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Solving log-transformed random diffusion problems by stochastic Galerkin mixed

finite element methods

Elisabeth Ullmann∗ and Catherine E. Powell†

Abstract. Stochastic Galerkin finite element discretisations of PDEs with stochastically nonlinear coefficients
lead to linear systems of equations with block dense matrices. In contrast, stochastic Galerkin finite
element discretisations of PDEs with stochastically linear coefficients lead to linear systems of equa-
tions with block sparse matrices which are cheaper to manipulate and precondition in the framework
of Krylov subspace iteration. In this paper we focus on mixed formulations of second-order elliptic
problems, where the diffusion coefficient is the exponential of a random field, and the priority is to
approximate the flux. We build on the previous work [Efficient iterative solvers for stochastic Galer-
kin discretizations of log-transformed random diffusion problems, SIAM J. Sci. Comput., 34(2012),
pp.A659–A682] and reformulate the PDE model as a first-order system in which the logarithm of
the diffusion coefficient appears on the left-hand side. We apply a stochastic Galerkin mixed fi-
nite element method and discuss block triangular and block diagonal preconditioners for use with
GMRES iteration. In particular, we analyse a practical approximation to the Schur complement of
the Galerkin matrix and provide spectral inclusion bounds. Numerical experiments reveal that the
preconditioners are completely insensitive to the spatial mesh size, and are only slightly sensitive to
the statistical parameters of the diffusion coefficient. As a result, the computational cost required
to approximate the flux when the diffusion coefficient is stochastically nonlinear grows only linearly
with respect to the total problem size.

Key words. generalised saddle point problems, PDEs with random data, convection-diffusion, stochastic finite
elements, mixed finite elements, preconditioning, Schur complement approximation
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1. Introduction. Let (Ω,F ,P) be a probability space with sample space Ω and let D ⊂
R

2 be the chosen computational domain. We begin by considering the stationary diffusion
problem: find u : D × Ω → R such that P-a.s.,

−∇ · (eaM∇u) = f in D, (1.1)

u = 0 on ∂D, (1.2)

where the diffusion coefficient is the exponential of a random field aM : D × Ω → R of the
form

aM (x , ω) = a0(x ) + σ
M∑

k=1

√
λkak(x )ξk(ω). (1.3)

We assume that aM represents a truncated Karhunen-Loève expansion of an underlying mean-
square continuous random field a : D×Ω → R with mean a0 and standard deviation σ whose
covariance operator C : D × D → R has eigenfunctions ak and eigenvalues λk. We further
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2 E. ULLMANN AND C. E. POWELL

assume that the random variables ξk : Ω → Γk ⊂ R are bounded and independent. For
simplicity, f is assumed to be a deterministic function of x ∈ D.

It is well known (e.g., see [14]) that applying stochastic Galerkin finite element methods
(SGFEMs) to PDEs with coefficients of the form eaM results in very large linear systems
Ax = b with coefficient matrices of the form

A = I ⊗A0 +

L∑

ℓ=1

Gℓ ⊗Aℓ.

These matrices are both block dense and ill-conditioned and the number of terms L depends
nonlinearly on M . In the case of (1.1)–(1.2), if the finite-dimensional variational problem
associated with the chosen SGFEM is well-posed, then A is symmetric and positive definite.
Preconditioners have been suggested for these matrices in [16, 19, 20, 23] for use with the
conjugate gradient (CG) method. However, in addition to the application of the chosen
preconditioner, one CG iteration requires a matrix-vector product with the SGFEM matrix.
Since A is block dense, and the number of blocks depends nonlinearly on M , the cost of this
operation becomes unmanageable as M → ∞. Hence, even with a robust preconditioner, the
solution time can be far too slow. A commonly cited application of (1.1)–(1.2) is groundwater
flow modelling. Here, one frequently encounters cases where aM , the logarithm of the diffusion
coefficient, is a random field with a small correlation length. This exacerbates the problem
since M then has to be large to control the error between a and the approximation aM . The
more random variables are needed to parameterise the uncertainty in the logarithm of the
diffusion coefficient, the higher the cost of a matrix-vector product with the SGFEM matrix
and hence, the higher the cost of one CG iteration (with or without a preconditioner).

The lack of efficient solvers for SGFEM systems associated with PDEs with so-called
stochastically nonlinear coefficients (coefficients that are nonlinear functions of the random
variables ξk) has spawned significant interest in stochastic collocation and Monte Carlo FEMs.
These methods can be implemented for (1.1)–(1.2) by solving sequences of discretised deter-
ministic PDEs which all have sparse symmetric and positive definite system matrices. Design-
ing good solvers for these is straight-forward if one is already available for the corresponding
deterministic problem. However, since Galerkin approximation leads to a best approximation
and yields a favourable framework for error estimation [2], it is worthwhile pursuing more
computationally efficient ways to solve stochastically nonlinear problems using SGFEMs.

1.1. Convection-diffusion reformulation. To increase the number of random variables
that can be handled efficiently in (1.1)–(1.2) when standard SGFEMs and Krylov iteration
are applied, a remedy is suggested in [24]. The idea is to reformulate the boundary-value
problem before discretisation so that only the logarithm of the diffusion coefficient appears
on the left-hand side. Multiplying both sides of (1.1) by e−aM and differentiating yields the
convection-diffusion problem: find u : D × Ω → R such that P-a.s.,

− ∆u+ w · ∇u = fe−aM in D, (1.4)

u = 0 on ∂D, (1.5)

with convective velocity w := −∇aM . The PDE operator in (1.1) has a stochastically non-
linear coefficient. However, (1.4)–(1.5) has only the gradient of the logarithm of the diffusion
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coefficient on the left-hand side. Crucially,

w(x , ω) = −∇aM (x , ω) = −∇a0(x ) − σ

M∑

k=1

√
λk∇ak(x )ξk(ω),

is a linear function of ξk. Now, when SGFEMs are applied to PDEs like (1.4) with stochas-
tically linear coefficients, we obtain linear systems of equations Ax = b with block sparse

matrices A. Moreover, these matrices tend to be better conditioned than their stochastically
nonlinear counterparts with respect to the standard deviation σ of the random field a and the
polynomial degree d chosen for the stochastic part of the Galerkin approximation space.

The fact that SGFEM matrices associated with discretisations of (1.4)–(1.5) are sparser
and more well-conditioned than those associated with (1.1)–(1.2) gives us hope that we can
approximate u more efficiently by solving a convection-diffusion problem. Of course, swapping
a diffusion problem for a convection-diffusion problem gives rise to some new issues. For
instance, the SGFEM matrices are non-symmetric. Establishing the well-posedness of the
variational problem associated with (1.4)–(1.5) requires careful consideration of w . It is
well known that solutions of deterministic convection-diffusion problems can exhibit steep
layers (depending on the size of w and the chosen boundary conditions). Standard finite
element methods may be unstable if the problem is convection-dominated and the mesh size
is not compatible with w , see [7]. The authors of [24] argue that the well-posedness of
the weak formulation of the stochastic problem (1.4)–(1.5) follows from that of the diffusion
problem (1.1)–(1.2). The latter is readily established via the Lax-Milgram lemma by assuming
that eaM is positive and bounded almost everywhere in D × Ω. An SGFEM comprising
bilinear finite elements on D and global polynomial approximation on the parameter domain
Γ = Γ1×· · ·×ΓM is also discussed in [24]. Numerical investigation of the mesh Peclet numbers
reveals that stabilisation is not required for representative test problems.

1.2. Darcy flux reformulation. In flow modelling, it is usually of interest to approxi-
mate the Darcy flux q := −eaM∇u. By introducing the variable q , (1.1)–(1.2) can also be
reformulated as the first-order system: find q : D×Ω → R

2, u : D ×Ω → R such that P-a.s.,

e−aM q + ∇u = 0 in D, (1.6)

∇ · q = f in D, (1.7)

u = 0 on ∂D. (1.8)

We shall refer to (1.6)–(1.8) as the standard mixed formulation of (1.1)–(1.2). The weak
formulation is a saddle point problem whose well-posedness can be established using classical
analysis [3] which involves an inf-sup condition. This has been done in [6] and [1], under the
assumption that the diffusion coefficient is both positive and bounded on D × Ω. That is,

0 < amin ≤ exp(aM (x , ω)) ≤ amax, a.e. in D × Ω, (1.9)

where amin and amax are constants. To achieve this, the random variables ξk in (1.3) must
be uniformly bounded. We will assume that the ξk are independent and each has a truncated



4 E. ULLMANN AND C. E. POWELL

Gaussian density of the form

ρk(ξk) = (2Φ(c/s) − 1)−1 × 1√
2πs

e−
ξ2k
2s2 × 1[−c,c](ξk), k = 1, . . . ,M. (1.10)

Here, Φ(·) denotes the standard Gaussian cumulative distribution function, c > 0 is a cut-
off parameter and s > 0 is chosen so that Var(ξk) = 1. For this choice of ρk, we have
ξk ∈ Γk := [−c, c] for k = 1, . . . ,M. To discretise (1.6)–(1.8), one possibility is to apply a
stochastic Galerkin mixed finite element method (SGMFEM) comprising lowest-order Raviart-
Thomas mixed finite elements on D and global polynomial approximation on Γ. If (1.9) holds
then the stability of this scheme can be established straight-forwardly (see [6] and [1]). As
explained in [14], however, applying SGMFEMs to (1.6)–(1.8) leads to linear systems with
block dense and ill-conditioned indefinite matrices that are highly expensive to solve.

Our goal is to approximate q efficiently when the diffusion coefficient is the stochastically
nonlinear function eaM . Inspired by [24], we begin by reformulating (1.1)–(1.2). First, we
define a rescaled pressure ũ := eaMu. Hence, u = e−aM ũ and differentiating gives

eaM∇u = eaM
(
e−aM∇ũ− e−aM∇aM ũ

)
= ∇ũ+ w ũ.

Substituting this expression into (1.1)–(1.2) gives

−∇ · (∇ũ+ w ũ) = f in D, (1.11)

ũ = 0 on ∂D. (1.12)

Introducing the flux q = −eaM∇u = −∇ũ − w ũ yields the alternative mixed formulation:
find q : D × Ω → R

2, ũ : D × Ω → R such that P-a.s.,

q + ∇ũ+ w ũ = 0 in D, (1.13)

∇ · q = f in D, (1.14)

ũ = 0 on ∂D. (1.15)

Notice that we can also obtain (1.13)–(1.15) from the standard mixed formulation by multi-
plying both sides of (1.6) by eaM and changing variable in (1.6) and (1.8) from u to ũ. Notice
that now, only w (a stochastically linear function) appears on the left hand-side of the sys-
tem of PDEs. Applying standard SGMFEMs to (1.13)–(1.15) yields block sparse coefficient
matrices that are better conditioned than those obtained for (1.6)–(1.8), and for which the
cost of a matrix-vector product is more manageable as M → ∞.

1.3. Outline. In Section 2 we review some well known results about the deterministic
analogue of the boundary-value problem (1.13)–(1.15) and approximation using lowest-order
Raviart-Thomas elements. In Section 3 we present the mixed variational formulation of (1.13)–
(1.15), which takes the form of a generalised (non-symmetric) saddle point problem, and
discuss well-posedness. In Section 4 we apply an SGMFEM that builds on the deterministic
finite element method introduced in Section 2 and derive the associated linear systems of
equations. In Section 5 we introduce and analyse efficient block triangular and block diagonal
preconditioners for use with generalised minimal residual (GMRES) iteration. A key point
is that both preconditioners can be implemented by solving only deterministic problems. In
Section 6 we present numerical results. Finally, in Section 7 we present our conclusions.
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2. The deterministic problem. The deterministic analogue of (1.11)–(1.12), where w

is simply a function of x ∈ D, and the associated deterministic first-order system (1.13)–
(1.15) have been studied by many authors (see, [18], [5], [21], [17]). Note that when ∇·w = 0,
(1.11)–(1.12) is a convection-diffusion problem. Otherwise, it is a convection-diffusion-reaction
problem. For the random fields of interest here, ∇·w 6= 0. The well-posedness of the standard
weak form of the deterministic version of (1.11)–(1.12) can only be established using the Lax-
Milgram lemma if one can prove that ‖w‖∞ <∞ and, for coercivity,

1 − 1

2
Kp∇ ·w > 0, a.e. in D, (2.1)

whereKp is the Poincaré constant. Often, one may not be able to establish (2.1). Nevertheless,
for sufficiently regular and bounded w and f ∈ L2(D) one may still show that there exists a
unique ũ ∈ H2(D)∩H1

0 (D) that satisfies the weak form of (1.11)–(1.12), and that (1.13)–(1.15)
is also well-posed. The existence and uniqueness of finite element approximations to (1.11)–
(1.12) and (1.13)–(1.15) can usually only be established, however, under the assumption that
the mesh size h is sufficiently small (see [18], [5]). Such analysis does not make it clear what
happens for large mesh Peclet numbers, that is when ‖w‖∞h/2 is large.

The finite-dimensional variational formulation of the deterministic analogue of (1.13)–
(1.15) is : find (qh, ũh) ∈ Vh ×Wh such that

(qh, v) − (ũh,∇ · v) + (ũ,w · v) = 0, ∀v ∈ Vh, (2.2)

− (∇ · qh, z) = − ( f, z) , ∀z ∈Wh, (2.3)

where (·, ·) denotes the L2(D) inner-product, Vh ⊂ V := H(div;D) and Wh ⊂ W := L2(D).
In particular, we will consider the lowest-order Raviart-Thomas mixed finite element method.
Assume that D can be partitioned into non-overlapping rectangular elements �k and let Th

denote the finite element mesh. The lowest-order Raviart-Thomas space is

Vh = RT 0(D) :=

{
v ∈ H(div;D) : v |�k

=

[
a+ bx

c+ dy

]
for all �k ∈ Th

}

and we choose Wh = P0(D), the set of piecewise constant functions on D. In [5], approxi-
mations obtained with this scheme are shown to converge, and a priori error estimates are
established, but only under the assumption that h is small enough. The following simple
numerical experiment illustrates this point well.

Let D = [0, 1] × [0, 1] and set f = 1. To mimic the structure of w for the stochastic
problem of interest here, we set w = −∇a0 where a0 = 1 + αx2. The approximations to
the scalar variable ũ in (2.2)–(2.3) obtained for α = 10 and α = 100 using a uniform mesh
with h = 1/32 are shown in Figure 2.1. Note that the Peclet numbers are 10/32 and 100/32
when α = 10 and 100, respectively. As α increases, w exerts a strong convective force in the
x-direction and the scalar solution develops a layer at the boundary x = 1. When the mesh
does not resolve this layer, and the Peclet number is greater than one, the numerical solution
has non-physical oscillations. Stabilisation strategies for mixed finite element approximations
of the deterministic version of (1.13)–(1.15) are discussed in [21] and [17]. When α, and hence
‖w‖∞ is small, there are no numerical difficulties and stabilisation is not needed.
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Figure 2.1. Mixed finite element approximation to eu satisfying (2.2)–(2.3) with w = −∇a0 and a0 = 1+αx2

for α = 10 (top), and α = 100 (bottom).

3. Mixed variational problem. Mixed variational formulations of the stochastic problem
(1.13)–(1.15) lead to generalised saddle point problems (gSPs), which have been studied in an
abstract setting in [13] and [4]. Let V and W be Hilbert spaces, equipped with norms ‖ · ‖V
and ‖ · ‖W , respectively. We use boldface to indicate that V contains vector-valued functions.
A gSP is a variational problem of the form: find (q , u) ∈ V ×W satisfying

a (q , v) + b1 (u, v) = g(v), ∀v ∈ V , (3.1)

b2(z, q) = f(z), ∀z ∈W, (3.2)

where a : V × V → R, b1, b2 : W × V → R, f : W → R and g : V → R. Such problems
arise in the study of many physical processes governed by systems of PDEs with two coupled
solution variables (e.g., groundwater flow, Stokes flow and Navier–Stokes flow).

Sufficient (but not necessary) conditions for the well-posedness of gSPs are supplied in
[13]. Specifically, it can be shown that (3.1)–(3.2) is well-posed if f and g are bounded, if
there exist positive constants α, β1, β2 such that:

|a(q , q)| ≤ α ‖ q ‖V ‖ q ‖V ∀q ∈ V , (3.3)

|b1(z, q)| ≤ β1 ‖ z ‖W ‖ q ‖V ∀q ∈ V , ∀ z ∈W, (3.4)

|b2(z, q)| ≤ β2 ‖ z ‖W ‖ q ‖V ∀q ∈ V , ∀ z ∈W, (3.5)

if the following coercivity conditions hold:

sup
v∈Z1

a(q , v)

‖ v ‖V
≥ c1 ‖ q ‖V ∀q ∈ Z2, sup

q∈Z2

a(q , v) > 0 ∀v ∈ Z1 \ {0}, (3.6)
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for some c1 > 0, where

Z1 := {q ∈ V | b1(z, q) = 0 ∀ z ∈W}, Z2 := {q ∈ V | b2(z, q) = 0 ∀ z ∈W}, (3.7)

and finally, if the following inf-sup conditions hold:

sup
q∈V

b1(z, q)

‖ q ‖V
≥ γ1 ‖ z ‖W ∀z ∈W, (3.8)

sup
q∈V

b2(z, q)

‖ q ‖V
≥ γ2 ‖ z ‖W ∀z ∈W, (3.9)

for γ1, γ2 > 0. These conditions coincide with the classical ones [3] for symmetric saddle point
problems when b1(·, ·) = b2(·, ·) and Z1 = Z2. A more general class of gSPs is discussed in [4].

After changing co-ordinates from ξ(ω) to y ∈ Γ in the usual way, the mixed variational
formulation of (1.13)–(1.15) is : find (q , ũ) ∈ V ×W such that

E [(q , v)] − E [(ũ,∇ · v)] + E [(ũ,w · v)] = 0, ∀v ∈ V , (3.10)

−E [(∇ · q , z)] = −E [( f, z)] , ∀z ∈W, (3.11)

where (·, ·) denotes the L2(D) inner-product and E [·] =
∫
Γ ρ(y) · dy . The appropriate spaces

are V := L2
ρ(Γ,H(div;D)) and W := L2

ρ(Γ, L
2(D)). The natural norm on V is defined by

‖ q ‖2
V = E

[
‖ q ‖2

L2(D)

]
+ E

[
‖ ∇ · q ‖2

L2(D)

]
= E

[
‖ q ‖2

H(div;D)

]
,

and the norm on W is defined by

‖ z ‖2
W = E

[
‖ z ‖2

L2(D)

]
.

Clearly, (3.10)–(3.11) is a gSP with a (q , v) := E [(q , v)] , b2 (z, v) := −E [(z,∇ · v)] and

b1 (z, v) : = b2 (z, v) + E [(z,w · v)] , (3.12)

together with g (v) := 0 and f (z) := −E [(f, z)] .
Now, since

|f(z)| ≤ ‖f‖L2
ρ(Γ,L2(D)) ‖z‖L2

ρ(Γ,L2(D)) = ‖f‖L2(D)‖z‖W , (3.13)

f : W → R is bounded if f ∈ L2(D). It is straight-forward to show that (3.3) holds with
α = 1 and for any z ∈W and q ∈ V , we have

|b2 (z, q) | ≤ E

[
‖ z ‖2

L2(D)

]1/2
E

[
‖ ∇ · q ‖2

L2(D)

]1/2
≤‖ z ‖W ‖ q ‖V .

Hence (3.4) holds with β1 = 1. We also have

|b1 (z, q) | ≤ ‖ z ‖W ‖ q ‖V + ‖ w ‖∞‖ z ‖W E

[
‖ q ‖2

L2(D)

]1/2

≤ (1+ ‖ w ‖∞) ‖ z ‖W ‖ q ‖V ,
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where we define,

‖ w ‖∞:= max
i=1,2

(
ess sup

(x ,y)∈D×Γ
|wi(x ,y)|

)
.

Hence (3.5) holds with β2 = 1+ ‖ w ‖∞, provided ‖w‖∞ = ‖∇aM‖∞ <∞.

Now, the null spaces of b1(·, ·) and b2(·, ·) are

Z1 := {q ∈ V |E [(z,∇ · q)] = E [(z,w · q)] ∀ z ∈W}, (3.14)

Z2 := {q ∈ V |E [(z,∇ · q)] = 0 ∀ z ∈W}. (3.15)

Since ∇ ·V ⊂W, we have

‖∇ · q‖2
L2

ρ(Γ,L2(D)) = E

[
‖ ∇ · q ‖2

L2(D)

]
= 0, ∀q ∈ Z2, (3.16)

so Z2 contains divergence-free fluxes. However, there is no straight-forward interpretation of
Z1 and no clear way to use the abstract analysis from [13] to establish the well-posedness of
(3.10)–(3.11). It is worth noting however that the condition (3.9) associated with b2(·, ·) is
the usual inf-sup condition for the standard mixed formulation (1.6)–(1.8). It is known (see
[1] and references therein) that this holds with γ2 depending only on the domain D.

Fortunately, we may exploit the fact that the gSP (3.10)–(3.11) is a reformulation of the
standard problem (1.6)–(1.8) which is well-posed, provided eaM is bounded on D × Γ, with

0 < amin ≤ exp(aM (x ,y)) ≤ amax, a.e. in D × Γ. (3.17)

That is, there exists a unique (q , u) ∈ V ×W such that

E
[(
e−aM q , v

)]
− E [(u,∇ · v)] = 0, ∀v ∈ V , (3.18)

−E [(∇ · q , z)] = −E [( f, z)] , ∀z ∈W. (3.19)

If (3.17) holds then ũ = eaMu ∈W. Hence, there exists a unique (q , ũ) ∈ V ×W such that

E
[(
e−aM q , v

)]
− E

[(
e−aM ũ,∇ · v

)]
= 0, ∀v ∈ V , (3.20)

−E [(∇ · q , z)] = −E [( f, z)] , ∀z ∈W. (3.21)

If (3.17) holds then for any v ∈ V , we also have v̂ = eaM v ∈ V . Hence, there exists a unique
(q , ũ) ∈ V ×W such that

E
[(
e−aM q , eaM v

)]
− E

[(
e−aM ũ,∇ · (eaM v)

)]
= 0, ∀v ∈ V , (3.22)

−E [(∇ · q , z)] = −E [( f, z)] , ∀z ∈W. (3.23)

Hence, we conclude that there exists a unique (q , ũ) ∈ V ×W satisfying (3.10)–(3.11). It is
essential here that eaM v ∈ V and eaMw ∈ W for all v ∈ V and w ∈ W . Unfortunately the
same argument does not hold when we replace V and W with finite-dimensional spaces.
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3.1. Numerical investigation of convective velocity. In this section, we investigate nu-
merically the mesh Peclet numbers associated with two stochastic test problems. Again, we
choose D = [0, 1] × [0, 1] and f = 1. We consider the isotropic covariance function

C(x1,x2) =
σ2

2

(‖x1 − x2‖2

ℓ

)2

K2

(‖x1 − x2‖2

ℓ

)
,

where K2 is the usual Bessel function, σ is the standard deviation and ℓ is the correlation
length. This is the so-called Whittle-Matérn covariance function with parameter ν = 2. Mean-
zero random fields a : D×Ω → R with this covariance are n times mean-square differentiable
with n < 2. We select two values for ℓ and choose M in (1.3) such that 97% of the variance
of a is incorporated in the truncated expansion aM in (1.3).

Let xj denote the centroid of the jth finite element and define wj(ω) := w(xj , ω). We
investigate the element Peclet numbers

Pj(ω) :=
‖wj(ω)‖∞h

2
,

(which are random variables) where ‖wj(ω)‖∞ = max{αj,1, αj,2} and

αj,i = ess sup
ω∈Ω

∣∣∣∣∣
∂a0(xj)

∂xi
+ σ

M∑

k=1

√
λk
∂ak(xj)

∂xi
ξk(ω)

∣∣∣∣∣ , i = 1, 2.

For each element in the finite element mesh, we estimate the probability

Prj := P (ω ∈ Ω : Pj(ω) ≤ 1)

using the standard Monte Carlo method (with 105 samples of wj(ω)) as well as the expected
element Peclet number E [Pj ] .

Test problem 1. In the first test problem, we fix the mean to be a0 = 0. In this case a is an
isotropic random field and there is no directional dependence in its realisations. The vector
field ∇a0 = 0 also obviously has no strong directional component. In Table 3.1 we record the
minimum value of Prj over all elements in the mesh and in Table 3.2 we record the maximum
value of E [Pj]. The results indicate that in this test problem the mesh Peclet number is less
than or equal to one on all elements, with probability one. In addition, the highest expected
mesh Peclet number is observed to be O(σh). This is intuitive since

αj,i ≤ cσ

M∑

k=1

√
λk

∣∣∣∣
∂ak(xj)

∂xi

∣∣∣∣ , i = 1, 2.

One might therefore query whether for a very large value of σ and a coarse enough mesh, we
would obtain E [Pj ] > 1. However, since σ is the standard deviation of a, we can be assured
that σ ≪ h−1 in physical applications.

Test problem 2. In the second test problem, we set a0 = 1 + 10x2 so that ∇a0 = (20x, 0)⊤.
In Table 3.3 we record the minimum value of Prj over all elements in the mesh and in Table 3.4
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Table 3.1

Test problem 1: Minimum value of Prj over all elements in an n × n mesh.

M = 6, ℓ = 1 M = 10, ℓ = 0.7

n = h−1 σ = 0.1 σ = 1 σ = 2 σ = 0.1 σ = 1 σ = 2

16 1 1 1 1 1 1

32 1 1 1 1 1 1

64 1 1 1 1 1 1

Table 3.2

Test problem 1: Maximum value of E[Pj ] over all elements in an n × n mesh.

M = 6, ℓ = 1 M = 10, ℓ = 0.7

n = h−1 σ = 0.1 σ = 1 σ = 2 σ = 0.1 σ = 1 σ = 2

16 0.0062 0.0623 0.1246 0.0089 0.0887 0.1777

32 0.0031 0.0312 0.0625 0.0044 0.0445 0.0889

64 0.0016 0.0156 0.0312 0.0022 0.0223 0.0446

we record the maxium value of E [Pj ]. The results indicate that for all but one combination of
σ and h, the mesh Peclet number is less than or equal to one on all elements, with probability
one. In addition, the highest expected mesh Peclet number is O(h). For a fixed h, it is O(1)
with respect to σ. In this case,

αj,1 ≤ 20xj,1 + cσ

M∑

k=1

√
λk

∣∣∣∣
∂ak(xj)

∂xi

∣∣∣∣ , αj,2 ≤ cσ

M∑

k=1

√
λk

∣∣∣∣
∂ak(xj)

∂xi

∣∣∣∣ ,

and so close to the boundary x1 = 1 the contribution from ∇a0 dominates. When h−1 = 16
and σ = 2, there are elements where Prj < 1. Here, h is too small compared to ∇a0 and σ.

Table 3.3

Test problem 2: Minimum value of Prj over all elements in an n × n mesh.

M = 6, ℓ = 1 M = 10, ℓ = 0.7

n = h−1 σ = 0.1 σ = 1 σ = 2 σ = 0.1 σ = 1 σ = 2

16 1 1 1 1 1 0.9995

32 1 1 1 1 1 1

64 1 1 1 1 1 1

In summary, the above experiments tell us that when ∇a0 = 0 (when the mean of the
diffusion coefficient is a constant and hence a is isotropic) it is unlikely that a physically
relevant value of σ will lead to a convection dominated problem. However, when ∇a0 is large
in some region of D, then care should be taken.
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Table 3.4

Test Problem 2: Maximum value of E[Pj ] over all elements in an n × n mesh.

M = 6, ℓ = 1 M = 10, ℓ = 0.7

n = h−1 σ = 0.1 σ = 1 σ = 2 σ = 0.1 σ = 1 σ = 2

16 0.6055 0.6056 0.6052 0.6055 0.6054 0.6055

32 0.3076 0.3077 0.3076 0.3076 0.3076 0.3077

64 0.1550 0.1550 0.1551 0.1550 0.1550 0.1551

4. Finite-dimensional mixed variational formulation. We now apply a SGMFEM and
solve (1.13)–(1.15) using finite-dimensional spaces. Specifically, we combine the lowest-order
Raviart-Thomas scheme from Section 2 (square RT 0–P0 elements with edge length h) with
global polynomial approximation on Γ. Hence, the spatial components of the flux are approx-
imated by piecewise linear functions, such that the normal component is continuous across
the edges of the finite element mesh, and the spatial component of the rescaled pressure is
approximated by a piecewise constant function. Tensorising these finite element spaces,

Vh = span{ϕi(x )}nq

i=1 ⊂ H(div;D), Wh = span{φj(x )}nu
j=1 ⊂ L2(D),

with the set of polynomials of total degree d or less on Γ, denoted by

Sd = span{ψi(ξ)}nξ

j=1 ⊂ L2
ρ(Γ),

we look for approximations qhd ∈ Vh ⊗ Sd and ũhd ∈Wh ⊗ Sd of the form

qhd(x , ξ) =

nq∑

i=1

nξ∑

j=1

qi,jϕi(x )ψj(ξ), ũhd(x , ξ) =

nu∑

i=1

nξ∑

j=1

ũi,jφi(x )ψj(ξ). (4.1)

Note that nξ = dim(Sd) = (M + d)!/d!M ! The polynomials ψk are chosen to be orthonormal
with respect to the joint density ρ of the vector of independent random variables (ξ1, . . . , ξM )
and are collectively known as a polynomial chaos. For the truncated Gaussian density (1.10)
these polynomials are known as Rys polynomials (see [10] and the references therein).

Now, the finite-dimensional variational formulation of (1.13)–(1.15) is: find (qhd, ũhd) ∈
(Vh ⊗ Sd) × (Wh ⊗ Sd) such that

E [(qhd, v)] − E [(ũhd,∇ · v)] + E [(ũhd,w · v)] = 0, (4.2)

−E [(∇ · qhd, z)] = −E [(f, z)] , (4.3)

∀v ∈ Vh ⊗ Sd and ∀z ∈ Wh ⊗ Sd. This is the gSP (3.10)–(3.11) with V now replaced by
Vh ⊗ Sd and W by Wh ⊗ Sd. Note that the pairing Vh ⊗ Sd and Wh ⊗ Sd is known to be
inf-sup stable for the standard mixed formulation (1.6)–(1.8) and hence the inf-sup condition
(3.9) is satisfied for these finite-dimensional spaces (again, see [1]). However, as we know,
the finite element pairing Vh ×Wh is unstable for the deterministic analogue of (4.2)–(4.3)
when the problem is convection-dominated. The pairing (Vh ⊗ Sd)× (Wh ⊗ Sd) will therefore
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not always provide a stable approximation for (4.2)–(4.3) for arbitrary choices of w and h.
However, the results in Section 3.1 do indicate that for the stochastic problems of interest,
with w = −∇aM where aM is a truncated random field with ∇a0 = 0 or ∇a0 not too large
and σ ≪ h−1, the mesh Peclet number is not likely to be a concern. Hence, stabilisation is
not likely to be necessary. Note that if the assumptions on ∇aM and f from Section 3 hold
then (3.3)–(3.5) are satisfied on the finite-dimensional spaces and the linear functionals f and
g are bounded, because Wh ⊗ Sd ⊂W and Vh ⊗ Sd ⊂ V .

To set up the linear system for (4.2)–(4.3), we define the mass matrix A ∈ R
nq×nq by

[A]i,k :=

∫

D
ϕi · ϕk dx , i, k = 1, . . . , nq, (4.4)

which is symmetric and positive definite, and the rectangular matrix B ∈ R
nu×nq by

[B]ℓ,k := −
∫

D
φℓ ∇ · ϕk dx = −

∫

�ℓ

∇ · ϕk dx , k = 1, . . . , nq, ℓ = 1, . . . , nu,

where �ℓ denotes the ℓth finite element. B is a discrete divergence operator with rank(B) = nu

and B⊤ is a discrete gradient operator. We also define N0 and N1, . . . , NM ∈ R
nu×nq , by

[N0]ℓ,k := −
∫

D
φℓ∇a0 · ϕk dx = −

∫

�ℓ

∇a0 · ϕk dx , (4.5)

[Nm]ℓ,k := −σ
√
λm

∫

D
φℓ∇am · ϕk dx = −σ

√
λm

∫

�ℓ

∇am · ϕk dx , (4.6)

for k = 1, . . . , nq and ℓ = 1, . . . , nu. Notice that if a0 in (1.3) (the mean of the logarithm of
the diffusion coefficient) is constant, then ∇a0 = 0 and N0 = 0.

The linear system associated with (4.2)–(4.3) can now be written as

[
Â B̂⊤ + N̂⊤

B̂ 0

][
q

ũ

]
=

[
0

f

]
(4.7)

where Â := I ⊗A, B̂ := I ⊗B, and

N̂ := I ⊗N0 +

M∑

m=1

Gm ⊗Nm.

Here, I denotes the nξ × nξ identity matrix and hence Â and B̂ are block diagonal. The
matrices G1, . . . , GM ∈ R

nξ×nξ are defined by

[Gm]r,s = E[ymψr(y)ψs(y)], m = 1, . . . ,M, r, s = 1, . . . , nξ.

These are the so-called stochastically linear G-matrices [9], that always arise in stochastic
finite element discretisations of linear PDEs with stochastically linear coefficients. Each Gm

is symmetric and indefinite and crucially, has at most two non-zero entries per row. As a
result, N̂ is sparse. That is, block sparse with sparse blocks.
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The right-hand side vector f in (4.7) has the form

f =




f 1

...

f nξ


 (4.8)

and when f is deterministic, the blocks of this vector are defined by

[
f k
]
j

= −E [ψk]

∫

�j

f dx , j = 1, . . . , nu.

Since the polynomials ψk satisfy E [ψk] = 0 for k > 1 and we assume ψ1 corresponds to the
polynomial of degree zero in each of y1, . . . , yM , only the block f 1 is non-zero.

The matrix Â in (4.7) is symmetric and positive definite (because A is) and it gives a
discrete representation of the L2

ρ(Γ, L
2(D)) norm on Vh ⊗ Sd. That is,

E [(vhd, vhd)] = E

[
‖ vhd ‖2

L2(D)

]
= v⊤Âv , (4.9)

for vhd ∈ Vh ⊗Sd, where v ∈ R
nqnξ is the vector of coefficients associated with vhd when it is

expanded in the chosen basis. We also have

b1(zhd, vhd) = z⊤B̂v , b2(zhd, vhd) = z⊤
(
B̂ + N̂

)
v .

Since B has full row rank, so does B̂ and B̂⊤ has full column rank.

5. Linear algebra and preconditioning. We now discuss how to solve the non-symmetric
saddle point system (4.7) with coefficient matrix

Ĉ :=

[
Â B̂⊤ + N̂⊤

B̂ 0

]
. (5.1)

We will assume that the diffusion coefficient aM has been chosen so that the reformulated prob-
lem is not convection-dominated and the discretisation parameters h and d have been chosen
so that the linear system is uniquely solvable. Since Ĉ is non-symmetric and indefinite, we
will use GMRES iteration. A preconditioner is required, however, as Ĉ is ill-conditioned. The
finite element matrices A, B, and Nm are all ill-conditioned with respect to the mesh param-
eter h. The matrices Nm are also ill-conditioned with respect to the statistical parameters
associated with aM , in particular, the variance σ2. However, the symmetric matrices Gm each
have eigenvalues that lie in the bounded interval Γm = [−πd+1, πd+1], where πd+1 > 0 denotes
the largest root of the univariate, orthonormal Rys polynomial of exact degree d + 1 (see
e.g. [9]). Note that πd+1 ≤ c, where c is the cut-off parameter associated with the truncated
Gaussian density in (1.10). Thus spectral bounds for Gm are independent of the number of
random variables M and the polynomial degree d.

In the experiments in Section 6 we use right-preconditioned GMRES. Each iteration entails
a matrix-vector product with Ĉ and the application of the chosen preconditioner. In our log-
transformed mixed approximation framework, Ĉ is sparse and to perform multiplications with
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it we only need to perform multiplications with A,B,Nm and Gm. That is, we do not need
to assemble Ĉ. To compute

(
Gm ⊗N⊤

m

)
v where v ∈ R

nξnu , we use the standard identity

(
Gm ⊗N⊤

m

)
v = vec

(
N⊤

mV G
⊤
m

)
= vec

(
N⊤

m

(
GmV

⊤
)⊤)

,

where V ∈ R
nu×nξ is the matrix whose columns, when stacked on top of one another, yield v .

When M ≪ nξ, the cost of performing a matrix vector product with Ĉ is O (nξ (nq + nu)),
and this scales linearly with respect to the problem size. See Table 5.1 for details.

Table 5.1

The costs of matrix-vector products with the blocks of the saddle point matrix bC.

Â = I ⊗A O(nξnq)

B̂ = I ⊗B O(nξnq)

B̂⊤ = I ⊗B⊤ O(nξnu)

N̂⊤ = I ⊗N⊤
0 +

∑M
m=1Gm ⊗N⊤

m O((M + 1)nξnu)

We now investigate two preconditioning strategies. First, we note that the Schur comple-
ment associated with Ĉ in (5.1) is

Ŝ := B̂Â−1(B̂ + N̂)⊤ = B̂Â−1B̂⊤ + B̂Â−1N̂⊤ = I ⊗ (BA−1B⊤) + B̂Â−1N̂⊤.

This is non-symmetric, although the first term B̂Â−1B̂⊤ (which is the Schur complement
associated with the standard mixed approximation with unit diffusion coefficient) is both
symmetric and positive definite. An ideal block triangular preconditioner for Ĉ is

P̂U :=

[
Â B̂⊤ + N̂⊤

0 −Ŝ

]
,

whose inverse is given by

P̂−1
U :=


 Â−1 Â−1

(
B̂⊤ + N̂⊤

)
Ŝ−1

0 −Ŝ−1


 .

The corresponding right-preconditioned saddle point matrix is

ĈP̂−1
U =

[
Î 0

B̂Â−1 Î

]

and this has a single eigenvalue λ = 1. Since the matrix is not diagonalisable, the eigenvalues
do not give us information about how GMRES converges, see [11, Chapter 3]. However, since
ĈP̂−1

U has a minimum polynomial of degree two (see [12]), GMRES with this preconditioner
would converge in just two iterations, independently of the problem size and the chosen
discretisation and statistical parameters. In this sense, the preconditioner is optimal.
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We also consider an ideal block-diagonal preconditioner

P̂D :=

[
Â 0

0 −Ŝ

]
,

which is slightly cheaper to apply than P̂U . The right-preconditioned matrix in this case is

ĈP̂−1
D =

[
Î −(B̂⊤ + N̂⊤)Ŝ−1

B̂Â−1 0

]

and since B̂Â−1(B̂⊤+N̂⊤)Ŝ−1 = Î it is easy to show that ĈP̂−1
D has three distinct eigenvalues.

These are λ = 1 and λ = 1
2

(
1 ±

√
3i
)
. The preconditioned matrix is diagonalisable in this

case (see [12]) and right-preconditioned GMRES would converge in three iterations, again
independently of the problem size and the chosen discretisation and statistical parameters.

Notice that applying the action of P̂−1
U requires solves with Â and Ŝ and a multiplication

with B̂⊤ + N̂⊤, whereas applying the action of P̂−1
D requires only solves with Â and Ŝ. Recall

that Â = I⊗A is block-diagonal, so a solve with Â simply requires nξ decoupled solves with the

sparse mass matrix A. We also know B̂⊤ + N̂⊤ is sparse and that the cost of a multiplication
with it scales linearly with respect to the problem size (see Table 5.1). However, performing
exact solves with the dense matrix Ŝ is infeasible and neither of the ideal preconditioners can
be used in practice. Suppose then that we can find a sparse symmetric and positive definite
approximation Ŝapprox to Ŝ for which the action of Ŝ−1

approx is cheap to apply and consider

P̂U,approx :=

[
Â B̂⊤ + N̂⊤

0 −Ŝapprox

]
, P̂D,approx :=

[
Â 0

0 −Ŝapprox

]
.

The following results characterise the eigenvalues of the preconditioned saddle point systems
in terms of the eigenvalues of Ŝ−1

approxŜ. The proofs of Theorems 5.1 and 5.2 follow standard
arguments (e.g., see [7, Chapter 8]) that are commonly applied to non-symmetric saddle point
systems associated with deterministic Navier–Stokes problems.

Theorem 5.1. The eigenvalues λ of the generalised eigenvalue problem

[
Â B̂⊤ + N̂⊤

B̂ 0

][
q

u

]
= λ

[
Â B̂⊤ + N̂⊤

0 −Ŝapprox

][
q

u

]

are λ = 1 and λ = ν where Ŝu = νŜapproxu .

Proof. The two block matrix equations are

(1 − λ)Âq = (λ− 1)
(
B̂⊤ + N̂⊤

)
u , B̂q = −λŜapproxu .

Either λ = 1 or λ 6= 1. If λ 6= 1 then, since Â is symmetric and positive definite, and hence
invertible, we can combine the two equations to give

B̂Â−1
(
B̂⊤ + N̂⊤

)
u = λŜapproxu .
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λ = 1 is an eigenvalue of multiplicity nξ (nq − nu) corresponding to eigenvectors with q ∈
null(B̂) and u = 0 . If B̂ = I⊗B has full (row) rank (which is true here), then rank(B̂) = nξnu

and by the rank theorem, the dimension of null(B̂) is nξ (nq − nu) .
Theorem 5.2. The eigenvalues λ of the generalised eigenvalue problem

[
Â B̂⊤ + N̂⊤

B̂ 0

][
q

u

]
= λ

[
Â 0

0 −Ŝapprox

][
q

u

]

are λ = 1 and λ = 1
2 ± 1

2

√
1 − 4ν where Ŝu = νŜapproxu .

Proof. As in Theorem 5.1, there are nξ (nq − nu) eigenvalues λ = 1. If λ 6= 1 then,

(1 − λ)Âq = −
(
B̂⊤ + N̂⊤

)
u , B̂q = −λŜapproxu ,

and we can combine these equations to obtain B̂Â−1
(
B̂⊤ + N̂⊤

)
u = λ (1 − λ) Ŝapproxu . The

result follows by setting ν = λ (1 − λ) and solving for λ. Note that each of the nξnu eigenvalues
ν yields 2nξnu eigenvalues λ of the preconditioned saddle point system.

Theorems 5.1 and 5.2 tell us that if we can choose Ŝapprox so that the eigenvalues of

Ŝ−1
approxŜ are tightly clustered in the complex plane, then we can expect the eigenvalues of

both preconditioned systems to also be tightly clustered in the complex plane. P̂U,approx will

produce two clusters and P̂D,approx will produce three. A natural starting point is to consider

Ŝapprox = B̂Â−1B̂⊤ = I ⊗ S, S := BA−1B⊤. (5.2)

This yields ν = 1 + τ where B̂Â−1N̂⊤u = τB̂Â−1B̂⊤u , and it is clear that τ will depend
on the statistical information about aM that is encoded in N̂ . We now investigate this. The
main result is Theorem 5.5 but first, we establish two preliminary results. Lemma 5.3 makes
use of the mass matrix Qu associated with the finite element space Wh defined by

[Qu]i,k :=

∫

D
φkφi dx , i, k = 1, . . . , nu .

For a vector-valued function z = z (x ) we also define

‖z‖2,∞ := sup
x∈D

‖z (x )‖2 . (5.3)

Lemma 5.3. Let u ∈ R
nu, q ∈ R

nq , then for m = 1, . . . ,M ,

|q⊤N⊤
mu | ≤ σ

√
λm‖∇am‖2,∞(u⊤Quu)1/2(q⊤Aq)1/2. (5.4)

Moreover,

|q⊤N⊤
0 u | ≤ ‖∇a0‖2,∞(u⊤Quu)1/2(q⊤Aq)1/2. (5.5)

Proof. For a given vector u ∈ R
nu we define the function u ∈ Wh by u(x ) =

∑
i uiφi(x ).

Likewise, for q ∈ R
nq we define s ∈ Vh by s(x ) =

∑
j qjϕj(x ). Now, let z0 := −∇a0 and
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zm := −σ
√
λm∇am, m = 1, . . . ,M and consider the matrix N⊤

m for m fixed. We use the
Cauchy Schwarz inequality to obtain

|q⊤N⊤
mu | =

∣∣∣∣
∫

D
uzm · s dx

∣∣∣∣ ≤
∫

D
|u|(z2

m,1 + z2
m,2)

1/2(s21 + s22)
1/2 dx

≤ ‖zm‖2,∞

(∫

D
u2 dx

)1/2 (∫

D
s · s dx

)1/2

= ‖zm‖2,∞(u⊤Quu)1/2(q⊤Aq)1/2 .

Using the definition of zm in (5.3) the bounds in (5.4) and (5.5) follow.

Our second preliminary result exploits the matrix representation of the inf-sup condition
associated with the weak form of the deterministic version of the standard mixed formulation
(1.6)–(1.8). With our specific choices for Vh and Wh (RT 0–P0 elements), it is known that
there exists a constant γ > 0 independent of the mesh parameter h satisfying

γ‖u‖L2(D) ≤ sup
s∈Vh

(u,−∇ · s)

‖s‖H(div;D)
∀u ∈Wh . (5.6)

For a discussion of this result, see [3] and [15].
Lemma 5.4. Let u , v ∈ R

nu, then for m = 1, . . . ,M ,

|v⊤BA−1N⊤
mu | ≤ γ−1σ

√
λm‖∇am‖2,∞(v⊤Sv)1/2(u⊤Su)1/2, (5.7)

where S is defined in (5.2) and γ > 0 is the discrete inf-sup constant in (5.6). Moreover,

|v⊤BA−1N⊤
0 u | ≤ γ−1‖∇a0‖2,∞(v⊤Sv)1/2(u⊤Su)1/2. (5.8)

Proof. Consider the matrix BA−1N⊤
m for m fixed. Given u , v ∈ R

nu we may choose
q = A−1B⊤v in (5.4) and (5.5). This yields

|v⊤BA−1N⊤
mu | ≤ ‖zm‖2,∞(u⊤Quu)1/2(v⊤Sv)1/2, (5.9)

where zm is defined as in the proof of Lemma 5.3. It remains to bound u⊤Quu in terms of
u⊤Su . For the chosen pairing Vh ×Wh, (5.6) holds. Hence, ∃γ > 0 such that

γ‖u‖L2(D) ≤ sup
s∈Vh

(u,−∇ · s)

‖s‖L2(D)
∀u ∈Wh . (5.10)

For a vector u ∈ R
nu we define u ∈ Wh by u(x ) =

∑
i uiφi(x ) and for q ∈ R

nq we define
s ∈ Vh by s(x ) =

∑
j qjϕj(x ). Then, the estimate in (5.10) reads

γ (u⊤Quu)1/2 ≤ max
q∈R

nq

u⊤Bq

(q⊤Aq)1/2
= max

y=A1/2q

u⊤BA−1/2y

(y⊤y)1/2
=

u⊤Su

(u⊤Su)1/2

= (u⊤Su)1/2 .

(5.11)

Combining (5.11) and (5.9) gives the desired results, for m = 0, 1, . . . ,M .
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We can now provide a bound for the complex eigenvalues of Ŝ−1
approxŜ.

Theorem 5.5. For Ŝapprox = B̂Â−1B̂⊤ the eigenvalues ν of the generalised eigenvalue prob-

lem Ŝu = νŜapproxu are contained in the circle

{
z ∈ C : |z − 1| ≤ 2 γ−1 δ

}
, δ := ‖∇a0‖2,∞ + c σ

M∑

m=1

√
λm‖∇am‖2,∞, (5.12)

where c is the cut-off parameter in (1.10) and γ > 0 is the discrete inf-sup constant in (5.6).

Proof. Let ν ∈ C and u ∈ C
nunξ\{0} satisfy Ŝu = νŜapproxu . Noting that Ŝapprox is

symmetric and positive definite, we have the generalised Raleigh quotient

ν =
uH Ŝu

uH Ŝapproxu
=

uH Ŝapproxu + uHB̂Â−1N̂⊤u

uH Ŝapproxu

= 1 +
uHI ⊗BA−1N⊤

0 u +
∑M

m=1 uHGm ⊗BA−1N⊤
mu

uHI ⊗ Su

where S is defined in (5.2). Hence we obtain the bound

|ν − 1| ≤
∣∣∣∣
uHI ⊗BA−1N⊤

0 u

uHI ⊗ Su

∣∣∣∣+
M∑

m=1

∣∣∣∣
uHGm ⊗BA−1N⊤

mu

uHI ⊗ Su

∣∣∣∣ . (5.13)

We aim to bound |uHI ⊗BA−1N⊤
0 u | and |uHGm ⊗BA−1N⊤

mu |, m = 1, . . . ,M , in terms
of |uHI⊗Su |. By linearity and the properties of the Kronecker product it suffices to establish
a bound for vectors of the form u = uℓ ⊗ ur, where uℓ ∈ C

nξ and ur ∈ C
nu. Observe that

uHI ⊗BA−1N⊤
0 u = (uH

ℓ uℓ)(u
H
r BA

−1N⊤
0 ur)

and uHI ⊗ Su = (uH
ℓ uℓ)(u

H
r Sur). Hence it suffices to bound |uH

r BA
−1N⊤

0 ur| in terms
of uH

r Sur. Analogously, uHGm ⊗ BA−1N⊤
mw = (uH

ℓ Gmuℓ)(u
H
r BA

−1N⊤
mur). Thus, it is

sufficient to bound |uH
r BA

−1N⊤
0 ur| in terms of uH

r Sur. In addition, we require a bound for
|uH

ℓ Gmuℓ|. We proceed by collecting the required results.

In Lemma 5.4 we have proved bounds of the form

|v⊤BA−1N⊤
mu | ≤ cm(v⊤Sv)1/2(u⊤Su)1/2, m = 0, 1, . . . ,M, (5.14)

with c0 := γ−1‖∇a0‖2,∞, and cm := γ−1σ
√
λm‖∇am‖2,∞, for m = 1, . . . ,M . Now, decompos-

ing ur = a + ib, a , b ∈ Rnu, and utilising (5.14) it follows

|uH
r BA

−1N⊤
mur| ≤ |a⊤BA−1N⊤

ma | + |b⊤BA−1N⊤
mb| + |a⊤BA−1N⊤

mb| + |b⊤BA−1N⊤
ma |

≤ cm

(
a⊤Sa + b⊤Sb + 2(a⊤Sa)1/2(b⊤Sb)1/2

)

≤ cm

(
a⊤Sa + b⊤Sb + a⊤Sa + b⊤Sb

)

= 2cm(a⊤Sa + b⊤Sb) = 2cm uH
r Sur .
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In summary, we have the estimates

|uH
r BA

−1N⊤
mur| ≤ 2cm uH

r Sur, m = 0, 1, . . . ,M. (5.15)

Finally, the spectrum of Gm is contained in the interval [−πd+1, πd+1], where πd+1 denotes the
largest root of the univariate Rys polynomial of degree d + 1 (see, e.g., [9]). Since πd+1 ≤ c
we have |uH

ℓ Gmuℓ| ≤ cuH
ℓ uℓ. Combining this with (5.15) and (5.13) gives

|ν − 1| ≤ 2γ−1

(
‖∇a0‖2,∞ + c σ

M∑

m=1

√
λm‖∇am‖2,∞

)
,

which completes the proof.

Theorem 5.5 tells us that when we choose Ŝapprox = I ⊗ S, the eigenvalues of Ŝ−1
approxŜ are

bounded in a circle in the complex plane whose radius depends, in particular on σ but not on
the discretisation parameters h and d of the chosen SGMFEM.

Now, to reduce the cost of implementing our preconditioners P̂U,approx and P̂D,approx, we

will also choose an approximation Âapprox to Â. In particular, we choose Âapprox = I ⊗Adiag,
where Adiag is the diagonal of A. Hence,

Â−1
approxÂ = I ⊗A−1

diagA.

Since A is a mass matrix, this approximation is optimal with respect to h, see [8]. If we also
use this approximation to Â in the Schur complement approximation we obtain

Ŝapprox := B̂Â−1
diagB̂

⊤ = I ⊗ S0, S0 := BA−1
diagB

⊤.

Ŝapprox is now block-diagonal and S0 is sparse. In the next result, we obtain a bound for the
eigenvalues of the preconditioned Schur complement with this new approximation.

Theorem 5.6. If uniform meshes of square RT 0–P0 elements are used for the spatial dis-

cretisation then, for Ŝapprox = I ⊗ S0 the eigenvalues ν of the generalised eigenvalue problem

Ŝu = νŜapproxu are contained in the rectangle

{
z ∈ C : |Re(z) − 4/3| ≤ 2/3 + 4 γ−1 δ, |Im(z)| ≤ 4 γ−1δ

}
, (5.16)

where γ is the inf-sup constant of the pairing Vh ×Wh in (5.6), and δ is defined in (5.12).

Proof. Let ν ∈ C and u ∈ C
nunξ\{0} satisfy Ŝu = νŜapproxu and recall S := BA−1B⊤.

The generalised Raleigh quotient associated with ν reads

ν =
uH Ŝu

uH Ŝapproxu
=

uHI ⊗ Su

uHI ⊗ S0u
+

uHB̂Â−1N̂⊤u

uHI ⊗ S0u
.

When uniform meshes of square RT 0–P0 elements are used, the eigenvalues of A−1
diagA are

contained in the bounded interval [1/2, 3/2], see [8]. Hence, the first term in the expression on
the right-hand side is contained in the interval [2/3, 2] on the real line, because S and S0 are
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symmetric positive definite, and because the eigenvalues of S−1
0 S are contained in the interval

[2/3, 2]. The second term can be bounded as follows

∣∣∣∣∣
uHB̂Â−1N̂⊤u

uHI ⊗ S0u

∣∣∣∣∣ =
|uHB̂Â−1N̂⊤u |

uHI ⊗ Su
× uHI ⊗ Su

uHI ⊗ S0u
≤ 2γ−1δ × 2 .

Here, we have used again the eigenvalue bound for S−1
0 S, and, following the lines of proof of

Theorem 5.5, obtained a bound for |uHB̂Â−1N̂⊤u |/(uHI ⊗ Su). The result follows.

Theorem 5.6 tells us that when we choose the cheaper approximation Ŝapprox = I ⊗ S0,

the eigenvalues of Ŝ−1
approxŜ are again bounded in a region in the complex plane whose size

depends, in particular on the standard deviation σ of the diffusion coefficient, but not on the
discretisation parameters h and d of the chosen SGMFEM.

We now return to the consideration of the preconditioned saddle point matrices. For
diagonalisable preconditioned matrices, it is known that if the eigenvalues are bounded in an
ellipse in the complex plane which does not contain the origin, then the asymptotic convergence
factor for GMRES (the rate by which the residual error is reduced at each iteration) is bounded
by a constant that depends on the size of the ellipse, see [11, Chapter 3]. However, this
argument does not help us much here and so we do not pursue a full eigenvalue analysis of
the preconditioned systems. Nevertheless, based on the above analysis of the chosen Schur
complement approximation, one would expect GMRES convergence to be sensitive to the
statistical parameter σ but not to the discretisation parameters.

Using Âapprox = I ⊗Adiag and Ŝapprox = I ⊗ S0, our practical preconditioners are

P̂U,approx :=

[
I ⊗Adiag I ⊗B⊤ + N̂⊤

0 −I ⊗ S0

]
, P̂D,approx :=

[
I ⊗Adiag 0

0 −I ⊗ S0

]
. (5.17)

We now consider the costs of implementing them. Computing the action of P̂−1
U,approx involves:

(i) nξ solves with the nq × nq diagonal matrix Adiag ,
(ii) nξ solves with the nu × nu sparse matrix S0,
(iii) nξ multiplications with the nq × nu sparse matrix B⊤,

(iv) a multiplication with the sparse matrix N̂⊤,

whereas implementing P̂D,approx in each GMRES iteration requires only the operations in (i)
and (ii). Note that since S0 is a discrete representation of the Laplace operator, the solves
with S0 can be done inexactly using any number of off-the-shelf optimal solvers for elliptic
problems. In particular, we will approximate the action of S−1

0 by applying a single V-cycle

of algebraic multigrid (amg, [22]). The resulting costs associated with P̂U,approx and P̂D,approx

are shown in Table 5.2. In summary, the theoretical cost of applying both preconditioners
is O(nξ (nq + nu)) and hence scales linearly with respect to the problem size. Note that all
the operations associated with the application of the preconditioners can be performed in a
completely decoupled way, by manipulating the component matrices A, B⊤, Nm and Gm,
m = 1, . . . ,M . Moreover, there are several possibilities to paralellise the computations.

Table 5.2 suggests that P̂D,approx is cheaper to apply than P̂U,approx per iteration. However,
from existing preconditioning studies (see [7, Theorem 8.2]) for non-symmetric saddle point
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Table 5.2

Costs associated with applying the preconditioners bPU,approx and bPD,approx.

Solve with I ⊗Adiag O(nξnq)

Solve with I ⊗ S0 using amg for solves with S0 O(nξnu)

Multiplication with B̂⊤ = I ⊗B⊤ O(nξnu)

Multiplication with N̂⊤ = I ⊗N⊤
0 +

∑M
m=1Gm ⊗N⊤

m O((M + 1)nξnu)

systems associated with deterministic systems of PDEs (such as Navier–Stokes equations) we
anticipate that the upper-triangular preconditioner will yield lower GMRES iteration counts.
We now investigate this.

6. Numerical results. All experiments reported below were performed on a single proces-
sor of a four processor quad-core Linux machine with 8 GB RAM using MATLAB 8.3.

6.1. Preconditioned GMRES. We solve the equations (4.2)–(4.3) corresponding to test
problems 1 and 2 defined in Section 3.1. Recall, in test problem 1 we have ∇a0 = 0 and the
diffusion coefficient a is isotropic and in test problem 2, we have ∇a0 6= 0. We explore the
performance of right-preconditioned GMRES in conjunction with the block triangular pre-
conditioner P̂U,approx and the block diagonal preconditioner P̂D,approx in (5.17). The stopping
criterion is ‖rk‖2 < 10−8‖b‖2, where rk denotes the residual error at the kth step and b is
the right-hand side vector of the linear system. The initial guess is always x0 = 0 .

Table 6.1

Test problem 1: GMRES iteration counts with the preconditioners bPU,approx and bPD,approx.

M = 6, ℓ = 1 M = 10, ℓ = 0.7

P̂U,approx P̂D,approx P̂U,approx P̂D,approx

n = h−1 d σ=0.1 1.0 2.0 0.1 1.0 2.0 0.1 1.0 2.0 0.1 1.0 2.0

32 1 25 27 28 36 38 41 25 28 30 36 39 43

64 - 25 27 29 36 37 40 25 28 30 36 39 42

128 - 25 27 29 35 37 39 25 28 30 35 38 41

32 2 25 28 31 36 39 44 25 30 34 36 42 48

64 - 25 28 31 36 39 43 25 30 34 36 41 48

128 - 25 29 31 35 39 43 25 30 35 35 41 48

32 3 25 30 33 36 41 48 26 32 37 36 44 55

64 - 25 30 34 36 41 47 25 32 38 36 44 55

128 - 25 30 34 35 41 48 25 32 39 35 44 56

32 4 25 31 35 36 42 51 26 33 41 36 46 62

64 - 25 31 36 36 42 51 25 33 41 36 46 62

128 - 25 31 36 35 42 53 25 33 42 36 46 64

First, we investigate the robustness of the preconditioners with respect to h, d, σ, and



22 E. ULLMANN AND C. E. POWELL

M . GMRES iteration counts are recorded in Tables 6.1 and 6.2. In all cases, the iteration
counts are completely insensitive to the mesh width h. For σ ≤ 1 the iteration counts are
also almost insensitive to M and d. For σ = 2, however, they are a little sensitive to those
parameters. This is consistent with the discussion in Section 5, since the spectral inclusion
bounds for the Schur complement approximation depend on σ and will contain the origin for
some σ large enough. Note that the solves with S0 were performed with amg. When these
solves are performed exactly there is essentially no difference in the iteration counts.

Table 6.2

Test problem 2: GMRES iteration counts with the preconditioners bPU,approx and bPD,approx.

M = 6, ℓ = 1 M = 10, ℓ = 0.7

P̂U,approx P̂D,approx P̂U,approx P̂D,approx

n = h−1 d σ=0.1 1.0 2.0 0.1 1.0 2.0 0.1 1.0 2.0 0.1 1.0 2.0

32 1 32 33 35 50 54 57 32 34 36 50 56 60

64 - 34 35 36 52 56 59 34 36 38 52 57 62

128 - 35 36 37 53 57 60 35 37 39 53 59 63

32 2 33 36 39 52 60 67 33 37 40 52 62 71

64 - 35 38 40 54 62 69 35 38 42 54 64 73

128 - 36 39 41 55 63 70 36 39 43 56 65 75

32 3 33 37 41 53 63 73 33 38 45 54 66 80

64 - 35 39 43 54 65 76 35 40 46 55 69 81

128 - 36 40 44 56 67 77 36 41 47 56 70 83

32 4 33 38 44 54 65 79 33 40 48 54 69 88

64 - 35 40 45 55 67 81 35 41 50 56 71 90

128 - 36 41 46 56 69 83 36 42 51 57 73 93

Now, we compare the performances of the two preconditioners. In Tables 6.1 and 6.2
we see that the number of iterations for P̂U,approx is less than for P̂D,approx in all tests. The
difference in iteration counts is also more pronounced for test problem 2 where ∇a0 6= 0.
Observe that in this case our chosen Schur complement approximation is not as good as for
test problem 1 since δ in (5.12) involves the additional term ‖∇a0‖2,∞ > 0.

Table 6.3

Average preconditioner time (in seconds) per GMRES iteration divided by nξ. The mesh width is h = 1/64.

M = 6, ℓ = 1 M = 10, ℓ = 0.7

d = 1 d = 2 d = 3 d = 4 d = 1 d = 2 d = 3 d = 4

P̂U,approx 0.0039 0.0028 0.0031 0.0031 0.0039 0.0037 0.0039 0.0040

P̂D,approx 0.0028 0.0018 0.0017 0.0016 0.0023 0.0016 0.0016 0.0016

nξ 7 28 84 210 11 66 286 1,001

In Table 6.3 we record the average time required to apply the preconditioners, divided by
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nξ. We see that the timings scale linearly with nξ. This is consistent with the discussion in

Section 5. As expected, the timings for P̂D,approx are lower than those for P̂U,approx. However,

this does not mean that the total GMRES iteration time is lower for P̂D,approx. Looking at

Table 6.4, we see that the total solve time with P̂U,approx is consistently lower across the range
of values chosen for d, σ, and M . This is because the GMRES iteration count is significantly
lower with P̂U,approx. Since the cost of an iteration increases as the iteration number increases
in (unrestarted) GMRES, it is cheaper overall to perform a small number of more expensive
preconditioned iterations then a larger number of less expensive ones.

Table 6.4

Total GMRES iteration time (in seconds). In this example, M = 6, ℓ = 1, and h = 1/64.

P̂U,approx P̂D,approx

σ d=1 d=2 d=3 d=4 d=1 d=2 d=3 d=4

a0 = 0 0.1 1.5 4.1 14.2 37.9 1.8 5.3 18.6 46.0

1.0 1.4 4.7 17.8 46.7 1.6 5.7 21.0 53.8

2.0 1.4 5.4 19.8 55.0 1.8 6.5 25.0 70.4

a0 = 1 + 10x2 0.1 1.8 6.2 21.1 54.0 2.5 8.8 30.6 78.2

1.0 1.9 6.8 23.9 64.8 2.7 10.6 37.6 99.2

2.0 1.9 7.2 28.6 76.4 2.9 11.9 46.7 131.8

6.2. Comparison of formulations. Finally, we compare our SGMFEM approximation qhd

to the solution of (1.13)–(1.15) to numerical solutions of (1.6)–(1.8). One approximation to
(1.6)–(1.8) is obtained with a Monte Carlo mixed finite element (MCMFEM) with 105 sam-
ples, and a second is obtained with the same SGMFEM used for (1.13)–(1.15). In Table 6.5
we present the relative errors for the expected value and variance of the Darcy flux q . We
consider test problem 2 where ∇a0 6= 0. We see that our proposed alternative mixed for-
mulation delivers an approximation of essentially the same accuracy as both a MCMFEM
approximation and a SGMFEM approximation of the solution to the standard formulation.
The costs associated with the alternative mixed formulation are significantly lower, however.
Recall that the coefficient matrix Ĉ is block sparse (with sparse blocks), whereas the coefficient
matrix associated with the SGMFEM for the standard mixed formulation is block dense. The
matrix-vector multiplications are much cheaper in the log-transformed setting. To illustrate
this key point, we present in Table 6.6 the average time (divided by nξ) for a matrix-vector
product with the system matrices in both formulations. The cost for the SGMFEM on the
log-transformed problem is optimal; it grows linearly with nξ. In contrast, the cost for the
SGMFEM in the standard formulation increases rapidly as d and M increase.

7. Conclusions. To avoid the computational bottleneck encountered when solving the
diffusion problem with stochastically nonlinear coefficients by SGMFEMs, we proposed a novel
strategy for reformulating the problem as a stochastically linear one. The weak form of the so-
called log-transformed problem is a generalised saddle point problem. We applied a SGMFEM
and introduced a block triangular and a block diagonal preconditioner for the associated linear
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Table 6.5

Test problem 2: Comparison of the SGMFEM solution qhd to a MCMFEM reference solution q
(std)
h and

the SGMFEM solution q
(std)
hd of the standard mixed formulation. M = 6, ℓ = 1, and h = 1/64.

d σ
‖E[qhd]−q̄

(std)
h ‖∞

‖q̄
(std)
h ‖∞

‖V[qhd]−s2(q
(std)
h )‖∞

‖s2(q
(std)
h )‖∞

‖E[qhd]−E[q
(std)
hd ]‖∞

‖E[q
(std)
hd ]‖∞

‖V[qhd]−V[q
(std)
hd ]‖∞

‖V[q
(std)
hd ]‖∞

1 0.1 7.0206 ×10−3 6.8489 ×10−3 7.0208 ×10−3 3.7159 ×10−3

2 - 7.0206 ×10−3 6.9741 ×10−3 7.0206 ×10−3 3.9410 ×10−3

3 - 7.0206 ×10−3 6.9742 ×10−3 7.0209 ×10−3 3.9099 ×10−3

4 - 7.0206 ×10−3 6.9742 ×10−3 7.0209 ×10−3 3.9632 ×10−3

1 1.0 7.0971 ×10−3 2.6212 ×10−2 7.0870 ×10−3 1.5237 ×10−1

2 - 7.1013 ×10−3 5.8551 ×10−3 7.0752 ×10−3 4.1331 ×10−3

3 - 7.1011 ×10−3 6.3210 ×10−3 7.0752 ×10−3 4.2027 ×10−3

4 - 7.1011 ×10−3 6.3078 ×10−3 7.0774 ×10−3 3.7696 ×10−3

1 2.0 7.2308 ×10−3 9.8295 ×10−2 1.0378 ×10−2 6.2904 ×10−1

2 - 7.2937 ×10−3 1.0801 ×10−2 7.2594 ×10−3 6.3715 ×10−2

3 - 7.2878 ×10−3 3.8782 ×10−3 7.2156 ×10−3 9.2148 ×10−3

4 - 7.2882 ×10−3 3.7711 ×10−3 7.2237 ×10−3 4.2949 ×10−3

Table 6.6

Average matrix-vector product time (in seconds) divided by nξ for the standard and alternative mixed
formulations. The mesh width is h = 1/64.

M = 6, ℓ = 1 M = 10, ℓ = 0.7

d = 1 d = 2 d = 3 d = 4 d = 1 d = 2 d = 3 d = 4

standard 0.0037 0.0257 0.1211 0.4271 0.0072 0.1374 1.2938 -

alternative 0.0020 0.0020 0.0025 0.0028 0.0029 0.0036 0.0042 0.0044

nξ 7 28 84 210 11 66 286 1,001

systems. We partially analysed the preconditioners by obtaining spectral inclusion bounds for
an efficient Schur complement approximation. The bounds are insensitive to the discretisation
parameters h and d and only slightly sensitive to the number of random variables M and the
standard deviation σ of the log-transformed diffusion coefficient. Numerical tests showed
that the block triangular preconditioner outperforms the block diagonal one in terms of both
GMRES iteration counts, and total solve time. The availability of a robust and cheap iterative
solver for the log-transformed problem means that it is possible to solve some stochastically
nonlinear problems as efficiently as stochastically linear ones with stochastic Galerkin methods.
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