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Abstract

We consider sequential decision making in a setting where regret is measured with
respect to a set of stateful reference policies, and feedback is limited to observing the
rewards of the actions performed (the so called “bandit” setting). If either the reference
policies are stateless rather than stateful, or the feedback includes the rewards of all
actions (the so called “expert” setting), previous work shows that the optimal regret
grows like ©(v/T) in terms of the number of decision rounds 7.

The difficulty in our setting is that the decision maker unavoidably loses track of
the internal states of the reference policies, and thus cannot reliably attribute rewards
observed in a certain round to any of the reference policies. In fact, in this setting it
is impossible for the algorithm to estimate which policy gives the highest (or even ap-
proximately highest) total reward. Nevertheless, we design an algorithm that achieves
expected regret that is sublinear in T, of the form O(T/log'/*T). Our algorithm is
based on a certain local repetition lemma that may be of independent interest. We also
show that no algorithm can guarantee expected regret better than O(T/ log3/ T ).
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1 Introduction

A player is faced with a sequential decision making task, continuing for 7" rounds. There is
a finite set [n] = {1,...,n} of actions available in every round. In every round, based on
all information observed in previous rounds, the player may choose an action ¢ € [n], and
consequently receives some reward r € [0, 1] on that particular round. The total reward
of the player is the sum of rewards accumulated in all rounds. There are various policies
suggested to the player as to how to choose the sequence of actions in a way that would
lead to high total reward. Examples of policies can be to play action 2 in all rounds, to play
action 2 in odd rounds and action 3 in even rounds, or to start with action 1, play the current
action repeatedly in every round until the first round in which it gives payoff less than 1/2,
then switch to the next action in cyclic order, and so on. The number of given policies is
denoted by k. A-priori the player does not know which is the better policy. An algorithm
of the player is simply a new policy that may be based on the available given policies. For
example, the algorithm may be to follow policy number 5 in the first 7'/2 rounds, and play
action 3 in the remaining rounds. The regret of the algorithm of the player is the difference
between the total payoff of the best given policy to that of the player’s algorithm. Our goal
is to design an algorithm for the player that has as small regret as possible.

There are many different variations on the above setting, and some have been extensively
studied in the past, with two of the most common variations referred to as expert algorithms
and bandit algorithms (Cesa-Bianchi et al., 1997; Freund and Schapire, 1997; Auer et al.,
2002). In this work we study a natural variation that apparently did not receive much
attention in the past. We present this variation in its simplest form in Section 1.1, and defer
discussion of extensions to Section 1.6.

1.1 The Stateful Policies Model

We view the sequential decision making problem as a repeated game between a player and an
adversary. Before the game begins, the adversary determines a sequence' of reward functions
ri.r = (r1,...,7r), where each function assigns each of the actions in [n] with a reward value
in the interval [0, 1]. We refer to such adversary as oblivious, since the functions ry.7 cannot
change as a result of the player’s actions (as they are chosen ahead of time). On each round
t, the player must choose, possibly at random, an action X; € [n]. He then receives the
reward r,(X;) associated with that action, and his feedback on that round consists of this
reward only; this is traditionally called bandit feedback.

The player is given as input a set Il of & > 1 policies, which are referred to as the
reference policies. Each policy m € Il is a deterministic function that maps the sequence
of all previously observed rewards into an action to be played next. For a policy 7w, we use
the notation z] to denote the action played by 7 on round ¢, had it been followed from
the beginning of the game (note that z] has a deterministic value). The player’s goal is
to minimize his (expected) regret measured with respect to the set of reference policies II,

1'We use the notation as.; as a shorthand for the sequence (as, ..., as).



defined by

We say that the player’s regret is non-trivial if it grows sublinearly with 7', namely if
Regret; = o(T).

While regret measures the performance of a specific algorithm on a particular sequence
of reward functions, we are typically interested in understanding the intrinsic difficulty of
the learning problem. This difficulty is captured by the game-theoretic notion of minimax
regret, which intuitively is the expected regret of an optimal algorithm when playing against
an optimal adversary. Formally, the minimax regret is defined as the infimum over all player
algorithms, of the supremum over all reward sequences, of the expected regret.

In this paper we consider a type of reference policies that we refer to as stateful policies,
which we define next (see also Fig. 1 for an illustration of this concept).

Definition 1 (stateful policy). A stateful policy m = (s§, f™,¢™) over n actions and S
states is a finite state machine with state space [S] = {1,2,...,S}, characterized by three
parameters:

i) the initial state of the policy s € |S], which is used to initialize the policy before the
0 Y
first round;

(ii) the action function f™ : [S] — [n], describing which action to take in a given round,
depending on the state the policy is in;

(iii) the state transition function g™ : [S] x [0, 1] +— [S], which given the current state and
the observed reward of the action played in the current round, determines to which
state to move for the next round.

The action x played by a stateful policy 7 on round ¢ (had 7 been followed from the
beginning of time) can be computed recursively, starting from the given initial state sf,
according to
zp = f(si4) ,

s = g7 (siq,m(zf)) -
Here, s represents the state m reaches at the end of round ¢.

In our setting, we assume that the player is given as input a reference set Il of £ > 1
stateful policies, each over at most S states. The player may base his decisions on the
description of the k reference policies (in particular, the policies can serve as subroutines
by his algorithm). Without loss of generality, we shall assume that each policy in II has
exactly S states. Also, for simplicity we assume that policies are deterministic (involve no
randomization) and time-independent: the functions f™ and g™ do not depend on the round
number; see Section 1.6 for extensions of our results to randomized and to time-dependent
policies.
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Figure 1: (Left) A stateful policy over n = 2 actions with S = 3 states, with s; being the
initial state. The labels on the edges between states indicate the set of rewards that trigger
the corresponding transition (which is the role of the function ¢™). The dashed arrows depict
the function f7, that assigns each state with an action. (Right) A reactive policy over n = 3
actions, considered in the example of Section 1.1. The state s; is a placeholder that stands
for each of sq, s9, s3 and shows the outgoing transitions that are common to all 3 states.

Example. We present a detailed example to illustrate the model. Suppose that our player,
a driver, faces a daily commute problem, that repeats itself for a very large number T of
days. There are three possible routes that he can take, and an action is a choice of route
(hence n = 3). Each of the three routes can be better than the others on any given day.
The reward of the player on a given route in a given day is some number in the range
[0, 1] that summarizes his satisfaction level with the route he took (taking into account the
time of travel, road conditions, courtesy of other drivers, and so on). The driver learns this
reward only after taking the route, and does not know what the reward would have been
had he taken a different route. We further assume that the effect of a single driver on traffic
experience is negligible: the presence of the driver on a particular route on a given day has
no effect of the quality (satisfaction level) of that or any other route on future days.

The driver is told that there is a useful policy for choosing the route in a given day, based
only on the reward of the previous day. This policy has three states (hence S = 3). The
action function f is simply the identity function (in state i take route 7). The state transition
function g is independent of the current state, and depends only on the reward received. If
x denotes the reward received in the current day, then the next state is as follows: g(x) =1
for [ —3| < ¢, g(x) =2 for [z — 3| > 3, and g(x) = 3 otherwise. The only part not specified
by the policy is the initial state sg (which route to take on the first day). Hence effectively
there are three reference policies, different only on their initial state, and thus k = 3.

The beauty of the policy, so the player is told, is that if he gets the initial state right and
from then on follows the policy blindly, his overall satisfaction is guaranteed. Not knowing
which is the better reference policy, does the player have a strategy that guarantees sublinear
regret (in 7") against the best of the three reference policies? If so, how low can this regret
be guaranteed to be?

The kind of policies considered in our example above is perhaps the weakest type of a



stateful policy, one that we refer to as a reactive policy.

Definition 2 (reactive policy). A reactive policy m over n actions (with 1-lookback) is
specified by an initial action T € [n]| to be played in the first round of the game, and by a
function 7 : [0, 1] +— [n] that maps the observed reward of the action played in the current
round to an action to be played on the next round.

A reactive policy simply reacts to the last reward it receives as feedback and translates
it into an action to be played on the next round. A reactive policy can be seen as a special
type of a stateful policy with S = n states, if we identify each of the sets 7=1(7) C [0, 1] with
a unique state i € [n]. In this view, the action function f™ is simply the identity function,
and the state transition function g™ is independent of the current state (and maps a reward
r to the state i if r € 771()). See also Fig. 1 for a visual description of the reactive policies
used in our example.

1.2 Main Results

We now state our main results, which are upper and lower bounds on the expected regret in
the stateful policies model.

Theorem 3. For any given k,S > 1, there is an algorithm for the player that guarantees
sublinear expected regret with respect to any reference set 11 of k stateful policies over S states.
Specifically, for any set I1 and any oblivious sequence of reward functions, Algorithm 3 given

in Section 2.3 achieves an Tlonlon T
0 <wr€5 | ﬂ)
log/ T

upper bound over the expected regret with respect to 11.

Though the regret achieved in Theorem 3 is sublinear, it is only slightly so. Unfortunately,
this is unavoidable.

Theorem 4. No player algorithm can guarantee expected regret better than O(T/log®*T)
with respect to any set of k = 3 reference policies over S = 3 states and n = 3 actions, not
even if the reference policies are all reactive (as in Definition 2). Moreover, this negative
result holds in the commute example given in Section 1.1.

For proving the above bounds, it will be convenient for us to first obtain upper and lower
regret bounds in a simplified model we call the hidden bandit. This model precisely captures
the main difficulties associated with the stateful policies setting, and may be of independent
interest. Our results in the hidden bandit setting will be stated after we establish the required
definitions in Section 1.4.



1.3 Discussion and Related Work

A unifying paradigm for virtually all previous sequential optimization algorithms, whether in
the expert or bandit setting, is the following. As the rounds progress, the algorithm “learns”
which arm had the better past performance (in the expert setting the algorithm observes all
arms, in the bandit setting the algorithm uses an “exploration and exploitation” procedure),
and then plays this arm (either deterministically or with high probability). This paradigm
is not suitable for our stateful policies model (with bandit feedback), as there is no way by
which the algorithm can learn the identity of the best reference policy, even if this reference
policy gives reward 1 in every round and all other reference policies give reward 0 in every
round. This difficulty stems from the fact that reference policies might differ only in their
initial state, and their identity is lost because the player cannot track the state evolution of
policies, due to the bandit nature of the feedback. (This aspect will become more evident in
the proof of Theorem 4.)

Several variants of our model have been extensively studied in the past. However, to the
best of our knowledge, our results constitute the first known example of a learning problem
where the minimax regret rate is of the form ©(7/polylog(7’)). For this reason, we believe
that the problem we consider is substantially different from previously studied, seemingly
related sequential decision problems.

The full-feedback analog of our setting is widely known to be captured by the so-
called “experts” framework, and has been studied under the name of “simulatable experts”
(Cesa-Bianchi and Lugosi, 2006). Basically, when the player observes the rewards of all
actions he is able to “simulate” each of his contending policies and keep track of their cumu-
lative rewards. Hence, we can treat each policy as an independent expert and use standard
online learning techniques (such as the weighted majority algorithm) to obtain O(v/T) re-
gret in this setting. Consequently, we exhibit an exponential gap between the minimax
regret rates of the full-feedback and bandit-feedback variants of the problem?. As far as we
know, this is the first evidence of such gap to date: the only previously known gap is in
the case of the multi-armed bandit problem with switching costs, where the minimax regret
rates are O(v/T) and ©(T?%?) in the full-feedback and bandit-feedback versions, respectively
(Audibert et al., 2009; Dekel et al., 2014).

Among models with bandit feedback, the one most closely related to ours is perhaps
the setting of the EXP4 algorithm (Auer et al., 2002), which is a variation on the standard
multi-armed bandit problem. In this setting, on each round of the game, before committing
to a single action and observing its reward the player is provided with the advice of a fixed
set of “experts” on which arm to choose. The player’s goal is to perform as well as the best
expert in the set, and his regret is computed with respect to that expert. Auer et al. (2002)
suggest the EXP4 algorithm for this setup and proves that it achieves an optimal O(v/T)
bound over the regret. The crucial difference between this setting and ours is in the fact
that the advice of an expert is assumed to be available at all times, whereas the advice of a
stateful policy becomes unavailable once the player deviates from it. In other words, while

2We say that the gap between the achievable rates is exponential, since the average (per-round) regret
decays like 1/polylog(T') in the bandit case, while in the full-information case it decays like 1/ VT.



our policies are simple algorithms that observe bandit feedback, we think of their experts as
“oracles” whose observation is not limited to the player’s rewards.

Our setting might seem reminiscent of (online) reinforcement learning models, and in
particular, of online Markov Decision Processes (MDPs) (Even-Dar et al., 2009; Neu et al.,
2010). In these models, there is typically a finite number of states, and the player’s actions
on each round cause him to transition from one state to another. As a consequence, the
reward of the player on each round is determined not only based on his action on that
round, but also as a function of his actions in previous rounds. In contrast, in our setting
the environment is oblivious and thus determines the reward based solely on the player’s
action on the current round. Furthermore, in an MDP the state is of the environment and
the player’s actions inevitably causes this state to change from round to round; in our model,
the state is owned by the player (more precisely, by his contending policies) and he may freely
transition himself to an arbitrary state (of any one of the policies) at any given moment, or
even choose not to be in any of the states.

More generally, the settings considered in the related works of Merhav and Feder (1998),
Farias and Megiddo (2006) and Arora et al. (2012) (among others), that deal with stateful
and reactive environments in an online decision making framework, are also substantially
different than ours. As is the case with the reinforcement learning literature, the focus of
these works is the adaptiveness of the adversary and not of the player’s reference policies.

Finally, we remark that our definition of a stateful policy is not new and similar notions
have been considered in the past. Most notably, the work of Feder et al. (1992) in the
related context of binary sequence prediction considers a similar concept which they call
“FS predictor”, and studies the prediction power of the class of all such predictors with at
most S states. However, our goal is entirely different than theirs: while they are concerned
with the prediction power of the class of all such predictors with at most S states, we aim
to understand the difficulty of learning a small set of these concepts (with bandit feedback).

1.4 The Hidden Bandit Problem

In this section we present a setting that we shall refer to as the hidden bandit problem,
which captures the main difficulties associated with the stateful policies model. It will be
convenient for us to first obtain results in the hidden bandit model, and then translate them
to the stateful policies model.

To motivate the hidden bandit problem, let us discriminate between two different modes
a player in the stateful policies model may be in, at any given round: the “good mode”,
in which the algorithm is following the best reference policy in its correct state, and the
“bad mode” in which the algorithm is doing something else (i.e., following other reference
policy or executing a sequence of actions that do not correspond to any reference policy).
Inevitably, the player is not aware of his current mode and is unable to switch between the
modes deterministically. However, if at some point in time the player is told that he is in the
“good mode”, then from that point onwards he can replicate the actions of the best policy
by observing its rewards and emulating its state transitions, and remain in the same mode.

Roughly, the hidden bandit problem can be described as a multi-armed bandit problem
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Figure 2: The dynamics of the switch action in the hidden bandit model can be viewed as
a two-state Markov chain, where state 0 stands for the reference arm, and state 1 for the
decoy arm. The arrow labels denote the corresponding arm transition probabilities.

with two arms, the reference arm and the decoy arm, that correspond to the “good mode”
and the “bad mode” in the stateful policies model, respectively. Unlike standard multi-armed
bandit problems, a key aspect of this problem is that in any given round the player does
not know which of the arms he is currently pulling. Accordingly, the player is not able to
select which arm to pull on each round; rather, he can only choose whether to stay on the
current arm or to switch to the other arm with some probability. These aspects capture the
difficulties in the stateful policies model, in which once the player leaves a certain policy,
attempting to return to that policy involves guessing correctly the policy’s internal state, an
aspect that a player is not sure of.

The model. We now turn to the formal description of the hidden bandit model. There are
two parameters associated with the hidden bandit model. One is 7', the number of rounds,
and the other is p, a parameter in the range 0 < p < 1. There are two arms, arm 0 and
arm 1, that will be referred to as the reference arm and the decoy arm, respectively. At each
round, the player has only two possible actions available:

e stay: stays on the same arm on which the player entered the round;

e switch: switches to arm 1 if the player entered the round on arm 0; otherwise, switches
to arm 0 with probability p, and stays on arm 1 with probability 1 — p.

The dynamics of the switch action can be seen as a two-state Markov chain, illustrated in
Fig. 2. Initially, prior to round 1, the player is placed on one of the arms at random, being
on arm 0 with probability ﬁ and on arm 1 with probability ﬁp. This initial probability
distribution is the stationary distribution with respect to the randomized switch action de-
fined above. Hence, any sequence of actions (either stay or switch) of the player gives rise
to a sequence of random variables X;.7, where X; € {0, 1} indicates which arm is pulled
by the player on round ¢. Even though at each round the player is pulling some arm, the
player cannot observe on which arm he is playing. In other words, the sequence Xi.r is not
observable by the player.

On each round t = 1,..., T, the adversary assigns a reward to each arm. We let r,(i) €
[0, 1] denote the reward of arm ¢ on round ¢. The rewards of the reference arm are set by
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the adversary in an oblivious way, before the game begins. The rewards of the decoy arm
are set by the adversary in an adaptive way as the game progresses: at every round ¢, the
reward of arm 1 can be based on the entire history of the game up to round ¢. The feedback
to the player on round ¢ in which arm X, is played consists only of the reward r,(X;), and
the player does not get to observe the reward of the other arm on that round.

The goal of the player is to minimize his expected regret, which is computed only with
respect to the total reward of the reference arm, namely

Z Tt(Xt)] )

where the expectation on the right-hand side is taken with respect to the randomization of
the switch actions, as well as to the internal random bits used by the player.
This completes the description of the hidden bandit problem.

T

Regret, = Zrt(O) —-E

t=1

Remark. The fact that the adversary can set the rewards on the decoy arm in an adaptive
manner will allow us to simulate any execution in the stateful policies model by an execution
in the hidden bandit model. Consequently, all positive results (algorithms with low regret)
that we shall prove in the hidden bandit model will transfer easily to the stateful policies
model (basically, by setting p = 1/(Sk), where k is the number of reference policies and S
is the maximum number of states that a policy might have). On the other hand, it might
not be true that negative results in the hidden bandit model transfer to the stateful policies
model. Nevertheless, our negative results for the hidden bandit model will be obtained with
an oblivious adversary (which is oblivious not only on the reference arm but also on the
decoy arm), and consequently will transfer to the stateful policies model.

Results. We now present our results for the hidden bandit problem, that we later show
how to translate into the corresponding upper and lower bounds in the stateful policies
model.

Theorem 5. For any given 0 < p < 1, there is an algorithm for the player in the hidden
bandit setting that guarantees sublinear expected regret (in T). Specifically, Algorithm 2
presented in Section 2.2 achieves an expected regret of

0 <L . TloglogT)
VP logttT

over any sequence of reward functions.
1
27
expected regret better than O(T/1og®* T), not even if the adversary uses an oblivious strategy
on both arms.

Theorem 6. For p = 5, no algorithm for the player in the hidden bandit setting guarantees



There is a gap between the upper bound of Theorem 5 and the lower bound of Theorem 6,
that translates into a gap between our main upper and lower bounds of Theorems 3 and 4.
In some natural special cases, we are able to close this gap. We say that an adversary is
consistent if there is a fixed offset 0 < A < 1 such that in every round ¢, r,(0) — (1) = A.
Say that the player’s algorithm is semi-Markovian if the choice of action taken at any given
round depends only on the sequence of rewards obtained since the last switch action. (See
exact definitions in Section 2.6.)

Theorem 7. In the hidden bandit setting, if the player’s algorithm is required to be semi-
Markovian and the adversary is required to be consistent, then there is an algorithm achieving
expected regret O(T/logT), and this is best possible up to constants (that may also depend

onp).

We remark that we actually prove a slightly stronger statement than that of Theorem 7:
for the positive results a Markovian algorithm suffices, for the negative results a consistent
adversary suffices. See Section 2.6 for more details.

1.5 Our Techniques and Additional Related Work

Our algorithm in the proofs of Theorem 5 and Theorem 3 is based on a principle that to the
best of our knowledge has not been used previously in sequential optimization settings. This
is the local repetition lemma which will be explained informally here, and addressed formally
in Section 2.1 (see Lemma 11).

In the hidden bandit setting, suppose first that the sequence of rewards that the adversary
places on the reference arm is repetitive—the same reward r on every round. If the player
knows that the reference arm is repetitive, it should not be difficult for the player to achieve
sublinear regret, even if he does not know what r is. He can start with an exploration phase
(occasional switch requests embedded in sequences of stay actions) that will alert him to
repeated patterns of r values in-between two switches. Thereafter, in an exploitation phase,
whenever the player gets a reward below r, he will ask for a switch. The only way the decoy
arm can cause the player not to reach the reference arm is by offering rewards higher than 7,
but getting rewards higher than r on the decoy arm causes no regret. (The above informal
argument is made formal in the proof of Theorem 5.)

The above argument can be extended (with an O(€T") loss in the regret) to the case that
the rewards on the reference arm are e-repetitive, namely, in the range of r + € for some r.
Suppose now that given some integer d < T', the reference arm is not e-repetitive, but only
(d, €)-locally repetitive, in the following sense: starting at any round that is a multiple of d,
the sequence of rewards on the d rounds that follows is e-repetitive. A (d, €)-locally repetitive
sequence need not be e-repetitive—it can change values arbitrarily every d rounds. However,
if d is sufficiently large (compared to 1/p in the hidden bandit setting), the player should be
able to achieve small regret, by breaking the sequence of length 7" to T'/d blocks of size d,
and treating each block as an e-repetitive sequence.

But what happens if the rewards on the reference arm are not (d, €)-repetitive? Then we
can use a notion of scales. For 0 < ¢ < log, T, the scale-¢ version of a sequence of length T

9



is obtained by bunching together groups of d‘ consecutive rounds into one super-round, and
making the reward of the super-round equal to the average of the rewards of the rounds it
is composed of. The player in the hidden bandit setting may choose a random scale ¢, in
hope that in this scale the resulting sequence of super rounds is (d, €)-repetitive. It turns
out this approach works. This is a consequence of the local repetition lemma that we state
here informally.

Lemma 11 (Local repetition lemma, informal statement). For every choice of integer d > 2
and 0 < €,0 < 1, if T is sufficiently large (as a function of d, € and &), then for every string
in o € [0,1], in almost all scales (say, a fraction of 1 — §) the resulting sequence is almost
(d, €)-repetitive (almost in the sense that only a 0 fraction of the blocks fail to be e-repetitive ).

We are not aware of a previous formulation of the local repetition lemma. However,
it has connections to results that are well known in other contexts. We briefly mention
several such connections, without attempting to make them formal. The regularity lemma
of Szemerédi asserts that every graph has some “regular” structure. Likewise, the local
repetition lemma asserts that every string has some “regular” (in the sense of being nearly
repetitive) structure. Our proof for the local repetition lemma follows standard techniques
for proving the regularity lemma, though is easier (because strings are objects that are
less complicated than graphs). An alternative proof for the local repetition lemma can go
through martingale theory (e.g., through the use of martingale upper-crossing inequalities).
The relation of our setting to that of martingales is that the sequence of values observed
when going from a super round in the highest scale all the way down to a random round
in smallest scale is a martingale sequence. Yet another related topic is Parseval’s identity
for the coefficients of Fourier transforms. It gives an upper bound on the sum of all Fourier
coefficients, implying that most of them are small. This means that a random scale a
sequence of values has small Fourier coefficients, and small Fourier coefficients correspond
to not having much variability at this scale.

Our lower bound of Theorem 6 is based on a construction that was used by Dekel et al.
(2014) for proving lower bounds on the regret for bandit settings with switching costs. The
construction is a full binary tree with 7" leaves that correspond to the rounds, in which each
edge of the tree has a random reward, and the reward at a leaf is the sum of rewards along
the root to leaf path. The reward on the decoy arm is identical to that of the reference
arm, except for a constant offset, which on the one hand should not be too large so that
the player cannot tell when he is switching between arms, and on the other hand should
not be too small as it determines the regret. In the context of Dekel et al. (2014), such
a construction results in a regret of Q(7%?/logT). In our context, a similar construction
gives a much higher, almost linear lower bound. We remark that our modification of this
randomized construction share similarities with a construction used by Dwork et al. (2010)
to obtain positive results in a different context, that of differential privacy. (The inability
of the player to distinguish between the reference arm and the decoy arm is analogous to
keeping the value of an offset “differentially private”.)

The upper bound in Theorem 7 is based on a simple randomized algorithm that in every
round asks for a switch with probability that is exponential in the negative of the reward of
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that particular round. The proof that this algorithm has low regret (when the adversary is
consistent) is based on showing that the expected fraction of rounds spent on the decoy arm
is exponential in the (negative) offset of the decoy arm compared to the reference arm.

The lower bound in Theorem 7 (against semi-Markovian algorithms) is based on the
adversary choosing at random a fixed reward on the reference arm and a fixed smaller
reward on the decoy arm. Natural distributions for choosing these two rewards only lead
to a regret that behaves roughly like Q(7'/log*?T). To get the matching lower bound of
Q(T/logT) we use a distribution similar to the distribution of queries that was used in work
of Raskhodnikova (1999) on monotonicity testing with a small number of queries.

1.6 Extensions of Our Upper Bound

We discuss a few simple extensions of the basic model presented in Section 1.1.

Time-dependent policies. In our stateful policies model, reference policies were assumed
to be time independent. We may also consider a model in which reference policies can be
time dependent (the functions f™, g™ have an additional input which is the round number).
Our lower bound (Theorem 4) is proved with respect to time independent reference policies,
and hence holds without change when reference policies can be time dependent. Our upper
bound (Theorem 3) also holds without change when reference policies are time dependent—
nothing in the proof of Theorem 3 requires time independence.

Randomized policies. In our stateful policies model, reference policies were assumed to
be deterministic. We may also consider a model in which reference policies can be randomized
(the functions f™, g™ have access to random coin tosses). Our lower bound (Theorem 4) is
proved with respect to deterministic reference policies, and hence holds without change
when reference policies can be randomized. For the upper bound, there are two natural
ways of evaluating the regret. One, less demanding, is against the expected total reward
of the reference policy with highest total expected reward. The other, more demanding,
is against the expectation of the realized maximum of the total rewards of the reference
policies. (That is, one runs each one of the reference policies using independent randomness,
and observes which policy achieves the highest reward.) Our upper bound (Theorem 3)
extends to randomized reference policies, even under the more demanding interpretation—
one simply fixes for each reference policy all its random coin tosses in advance, thus making
it deterministic, and then Theorem 3 applies with no change.

Stateful and reactive adversaries. One of the motivations of the current study was to
consider also stateful adversaries, and not just stateful policies. For a stateful adversary, the
reward at a given round can depend not only on the action taken by the player, but also on
the entire history of the game up to that round (via some state variable that the adversary
keeps and updates after every round). In general, it is hopeless to attain sublinear regret in
such settings (for example, the action taken in the first round might determine the rewards in
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all future rounds, and then one mistake by the player already gives linear regret). However,
our positive results do extend to a certain class of stateful adversaries, for which the reward
received at any round is a function of the actions of the player on that and the ¢ previous
rounds (for some fixed ¢). We refer to this class as reactive adversaries, in analogy to our
notion of reactive policy, though it has been studied in the literature under the names “loss
functions with memory” (Merhav et al., 2002) and “bounded memory adaptive adversary”
(Arora et al., 2012). See Section 2.7 for more details.

2 Proofs

2.1 The Local Repetition Lemma

In this section we formulate and prove the local repetition lemma, which is a key lemma
for the proof of Theorem 5. As this lemma may have other applications, we use a generic
terminology that is not specific to our sequential decision models. In the notation of the
local repetition lemma, a sequence will be referred to as a string, its length will typically be
denoted by n (rather than T'), and the entries of the string (which will still have values in
[0, 1]) will be referred to as characters rather than rewards. Hence, strings are concatenation
of individual characters, where the value of a character is a real number in the range [0, 1].
However, it will be convenient for us to sometimes view a string as a concatenation of
substrings. Namely, each entry of the string might be a string by itself, and the whole string
is a concatenation of these substrings. We may apply this view recursively, namely, the
entries of each substring might also be substrings rather than individual characters. The
notation that we introduce below is flexible enough to encompass this view.

For arbitrary n, given a string s € [0,1]", x5 denotes its average value. Using s(i) to
denote the ith entry of s, and using z,; to denote the value of this entry, we thus have
Ty = %Z?:l Tsy- This notation naturally extends to the case that s is not a string of
characters, but rather a string of n substrings, in which each substring s(i) is by itself a
string of m characters (same m for every 1 < i < n). In this case, T4 is the average value
of string s(i), and the expression % Y oiy s still correctly computes .

As a rule, whenever we view a string as being composed of substrings, all these substrings
will be of exactly the same length.

Definition 8 (repetitive string). Let n be a multiple of d. Consider a string s € [0, 1],
viewed as a concatenation of d substrings, s(1),...,s(d), each in [0,1]"?. Given ¢ > 0, we
say that s is (d, €)-repetitive if for every ¢ we have |z, — x| <.

A key aspect of our approach is that we shall typically not consider the string as a whole,
but rather consider only a local portion of the string, namely, a substring. Moreover, the size
of the local portion depends on the level of resolution at which we wish to view the string.
Consequently, we endow the string with a probability distribution over its substrings, as in
Definition 9.
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Definition 9 (d-sampling). Let n be a power of d, say n = d*. A d-sampling of a string
s € [0,1]™ proceeds as follows. First a value ¢ (for level) is chosen uniformly at random from
{0,...,k — 1}. Then s is partitioned into d° consecutive substrings, each of length d*~¢.
Thereafter, one of these substrings is chosen uniformly at random, and declared the result
of the sampling.

The result of d-sampling is always a string whose length is divisible by d, and hence
compatible in terms of length with the requirements of Definition 8.

Remark. In Definition 9 we assume that n is a power of d. We shall make similar simplifying
assumptions throughout this section. However, our work easily extends to cases that n is
not a power of d. We explain how to do this in the context of d-sampling. Let k be largest
such that d* < n. With probability d*/n choose the prefix of length d* of s and on it do
d-sampling as in Definition 9. With the remaining probability 1 — d*/n choose the suffix of
length n — d* of s, and recursively partition it into a prefix and suffix as above, applying
Definition 9 only to the prefix. When the suffix becomes shorter than d, stop (this suffix can
be discarded from s without affecting our results).

We can now state the key definition for this section.

Definition 10 (locally-repetitive string). Let n be a power of d, and consider a string
s € [0,1]". Given ¢,6 > 0, we say that s is (d, €, d)-locally-repetitive if with probability
at least 1 — 4, a random substring of s sampled using d-sampling (as in Definition 9) is
(d, €)-repetitive (as in Definition 8).

The main result of this section is the following.

Lemma 11 (Local repetition lemma). Let d be a positive integer, and ¢,6 > 0. Then for
every n > d* where k = d/(4€%5), every string s € [0,1]" is (d, €,d)-locally repetitive.

Proof. For simplicity, we shall assume that 1/e and 1/0 are integers. Let s be a string in
[0, 1]™ with n = d*. We say that a substring v is aligned if its location in s is such that it may
be obtained as a result of d-sampling. Observe that if v is aligned, then it is a concatenation
of d equal length strings v(1),...,v(d), each of which is aligned as well. Recall that we refer
to £ in Definition 9 as the level. We use the notation v € ¢ to say that v is aligned, and
moreover, v is in level ¢ with respect to d-sampling.

Define the variability of level £ to be:

1
VO<I(<Ek, V= yZ(%)?

Proposition 12. With the above definition, we have Vi, — Vi < i.

Proof. By definition, V = (z,)?. Observe that V}, is maximized if all characters are 0/1, and
moreover, the average of a character in level k is exactly x,. Hence, Vi < z,. The difference
Vi — Vo = x5 — (25)? is maximized when x, = %, giving a value of i. O
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V, is monotonically nondecreasing with ¢, because for a given aligned string v with sub-
strings v(1),...,v(d), we have that x, = éZle Ty(;), and the square of an average is never
larger than the average of the squares. For aligned strings v that are not (d, €)-repetitive,
the following proposition shows that there is a noticeable increase in variability in the next
level.

Proposition 13. If v is an aligned string that is not (d, €)-repetitive, then

d
> () > @)+
i=1

Proof. If v is not (d, €)-repetitive, then it has at least one substring v(), with |z, — )| > €.

Ul

Hence 20, (x, — @y))? > €% By definition, z, = 1 S0 2,4, Hence S0 (2, — 2y)? =
S (s )2 —d(x,)?. Putting these two facts together we get that 30 (2,¢))% > d(z,)?+¢,
implying the proposition. O

Let 0, be the conditional probability that given that the d—samphng procedure sampled
level ¢, the substring v sampled is not (d, €)-repetitive. Hence § = k z 0 ' 8. Then applying
Proposition 13 level by level implies that

9 k—

1
€2 kde?
Vi=Vo > =) 0y = — .
k= Vo P ¢ P
=0
Contrasting this with Proposition 12 we obtain that % < i, implying that § < ﬁ. O

In Appendix A we provide an alternative proof for Lemma 11. Though that proof gives
somewhat weaker bounds, we find it informative, as it shows the relation between Lemma 11
and martingale theory.

Lemma 11 is best possible in the following sense.

Lemma 14. There is a universal constant ¢ > 0 such that the following holds. Let d be a
positive integer, and 0 < €, < % Then there exists a string s € [0,1]", where n > d* with
k = cd/(€*)), that is not (d, €, 0)-locally repetitive.

Proof. Again, we assume for simplicity that 1/e and 1/§ are integers. Fix d,k let n = d.
Given € > 0, pick n > € to be as small as possible, conditioned on 1/2n being an integer.
Construct a string s € [0,1]" in a top-down manner, by associating the x, variables with
the possible choices of substrings v in the d-sampling scheme. Start by setting z, = %
Thereafter, for every substring v for which z, is already determined do the following. If v
is a single character, nothing needs to be done. Else, v represents a string whose length is
a multiple of d. Let v(0),...,v(d — 1) denote the d substrings whose concatenation gives v.
If either x, = 0 or x, = 1, then for every i, let ;) = x,. In this case v is (d, €)-repetitive.
However, in every other case, let z,0) = z, +n, 7,0y = 7, — 1, and x4, = z, for all
2 <m <d—1. In this case v is not (d, €)-repetitive.

14



The construction above maintains that 0 < z, < 1 for every v, and moreover, x, =
é Zle Ty(;). Hence the z, variables indeed represent the true averages over the corresponding
substrings of s.

For an individual character at location 7 in the string s, its value is integer (0 or 1) if and
only if when writing i in base d (namely, i = ax_;d* ™' + ... a1d + ag, with 0 < a; < d — 1),
there is a value 0 < j < k — 1 such that among the coefficients a;,...,a,_1, there is a
difference of at least 1/n between the number of those coefficients that are 0 and the number
of those coefficients that are 1.

Let us now set k = cd/n?, for some small universal constant ¢ > 0 (independent of d and
n). It is not difficult to argue that in this case, only a small fraction of the characters of s
are integer (0 or 1). (For a random ¢, only O(k/d) of its digits in base d are 0/1, and for
most sequences of +1 of length m, there is no prefix whose sum exceeds O(y/m) in absolute
value.) Hence for this value of k, almost no v is (d, €)-repetitive.

Finally, set k = kq/25, with kg = cd/n*. With probability 26 the d-sampling procedure
will choose a level among the top kg levels, and then with probability at least % the sampled
string v will not be (d, €)-repetitive. O

2.2 Upper Bound for Hidden Bandits

In this section we present an algorithm for the hidden bandit problem whose worst-case
expected regret is sublinear. Our algorithm exploits the fact that the reward sequence of
the reference arm, whose values are set in an oblivious manner by the adversary, is (d, €, §)-
locally repetitive (see Definition 10) for appropriately chosen values of d, €, §, as implied by
the local repetition lemma. Hence, it would be instrumental to first consider the simpler
case where the reference sequence is in fact (d, €)-repetitive (see Definition 8).

When the reference sequence is (d, €)-repetitive, we propose an algorithm, described in
Algorithm 1, which is based on a simple first-explore-then-exploit strategy. The algorithms
begins with an exploration phase (Phase I), where it tries to hit the reference arm at least
once and obtain an estimate of its reward, which is almost constant at the appropriate
scale. Then, in the exploitation phase (Phase II), the algorithm repeatedly asks for a switch
whenever the observed rewards drops below the top estimated rewards obtained in Phase I.
Eventually, since the reference arm is (d, €)-repetitive, the algorithm should stabilize on that
arm no matter what the rewards on the decoy arm are.

The following lemma shows that for small values of ¢, if d is large enough as a function
of € then the expected regret of Algorithm 1 is not large.

Lemma 15. Assume that the reward sequence of the reference arm is (d, €)-repetitive, with
d > (1/p*€)log®(1/€). Then the expected regret of Algorithm 1 is at most SeT.

Proof. Let v denote the average reward (over all rounds ¢t = 1,2,...,T) of the reference arm.
Notice that the probability of not visiting this arm in the first phase of the algorithm is no
more than (1 — p)™ < e ™ = €. Hence, with probability at least 1 — ¢, the first phase of
the algorithm samples the reference arm at least once, so that there exists some j € [m]
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Algorithm for (d, ¢)-repetitive reference sequence (parameters: d,e,p, T)
e let m = (1/p)log(1/e)

e Phase I: fori = 1,...,m: stay on chosen arm for 7'/d rounds and let 7; be the average
of the observed rewards, then switch once

e sort the averages 71,...,7,, in descending order to obtain 71 > ... > 7,
e Phase II: initialize i = 1, s = 0 and repeat (until 7" rounds have elapsed):

— stay for T'/d rounds and let 7 be the average of the observed rewards
— if 7 < 7; — 2¢, switch once and update s < s+ 1

— if s > m, update i < i+ 1 and reset s =0

Algorithm 1: An algorithm for (d, €)-repetitive reference sequences.

for which 7; € [v — €,v + €] as the reward sequence of the reference arm is assumed to be
(d, €)-repetitive. The total regret incurred in this phase is bounded by m - T'/d.

Next, assume that indeed 7; € [v—e¢, v+¢€ for some j € [m] and consider the second phase
of the algorithm. Notice that once i = j and the reference arm is selected, the algorithm stops
switching and stays on that arm until the game ends. This is true because the reference arm
is (d, €)-repetitive, so each average reward 7 encountered when this arm is selected exceeds
vV—€2>T; — 2€.

Let us bound the regret incurred in the second phase of the algorithm until this event
occurs (if at all). To this end, consider iterations with ¢ < j. On any such iteration in which
T > T;— 2¢, we have 7 > 7; — 2e > v — 3e so that the incurred regret is at most 4e - T/d. The
number of iterations that fail to satisfy this condition is equal to the number of switch actions
issued by the algorithm. The number of switch actions in iterations with ¢ < j is no more
than (j —1)-m, and once i = j, the algorithm hits the reference arm after at most m switch
actions with probability 1 — e (and subsequently stops switching). Thus, with probability at
least 1 — € the total number of switch actions is bounded by (5 — 1) - m +m < m?2. In this
case, the total regret incurred in the second phase is at most 4T + m? - T'/d. Overall, the
total regret in both phases is then bounded by

46T+z~m2+z-m < 4eT+£-m2 < 46T—|—£~ilog21 < 6€T
d d d d p? €
where we have used our assumption that d > (1/p%¢)log?(1/e).

On the other hand, if one of the phases fail then the total regret might be as large as T,
but this happens with probability at most 2e. Hence, the expected regret of the algorithm
is at most 8€T'. U

Our general algorithm, that works for any reference sequence, is described in Algorithm 2.
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The algorithm invokes Algorithm 1 above as a subroutine on a randomly-chosen block size,
exploiting the locally-repetitive structure guaranteed by the local repetition lemma.

Algorithm for hidden bandits (parameters: p,T)

e set
1 loglogT d 1 log? 1
E = — s — s = — 10 —
VP log’tT p? &
e choose block size b = d’, where i is chosen uniformly at random from {1, ..., [log, T'|}

e for i =1,...,7T/b: invoke Algorithm 1 on a block of size b with parameters d, €, p, b

Algorithm 2: An algorithm for the hidden bandit problem that guarantees sublinear expected
regret.

We are now ready to give the main result of this section, which gives an upper bound
over the expected regret of Algorithm 2.
Theorem 5 (restated). The expected regret of Algorithm 2 is
0 (L . TloglogT)
VP logttT
The proof uses the local repetition lemma, restated here for convenience.

Lemma 11 (restated). Let d be a positive integer and €,0 > 0. Then for every n > d* where
k = d/(4€%)), every string s € [0,1]" is (d, €, d)-locally repetitive.

Proof of Theorem 5. Set d = (1/p®€)log*(1/€), 6 = €, k = d/4€® in Lemma 11, which then
states that any sequence of length at least T, = d¥ is (d, €, €)-locally repetitive. Notice that
for T'> (1) and our choice of € we have

1 L,/ 1. ,1
logT. = e log <;) - log <Elog E)

L (L) = T (T )
p2et pret log™(log T') log®(log T')

< logT,

IN

thus 7, < T which means that the reward sequence of the reference arm is (d, ¢, €)-locally
repetitive. Since b was chosen uniformly at random, this means that each b-aligned block of
size b in this reward sequence is (d, €)-repetitive with probability at least 1 — e.

Now, consider a certain iteration of the algorithm. With probability 1 — €, the corre-
sponding block in the reference reward sequence is (d, €)-repetitive with d = (1/p%) log*(1 /).
Hence, according to Lemma 15, following the strategy of Algorithm 1 in this block yields an
expected regret of O(eb). Overall, the expected regret in all 7'/b blocks is then O(eT"). Using
the definition of € concludes the proof. O
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2.3 Upper Bound for Stateful Policies

We now show how our algorithm for the hidden bandit setting can be applied, via a simple
reduction, in the stateful policy model. The resulting algorithm is presented in Algorithm 3,
that provides implementations of the stay and switch actions of the hidden bandit model.
The basic idea is to think of the best performing policy (in hindsight) within the set II as
the reference arm, and let the decoy arm capture all other policies, as well as other action
paths that do not correspond to any policy.

Algorithm for competing with stateful policies (parameters: II,T)
e choose a policy m € II and a state s; € [S] uniformly at random

e invoke Algorithm 2 with parameters p = 1/kS and T, and the following implementa-
tion of stay and switch:

— stay on round ¢: play the action f7(s;), observe reward r, and update m; 1 <+ m
and sp41 < g™ (s¢,7)

— switch on round ¢: play the action f™(s;), then choose a policy m1 € II and a
state s;.41 € [S] uniformly at random

Algorithm 3: An algorithm for competing with stateful policies.

We now prove our main upper bound result, which provides a regret guarantee for Algo-
rithm 3.

Theorem 3 (restated). For any reference set 11 of k stateful policies over S states, the
expected regret of Algorithm 3 with respect to 11 is

O (@ TloglogT) .
log'* T
Proof. Let m* € 1I be the best policy in the set II, namely, the one having the highest
total reward in hindsight. For all t = 1,2,...,T, we let s; € [S] denote the state visited
by 7* on round ¢ had it been followed from the beginning of the game. Consider a hidden
bandit problem where the reward sequence of the reference arm is the sequence obtained by
following the policy 7* throughout the game, and the arm being pulled on round ¢ is given
by the random variable
Vi Xy = lpirevssss -

The decoy arm models any situation where the algorithm deviates from the policy 7*, and
each reward obtained on that arm is possibly a function of the entire history of the game,
including even the random bits used by the player. Since the model allows for the decoy
arm to be completely arbitrary, we do not precisely specify the rewards associated with that
arm. The claimed regret bound would then follow from Theorem 5 once we verify that the
implementations of the stay and switch actions are correct, namely:
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(i) if X; = 0 (i.e., the algorithm is on the reference arm on round ¢), then choosing stay
ensures that X;,; = 0;

(i) if X; = 1 and the algorithm chooses switch then X;,; = 0 with probability at least
p=1/kS.

Again, since the decoy arm may be completely adversarial, it is not crucial to verify the
transitions directed towards it (in particular, the decoy arm might imitate the reference arm
in response to a certain action of the algorithm).

To see (i), note that X; = 0 implies m; = 7* and s; = s}. In particular, the algorithm picks
on round t the same action played by 7* on that round and observes the same reward. Hence,
if the algorithm chooses stay then the update syi1 < g™ (s;,7) ensures that s,41 = 57,
retaining the algorithm in the correct state on round t+1. Next, if X; = 1 which means that
the algorithm is not on the reference arm on round ¢, then by choosing switch the random
choice of (711, 5:41) hits the configuration (7*,s;,,) with probability p = 1/kS. That is,
with probability at least 1/nS the algorithm would be on the reference arm on round ¢ + 1,
which proves (ii). O

Remark. Following the same idea explained in the proof above, it is actually possible to
obtain a slightly improved dependence on the number of policies n and save a n'/* factor in
the resulting bound, albeit with a more involved algorithm.

2.4 Lower Bound for Hidden Bandits

In this section we prove our lower bound for the hidden bandit problem with p = 1/2 given
in Theorem 6, which we restate here more formally.

Theorem 6 (restated). For any randomized player strategqy in the hidden bandit model with
p = 1/2, there exists an oblivious sequence of reward functions r,...,rp that forces the
player to incur an expected regret of Q(T'/ log®/? T') with respect to the reference arm.

In order to prove Theorem 6 we make use of Yao’s principle (Yao, 1977), which in our
context states that the expected regret of a randomized algorithm on the worst case reward
sequence is no better than the expected regret of the optimal deterministic algorithm on any
stochastic reward sequence. Hence, Theorem 6 would follow once we establish the existence of
a single sequence of stochastic reward functions, I'y.7, which is difficult for any deterministic
algorithm of the player (in terms of expected regret).

Our construction of the required stochastic sequence I'i.r is based on a variant of the
Multi-scale Random Walk stochastic process of Dekel et al. (2014).

Definition 16 (Multi-scale Random Walk, Dekel et al. 2014). Given a sequence &, ..., &7
of i.i.d. random variables, the Multi-scale Random Walk (MRW) process Wy.r is defined
recursively by
Wy = 0,
Vie[T] W, = Wyy+&, (1)
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Strategy for the hidden bandit adversary (parameters: T')
e set

1 1
€ = ———— and v o= (2)
320logs* T 4log, T

e define Wiz to be a MRW process generated according to Eq. (1), where &, are
i.i.d. random variables equipped with the distribution

VneZ, Pr(&=en) = . (3)

14e=7
o for x € {0,1} set

VtelT] Dyx) = §+ W — el ,
I'y(z) = clip (ft(x)) ,

where clip(r) = min{max{r,0}, 1}

Figure 3: An oblivious strategy for the adversary that forces a regret of (7'/ log®/? T) for
any algorithm for the hidden bandit problem with p = 1/2.

where '
p(t) =t —2°0  §(t) = max{i >0 : 2" divides t} .

Our construction, described in Fig. 3, is similar to the one used by Dekel et al. (2014),
with one crucial difference: instead of using a Gaussian distribution for the step variables
&1.7, we employ a two-sided geometric distribution supported on integer multiples of € (this
is a discrete analog of the continuous Laplace distribution). We then use the resulting MRW
process Wi.r to form a sequence of intermediate reward functions I'1.7, where the reward of
arm x = 0 is consistently better than that of arm x = 1 by a gap of €. The actual reward
functions I';.7 are obtained from I'; by clipping the reward values to the [0, 1] interval.

For this construction, we prove the following lower bound on the performance of any
deterministic algorithm that immediately implies Theorem 6.

Theorem 17. The expected regret of any deterministic player algorithm on the stochastic
sequence of reward functions T'y.p defined in Fig. 3 is at least 107 - T/ 1og§’/2 T.

Before we begin with the analysis, we recall two key combinatorial properties of the MRW
process that are essential to our analysis. See Dekel et al. (2014) for more details and the
formal proofs.

Definition 18 (depth). Given a parent function p, the set of ancestors of t is denoted
by p*(t) and defined as the set of positive indices that are encountered when p is applied
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recursively to t. Formally, p*(t) is defined recursively as

7(0) = {}
Vie[r] ) = p(e(t) U {p(0)} . (4)

The depth of p is then defined as d(p) = max,e[r) |p*(t)].

Definition 19 (cut, width). Given a parent function p, define
cut(t) = {se[T] : p(s) <t<s},

the set of rounds that are separated from their parent by ¢. The width of p is then defined
as w(p) = maxe[p) [cut(t)|.

Lemma 20. The depth and width of the MRW are both upper-bounded by |log, T'| 4 1.

We begin the analysis with some notation. Fix some deterministic player strategy, that
generates a sequence of random variables Xi.7 when faced with the random reward functions
['y.7, where X; € {0,1} is the arm pulled on round ¢ of the game. We let Y; = I'(X}) denote
the unclipped reward encountered on round ¢ by the following the strategy (which is not
directly observable to the player).

The strategy induces a partition of the rounds into epochs, where epoch m spans over
rounds between the player’s m — 1 and m’th switch actions. Let x,, € {0,1} denote the arm
pulled throughout epoch m, and let T,, denote the length of that epoch. We set T}, = 0
if the m’th epoch does not take place (that is, if the player makes less than m — 1 switch

actions throughout the game). Without loss of generality, we may assume that there are

exactly T epochs corresponding to m = 1,2,...,T, some of which are of zero length.
Without loss of generality, we may assume that the assignment of arms to epochs is
determined before the game begins. Namely, a sequence of random variables x1, xa, ..., X7 is

drawn ahead of time from the distribution described by the Markov chain, where x,, € {0,1}
is the index of the arm assigned to the player on the m’th epoch (some of these variables
may eventually not be used). Notice that, as we assume the player to be deterministic, the
set of random variables &£;.7 and 1.7 completely determine the outcome of the game.

A key step in our analysis is to show that, even if we allow the player to observe the
entire sequence Yi.p directly, he is unable to detect (with sufficient confidence) an epoch
during which the reference arm was pulled. To this end, for each epoch m € [T] we define
two conditional probability measures

Bu(:) = Pr(-|xm=0)
Qm(-) = Pr(-|xm=1),

over the sigma algebra F = o(Y1.7) generated by the variables Y7.p. Our first lemma shows
that for any event observable to the player (i.e., one that relies on the random variables the
player receives as feedback) which is likely to occur assuming x,, = 0, is also likely to occur
given x,, = 1.
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Lemma 21. For all epochs m and for any event A € F it holds that Qn,,(A) > = - P,(A).

Proof. Fix some epoch m € [T]. In order to prove the lemma, we bound the log-likelihood
ratio of an arbitrary feasible realization y;.7 of the variables Yi.r between the measures P,
and @,,. To do that, we condition on the variables x1, ..., Xm—1, Xm+1, - - -, XT corresponding
to the arms pulled in other epochs. Consider two realizations z.7, 2} € {0,1} of the
sequence Y17 that differ only by the value assigned to the m’th variable, with z,, = 0 and
x =1, and define the measures

Pfln() = Pm( : | X1T = Il;T) )
le() = Qu( | x1r= 17,1:T) .

Then, we can write

P (Yrr = yir, Xar = T1.7) — o Po(X1:1 = T1.7) +log P, (Yi.r = yi1)

Qm(Yl:T = Y11, X1.T = 93/1;T) B Qm(Xl:T = 17/1:T) Q;n(yl:T = yl:T) . (5)

log

In order to bound the first term on the right-hand side, note that the Markov-chain dynamics
of the switch action (recall Fig. 2) imply

PM(Xm-i-l = xm—i-l) _ Pr(Xm-i-l = Tm+1 | Xm = 0) 1 9
Qm(Xm—i-l = zm-ﬁ-l) Pr(Xm-i-l = Tm+1 | Xm = 1) N 1/2

Similarly, using Bayes’ law,

Pm(Xm—l = xm—l) Pr(Xm—l = Tm-1 | Xm = 0
Qm(Xm—l = Im—l) Pr(Xm—l = Tm-1 | Xm = 1

)
)
).
)

_ Pr(Xm =0 | Xm—1 = Tm-1 Pr(Xm = 1)
Pr(Xm =1 | Xm—1 = Tm—1 Pr(Xm = 0)

Sy

= 1213

where we have used the fact that the Markov chain is in its stationary distribution (3, 2).
Hence, we conclude

Pu(x1r = 71.7) P (Xm—1 = 1) + log P = ) < 2log2. (6)

= log -
Qm(Xm-i-l = xm—i-l)

log ;
Qm(XlzT = {ELT) Qm(Xm—l = fm—l)

For bounding the second term on the right-hand side of Eq. (5), we decompose it into
a sum using the fact that Y} is conditionally independent of all Y, with s # p(t) given Y,
under both P! and @/, (recall Eq. (1)), as follows:
. P (Yir =yi.r) _ ilog P.Yi=y| Yo = Yot)
Q. (Yir = y17) — QLY =y | Y0 = Yo

lo
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Here, for convenience, we define a fictitious deterministic reward Yy = yo = % Each term
in the above sum corresponds to an edge in the dependency graph of the MRW process,
formed by the function p. Consider a particular term of the sum, that represents the edge
(p(t),t), and let ¢ and j denote the epochs containing the end points p(t) and t, respectively.
Notice that the conditional distribution of Y; given Y, is determined only by the values of
Xi and x;. In particular, if x; = x; then Y; = Y, + &. However, if x; = 0, x; = 1 then
Y=Y,y +& —¢€ and if x; =1, x; = 0 then Y; = Y, + & + €. Hence, the log-likelihood
term is zero unless Y; | Y, has different distributions under the measures P, and @’,, which
can happen only when either i = m or j = m (but not both) since the realizations 1.7, 2.1
differ only in the value assigned to x,,. In the latter case, the log-likelihood term is equal
to the log-likelihood ratio between the distributions of & and &; + € at some point in their
(common) support, which can be at most 7 as can be seen from Eq. (3).

Now, notice that any edge (p(t),t) for which either i = m or j = m is in cut(S,,) or
in cut(S,,41), where S, and S,,11 denote the rounds on which epochs m and m + 1 begin.
Overall, we get

P (Yir = y1.

AT Z ) eu(Spmy)] + - feut(S)| < 2yu(p) < 1,
Qm(}/l:T = yl:T)
where we have used the fact that the width of the MRW process is upper bounded by 2 log, T’
and our choice of v in Eq. (2). Plugging this and Eq. (6) into Eq. (5) and exponentiating
results with

log

1
Pm(}/l:T = Y17, X1.T = xl:T) Z E : Qm(}/l:T =Yu.17, X1.T = x/l;T) .

Since this holds for any assignment of the variables y; (i # m), by marginalizing over these
variables we obtain that P, (Yi.r = y1.1) > ﬁ-@m(YhT = y1.7) for any sequence y.7. Finally,
integrating this inequality over the event A € F gives the lemma. O

We now turn back to analyzing the player’s regret. In order to lower-bound the expected
regret of the player’s action sequence Xy.r, it will be convenient for us to first analyze the
regret of the same sequence as measured by the unclipped reward functions I';, namely

R = Y T,(0)-) TuXy),

and later deal with the effect of the clipping. This quantity can be alternatively expressed
as a simple function of the variables T}, and X,

T

R = R, , where Vm R, = €l,-1,,+0 -

m=1

Here, R,, is the regret incurred during epoch m (in terms of the functions flzT) and R is

simply the total regret incurred in all epochs. The following lemma relates the quantity E[R)]
to the actual expected regret of the player.
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Lemma 22. The player’s expected regret can be lower-bounded as E[R] > E[R] — €T'/25.

Proof. We first prove that for each ¢ € [T'], with probability at least 1 — 1/25 both of the
rewards [';(0),I;(1) lie the interval [0,1]. Then, the lemma would follow since this proves
that in expectation there are at most 7'/25 rounds on which the reward functions I';(z) and
['y(x) do not coincide. On each of those rounds, the player’s regret might decrease by at
most € since the gap between the arms is only narrowed by the clipping of the rewards.

To prove the above claim, fix some ¢t € [T]. Since the depth of the process Wi.r is
bounded by 2log, T' (see Lemma 20), the random variable in W; is a sum of at most 2log, T
variables of the sequence &;.7. For bounding the magnitude of each of the variables &, which
are distributed according to Eq. (3), let us first bound their variance. Noticing that |&|/e
is a geometric random variable with parameter p = 1 — ¢~ and using a standard bound of
2/p? over the second moment of the geometric distribution, gives

26> 8¢?
— 2 s
Var(&) = E[|&]] < (P < ol
where in the last inequality we have used the fact that e < 1 —x/2 for = € [0, 1]. Since the
&,’s are independent, this implies that Var(WW;) < 16(e/v)?log, T. By Chebyshev’s inequality
we now obtain Pr (W, > 20(e/~)+/log, T') < 1/25, so that with probability at least 1 —1/25
we have

1

206 ——
,y

for our choice of € and ~ stated in Eq. (2). _

Finally, recall that either I';(z) = % + W, or I'y(z) = % + W, — ¢, depending on whether
x = 0 or not. In any case, we have I';(z) € [0,1] for all x € {0,1} with probability at least
1 —1/25, since € < 1/4. O

W

Next, we use Lemma 21 to show that in expectation, the regret R,, incurred on epoch
m grows linearly with the length of the epoch.

Lemma 23. For each epoch m we have E[R,, | T,,, = t] > €t/12 for all t.

Proof. Fix some t € {0,1,...,T}, and notice that {T,, =t} € F as the random variable T,
is observable to the player, and in particular, is a deterministic function of Yj.7. Then

E[Rp | T =1] = BTy -y o1 | Tn=1] = et-Pr(xm #1| Tn=1),
and by Bayes’ law, we have

E[R, | T, =1 = o PrTn =t xm #1) - Pr(xm # 1)

Pr(T,, =t)
et Qum(Tn =1)
=5 Pr(T, =1t) 0
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On the other hand, using Lemma 21 we obtain P, (7,, = t) < 4e - Q,,(T,, = t), which
together with Pr(T;, =t) = 1P, (T, =t) + 1Qm (T, = t) gives

2 1
m( L, =1t) > -Pr(T,,=t) > = Pr(T,, =t
QulTu=1) 2 {0 Pl =1) > ¢ Px(T, =1)
Plugging this into Eq. (7) concludes the proof. O

Theorem 17 is now a direct consequence of Lemmas 22 and 23.

Proof of Theorem 17. Applying Lemma 23, we can lower-bound the expected value of R as
T T
~ el
R, .| = —.
> A
Hence, by Lemma 22, the expected regret of the player can be lower-bounded as

1 1 €T
ER > (= ——) T > =
R] = (12 25) “ =30

Using our choice of € given in Eq. (2) concludes the proof. O

> ‘g
= 12

E[R] = E - E iE[EMTm]

2.5 Lower Bound for Stateful Policies

In this section we use the lower bound proved in Section 2.4 in the hidden bandit setting
to prove a similar lower bound in the stateful policies model. Our result applies even in a
very restricted case of the problem, where the reference set II consists of reactive policies
(see Definition 2). This result is stated in Theorem 4, repeated here in a more specific form.

Theorem 4 (restated). For any randomized algorithm in the stateful policies model, there
exists a set Il of k = 3 reactive policies over n = 3 actions, and a sequence of oblivious
reward functions ri,...,rp, such that expected regret of the algorithm with respect to 11 is

Q(T/1og®>T).

Proof. Assume the contrary, namely, that there is an algorithm A that achieves an expected
regret of o(T/log®? T)) with respect to any set of 3 reactive policies over 3 actions, and for
any oblivious sequence of reward functions. We show that A can be used to achieve the
same expected regret in the hidden bandit model with p = 1/2 and any oblivious assignment
of rewards to the arms. More specifically, we design an algorithm A’ for the hidden bandit
problem based on the algorithm A that obtains expected regret of o(7'/log®? T'). This would
contradict Theorem 6 which states that such algorithm cannot exist, proving our claim.

Consider an instance of the hidden bandit problem with p = 1/2 and an arbitrary se-
quence of oblivious reward functions 7.4 : {0,1} — [0, 1]. We now describe a set of reference
reactive policies II = {m, m, m3} and a randomized construction of reward functions ri.p
over actions {1,2,3}, that simulates the hidden bandit instance. For convenience, we will
construct functions r1.r that assign reward values in the range [—3, 3|; this only affects the
constants in the resulting bounds.
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Reference policies. The reference set Il consists of 3 reactive policies, 7, m, 73, that all
share the same action function

7:[=3,3 = {1,2,3},  x(r)=|Irl],

mapping the last observed reward to the next action. The policies only differ by their
initial action on round ¢ = 1, where policy 7; begins by playing action 1.

Reward functions. To construct the functions r.7, we draw a sequence of permutations
01,...,0741 chosen independently and uniformly at random from the set of all permu-
tations over the elements {1,2,3}, and define for each action ¢ € {1, 2,3} the following
reward sequence:

Vitell] (i) = round(rl{ (]li;éat(l)) ) Ut+1(‘7t_1(i))) ) (8)

where round(r, j) is a randomized rounding function that rounds a reward value r €
[—1,1] to &7 in a way that E[round(r, j)] = r, namely

+j5 with probability
—j with probability

(L+7/5),
(1=r/j).

In particular, there are only 6 possible reward values: +1, +2, 43.

N[—= D=

round(r, j) = {

Algorithm. Finally, we define an algorithm A’ for the hidden bandit problem, based on
A. Let Xy,...,Xr € {1,2,3} denote the sequence of actions played by A on the
reward functions 7.7 and the reference set II. Then, on any round in which A follows
the function 7, that is whenever X;,; = m(r;(X;)), the algorithm A’ chooses stay;
otherwise, it chooses switch. The arm being pulled by A’ on round ¢ is given by the
random variable X = 1l x,40,(1), and its reward on that round is r'(X7).

The transition function g and the reward functions 7.7 together define three disjoint
random paths of actions throughout the game, each corresponding to one of the policies
Ty, T2, 3. Namely, for each 7 = 1,2,3, the policy 7., (that plays the action o4(i) on the
first round) plays the sequence of actions oy (i), 02(i),...,07(i) on rounds 1,2,..., T, which
is disjoint from the trajectory of other policies. This follows from the observation that, for
any i € {1,2,3},

Vtelll  w(r(oi))) = oua(i) . (9)

In words, if the action oy(¢) was played on round ¢, then by following the function 7 the
action oy41(7) is played on round ¢ + 1. The idea is that the type of rounding used for each
reward value on one of the paths signals the function 7 which is the next action to be played
on that path. See Fig. 4 for an illustration of this structure.

The policy 7 = m,, 1), whose action on the first round is o1(1), corresponds to the
reference arm in the underlying hidden bandit problem. Indeed, by Eq. (8), the expected
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Figure 4: An illustration of the reward functions and policies used in the reduction. The
marked path represents the path of the policy 7*, that corresponds to the reference arm in
the hidden bandit problem. The absolute value of each rounded reward on one of the paths
indicates the next action on that path.

sequence of rewards encountered along the path of 7* is r1(0),75(0),...,7(0) (where the
expectation is taken with respect to the randomized rounding), and thus coincides with the
reward sequence of the reference arm. The expected reward sequences corresponding to the
other two paths are identical to the reward sequence of the decoy arm.

We now show that A’ is a valid algorithm in the hidden bandit model (with p = 1/2).
To this end, we verify that the dynamics of the stay and switch actions are compatible with
those of the hidden bandit model, namely:

(i) The arm pulled by A’ on the first round is the reference arm with probability 1/3 (and
it is the decoy arm with probability 2/3). Indeed, Pr(X] = 0) = Pr(X; = 0,(1)) = 1/3

since oy is chosen uniformly at random.

(ii) If A’ chooses stay on round ¢, then it remains on the same arm on round ¢ + 1, namely
Xi,1 = X| with probability 1. Indeed, A’ chooses stay if X;; = m(r(X)), in which
case Eq. (9) implies that X1 = 0441(1) if and only if X; = 04(1), so X}, , = X|.

(iii) If A’ chooses switch on round ¢ and X; = 0, then X/, ; = 1 with probability 1. This
holds since X; = 0 means that X; = o4(1), and if A’ chose switch then necessarily
Xit1 # 0141(1), which implies that X] ; = 1 with probability 1.

(iv) If A" chooses switch on round ¢ and X; = 1, then X/ ; = 0 with probability 1/2. To
see this, note that X; = 1 implies that X; = o,(j) for some j # 1, so if A" chose switch
then X1 # 0y11(j) and consequently Pr(X,;; = 0,11(1)) = 1/2 as 0,41 is a random
permutation. This means that X; ;, = 0 with probability 1/2.

Finally, notice that by Eq. (8) we have E[r}(X])] = E[r;(X})] for all . Together with the
fact that the total expected reward of 7* equals the total expect reward of the reference arm,
this implies that the expected regret of A’ (with respect to the reference arm) is no more
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than the expected regret of A (with respect to II), which is assumed to be o(T'/log®?(T)).
As explained earlier, this contradicts Theorem 6, and as a consequence proves our claim. [

2.6 Semi-Markovian Players vs. Consistent Adversaries

In this section we consider some natural restrictions on the hidden bandits setting. Some of
these restrictions limit the adversary, whereas others limit the player.

We describe first two types of restrictions on the adversary, one being more severe than
the other. Recall that the adversary determines the sequence of rewards for each arm. We use
r+(0) (r¢(1), respectively) to denote the reward of the reference arm (decoy arm, respectively)
at round ¢, and assume that 0 < r(i) < 1.

Definition 24 (consistent adversary). An adversary is constant if for every arm i, there is
a certain value v; € [0, 1] such that (i) = v; for every 1 < ¢ < T. Hence the strategy of
a constant adversary is limited to selecting two values 0 < v; < vy < 1. An adversary is
consistent if there is a fixed offset 0 < A < 1 such that in every round ¢, 7,(0) — (1) = A.
Hence the strategy of a consistent adversary is limited to selecting an offset value 0 < A <'1
and an arbitrary sequence of rewards r.(0) for the reference arm, in the range [A, 1].

When the adversary is consistent, the regret of a player is exactly A times the number
of rounds spent on the decoy arm. Every constant adversary is also a consistent adversary,
with A = vg — v;.

Let us now present two types of restrictions on the algorithm of the player, one being
more severe than the other. Recall that a algorithm of a player determines for every round
t whether to switch or stay, depending on the history observable to the player up to and
including round ¢ (namely, the sequence or rewards observed, and the time steps of all
previous switch requests). It is convenient to assume a round 0 that contains an initial
switch action (there is no reward in round 0).

Definition 25 (Markovian algorithm). An algorithm of the player is Markovian if there is
a deterministic function p : [0, 1] — [0, 1], which given a reward r received in round ¢, maps
it to a probability p(r) for switching in round ¢ + 1. Hence, a Markovian strategy ignores all
information available to the player (including the round number), except for the last reward
received.

Definition 26 (semi-Markovian algorithm). An algorithm is semi-Markovian if it depends
only on the sequence of rewards obtained since the last switch request. Namely, its input
is a memory string s starting by a switch request, and then continuing with a nonempty
sequence of rewards (observed since the last switch up to and including the current round),
and its output is a probability p(s) of switching. Then the player tosses a coin with bias
p(s). If it comes up heads the players makes a switch request, and consequently “forgets”
the current memory string s and starts building a new memory string by placing a switch
at its beginning. If the coin comes up tails the player chooses stay, and keeps the current
memory string s. In either case, the reward observed in next round will be appended to the
memory string.
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2.6.1 Upper Bound for Consistent Adversaries

We now discuss a simple algorithm for the hidden bandit problem, suitable for the case where
the adversary is playing a consistent strategy. The algorithm, given in Algorithm 4, simply
chooses switch with probability inversely proportional to the exponent of the last observed
reward.

Algorithm vs. consistent adversaries (parameters: 7)

e Fort =1,...,T: observe reward r; and switch with probability %e‘"” (otherwise stay)

Algorithm 4: An algorithm for the hidden bandit problem with a consistent adversary, that
keeps a constant gap between the rewards sequences of the two arms.

The intuition behind this algorithm is straightforward: since one arm is constantly better
than the other, the player is more likely to switch when he is on the worse arm. We prove
that this algorithm performs better than our algorithm for the general case, and achieves an
expected regret of O(T/logT) against any consistent adversary.

Theorem 27. Forn = %log T, the expected regret of Algorithm j is O(ﬁ) against any
consistent adversary.

Proof of Theorem 27. Let X; denote the arm assigned to the algorithm on round ¢. Denote
by ¢! the probability that the algorithms requests a switch on round ¢ given that it is pulling
arm ¢ (i = 0,1). Then

Pr(Xt+1 = ]_ | Xt = O) = q(t) s

Pr(Xpp =0 Xy =1) = pq; .
Hence, we can view the sequence X1, X5, ..., X7 as a trajectory of a two-state Markov chain,
with its transition kernel on time ¢ given by

o (1-q g )
@ (pqi 1—pgt )~

Our goal is to prove that this chain mixes quickly to a steady-state distribution. Note,

however, that the chain is time inhomogeneous (there is a different transition matrix on

each round), so standard bounds on mixing times do not apply. Nevertheless, our analysis

hinges on the fact that there exists a single distribution which is stationary with respect to

all transition kernels simultaneously, and shows that the chain mixes to that distribution.
First, we identify the steady-state distribution shared by all transition kernels.

Lemma 28. The distribution

_ P e
:U“ - (p+e—’7A 9 p+€_77A) (10)

is stationary with respect to all kernels P;. That is, it holds that uP; = u for all t.
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Next, we prove that the inhomogeneous chain mixes to the common stationary distri-
bution p. In the following, we let u! denote the distribution of X;, namely, the probability
distribution over the arms induced by the algorithm on round t.

Lemma 29. For all t, we have ||p' — p|l; < 2(1 — pe™)!~1.

The proofs of both lemmas are deferred to the end of the section. Now, note that the
expected regret of the player can be written in terms of the distributions ' as

T
ERy] = A-) ub.
t=1

Suppose that the player could sample directly from the stationary distribution g (on each
round independently). Then, his expected regret would be

T
Aemm T T
A'ZMIZT'L S_.nAe_nA§_7
— pte ™ T ap 2np

where in the last inequality we have used the fact that the function x — xze™" for z > 0 is
maximized at x = 1. Using Lemma 29, we can bound the difference between this regret and
the player’s actual regret:

A

T
t=

T 00
o 2em
(=) < D fpt=plh < D20 —pe)t = =
1 t=1

t=1 p

Overall, we have

Choosing 1 = % logT" we obtain

1 T T
E < 2 (ovT _
Frl < p ( \F+1OgT) O(plogT) ’

as claimed. 0
Finally, we provide the proofs of the lemmas used in our analysis above.

Proof of Lemma 28. A simple calculation verifies that the distribution

B ( pd T )
v = t t 0t t
qo +Pq1 9o+ Pq;

is stationary with respect to ;. However, observe that

t —nre (0
4 _ ¢ e (0) — e nre(0)=re(1)) — o—mA

¢ el ’
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which gives

V_( p QS/qi)_( p 6‘"A)_M

t — ) - _ 9 _ - .

p+as/ai T p+ab/q pre i penh

for all t. 0

For the proof of Lemma 29 we need the following technical result, which is a variant of
Theorem 4.9 in Levin et al. (2009).

Lemma 30. Let () be a k x k stochastic matriz such that Q);; > € for some € > 0 and all
1,7. Then for any two distribution vectors i and v we have

0@ —v@lL < (1 —ke)-[[p—vl .

Proof. We can write @ = (1 — ke)M + eJ where @ is a stochastic matrix and J denotes
the all-ones k& x k matrix. Now, for any two distributions u,v we have Ju = Jv = 1.
Consequently,

1@ —vQlly = (1= ke) - |[(n— )My .

It remains to bound the norm on the right-hand size. We have

k
=Ml = 37| 3 = v

k k k k k
< DD lmimwilMy = 3 lme— vl Y My = 3 lw = v

= ln=vl,

which completes the proof. O

Proof of Lemma 29. Since ¢, ¢} < 3, the smallest entry in the matrix Q; is pg} which is
bounded from below by
pgi = gpe N > lpe

as the reward r,(1) is at most one. Hence, Lemma 30 above implies that for all ¢,

It = plly = 1 Q= Qs < (1 —pe™) - |ln = el

where we have also used the stationarity of 7. By repeating this argument, we get

[t =l < @ =pe™' gt —plli < 21— pe )",

since the L;-distance between two distributions is at most 2. O
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2.6.2 Lower Bound for Semi-Markovian Algorithms

We refer to the following constant strategy for the adversary as the MT strategy. MT stands
for monotonicity testing, as this strategy (and the first part of the analysis of Case 2 in the
proof of Theorem 31 below) is a variation on a procedure of Raskhodnikova (1999) for testing
whether a one variable function is monotone. For simplicity and with only negligible affect
on the end results, assume that 1+ log 7" is a power of 2.

The constant strategy MT. The adversary chooses at random two integer values 1 <
k1 < ko < logT, subject to the following constraint. Let r be the largest power of 2 that
divides either k; or kg (whichever gives a larger value for r). Then the constraint is that
ko — ki < 2". For 0 < r < loglogT, say that a pair k; < ko is in class r if 2771 < kg — ky <
2". Observe that for each value of r there are at most log7 pairs (ki, ko) in class r. Let
c= Z}f):géogT G +11)2 and observe that ¢ < 2 (regardless of T'). The probability distribution

from which the pair (kq, ko) is chosen is as follows: first an integer value 0 < r < loglogT

is chosen with probability m Then a pair (k1, ko) from class 7 is chosen uniformly at
random. Finally, given the chosen k; and kg, the adversary sets vy = IOZOT and v, = lokng'

Theorem 31. In the hidden bandit setting, regardless of the value of the parameter p, if the
player is restricted to use semi-Markovian strategies, then his expected regret against the MT
strategy is Q(T'/logT).

Proof. To obtain a lower bound on the regret it suffices to consider deterministic strategies for
the player, because the strategy of the adversary is already fixed to be MT. Given that each
arm has constant reward under the MT strategy, then a deterministic semi-Markovian strat-
egy of the player is simply a function g : [0, 1] — {1,2,..., T} that maps the observed reward
r to how many rounds should elapse since the previous switch until the next switch. Con-
sider an arbitrary such strategy g of the player, and consider the function f(k) = g(k/logT),
defined on integer k in the range [1,logT]. Let LIS(f) be the length of the longest monotone
increasing subsequence of the sequence f(1), f(2),..., f(logT). We consider two cases.

Case 1: LIS(f) > %log T. Let iy,...,i be the indices of an increasing subsequence of
length ¢ > %logT. For at most %logT values of j we have that f(i;41) > 4f(4;), as
otherwise f(i) > 4'°¢7/2f(i;) = Tf(i;) > T, which is outside the range of the function p.
Observe also that the increasing subsequence, being of length at least %log T, must contain
at least % log T" consecutive pairs, where a consecutive pair is a value j such that i, = 1+4;.
Hence at least % logT' consecutive pairs differ by a factor less than 4. Namely, there are
at least 15 logT values of i for which f(i + 1) < 4f(i). Refer to such a pair (i,i 4+ 1) as a
dangerous pair. The dangerous pair is in class 0 (with classes as defined in the MT strategy).
The probability of the MT strategy to choose class 0 is % > %, and if chosen, the dangerous
pair is chosen with probability @. On the dangerous pair, the expected number of rounds

i i+1
e T rather than log T

the player spend on the decoy arm (the one with reward ) is at least %,
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because f(i +1) < 4f(i). On the decoy arm the regret is 7. Hence the expected regret is

at least:
1 1 1 T 1 T

loeT - =+ —— .= = .
10 %" "2 logT 5 logT _ 100logT

Case 2: LIS(f) < %log T. Consider a graph with vertices labeled from 1 to logT', where
an edge connects vertex ¢ to vertex j > i if and only if they form a decreasing pair with
respect to f, namely f(j) < f(i). Consider a maximal matching in this graph. Its size is
at least = logT because otherwise all vertices not involved in a maximal matching would
form an 1ncreasmg subsequence longer than 2 = logT'. Consider an arbitrary matching edge
(7,7), and let h in the range i < h < j be such that the power of two that divides it is
highest. If h € {i,j} then the pair (i,7) is a possible choice of the MT algorithm. We
call this an MT-pair. If i < h < j then both (i,h) and (h,j) are MT-pairs, and at least
one of them is decreasing. Hence each matching edge contributes at least one decreasing
MT-pair. A simple case analysis (that is omitted) shows that two different matching edges
cannot possibly contribute the same decreasing MT-pair. Hence there are at least == logT
decreasing MT-pairs. Observe that these pairs need not be disjoint: the same h Vertex can
participate in several (or even all) pairs.

Let ¢ be the constant in the definition of the MT strategy. Then there must be a choice of

integer r in the range 0 < r < loglog T that is dangerous in the sense that there are 103()574?1)2
decreasing MT-pairs of class r. This dangerous r is chosen with probability FEE: +1) Given

that a dangerous r is chosen, the probability of choosing a decreasing MT-pair of class r is
at least ﬁ, because there are at most logT pairs in a class. If a decreasing MT-pair
is selected, the player spends in expectatlon at least T'/2 steps on the decoy arm. In these
steps, the regret of the player is at least 2 . Hence the expected regret is at least (using
also ¢ < 2):

1 1 T 2r1 ortim

c(r+1)2 10c(r+1)2 2 logT = 320(r+ 1)*logT °

The expression ( +)4 is minimized when r = 5, giving roughly = 55- Hence the expected regret

r+1
in case 2 is at most m.

We have not attempted to optimize the leading constant in the {2 notation, and no doubt
it can be substantially improved beyond the bounds shown in our proof. O

The combination of Theorems 27 and 31 implies the following result.

Theorem 7 (restated). Consider a hidden bandit problem with p = , where the adversary
15 restricted to be consistent and the player is restricted to use semi- Markoman algorithms.
Then, the player can guarantee expected regret O(T/logT), and this is the best possible
guarantee in this setting. Moreover, to achieve this guarantee Markovian strategies suffice,
and to block stronger guarantees constant adversaries suffice.
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2.7 Reactive Adversaries

In this section we discuss an extension of our basic setting, where the adversary is allowed
to be reactive. Reactive adversaries are adversaries that set the reward given at any round
as a function of the actions of the player on that and the ¢ previous rounds (for some
fixed ¢). In other words, a reactive adversary determines a sequence of reward functions
r1,...,rp ¢ [n]"t [0, 1] before the game begins, where each function in the sequence is
used to map £+ 1 consecutive actions of the player to a reward value. With the notation of
Section 1.1, the expected regret of the player in this case is given by

T

> r( X X g)]

t=1

Regret; = maXZrt(xff,.. ,xp ) — E

For simplicity, we focus on the case where ¢ = 1.
_ When the reference policies are stateless, previous work show that the player can obtain
O(T?/3) expected regret against a reactive adversary (Arora et al., 2012), and this rate is best
possible in general (Dekel et al., 2014). These results do not hold when the reference policies
are stateful; indeed, our lower bound (Theorem 4) clearly extends to reactive adversaries as
the oblivious adversary we have considered above is a special case of a reactive adversary.
Our algorithms can be adapted to the reactive adversary setting. We sketch our approach,
while omitting the technical details. Essentially, the only issue we have to address is providing
a new implementation of a switch action in Algorithm 3, that switches at some round ¢ to a
random policy and initializes it in a random state. The difficulty is that even if the switch
was successful and resulted in the best policy at its correct state for round ¢, the reward
observed as feedback on round t is also a function of the action in round ¢ — 1, where
a different policy was followed (and a possibly different feedback was observed). Hence
applying the state transition function with this reward might cause the policy to reach an
incorrect state at round ¢ + 1. We deal with this problem by spending two rounds, ¢ and
t 4+ 1, on implementing the switch operation. In round ¢ the player plays a random action.
In round t 4+ 1 the player picks a random policy to switch to and guesses its internal state
(as done by Algorithm 3), and plays the action recommended by the guessed policy in the
guessed state. With probability 1/(knS) all the following conditions hold simultaneously:
the player guessed the best reference policy at its correct state for round ¢ + 1, and the
actions performed in rounds ¢ and t + 1 are exactly as would have been chosen had the
player followed the best policy all along. Thereafter, the feedback received in round ¢ + 1
puts the player on the right track of the best policy. This approach retains the sublinear
regret rate provided by Algorithm 3 (in terms of T"), but the dependence on the constants
involves also n, and not only £ and s.
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A Martingales and Locally-Repetitive Strings

Lemma 11 is central to our work. Hence, it is instructive to see another proof for it. Let
us recall for this purpose Doob’s upcrossing inequality for martingales. Let Xi,..., X, be
a martingale, namely a sequence of random variables such that X; = E[X;.1 | Xi,..., X|]
for all 7, and suppose that the range of values of the martingale in bounded in the sense
that 0 < X,, < 1 (hence the same necessarily holds for all X;). Fixing 0 < a < b < 1,
an (a,b)-upcrossing in a sequence are two indices ¢ < j such that X; < a and X; > b.
The number of (a, b)-upcrossings in the sequence is the largest number ¢ such that there are
indices i1 < j; < ig < jo... <1y < js, and for every 1 < ¢ < t, there is an (a, b) upcrossing in
(i¢, j¢). The following lemma is known as Doob’s upcrossing inequality for martingales, for
which we sketch a simple proof for completeness.

Lemma 32 (Doob’s upcrossing inequality). For the setting as above, the expected number
of (a,b) upcrossing is at most a/(b — a).

Proof (sketch). Think of X; as the value of a stock at time 7. Due to the martingale property,
there is no trading policy for the stock that gains money in expectation. Consider the strategy
of buying the stock as soon as it drops below a, and selling it as soon as it moves above
b, and so on. At the last round the stock is sold regardless of its value. If the number of
crossings is U, this strategy makes a profit of (b—a)U. Selling on the last round loses at most
a (the maximum possible value at which the stock was bought). Hence (b —a)E[U] —a <0,
proving the lemma. O

Fix € > 0 that divides 1, and for integer 0 < m < 1/¢, we refer to an (me, (m + 1)e)
upcrossing as an e-upcrossing. Summing over all m, Lemma 32 implies that the expected

number of e-upcrossings is
1/e

1 1
—Z(m—l)e < 55 -
€~ 2¢

A similar bound applies by symmetry to the analogous notion of e-downcrossing. Hence
altogether the expected number of € crossings is at most 1/€%,
We can now sketch an alternative proof for Lemma 11 (with somewhat weaker bounds).

Proof of Lemma 11 (sketch). Starting from s, consider the process of partitioning s into d
substrings and choosing one of them at random, and doing so recursively until a single
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character u is reached. The averages z,,...,z, encountered on such a random path form
a martingale sequence, with final value in [0,1]. In expectation, at most 4/¢* of the steps
where an €/2-crossing. Observe that for every string v that is encountered along the way, if v
is not (d, €)-repetitive, then there is probability at least 1/d of moving to a substring u that
inflicts an €/2 crossing (the inequality |z, — x,| > € implies that within this range there is a
crossing of width €/2 aligned at a multiple of €/2). Hence at most 4d/€* steps went through
strings that are not (d, €)-repetitive. As there are k steps, this implies that § < 4d/ke*>. O
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