,y) − (1 + γ(x))κ2G(x,y) = −ǫ0δy(x)I3, Ω,

(∇x ×G(x,y)) × ν(x) = 0, ∂Ω.
(6.3)

The following result holds and can be proved by similar arguments as in [7, Theorem 2.28].
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Lemma 6.1. For all x ∈ ∂Ω and y ∈ Ω, we have

(
1

2
+ Pκ,0

∗

)
G0(x,y) = Γ0(x,y). (6.4)

The following Born approximation is valid

G(x,y) = G0(x,y) − κ2

ǫ0

ˆ

Ω

G0(x, z)γ(z)G0(z,y)dz + o(σγ). (6.5)

Moreover, we also have

H0(x) = H0
0(x) − κ2

ǫ0

ˆ

Ω

G0(x, z)γ(z)H0
0(z)dz + o(σγ). (6.6)

The back-propagator U is now constructed as follows,

U(z) = − 1

ǫ0

ˆ

∂Ω

Γ0(x, z)ν(x) ×
(

1

2
I − Pκ,0

)
[(Hρ −H0

0) × ν] (x)dσ(x). (6.7)

Note that the back-propagation step uses reference fundamental solution and the reference
magnetic solution since the background solutions are unknown. This substantiates that the
back-propagation step transports not only the true scattered field but also the first scattering
source (under Born approximation) due to fluctuations, thereby generating a spatially dis-
tributed contribution in the image. Further, the background Green’s function G is not known
exactly but up to a first order approximation. Therefore, the back-propagation using reference
Green’s function G0 may affect the principle peak of the imaging functional around zS ≃ zD.

We express Hρ − H0
0 as the sum of two terms Hρ − H0 and H0 − H0

0 and subsequently
invoke Lemma 3.2 and Born approximations (6.5)–(6.6). Therefore,

U(z) = − 1

ǫ0

ˆ

∂Ω

Γ0(x, z)ν(x) ×
(

1

2
I − Pκ,0

)
[(Hρ −H0) × ν] (x)dσ(x)

− 1

ǫ0

ˆ

∂Ω

Γ0(x, z)ν(x) ×
(

1

2
I − Pκ,0

)
[(H0 −H0

0) × ν] (x)dσ(x),

= − 1

ǫ0

ˆ

∂Ω

Γ0(x, z)ν(x) ×
(

1

2
I − Pκ,0

)[
(H0

ρ −H0
0) × ν

]
(x)dσ(x)

+
κ2

ǫ20

ˆ

∂Ω

Γ0(x, z)ν(x) ×
(

1

2
I − Pκ,0

)[
ˆ

Ω

G0(·,y)γ(y)(H0
ρ −H0

0)(y)dy × ν

]
(x)dσ(x)

+
κ2

ǫ20

ˆ

∂Ω

Γ0(x, z)ν(x) ×
(

1

2
I − Pκ,0

)[
ˆ

Ω

G0(·,y)γ(y)H0
0(y)dy × ν

]
(x)dσ(x) + o(σγ),

= T1 + T2 + T3 + o(σγ),

where T1, T2 and T3 represent the first, second and third term on the right hand side respectively.
Note that T1 is exactly the reference back-propagator defined in (3.7). Therefore, we will

denote this term by Utrue(z). From [11, Theorem 2.1], we have (H0
ρ −H0

0) = O(ρ3). Conse-
quently, the second term T2 is of the order O(σγρ

3) and is neglected henceforth. Finally, by
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using Lemma 2.4, Lemma 6.1 and Lemma 2.1 respectively, we have

T3 =
κ2

ǫ20

ˆ

∂Ω

(
Γ0(x, z) × ν(x)

)T
(

1

2
I + Pκ,0

∗

)[
ˆ

Ω

G0(·,y)γ(y)H0
0(y)dy

]
(x) × ν(x)dσ(x),

= − κ2

ǫ20

ˆ

∂Ω

(
Γ0(x, z) × ν(x) × ν(x)

)T
ˆ

Ω

Γ0(x,y)γ(y)H0
0(y)dydσ(x),

=
κ2

ǫ20

ˆ

Ω

γ(y)

[
ˆ

∂Ω

Γ0(x, z)Γ0(x,y)
T
dσ(x)

]
H0

0(y)dy,

≃− κ

ǫ0

ˆ

Ω

γ(y)ℑm
{
Γ0(y, z)

}
H0

0(y)dy.

Therefore, we conclude that U(z) = Utrue(z) + Unoise(z) + O(σγρ
3) + o(σγ), where Unoise is

defined by

Unoise(z) := − κ

ǫ0

ˆ

Ω

γ(y)ℑm
{
Γ0(y, z)

}
H0

0(y)dy. (6.8)

The expansion of U(z) clearly shows that the back-propagator in the random medium is
approximately the sum of reference back-propagator and the error term due to clutter. The
reference back propagator Utrue produces the principle peak of ∂THf , that is, without medium
noise. The back-propagator Unoise generates a speckle field corrupting the reconstructed image.
In rest of this subsection, we restrict ourselves to the case of permeable inclusions and dielectric
inclusions for simplicity in order to analyze the speckle field generated by Unoise. Further, the
situation when there are multiple incident fields of the form (4.12) is taken into account.

6.1.1 Speckle field analysis for permeable inclusions

Let us compute the covariance of speckle field due to back-propagation of Unoise,j,ℓ. We have

Cov
(
∂THf (z), ∂THf (z′)

)
=

κ4a2µ
n2

2∑

ℓ,ℓ′=1

n∑

j,j′=1

E

[
ℜe
{
Unoise,j,ℓ(z) ·Mµ

SH
0,j,ℓ
0 (z)

}
ℜe
{
Unoise,j′,ℓ′(z′) ·Mµ

SH
0,j′,ℓ′

0 (z′)
}]

, (6.9)

for all z, z′ ∈ Ω, where H
0,j,ℓ
0 are the incident fields of the form (4.12). First of all, we invoke

(6.8), (4.12) and (4.15) to get

1

n

2∑

ℓ=1

n∑

j=1

Unoise,j,ℓ(z) ·Mµ
SH

0,j,ℓ
0 (z)

= − κ

ǫ0n

2∑

ℓ=1

n∑

j=1

ˆ

Ω

γ(y)ℑm
{
Γ0(y, z)

}
H

0,j,ℓ
0 (y)dy ·Mµ

SH
0,j,ℓ
0 (z),

= − κ

ǫ0n

2∑

ℓ=1

n∑

j=1

ˆ

Ω

γ(y)ℑm
{
Γ0(y, z)

}
: Mµ

SH
0,j,ℓ
0 (z)

[
H

0,j,ℓ
0 (y)

]T
dy,

= − κ

ǫ0

ˆ

Ω

γ(y)ℑm
{
Γ0(y, z)

}
: Mµ

S

[
1

n

2∑

ℓ=1

n∑

j=1

θ⊥,ℓ
j

[
θ⊥,ℓ
j

]T
eiκθ

T
j (z−y)

]
dy,

≃ 4π

ǫ20

ˆ

Ω

γ(y)Qγ [Mµ
S ](y, z)dy,
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where Qγ is a non-negative real valued function defined for any 3 × 3 real matrix A by

Qγ [A](y, z) := ℑm
{
Γ0(y, z)

}
: Aℑm

{
Γ0(y, z)

}
.

Then, the covariance of the speckle field can be approximated by

Cov
(
∂THf (z), ∂THf (z′)

)
≃ 16π2a2µκ

4ǫ−4
0

¨

Ω×Ω

Cµ(y,y′)Qγ [Mµ
S](y, z)Qγ [Mµ

S ](y′, z′)dydy′,

where Cγ(y,y′) = E [γ(y)γ(y′)] is the two-point correlation function of the fluctuations in
permeability. The function zS → Qγ [Mµ

S](zS , zD) is maximal for zS = zD and the focal spot
of its peak is of the order of half the operating wavelength.

Note that Qγ [I3](y, z) = ‖ℑm
{
Γ(y, z)

}
‖2. Therefore, for the case of a spherical inclusion,

thanks to Lemma 2.7, we have

1

n

2∑

ℓ=1

n∑

j=1

Unoise,j,ℓ(z) ·Mµ
SH

0,j,ℓ
0 (z) ≃ bµ

aµ

ˆ

Ω

γ(y)Qγ [I3](y, bz)dy. (6.10)

Cov
(
∂THf (z), ∂THf (z′)

)
≃ b2µκ

4

¨

Ω×Ω

Cµ(y,y′)Qγ [I3](y, z)Qγ [I3](y′, z′)dydy′, (6.11)

where

bµ :=
12π (µ0 − µ2) |BS |

ǫ20(2µ0 + µ2)
. (6.12)

The expression (6.10) elucidates that the speckle field in the image is essentially the medium
noise smoothed by an integral kernel of the form ‖ℑm{Γ0}‖2 . Similarly, (6.11) elucidates that
the correlation structure of the speckle field is essentially that of the medium noise smoothed
by the same kernel. Since the typical width of ℑm{Γ0} is about half the wavelength, the
correlation length of the speckle field is roughly the maximum between the correlation length
of medium noise and the wavelength, that is, of the same order as the main peak centered at
location zS ≃ zD. Thus, there is no way to distinguish the main peak from the hot spots of
the speckle field based on their shapes. Only the height of the main peak can allow it to be
visible out of the speckle field. Unlike measurement noise case discussed in the previous section,
the factor

√
n disappeared. Therefore, the functional ∂THf is moderately stable with respect

to medium noise. Moreover, the main peak of ∂THf is affected by the clutters, unlike in the
measurement noise case. Thus, ∂THf is more robust with respect to measurement noise than
medium noise.
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6.1.2 Speckle field analysis for dielectric inclusions

In order to compute the covariance of the speckle field generated by the back-propagation of
Unoise for a dielectric inclusion, we first note that

1

n

2∑

ℓ=1

n∑

j=1

∇×Unoise,j,ℓ(z) ·Mǫ
S∇×H

0,j,ℓ
0 (z)

≃− κ

ǫ0n

2∑

ℓ=1

n∑

j=1

ˆ

Ω

γ(y)∇z ×ℑm
{
Γ0(y, z)

}
H

0,j,ℓ
0 (y) ·Mǫ

S∇×H
0,j,ℓ
0 (z)dy,

= − κ

ǫ0n

2∑

ℓ=1

n∑

j=1

ˆ

Ω

γ(y)∇z ×ℑm
{
Γ0(y, z)

}
: Mǫ

S∇z ×
(
H

0,j,ℓ
0 (z)H0,j,ℓ

0 (y)
T
)
dy,

= − κ

ǫ0

ˆ

Ω

γ(y)∇z ×ℑm
{
Γ0(y, z)

}
: Mǫ

S∇z ×
(

1

n

2∑

ℓ=1

n∑

j=1

θ⊥,ℓ
j

(
θ⊥,ℓ
j

)T
eiκθ

T
j (z−y)

)
dy,

≃ 4π

ǫ20

ˆ

Ω

γ(y)Q̃γ [Mǫ
S ](y, z)dy,

where Q̃γ is a non-negative real valued function defined for any 3 × 3 real matrix A by

Q̃γ [A](y, z) = ∇z ×ℑm
{
Γ0(y, z)

}
: Mǫ

S∇z ×ℑm
{
Γ0(y, z)

}
dy.

Therefore, the covariance turns out to be

Cov
(
∂THf (z), ∂THf (z′)

)
≃ 16π2a2ǫ

ǫ40

¨

Ω×Ω

Cµ(y,y′)Q̃γ [Mǫ
S ](y, z)Q̃γ [Mǫ

S ](y′, z′)dydy′,

Finally, note that Q̃γ [I3](y, z) = ‖ℑm
{
Γ0(y, z)

}
‖2, thus for a spherical dielectric inclusion

1

n

2∑

ℓ=1

n∑

j=1

∇×Unoise,j,ℓ(z) ·Mǫ
S∇×H

0,j,ℓ
0 (z) ≃ bǫ

aǫ

ˆ

Ω

γ(y)Q̃γ [I3](y, z)dy, (6.13)

Cov
(
∂THf (z), ∂THf (z′)

)
≃ b2ǫ

¨

Ω×Ω

Cγ(y,y′)Q̃γ [I3](y, z)Q̃γ [I3](y′, z′)dydy′, (6.14)

where the constant bǫ is defined by

bǫ =
12π(ǫ0 − ǫ2)|BS |

ǫ20(2ǫ0 + ǫ2)
. (6.15)

The conclusions drown in Section 6.1.1 still hold in this case and the imaging functional is
moderately stable.

6.2 Fluctuations in permittivity

Let us now investigate the stability of the imaging framework with respect to medium noise
when the permittivity, hereafter denoted by ǫ, is fluctuating randomly around the reference
permittivity. We assume that the fluctuating background permittivity is such that

ǫ−1(x) := ǫ−1
0 [1 + α(x)], (6.16)
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where α is a random fluctuation. It is again assumed that the fluctuation is weak so that the
Born approximation is appropriate. We will make use of the same conventions as in Section 6.1
for reference and background media, and fields.

The equation for the magnetic field with fluctuating permittivity is then given by

∇×∇×Hρ(x) − κ2Hρ(x) = −∇× α(x)∇×Hρ(x). (6.17)

Since the Born approximation is appropriate thanks to assumption of weak fluctuations, we
have Hρ ≃ H0

ρ −H1
ρ, where H0

ρ solves the reference problem and H1
ρ solves

∇×∇×H1
ρ(x) − κ2H1

ρ(x) = −∇× α(x)∇×H0
ρ(x). (6.18)

Consequently, we have

H1
ρ(x) =

1

ǫ0

ˆ

Ω

G0(x,y)
(
∇× α(y)∇×H0

ρ(y)
)
dy, (6.19)

where G0(x,y) is given by (6.2).
Following the analysis in Section 6.1, it can be noticed that the back-propagator, again

defined in terms of the reference fundamental solution and associated reference solution, consists
of two terms, one leading to the true image whereas the second giving rise to a speckle field
corrupting the image thanks to permittivity fluctuations. Using analogous arguments and
manipulations as in the permeability fluctuation case, the noise back-propagating term turns
out to be

Unoise(z) ≃− 1

ǫ0κ

ˆ

Ω

ℑm
{
Γ0(y, z)

}
∇× α(y)∇×H0

0(y)dy. (6.20)

6.2.1 Speckle field analysis for permeable inclusions

For a permeable inclusion, the speckle field generated by ∂THf at z ∈ Ω is given by

T4 :=
1

n

2∑

ℓ=1

n∑

j=1

ℜe
{
Unoise,j,ℓ(z) ·Mµ

SH
0,j,ℓ
0 (z)

}

≃− 1

κǫ0n

n∑

j=1

ℜe
{
ˆ

Ω

ℑm
{
Γ0(y, z)

}
∇× α(y)∇×H

0,j,ℓ
0 (y) ·Mµ

SH
0,j,ℓ
0 (z)dy

}
(6.21)

Since ℑ
{
Γ0(y, z)

}
is symmetric, we have

T4 ≃− 1

κǫ0n

2∑

ℓ=1

n∑

j=1

ℜe
{
ˆ

Ω

ℑm
{
Γ0(y, z)

}
M

µ
SH

0,j,ℓ
0 (z) · ∇ × α(y)∇×H

0,j,ℓ
0 (y)dy

}
.

Further, on assuming that α(x) = 0 for all x in the neighborhood of boundary ∂Ω and using
the Green’s theorem, the above expression simplifies to

T4 ≃− 1

κǫ0n

2∑

ℓ=1

n∑

j=1

ℜe
{
ˆ

Ω

∇y ×ℑm
{
Γ0(y, z)

}
M

µ
SH

0,j,ℓ
0 (z) · α(y)∇×H

0,j,ℓ
0 (y)dy

}
.
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After straight forward calculations and the use of approximation (4.15)

T4 ≃ 4π

κ2ǫ20
ℜe
{
ˆ

Ω

α(y)Qα[Mµ
S ](y, z)dy

}
,

where for any 3 × 3 real matrix A, the real valued function Qα is defined by

Qα[A](y, z) := ∇y ×ℑm
{
Γ0(y, z)

}
A : ∇y ×ℑm

{
Γ0(y, z)

}
.

Consequently, the covariance of the speckle field turns out to be

Cov
(
∂THf (z), ∂THf (z′)

)
≃

16π2a2µ
ǫ40

¨

Ω×Ω

Cα(y,y′)Qα[Mµ
S ](y, z)Qα[Mµ

S ](y′, z′)dydy′.(6.22)

Moreover, since Qα[I3](y, z) =
∥∥∇y ×ℑm

{
Γ0(y, z)

}∥∥2, for a spherical inclusion

Cov
(
∂THf (z), ∂THf (z′)

)
= bµ

¨

Ω×Ω

Cα(y,y′)Qα[I3](y, z)Qα[I3](y′, z′)dydy′, (6.23)

where Cα(y,y′) := E[α(y)α(y′)] is the two point correlation of fluctuation α. The expression
(6.23) is very similar to that studied in (6.14). As already pointed out in Section 6.1.1, the
speckle field is indeed the medium noise smoothed with an integral kernel whose width is of the
order of wavelength.

6.2.2 Speckle field analysis for dielectric inclusions

In this case, the speckle field generated by ∂THf at z ∈ Ω is given by

T5 :=
1

n

2∑

ℓ=1

n∑

j=1

ℜe
{
∇×Unoise,j,ℓ(z) ·Mǫ

S∇×H
0,j,ℓ
0 (z)

}
,

= − 1

κǫ0n

2∑

ℓ=1

n∑

j=1

ℜe
{
ˆ

Ω

∇z ×ℑm
{
Γ0(y, z)

}
∇× α(y)∇×H

0,j,ℓ
0 (y) ·Mǫ

S∇×H
0,j,ℓ
0 (z)dy

}
,

= − 1

κǫ0n

2∑

ℓ=1

n∑

j=1

ℜe
{
ˆ

Ω

∇y ×ℑm
{
Γ0(y, z)

}(
Mǫ

S∇×H
0,j,ℓ
0 (z)

)
· ∇ × α(y)∇×H

0,j,ℓ
0 (y)dy

}
.

Letting α to be zero near ∂Ω and using Green’s theorem, we simplify the above expression to

T5 ≃− 1

κǫ0n

2∑

ℓ=1

n∑

j=1

ℜe
{
ˆ

Ω

∇y ×∇y ×ℑm
{
Γ0(y, z)

}
Mǫ

S∇×H
0,j,ℓ
0 (z) · α(y)∇×H

0,j,ℓ
0 (y)dy

}
,

= − κ

ǫ0n

2∑

ℓ=1

n∑

j=1

ℜe
{
ˆ

Ω

ℑm
{
Γ0(y, z)

}
Mǫ

S · α(y)∇×H
0,j,ℓ
0 (y)

(
∇×H

0,j,ℓ
0 (z)

)T
dy

}
.

Finally, invoking approximation (4.16), we arrive at

T5 ≃4πκ2

ǫ20

ˆ

Ω

γ(y)Q̃α[Mǫ
S ](y, z)dy, (6.24)
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where Q̃α is a non-negative real valued function defined for any 3 × 3 real matrix A by

Q̃α[A](y, z) = ℑm
{
Γ0(y, z)

}
Mǫ

S : ℑm
{
Γ0(y, z)

}
dy.

and as a consequence,

Cov
(
∂THf (z), ∂THf (z′)

)
≃ b2ǫκ

4

¨

Ω×Ω

Cα(y,y′)Q̃α[Mǫ
S ](y, z)Q̃α[Mǫ

S ](y′, z′). (6.25)

The results for the a spherical dielectric inclusion are evident from the previous analysis.

7 Conclusions

In this paper, we investigated a topological derivative based electromagnetic inclusion detection
algorithm using the measurements of the tangential components of scattered magnetic field, con-
sidering a full Maxwell equations setting. It is elucidated that the topological derivative based
imaging functional behaves like the square of the imaginary part of a free space fundamental
magnetic solution and attains its maximum at the true location of the inclusion with Rayleigh
resolution limit. The detection algorithm is proved to be very stable with respect to measure-
ment noise and moderately stable with respect to medium noise. Moreover, it is indicated that
multiple incident waves significantly enhance the stability of the functional. Albeit, the case of
a single inclusion is discussed herein, the results extend to the case of multiple inclusions with
a common characteristic size.

A Proof of Lemma 2.2

We recall from [19, Lemma 3.1], that for all constant vectors p,q ∈ R3 and x,y ∈ B(0, r)

2iǫ0p · ℑm
{
Γ(x, z)

}
q

=

ˆ

∂B

(
Γ(x, z)p · ν(z) ×∇z × Γ(z,y)q − ν(z) ×∇z × Γ(x, z)p · Γ(z,y)q

)
dσ(z),

=

ˆ

∂B

( [
Γ(x, z)p× ν(z)

]
· [∇z × Γ(z,y)q] −

[
∇z × Γ(x, z)p

]
· [Γ(z,y)q × ν(z)]

)
dσ(z).

(A.1)

Moreover, in the far field where r → ∞, we have

Γ(x,y)p = O(r−1), (A.2)

∂

∂xj
Γ(x,y)p = O(r−1), (A.3)

∇x × Γ(x,y)p + iκΓ(x,y)p× ν(x) = O(r−2), (A.4)

∂

∂xj

(
∇x × Γ(x,y)p + iκΓ(x,y)p× ν(x)

)
= O(r−2). (A.5)

By virtue of the estimates (A.2) and (A.4), the expression (A.1) renders
ˆ

∂B(0,r)

(
Γ(x, z) × ν(z)

)T(
Γ(z,y) × ν(z)

)
dσ(z) = − ǫ0

κ
ℑm

{
Γ(x,y)

}
+ O(r−1). (A.6)
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The above relation also shows that |q̃ij(x,y)| = O(r−1). The estimate for |∇xq̃ij(x,y)| can be
proved analogously using (A.4) and (A.5). This completes the proof.

B Proof of Lemma 5.1

First of all note that, since ηnoise is a mean-zero circular Gaussian random process, Unoise(z) is
also a mean-zero circular Gaussian random process thanks to linearity. Moreover, its covariance
can be calculated for all z, z′ ∈ Ω as

E

[
Unoise(z)Unoise(z′)

T
]

:=
1

ǫ20
E

[ˆ

∂Ω

Γ(x, z)ν(x) ×
(

1

2
I − Pκ

)
[ηnoise × ν] (x)dσ(x)

(
ˆ

∂Ω

Γ(x′, z′)ν(x′) ×
(

1

2
I − Pκ

)
[ηnoise × ν] (x′)dσ(x′)

)T ]
,

=
1

ǫ20

2∑

p,q=1

Epq(z, z′), (B.1)

where Epq := E

[
Jα(z)Jβ(z′)

]
for all p, q ∈ {1, 2} with

J1(z) :=
1

2

ˆ

∂Ω

(Γ(x, z) × ν(x))T
(
ηnoise(x) × ν(x)

)
dσ(x), (B.2)

J2(z) :=

ˆ

∂Ω

(Γ(x, z) × ν(x))T Pκ [ηnoise × ν] (x)dσ(x). (B.3)

Let us now analyze each term individually. Note that

E11(z, z′) =
1

4

¨

∂Ω×∂Ω

[(Γ(x, z) × ν(x)) × ν(x)]
T
E

[
ηnoise(x) (ηnoise(x

′))
T
]

(Γ(x′, z′) × ν(x′)) × ν(x′)dσ(x)dσ(x′),

=
σ2
noise

4

ˆ

∂Ω

[Γ(x, z)]
T
Γ(x, z′)dσ(x), (B.4)

where in order to obtain the latter identity, expression (5.2) has been invoked. Assuming,
z, z′ ∈ Ω far from ∂Ω and utilizing the Helmholtz-Kirchhoff identities, we obtain

E11(z, z′) ≃− ǫ0σ
2
noise(4κ)−1ℑm

{
Γ(z, z′)

}
. (B.5)

Now, remark that
(∇× (φI3))T p = −∇× (φp) ,

for any constant vector p and any smooth function φ. Therefore,

∇x × (g(y,x)ηnoise(y) × ν(y)) = − [∇x × (g(y,x)I3)]T (ηnoise(y) × ν(y)) ,

= − ǫ−1
0 [∇y × Γ(y,x)]

T
(ηnoise(y) × ν(y)) ,

= ǫ−1
0 [∇y × Γ(y,x) × ν(y)]

T
ηnoise(y).

Consequently, for y ∈ Ω far from boundary ∂Ω

Pκ [ηnoise × ν] (x) =
iκ

ǫ0

ˆ

∂Ω

Γ(y,x)ηnoise(y)dσ(y) × ν(x). (B.6)
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By virtue of (B.6), we have

E12(z, z′) = − iκ

2ǫ0

˚

(∂Ω)3
[(Γ(x, z) × ν(x)) × ν(x)]T E

[
ηnoise(x) (ηnoise(y))T

]

Γ(y,x′)[Γ(x′, z′) × ν(x′)] × ν(x′)dσ(y)dσ(x)dσ(x′),

= − iκσ2
noise

2ǫ0

¨

(∂Ω)2
Γ(y, z) [Γ(y,x′)]

T
Γ(x′, z′)dσ(x′)dσ(y). (B.7)

Invoking Helmholtz-Kirchhoff identity, we get

E12(z, z′) ≃ σ2
noise

2κ2

ˆ

∂Ω

{
iκΓ(y, z)

}
ℑm

{
κΓ(y, z′)

}
dσ(y). (B.8)

Similarly, third term E3(z, z′) can be evaluated and appears to be

E21(z, z′) ≃ σ2
noise

2κ2

ˆ

∂Ω

ℑm
{
κΓ(y, z)

}{
iκΓ(y, z′)

}
dσ(y). (B.9)

In order to explicitly calculate E4(z, z′), we observe by invoking (B.6) that

E

[
Pκ [ηnoise × ν] (x)Pκ [ηnoise × ν] (x′)

T
]

=
κ2

ǫ20
E

[
¨

(∂Ω)2
Γ(y,x)ηnoise(y) × ν(x)

[
Γ(y′,x′)ηnoise(y′) × ν(x′)

]T
dσ(y)dσ(y′)

]
,

=
κ2

ǫ20

¨

(∂Ω)2
[Γ(y,x) × ν(x)]

T
E

[
ηnoise(y)ηnoise(y′)

T
]
Γ(y′,x′) × ν(x′)dσ(y)dσ(y′),

≃σ2
noiseκ

2

ǫ20

ˆ

∂Ω

[Γ(y,x) × ν(x)]
T

[Γ(y,x′) × ν(x′)]dσ(y).

Therefore,

E22(z, z′) =

¨

(∂Ω)2
(Γ(x, z) × ν(x))

T
E

[
Pκ [ηnoise × ν] (x) (Pκ [ηnoise × ν] (x′))

T
]

Γ(x′, z′) × ν(x′)dσ(x)dσ(x′),

≃σ2
noiseκ

2

ǫ20

˚

(∂Ω)3
(Γ(x, z) × ν(x))

T
[Γ(y,x) × ν(x)]

T

[Γ(y,x′) × ν(x′)]Γ(x′, z′) × ν(x′)dσ(x)dσ(x′)dσ(y),

≃σ2
noise

κ2

ˆ

∂Ω

ℑm
{
κΓ(z,y)

}
ℑm

{
κΓ(y, z′)

}
dσ(y). (B.10)

Adding all the contributions Epq (for p, q ∈ {1, 2}), we obtain the covariance of Unoise

E

[
Unosise(z)Unosise(z′)

T
]

= − σ2
noise

4κǫ0
ℑm

{
Γ(z, z′)

}

+
σ2
noise

2κ2ǫ20

ˆ

∂Ω

{
iκΓ(y, z)

}
ℑm

{
κΓ(y, z′)

}
dσ(y)

+
σ2
noise

2κ2ǫ20

ˆ

∂Ω

ℑm
{
κΓ(y, z)

}{
iκΓ(y, z′)

}
dσ(y)

+
σ2
noise

κ2ǫ20

ˆ

∂Ω

ℑm
{
κΓ(z,y)

}
ℑm

{
κΓ(y, z′)

}
dσ(y).
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Finally, the result follows by the fact that for any complex number Z

2ℑm{iZ}ℑm{iZ}− Zℑm{iZ} − ℑm{Z}Z = 0.
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[31] J. C. Nédélec, Acoustic and Electromagnetic Equations:Integral Representations for Har-

monic Problems, App. Math. Sci., Vol. 144, Springer-Verlag, New York, 2001.

[32] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, editors, NIST Handbook

of Mathematical Functions, Cambridge, 2010.

[33] W.-K. Park, Topological derivative strategy for one-step iteration imaging of arbitrary
shaped thin, curve-like electromagnetic inclusions, J. Comp. Phy., 231:(2012), pp. 1426-
1439.

[34] W.-K. Park, Multi-frequency topological derivative for approximate shape acquisition of
curve-like thin electromagnetic inhomogeneities, J. Math. Anal. App., 404(2):(2013), pp.
501–518.
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